JP7192497B2 - Insulating material and its manufacturing method - Google Patents
Insulating material and its manufacturing method Download PDFInfo
- Publication number
- JP7192497B2 JP7192497B2 JP2018527564A JP2018527564A JP7192497B2 JP 7192497 B2 JP7192497 B2 JP 7192497B2 JP 2018527564 A JP2018527564 A JP 2018527564A JP 2018527564 A JP2018527564 A JP 2018527564A JP 7192497 B2 JP7192497 B2 JP 7192497B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- layer
- core layer
- insulating material
- heat insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011810 insulating material Substances 0.000 title claims description 56
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000007789 gas Substances 0.000 claims description 171
- 239000010410 layer Substances 0.000 claims description 137
- 239000012792 core layer Substances 0.000 claims description 103
- 238000010521 absorption reaction Methods 0.000 claims description 66
- 238000000034 method Methods 0.000 claims description 40
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 38
- 230000004888 barrier function Effects 0.000 claims description 32
- 239000002250 absorbent Substances 0.000 claims description 25
- 230000002745 absorbent Effects 0.000 claims description 25
- 229920005989 resin Polymers 0.000 claims description 22
- 239000011347 resin Substances 0.000 claims description 22
- 239000001569 carbon dioxide Substances 0.000 claims description 19
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 19
- 238000005187 foaming Methods 0.000 claims description 16
- 230000000903 blocking effect Effects 0.000 claims description 15
- 238000009413 insulation Methods 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 229920013716 polyethylene resin Polymers 0.000 claims description 8
- 238000001125 extrusion Methods 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000002585 base Substances 0.000 description 20
- 239000002131 composite material Substances 0.000 description 17
- 239000004088 foaming agent Substances 0.000 description 13
- 239000000853 adhesive Substances 0.000 description 10
- 230000001070 adhesive effect Effects 0.000 description 10
- 239000010408 film Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 239000008188 pellet Substances 0.000 description 8
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 7
- 239000006260 foam Substances 0.000 description 7
- -1 polytetrafluoroethylene Polymers 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 5
- 239000000920 calcium hydroxide Substances 0.000 description 5
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 5
- 239000000292 calcium oxide Substances 0.000 description 5
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000004898 kneading Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 239000011162 core material Substances 0.000 description 4
- 238000009820 dry lamination Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 229920005990 polystyrene resin Polymers 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 229920000092 linear low density polyethylene Polymers 0.000 description 3
- 239000004707 linear low-density polyethylene Substances 0.000 description 3
- 229920001684 low density polyethylene Polymers 0.000 description 3
- 239000004702 low-density polyethylene Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 229910001868 water Inorganic materials 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- 239000004604 Blowing Agent Substances 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 2
- 150000008041 alkali metal carbonates Chemical class 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical class C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229920003319 Araldite® Polymers 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 239000004593 Epoxy Chemical class 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 101000576320 Homo sapiens Max-binding protein MNT Proteins 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920006121 Polyxylylene adipamide Polymers 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000102 alkali metal hydride Inorganic materials 0.000 description 1
- 150000008046 alkali metal hydrides Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- YPHMISFOHDHNIV-FSZOTQKASA-N cycloheximide Chemical compound C1[C@@H](C)C[C@H](C)C(=O)[C@@H]1[C@H](O)CC1CC(=O)NC(=O)C1 YPHMISFOHDHNIV-FSZOTQKASA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229920002681 hypalon Polymers 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- DUIOPKIIICUYRZ-UHFFFAOYSA-N semicarbazide Chemical compound NNC(N)=O DUIOPKIIICUYRZ-UHFFFAOYSA-N 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 238000009461 vacuum packaging Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/02—Shape or form of insulating materials, with or without coverings integral with the insulating materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/06—Arrangements using an air layer or vacuum
- F16L59/065—Arrangements using an air layer or vacuum using vacuum
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Thermal Insulation (AREA)
- Laminated Bodies (AREA)
Description
本発明は、断熱材及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a heat insulating material and its manufacturing method.
断熱材は、断熱性能を高める目的で使用され、冷蔵庫や冷凍庫、建材等の断熱材として発泡ウレタン等の発泡体が用いられている。近年は更に断熱性を向上させるために連通中空構造の発泡ウレタンやガラス繊維をコア材とし、これらコア材をガスバリア性包材で真空包装した真空断熱材が使用される(例えば、特許文献1、特許文献2参照)。また、このような真空断熱材を製造するために、真空チャンバーが使用される。 A heat insulating material is used for the purpose of improving heat insulating performance, and a foam such as urethane foam is used as a heat insulating material for refrigerators, freezers, building materials, and the like. In recent years, in order to further improve heat insulation, a vacuum heat insulating material is used in which urethane foam or glass fiber having a continuous hollow structure is used as a core material and these core materials are vacuum-packaged in a gas barrier packaging material (for example, Patent Document 1, See Patent Document 2). A vacuum chamber is also used to manufacture such vacuum insulation.
真空チャンバーを使用しない真空断熱材の製造技術としては、コア材となる発泡用樹脂組成物にガス吸収剤を混ぜた後、二酸化炭素ガスによる発泡をさせつつ、ガス吸収剤で除去する事によって真空状況を作り出して断熱性能を向上させる方法(例えば、特許文献3参照)が提案されている。 As a manufacturing technology for vacuum insulation materials that do not use a vacuum chamber, after mixing a gas absorbent with a foaming resin composition that serves as a core material, carbon dioxide gas is foamed while the gas absorbent is removed to create a vacuum. A method of creating conditions to improve heat insulation performance has been proposed (see, for example, Patent Document 3).
この他には、樹脂組成物にガス吸収剤を混ぜるのではなく、連通中空構造の発泡ウレタンの外部に小袋状にしたガス吸収剤を設置して内部の二酸化炭素を吸収させる方法(例えば、特許文献4参照)も提案されている。 In addition, instead of mixing the gas absorbent with the resin composition, there is a method of placing a small bag-shaped gas absorbent on the outside of the urethane foam with a communicating hollow structure to absorb the carbon dioxide inside (for example, patent Reference 4) has also been proposed.
しかしながら真空包装において高い断熱性能を発現させる為には、一般的に10Pa以下の高真空が必要とされ、僅かに真空度が悪化しても性能が急激に低下してしまう。また製造工程においては真空チャンバーを用いて、高真空状態を長時間維持する必要があり、このことが生産性を低下させる要因となる。 However, a high vacuum of 10 Pa or less is generally required in order to achieve high heat insulating performance in vacuum packaging, and even a slight deterioration in the degree of vacuum results in a rapid drop in performance. Moreover, in the manufacturing process, it is necessary to use a vacuum chamber and maintain a high vacuum state for a long time, which causes a decrease in productivity.
また、特許文献3に記載されるような従来の方法では、発泡とガス吸収とのバランスを調整することが困難であり、更にガス吸収剤のコア材への添加は熱伝導率を上げてしまうため、十分な断熱性を達成することが困難である。また、特許文献4に記載されるような方法では、ガス吸収が局所化するため、ガスを除去するのに長時間を要したり、連通中空構造に由来する物理強度の低下等の問題点がある。 In addition, in the conventional method as described in Patent Document 3, it is difficult to adjust the balance between foaming and gas absorption, and addition of a gas absorbent to the core material increases the thermal conductivity. Therefore, it is difficult to achieve sufficient heat insulation. In addition, the method described in Patent Document 4 has problems such as a long time required to remove the gas due to localized gas absorption and a decrease in physical strength due to the communicating hollow structure. be.
本発明の課題は真空チャンバーを使用せずに、高い断熱性能を有する断熱材を提供する事である。 An object of the present invention is to provide a heat insulating material having high heat insulating performance without using a vacuum chamber.
本発明者らは上記課題について鋭意検討した結果、微細中空構造を有するコア層(A)、少なくとも一部が該コア層(A)の外側に位置し、ガスを吸収可能なガス吸収層(B)、及び該ガス吸収層(B)の外側に位置し、ガスを遮断可能なガス遮断層(C)を有する断熱材を用いる事で上記課題を解決できる事を見出した。
すなわち、本発明は以下の通りである。
[1]
微細中空構造を有するコア層(A)、
少なくとも一部が該コア層(A)の外側に位置し、二酸化炭素吸収剤及び水蒸気吸収剤を含む、ガスを吸収可能なガス吸収層(B)、及び
該ガス吸収層(B)の外側に位置し、ガスを遮断可能なガス遮断層(C)を有し、
前記コア層(A)の微細中空構造の独立中空体率が50%以上であり、
前記ガス吸収層(B)が前記コア層(A)の表面積の80%以上を直接又は間接に覆っており、
前記ガス吸収層(B)と前記ガス遮断層(C)とで多層フィルムを形成している、
断熱材。
[2]
前記コア層(A)の空隙率が90~99%の範囲にある[1]に記載の断熱材。
[3]
前記コア層(A)の微細中空構造の平均中空径が1~500μmの範囲にある[1]又は[2]に記載の断熱材。
[4]
前記コア層(A)の微細中空構造の圧力が10~10000Paの範囲にある[1]~[3]のいずれか1項に記載の断熱材。
[5]
前記コア層(A)の厚さが0.5~40mmの範囲にある[1]~[4]のいずれか1項に記載の断熱材。
[6]
前記ガス吸収層(B)が前記コア層(A)を完全に包含している[1]~[5]のいずれか1項に記載の断熱材。
[7]
前記ガス吸収層(B)が酸素をさらに吸収可能な[1]~[6]のいずれか1項に記載の断熱材。
[8]
前記ガス吸収層(B)が樹脂製の基材にガス吸収剤を含有させた層である[1]~[7]のいずれか1項に記載の断熱材。
[9]
前記樹脂がポリエチレン樹脂を含む[8]に記載の断熱材。
[10]
下記の工程を有する[1]~[9]のいずれか1項に記載の断熱材の製造方法。
(1)樹脂を発泡させて、微細中空構造を有するコア層(A)を得る工程
(2)少なくとも一部が該コア層(A)の外側に位置し、ガスを吸収可能なガス吸収層(B)に、前記コア層(A)内部のガスを吸収させ、前記コア層の中空部分の圧力を下げる工程
[11]
前記コア層(A)を得る工程において、押出発泡法を用いる[10]に記載の断熱材の製造方法。
As a result of intensive studies on the above problems, the present inventors found that a core layer (A) having a fine hollow structure, at least a part of which is located outside the core layer (A), and a gas absorbing layer (B) capable of absorbing gas. ), and a heat insulating material having a gas blocking layer (C) located outside the gas absorbing layer (B) and capable of blocking gas, the above problem can be solved.
That is, the present invention is as follows.
[1]
a core layer (A) having a fine hollow structure,
a gas-absorbing layer (B) at least partially located outside the core layer (A) and containing a carbon dioxide absorbent and a water vapor absorbent, and capable of absorbing gas;
Having a gas blocking layer (C) located outside the gas absorbing layer (B) and capable of blocking gas,
The core layer (A) has a fine hollow structure with an independent hollow body ratio of 50% or more,
The gas absorption layer (B) directly or indirectly covers 80% or more of the surface area of the core layer (A),
The gas absorption layer (B) and the gas barrier layer (C) form a multilayer film,
Insulation.
[2]
The heat insulating material according to [1], wherein the core layer (A) has a porosity in the range of 90 to 99%.
[3]
The heat insulating material according to [1] or [2], wherein the average hollow diameter of the fine hollow structure of the core layer (A) is in the range of 1 to 500 μm.
[4]
The heat insulating material according to any one of [1] to [3], wherein the pressure of the fine hollow structure of the core layer (A) is in the range of 10 to 10000Pa.
[5]
The heat insulating material according to any one of [1] to [4], wherein the thickness of the core layer (A) is in the range of 0.5 to 40 mm.
[6]
The heat insulating material according to any one of [1] to [5], wherein the gas absorption layer (B) completely encloses the core layer (A).
[7]
The heat insulating material according to any one of [1] to [6], wherein the gas absorption layer (B) can further absorb oxygen.
[8]
The heat insulating material according to any one of [1] to [7], wherein the gas absorbing layer (B) is a layer in which a resin base material contains a gas absorbing agent.
[9]
The heat insulating material according to [8], wherein the resin contains polyethylene resin.
[10]
A method for producing a heat insulating material according to any one of [1] to [9], which includes the following steps.
(1) A step of foaming a resin to obtain a core layer (A) having a fine hollow structure
(2) The gas absorption layer (B), which is at least partially located outside the core layer (A) and capable of absorbing gas, is allowed to absorb the gas inside the core layer (A), and the hollow of the core layer is process of depressurizing a part
[11]
The method for producing a heat insulating material according to [10], wherein an extrusion foaming method is used in the step of obtaining the core layer (A).
本発明により、真空チャンバーを使用せずに、高い断熱性能を有する断熱材を提供することが可能である。 ADVANTAGE OF THE INVENTION By this invention, it is possible to provide the heat insulating material which has high heat insulating performance, without using a vacuum chamber.
以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の実施の形態に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。 EMBODIMENT OF THE INVENTION Hereinafter, the form (only henceforth "this embodiment") for implementing this invention is demonstrated in detail. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following embodiments. The present invention can be appropriately modified and implemented within the scope of the gist thereof.
[断熱材]
本実施形態の断熱材は、微細中空構造を有するコア層(A)(以下、単に「コア層(A)」ともいう。)、少なくとも一部が該コア層(A)の外側に位置し、ガスを吸収可能なガス吸収層(B)(以下、単に「ガス吸収層(B)」ともいう。)、及び該ガス吸収層(B)の外側に位置し、ガスを遮断可能なガス遮断層(C)(以下、単に「ガス遮断層(C)」ともいう。)を有する。以下、コア層(A)、ガス吸収層(B)、及びガス遮断層(C)について詳細に説明する。[Insulation]
The heat insulating material of the present embodiment includes a core layer (A) having a fine hollow structure (hereinafter also simply referred to as "core layer (A)"), at least a part of which is located outside the core layer (A), A gas absorption layer (B) capable of absorbing gas (hereinafter also simply referred to as "gas absorption layer (B)"), and a gas barrier layer positioned outside the gas absorption layer (B) and capable of blocking gas (C) (hereinafter also simply referred to as "gas blocking layer (C)"). The core layer (A), gas absorption layer (B), and gas barrier layer (C) are described in detail below.
[コア層(A)]
コア層(A)は、本実施形態において図1に示す一例の様に、断熱材の中央のコアに位置し、微小な大きさの泡に代表される微細な中空部分(以下、「微細中空構造」ともいう。)を有する層である。当該コア層(A)は、微細中空構造を有するために本実施形態における断熱材の断熱性能が大きく向上する。[Core layer (A)]
The core layer (A), as in the example shown in FIG. Also referred to as "structure"). Since the core layer (A) has a fine hollow structure, the heat insulating performance of the heat insulating material in this embodiment is greatly improved.
微細中空構造とは、本実施形態における微細中空構造の平均径(以下、「平均中空径」ともいう。)が500μm以下の範囲にある構造を意味する。
平均中空径は好ましくは1~300μm、より好ましくは1~100μmであり、さらに好ましくは1~50μmである。平均中空径が500μm以下であることにより、空体内部が減圧になった際に熱伝導率が低下しやすく、良好な断熱材を得られやすい傾向にある。一方、平均中空径が1μm以上であることにより、空隙率が低下しにくくなる傾向にある。平均中空径が上記範囲にあるような微細中空構造を得るためには、例えば発泡体の場合は、発泡に寄与するガスや核剤の種類及び量、基材樹脂のメルトテンション値等の樹脂特性、成型時の温度や圧力、成型機の形状等を最適化することが行われる。微細中空構造の平均中空径は、後述する実施例に記載の方法により測定できる。The fine hollow structure means a structure in which the average diameter of the fine hollow structure (hereinafter also referred to as “average hollow diameter”) in the present embodiment is in the range of 500 μm or less.
The average hollow diameter is preferably 1 to 300 μm, more preferably 1 to 100 μm, still more preferably 1 to 50 μm. When the average hollow diameter is 500 μm or less, the thermal conductivity tends to decrease when the pressure inside the hollow body is reduced, and a good heat insulating material tends to be obtained. On the other hand, when the average hollow diameter is 1 μm or more, the porosity tends to be less likely to decrease. In order to obtain a fine hollow structure with an average hollow diameter within the above range, for example, in the case of a foam, the type and amount of a gas or nucleating agent that contributes to foaming, and the resin characteristics such as the melt tension value of the base resin , the temperature and pressure at the time of molding, the shape of the molding machine, etc. are optimized. The average hollow diameter of the fine hollow structure can be measured by the method described in Examples below.
微細中空構造を有するコア層(A)の空隙率は好ましくは90.0~99.0%であり、より好ましくは93.0~98.5%であり、さらに好ましくは95.0%~98.0%である。基材部分の熱伝導率は高い為、このような範囲にあることで熱伝導率及び強度を好ましい範囲にすることができる傾向にある。空隙率が上記範囲にあるようなコア層(A)を得るためには、例えば発泡体の場合は、発泡に寄与するガスの量を増やせばよい。コア層(A)の空隙率は、後述する実施例に記載の方法により測定できる。 The porosity of the core layer (A) having a fine hollow structure is preferably 90.0 to 99.0%, more preferably 93.0 to 98.5%, still more preferably 95.0% to 98%. .0%. Since the thermal conductivity of the substrate portion is high, there is a tendency that the thermal conductivity and the strength can be set within the preferable range by being in such a range. In order to obtain a core layer (A) having a porosity within the above range, for example, in the case of a foam, the amount of gas that contributes to foaming should be increased. The porosity of the core layer (A) can be measured by the method described in Examples below.
微細中空構造の独立中空体率(本明細書において独立中空体率とは、コア層(A)内の全ての微細中空構造のうち、コア層(A)の外部に通じていない微細中空構造の割合を意味する。)は、実用的な強度と断熱性能を発現する為には、好ましくは50%以上であり、より好ましくは70%以上であり、さらに好ましくは80%以上である。微細中空構造の独立中空体率は、後述する実施例に記載の方法により測定できる。 Percentage of independent hollows in the fine hollow structure (in this specification, the percentage of independent hollows refers to the percentage of all the fine hollow structures in the core layer (A) that do not lead to the outside of the core layer (A). means a ratio) is preferably 50% or more, more preferably 70% or more, and still more preferably 80% or more in order to develop practical strength and heat insulating performance. The independent hollow body ratio of the fine hollow structure can be measured by the method described in Examples below.
微細中空構造を有するコア層(A)は、中空部分の圧力を下げることで断熱性能を向上させることができる。微細中空構造の圧力は好ましくは10~10000Paであり、より好ましくは15~5000Pa、さらに好ましくは20~1000Paである。圧力が10Pa以上であることにより、ガスのリーク等の影響が相対的に小さくなり、その圧力を維持できる傾向にあり、圧力が10000Pa以下であることにより熱伝導率が低く良好な断熱材を得られやすい。圧力が上記範囲にあるような微細中空構造を得るためには、例えばコア層(A)に含まれるガスを多量に吸収出来る能力を有するガス吸収層(B)を用いればよい。微細中空構造の圧力は、後述する実施例に記載の方法により測定できる。 The core layer (A) having a fine hollow structure can improve heat insulating performance by lowering the pressure in the hollow portion. The pressure of the hollow microstructure is preferably 10-10000 Pa, more preferably 15-5000 Pa, still more preferably 20-1000 Pa. When the pressure is 10 Pa or more, the influence of gas leakage is relatively small, and the pressure tends to be maintained. easy to get In order to obtain a fine hollow structure with a pressure within the above range, for example, a gas absorption layer (B) capable of absorbing a large amount of gas contained in the core layer (A) may be used. The pressure of the fine hollow structure can be measured by the method described in Examples below.
微細中空構造を有するコア層(A)の厚さは好ましくは0.5~40mmであり、より好ましくは1~25mmであり、さらに好ましくは2~20mmである。厚さが0.5mm以上であることにより、断熱材としての断熱性能を維持することができ、厚さが40mm以下であることによりガス吸収層(B)によるコア層(A)内部のガス吸収が容易となり断熱性能に優れる傾向にある。 The thickness of the core layer (A) having a fine hollow structure is preferably 0.5 to 40 mm, more preferably 1 to 25 mm, still more preferably 2 to 20 mm. When the thickness is 0.5 mm or more, the heat insulation performance as a heat insulating material can be maintained, and when the thickness is 40 mm or less, the gas absorption layer (B) absorbs gas inside the core layer (A). becomes easy and tends to be excellent in heat insulation performance.
微細中空構造を有するコア層(A)の作製方法は特に限定されないが、例えば基材に発泡剤を含有させ、発泡により微細中空構造を作り出したり、基材に中空マイクロカプセル等を分散させたり、基材に中空構造を有する繊維状のものを含有させる手法等が挙げられる。中でも製造の容易性やガス透過性を考慮すると基材に発泡剤を含有させ、押出発泡法やビーズ発泡法により微細中空構造を作り出す手法が好ましく、押出発泡法がより好ましい。 The method for producing the core layer (A) having a fine hollow structure is not particularly limited. A method of including a fibrous material having a hollow structure in the base material, and the like can be mentioned. Among them, considering the ease of production and gas permeability, a method of incorporating a foaming agent into the base material and creating a fine hollow structure by an extrusion foaming method or a bead foaming method is preferable, and the extrusion foaming method is more preferable.
基材として用いられる樹脂は特に限定されないが、例えばポリウレタン、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリテトラフロロエチレン、ポリオレフィン、アイオノマー、ポリスルホン、酢酸セルロース及びその類縁体、エチルセルロース、ポリジメチルシロキサン、シリコーン樹脂、及びクロロスルホン化ポリエチレンが挙げられる。ガス透過性と強度との観点より、好ましくはポリウレタン、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリオレフィン、酢酸セルロース及びその類縁体、及びシリコーン樹脂であり、より好ましくはポリスチレン及びポリオレフィンである。これらは、1種以上を組み合わせて用いることができる。またこれらは市販品を容易に入手可能であり、それらを好適に用いることができる。 The resin used as the base material is not particularly limited, but for example polyurethane, polyvinyl chloride, polycarbonate, polystyrene, polytetrafluoroethylene, polyolefin, ionomer, polysulfone, cellulose acetate and its analogues, ethyl cellulose, polydimethylsiloxane, silicone resin, and chlorosulfonated polyethylene. From the viewpoint of gas permeability and strength, preferred are polyurethane, polyvinyl chloride, polycarbonate, polystyrene, polyolefin, cellulose acetate and their analogs, and silicone resins, and more preferred are polystyrene and polyolefin. These can be used in combination of one or more. In addition, these are readily available as commercial products and can be preferably used.
発泡剤は微細中空構造を作るために基材であるゴムやプラスチック等を膨張させる為に用いられるものであり、主として化学発泡剤と物理発泡剤とに大別される。 A foaming agent is used to expand a base material such as rubber or plastic to form a hollow microstructure, and is mainly classified into chemical foaming agents and physical foaming agents.
化学発泡剤とは熱分解や化学反応により窒素、アンモニアガス、水素、二酸化炭素、水蒸気、酸素等のガスを発生する物質である。
化学発泡剤として、例えばアゾ系、ニトロソ系、ヒドラジッド系、セミカルバジド系、アジド系、トリアゾール系、テトラゾール系、イソシアネート系、重炭酸塩、炭酸塩、亜硝酸塩、水素化物、重炭酸ナトリウムと酸との組み合わせ、過酸化水素とイースト菌との組み合わせ、及び金属粉末と酸との組み合わせが挙げられ、二酸化炭素を発生させる炭酸塩、及び重炭酸塩が高純度のガスを発生させることができるため好ましい。これらは、1種以上を組み合わせて用いることができる。またこれらは市販品を容易に入手可能であり、好適に用いることができる。A chemical foaming agent is a substance that generates gases such as nitrogen, ammonia gas, hydrogen, carbon dioxide, water vapor, and oxygen by thermal decomposition or chemical reaction.
Examples of chemical foaming agents include azo, nitroso, hydrazide, semicarbazide, azide, triazole, tetrazole, isocyanate, bicarbonate, carbonate, nitrite, hydride, sodium bicarbonate and acid. combinations, hydrogen peroxide and yeast, and metal powders and acids, with carbon dioxide-generating carbonates and bicarbonates being preferred as they can generate high-purity gas. These can be used in combination of one or more. In addition, these are readily available as commercial products and can be suitably used.
物理発泡剤とは圧縮ガスの放圧や気化等の物理的変化により発泡させる物質である。具体例として窒素等の不活性ガス、脂肪族炭化水素、ハロゲン化脂肪族炭化水素、水、二酸化炭素が挙げられ、二酸化炭素や水が安全性や環境適合性、ガス吸収の観点から好ましい。これらは、1種以上を組み合わせて用いることができる。またこれらは、市販品を容易に入手可能であり、好適に用いることができる。 A physical foaming agent is a substance that foams by physical change such as pressure release or vaporization of compressed gas. Specific examples include inert gases such as nitrogen, aliphatic hydrocarbons, halogenated aliphatic hydrocarbons, water, and carbon dioxide, and carbon dioxide and water are preferred from the viewpoint of safety, environmental compatibility, and gas absorption. These can be used in combination of one or more. In addition, these are readily available as commercial products and can be suitably used.
発泡剤の添加量は基材の種類や発泡剤の種類によって最適量が異なるため一義的に決定できない。 The amount of foaming agent to be added cannot be uniquely determined because the optimum amount varies depending on the type of base material and the type of foaming agent.
発泡剤を用いた微細中空構造の作製方法は、発泡剤を含有させた基材中で発泡させることで行うが、発泡方法は発泡剤の種類や量により種々決定させる。一例として物理発泡剤として二酸化炭素ガスを用いる場合、公知の手法として、特開2010-173263に記載の手法に従って好適に実施することができる。 The method of producing a fine hollow structure using a foaming agent is carried out by foaming in a base material containing the foaming agent, and the foaming method is variously determined according to the type and amount of the foaming agent. As an example, when carbon dioxide gas is used as a physical blowing agent, it can be suitably carried out according to the method described in JP-A-2010-173263 as a known method.
[ガス吸収層(B)]
ガス吸収層(B)は、本実施形態において図1に示す一例の様に、断熱材のコア層(A)の外側に位置し、前記微細中空構造を作製する際に用いたコア層(A)中のガスを吸収可能な層である。また、図1に示す一例は、ガス吸収層(B)がコア層(A)を完全に包含しているが、ガス吸収層(B)はコア層(A)の外側に位置すればよいため、図2に示す別例の様に、ガス吸収層(B)は、コア層(A)の一部を包含せず、コア層(A)の端部以外を包含する態様であってもよい。ガス吸収層(B)がガスを吸収することによりコア層(A)の中空部分の圧力が下がるため断熱性能が向上する。[Gas absorption layer (B)]
The gas absorption layer (B) is positioned outside the core layer (A) of the heat insulating material in this embodiment, as in the example shown in FIG. ) is a layer that can absorb gas in the In the example shown in FIG. 1, the gas absorption layer (B) completely encloses the core layer (A). , as in another example shown in FIG. 2, the gas absorption layer (B) may not include a part of the core layer (A), but may include portions other than the ends of the core layer (A). . As the gas absorption layer (B) absorbs the gas, the pressure in the hollow portion of the core layer (A) decreases, thereby improving the heat insulation performance.
ガス吸収層(B)は例えばガス吸収剤を含有することによりガスを吸収可能な層である。ガス吸収剤を含有させる態様として具体的には、ガス吸収剤を単独で用いた層又は基材にガス吸収剤を含有させた層が挙げられる。基材としてはコア層(A)に用いられる基材と同様な基材に加え、天然ゴム、ブタジエンゴム、シリコーンゴム等のゴム類、酢酸ビニールエマルジョン接着剤、ゴム系接着剤、デンプン系接着剤等の接着剤や粘着剤を好適に使用することができる。 The gas absorption layer (B) is a layer capable of absorbing gas by containing, for example, a gas absorbent. Specific examples of a mode in which a gas absorbent is contained include a layer using a gas absorbent alone or a layer containing a gas absorbent in a base material. As the base material, in addition to base materials similar to those used for the core layer (A), rubbers such as natural rubber, butadiene rubber, and silicone rubber, vinyl acetate emulsion adhesives, rubber-based adhesives, and starch-based adhesives. Adhesives and pressure-sensitive adhesives, such as, can be suitably used.
ガス吸収剤はガスを吸収可能な物質であり、吸収するガスの種類は特に限定されないが、例えば二酸化炭素、水蒸気、酸素が例示される。
ガス吸収剤として、例えばアルカリ金属の水酸化物、アルカリ土類金属の水酸化物、アミン化合物、エポキシ化合物、アルカリ金属、アルカリ土類金属、アルカリ金属の水素化物、アルカリ土類金属の水素化物、リチウムアルミニウムヒドリド、金属の硫酸塩、塩化カルシウム、活性アルミナ、シリカゲル、モレキュラーシーブ、アルカリ金属の炭酸塩、酸化カルシウム、硫酸、酸化りん、鉄、亜硫酸塩、アスコルビン酸、グリセリン、MXD6ナイロン、エチレン性不飽和炭化水素、シクロヘキセン基を有するポリマー、チタンやセリウム等の金属酸化物の酸素原子欠陥構造体が挙げられ、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、金属の硫酸塩、塩化カルシウム、活性アルミナ、シリカゲル、モレキュラーシーブ、アルカリ金属の炭酸塩、酸化カルシウム、鉄、及び亜硫酸塩が安価でガス吸収時に不活性ガスをほとんど発生しないため好ましい。これらは、1種以上を組み合わせて用いることができる。またこれらは、市販品を容易に入手可能であり、好適に用いることができる。The gas absorbent is a substance capable of absorbing gas, and the type of gas to be absorbed is not particularly limited, but examples thereof include carbon dioxide, water vapor, and oxygen.
Examples of gas absorbents include alkali metal hydroxides, alkaline earth metal hydroxides, amine compounds, epoxy compounds, alkali metals, alkaline earth metals, alkali metal hydrides, alkaline earth metal hydrides, Lithium aluminum hydride, metal sulfates, calcium chloride, activated alumina, silica gel, molecular sieves, alkali metal carbonates, calcium oxide, sulfuric acid, phosphorus oxide, iron, sulfites, ascorbic acid, glycerin, MXD6 nylon, ethylenic Examples include saturated hydrocarbons, polymers having cyclohexene groups, oxygen atom-deficient structures of metal oxides such as titanium and cerium, alkali metal hydroxides, alkaline earth metal hydroxides, metal sulfates, chlorides. Calcium, activated alumina, silica gel, molecular sieves, alkali metal carbonates, calcium oxide, iron, and sulfites are preferable because they are inexpensive and hardly generate inert gas during gas absorption. These can be used in combination of one or more. In addition, these are readily available as commercial products and can be suitably used.
ガス吸収層(B)として基材にガス吸収剤を含有させた層を用いる場合、ガス吸収剤の添加量は基材100質量部に対して好ましくは5~99質量部の範囲であり、ガスの吸収量及び速度を高くする為により好ましくは10~99質量部である。
ガス吸収層(B)は多層構造でも単層構造でもよく、ガス吸収層(B)とコア層(A)との間にガスを吸収する層以外の層を設けてもよい。
ガス吸収以外の層としては、例えばコア層(A)とガス吸収層(B)とを接着する接着層や、ガス吸収層の成分がコア層(A)に移行するのを防ぐ緩衝層が挙げられる。When a layer containing a gas absorbent in a base material is used as the gas absorbing layer (B), the amount of the gas absorbent added is preferably in the range of 5 to 99 parts by mass with respect to 100 parts by mass of the base material. It is more preferably 10 to 99 parts by mass in order to increase the absorption amount and rate of .
The gas absorption layer (B) may have a multilayer structure or a single layer structure, and a layer other than the gas absorption layer may be provided between the gas absorption layer (B) and the core layer (A).
Layers other than the gas-absorbing layer include, for example, an adhesive layer that bonds the core layer (A) and the gas-absorbing layer (B) together, and a buffer layer that prevents the components of the gas-absorbing layer from migrating to the core layer (A). be done.
ガス吸収層(B)がコア層(A)内部のガスを吸収除去する速度を高くするには、ガス吸収層(B)がコア層(A)の表面積の40%以上を直接又は間接に覆っていることが好ましく、75%以上を覆っていることがより好ましく、80%以上を覆っていることがさらに好ましい。 In order to increase the rate at which the gas absorption layer (B) absorbs and removes the gas inside the core layer (A), the gas absorption layer (B) should directly or indirectly cover 40% or more of the surface area of the core layer (A). preferably 75% or more, more preferably 80% or more.
ガス吸収層(B)の厚さは好ましくは10~500μmであり、この範囲にあることでガス吸収性能と断熱性能とを両立可能である傾向にある。厚さが10μm以上であることにより寄与するガス吸収剤の性能が得られやすく、厚さが500μm以下であることにより断熱材に占めるガス吸収層(B)の割合が大きくなりすぎず熱伝導率の悪化を抑制できる傾向にある。
ガス吸収層(B)の作製は、例えば樹脂にガス吸収剤を溶融混練して樹脂ペレットを作製し、フィルム成型することにより可能である。別の形態としては、上述の接着剤にガス吸収剤を混練した後に、コア層(A)やフィルムにコーティングする事でも作製可能である。The thickness of the gas absorption layer (B) is preferably 10 to 500 μm, and this range tends to allow both gas absorption performance and heat insulation performance to be achieved. When the thickness is 10 μm or more, it is easy to obtain the performance of the gas absorbent that contributes, and when the thickness is 500 μm or less, the ratio of the gas absorption layer (B) in the heat insulating material does not become too large, and the thermal conductivity is improved. aggravation can be suppressed.
The gas absorption layer (B) can be produced, for example, by melt-kneading a gas absorbent into a resin to produce resin pellets, followed by film molding. Alternatively, the core layer (A) or film can be coated after the gas absorbent is kneaded with the adhesive described above.
[ガス遮断層(C)]
ガス遮断層(C)は本実施形態において図1に示す一例の様に、ガス吸収層(B)の外側に位置し、外部からのガスを遮断可能な層である。
ガス遮断層(C)は、コア層(A)内に空気の侵入を防ぐ事が可能な層であれば特に限定されないが、金属酸化物の蒸着膜、珪素酸化物の蒸着膜、金属蒸着膜、金属薄膜からなる群より選ばれる一種以上を有する多層体がガス遮断性に優れるため好ましい。これらは市販品として入手可能であり、好適に用いることができる。これらは、1種以上を組み合わせて用いることができる。
ガス遮断層(C)は、多層構造や単層構造を形成していてもよく、また、ガス遮断層(C)とガス吸収層(B)又は大気との間に、ガスを遮断する層以外の層を設けてもよい。
ガスを遮断する層以外の層としては、例えばヒートシールを行うためのシーラント樹脂層や、ガス遮断層(C)のピンホールを防止する保護層が挙げられる。[Gas barrier layer (C)]
As in the example shown in FIG. 1, the gas blocking layer (C) is positioned outside the gas absorbing layer (B) in this embodiment and is a layer capable of blocking gas from the outside.
The gas barrier layer (C) is not particularly limited as long as it is a layer capable of preventing air from entering the core layer (A). , a multilayer body having at least one selected from the group consisting of a metal thin film is preferable because it has excellent gas barrier properties. These are commercially available and can be preferably used. These can be used in combination of one or more.
The gas blocking layer (C) may have a multi-layer structure or a single layer structure. may be provided with a layer of
Layers other than the gas blocking layer include, for example, a sealant resin layer for heat sealing and a protective layer for preventing pinholes in the gas blocking layer (C).
ガス遮断層(C)の厚さは好ましくは1μm~500μmであり、この範囲にあることでガス遮断性能と断熱性能とを両立可能である傾向にある。 The thickness of the gas barrier layer (C) is preferably 1 μm to 500 μm, and this range tends to allow both gas barrier performance and heat insulation performance to be achieved.
[断熱材の製造方法]
本実施形態の断熱材の製造方法は、本実施形態の断熱材を得ることができるものであれば特に限定されないが、例えば下記の工程を有する。
(1)樹脂を発泡させて、微細中空構造を有するコア層(A)を得る工程
(2)ガスを吸収可能なガス吸収層(B)に、コア層(A)内部のガスを吸収させる工程[Method for producing heat insulating material]
The method for manufacturing the heat insulating material of the present embodiment is not particularly limited as long as the heat insulating material of the present embodiment can be obtained, but has, for example, the following steps.
(1) A step of foaming a resin to obtain a core layer (A) having a fine hollow structure (2) A step of allowing a gas absorbing layer (B) capable of absorbing gas to absorb the gas inside the core layer (A)
コア層を得る工程(1)としては、特に限定されないが、上述した「コア層(A)の作製方法」と同様のものが挙げられる。また、ガスを吸収させる工程(2)としては、特に限定されないが、例えば微細中空構造を有するコア層(A)を、ガス吸収層(B)及びガス遮断層(C)と複合化することにより行うことができる。複合化の手法として例えば、ガス吸収層(B)とガス遮断層(C)とを常法のドライラミネートにより接着しておき、このガス吸収層(B)とガス遮断層(C)との複合層に接着剤を塗布してコア層(A)に接着させる手法等が挙げられる。別の形態として、コア層(A)とガス吸収層(B)とを常法のドライラミネートや熱ラミネートで接着しておき、このコア層(A)とガス吸収層(B)の複合体をガス遮断層(C)で接着しないで覆う手法等も挙げられる。また、断熱材を使用する際には末端部を密閉化することが好ましく、例えばヒートシールにて押しつぶして密閉化することで断熱性及び性能の長期安定化を図ることができる。 The step (1) for obtaining the core layer is not particularly limited, but includes the same as the above-described “Method for producing core layer (A)”. In addition, the step (2) for absorbing gas is not particularly limited, but for example, by combining a core layer (A) having a fine hollow structure with a gas absorption layer (B) and a gas barrier layer (C), It can be carried out. As a method of compositing, for example, the gas absorption layer (B) and the gas barrier layer (C) are adhered by conventional dry lamination, and the gas absorption layer (B) and the gas barrier layer (C) are combined. A method of applying an adhesive to the layer and adhering it to the core layer (A) may be used. As another form, the core layer (A) and the gas absorption layer (B) are adhered by conventional dry lamination or heat lamination, and the composite of the core layer (A) and the gas absorption layer (B) is formed. A method of covering without adhering with the gas barrier layer (C) may also be used. Moreover, when using a heat insulating material, it is preferable to hermetically seal the ends thereof.
コア層を得る工程(1)において、上述した「コア層(A)の作製方法」のうち、押出発泡法を用いることが好ましい。 In the step (1) of obtaining the core layer, it is preferable to use the extrusion foaming method among the above-described "methods for producing the core layer (A)".
以下、実施例により本実施形態を具体的に説明するが、本実施形態はこれらにより何ら限定されるものではない。 EXAMPLES Hereinafter, the present embodiment will be specifically described with reference to Examples, but the present embodiment is not limited to these.
[微細中空構造の平均中空径]
微細中空構造の平均中空径は、次の方法によって算出した。具体的には、まず、コア層(A)を厚さ方向に直行する任意のX方向、並びに厚さ方向及びX方向に直行するY方向に沿って切断し、それぞれの切断面の中央部を走査型電子顕微鏡(日本電子製 商品名「JSM-6460LA」)で20~100倍に拡大して撮影した。
次に、撮影した画像をA4用紙上に印刷し、画像上に長さ60mmの直線を一本描いた。ここで、X方向に切断した切断面についてはX方向に平行に、Y方向に切断した切断面についてはY方向に平行に直線を描いた。上記各直線上に存在(点接触を含める)する中空の数から中空の平均弦長(t)を下記式により算出し、X方向の平均弦長(tX方向)及びY方向の平均弦長(tY方向)とした。
平均弦長(t)=60(mm)/(中空数×写真の倍率)
さらに、X方向に沿って切断した切断面の拡大写真及びY方向に直交する方向に沿って切断した切断面の拡大写真の双方において、X方向及びY方向に直行するZ方向(厚さ方向)に平行な長さ60mmの直線をそれぞれ一本描き、これらの直線上の存在する中空数を数え、切断面ごとに厚さ方向の平均弦長(t)を算出して、これらの平均弦長(t)の相加平均値を算出し、この相加平均値を厚さ方向の平均弦長(tZ方向)とした。
そして、算出された各方向における平均弦長(t)に基づいて下記式により微細中空構造の平均中空径を算出した。
平均中空径(mm)=(tX方向+tY方向+tZ方向)/3[Average Hollow Diameter of Fine Hollow Structure]
The average hollow diameter of the fine hollow structure was calculated by the following method. Specifically, first, the core layer (A) is cut along an arbitrary X direction orthogonal to the thickness direction and along the Y direction orthogonal to the thickness direction and the X direction, and the center portion of each cut surface is Photographs were taken with a scanning electron microscope (trade name “JSM-6460LA” manufactured by JEOL Ltd.) at a magnification of 20 to 100 times.
Next, the photographed image was printed on A4 paper, and a straight line with a length of 60 mm was drawn on the image. Here, a straight line was drawn parallel to the X direction for the cut surface cut in the X direction, and parallel to the Y direction for the cut surface cut in the Y direction. Calculate the average chord length (t) of the hollow from the number of hollows existing on each straight line (including point contact) by the following formula, tY direction).
Average chord length (t) = 60 (mm) / (number of hollows x magnification of photo)
Furthermore, in both the enlarged photograph of the cut surface cut along the X direction and the enlarged photograph of the cut surface cut along the direction perpendicular to the Y direction, the Z direction (thickness direction) perpendicular to the X direction and the Y direction Draw a straight line with a length of 60 mm parallel to each, count the number of hollows existing on these straight lines, calculate the average chord length (t) in the thickness direction for each cut surface, and calculate these average chord lengths The arithmetic mean value of (t) was calculated, and this arithmetic mean value was defined as the average chord length in the thickness direction (tZ direction).
Then, based on the calculated average chord length (t) in each direction, the average hollow diameter of the fine hollow structure was calculated by the following formula.
Average hollow diameter (mm) = (tX direction + tY direction + tZ direction)/3
[空隙率]
コア層(A)のベースとなる基材の密度と、コア層(A)の密度とから、コア層(A)の空隙率を下記の計算式にて求めた。
空隙率(%)=(基材密度-コア層(A)の密度)/(基材の密度)×100[Porosity]
The porosity of the core layer (A) was obtained from the density of the base material, which is the base of the core layer (A), and the density of the core layer (A), using the following formula.
Porosity (%) = (base material density - density of core layer (A)) / (density of base material) x 100
[微細中空構造の独立中空体率]
コア層(A)を縦25mm、横25mm、厚さ20mmの直方体状になるように断熱材の試験片を切出した後(厚さが足りない場合は、切出した試験片を重ねて上記直方体状とした。)、大気圧下、相対湿度50%、温度23℃の条件の恒温室内に試験片を1日静置した。
次に、この試験片の正確な見かけの体積値Vaを測定した。次いで、試験片を十分に乾燥させた後、ASTM-D2856-70に記載されている手順Cに準じ、東芝・ベックマン株式会社製の空気比較式比重計930により、体積値Vxを測定した。そして、これらの体積値Va及び体積値Vxに基づき、下記の式から微細中空構造の独立中空体率を算出した。なお、各測定及び各算出は、異なる5つの試験片について行いその平均値を求めた。この平均値を独立中空体率とした。
独立中空体率(%)=(Vx-W/ρ)×100/(Va-W/ρ)
Vx:微細中空構造を構成する樹脂の容積と、発泡樹脂成形体内の独立中空部分の中空の全容積との和(cm3)
Va:幾何学的に計算される見かけの体積(cm3)
W:発泡樹脂成形体の質量(g)
ρ:コア層(A)を構成する基材の密度(g/cm3)[Independent Hollow Body Ratio of Fine Hollow Structure]
After cutting the core layer (A) into a rectangular parallelepiped with a length of 25 mm, a width of 25 mm, and a thickness of 20 mm (if the thickness is insufficient, the cut test pieces are overlapped to form the rectangular parallelepiped ), and the test piece was allowed to stand for one day in a thermostatic chamber under the conditions of atmospheric pressure, relative humidity of 50%, and temperature of 23°C.
Next, the accurate apparent volume value Va of this test piece was measured. Then, after sufficiently drying the test piece, according to procedure C described in ASTM-D2856-70, the volume value Vx was measured with an air comparison type hydrometer 930 manufactured by Toshiba Beckman Co., Ltd. Based on these volume value Va and volume value Vx, the independent hollow body ratio of the fine hollow structure was calculated from the following formula. In addition, each measurement and each calculation were performed on five different test pieces, and the average value was obtained. This average value was taken as the independent hollow body ratio.
Percentage of independent hollow bodies (%) = (Vx-W/ρ) x 100/(Va-W/ρ)
Vx: the sum of the volume of the resin constituting the fine hollow structure and the total hollow volume of the independent hollow portion in the foamed resin molding (cm 3 )
Va: Geometrically calculated apparent volume (cm 3 )
W: Mass (g) of foamed resin molded product
ρ: Density of base material constituting core layer (A) (g/cm 3 )
[微細中空構造の圧力]
<手法1>
絶対圧力センサー(オプテックス・エフエー社:FHAV-050KP)を内径1.2mmの注射針に溶接したものを用意した。続いて、この絶対圧力センサー付き注射針と作製した断熱材とをグローブボックスに入れ、グローブボックス内を二酸化炭素で置換した。その後、絶対圧力センサー付き注射針の先が作製した断熱材のコア層(A)の中心部分に届くように突き刺し、注射針を指した部分にエポシキ系接着剤(ニチバン社:アラルダイトAR-R30)を塗布し、外部から気体が入らないようにした。7日後に微細中空構造の圧力を測定した。なお、注射針を突き刺すのは断熱材の作製後、1時間以内に実施した。なお、圧力を測定した断熱材では、その後に後述する熱伝導率を測定できない為、熱伝導率は同構成の別の断熱材を作製して測定した。
<手法2>
ガス遮断層(C)がコア層(A)と接着剤等で一体化していない断熱材は、より簡単に測定できる以下の手法で測定した。
アクリル製の真空チャンバーを用意し、これに高精度真空計(キヤノンアネルバ社製:M-342DG)を装着した。続いて、作製してから2週間経過した断熱材をチャンバーに入れた後、距離を精密に測定できる変位センサー(オムロン社製:ZX2)をチャンバーの外に設置し、この変位センサーとチャンバーに入れた断熱材の表面までの距離を測定出来るようにした。その後、チャンバー内部をゆっくりと真空化すると、チャンバー内部の圧力がコア層(A)の圧力より低くなった時点でガス遮断層(C)が動く為、この動きを変位センサーで感知する事で、コア層(A)の圧力を測定した。[Pressure of fine hollow structure]
<Method 1>
An absolute pressure sensor (Optex FA Co.: FHAV-050KP) welded to an injection needle with an inner diameter of 1.2 mm was prepared. Subsequently, this injection needle with an absolute pressure sensor and the prepared heat insulating material were placed in a glove box, and the inside of the glove box was replaced with carbon dioxide. After that, pierce the core layer (A) of the prepared heat insulating material so that the tip of the injection needle with the absolute pressure sensor reaches the center part, and epoxy adhesive (Nichiban Co.: Araldite AR-R30) is applied to the part where the injection needle is pointed. was applied to prevent gas from entering from the outside. After 7 days the pressure of the hollow microstructure was measured. It should be noted that the piercing of the injection needle was carried out within 1 hour after the preparation of the heat insulating material. In addition, since the thermal conductivity, which will be described later, cannot be measured with the heat insulating material for which the pressure was measured, another heat insulating material having the same structure was produced and measured for the thermal conductivity.
<Method 2>
A heat insulating material in which the gas barrier layer (C) is not integrated with the core layer (A) with an adhesive or the like was measured by the following method, which is easier to measure.
An acrylic vacuum chamber was prepared and equipped with a high-precision vacuum gauge (M-342DG manufactured by Canon Anelva). Subsequently, after placing the heat insulating material two weeks after its preparation in the chamber, a displacement sensor (manufactured by Omron: ZX2) capable of accurately measuring distance was installed outside the chamber, and this displacement sensor and the chamber were placed together. It is possible to measure the distance to the surface of the heat insulating material. After that, when the inside of the chamber is slowly evacuated, the gas barrier layer (C) moves when the pressure inside the chamber becomes lower than the pressure of the core layer (A). The pressure of the core layer (A) was measured.
[厚さ]
コア層(A)の厚さは、ノギスを用いて0.1ミリメートル単位でコア層(A)測定した。
ガス吸収層(B)及びガス遮断層(C)の厚さは、各層の断面部分を走査型電子顕微鏡(日本電子製、JSM-6460LA)にて観察して1マイクロメートル単位で測定した。
断熱体の試験サンプルの厚さは、上記HFM436により熱伝導率測定によって、同時に測定した。[thickness]
The thickness of the core layer (A) was measured in increments of 0.1 mm using vernier calipers.
The thicknesses of the gas absorption layer (B) and the gas barrier layer (C) were measured in units of 1 micrometer by observing the cross-section of each layer with a scanning electron microscope (manufactured by JEOL Ltd., JSM-6460LA).
The thickness of the test samples of insulation was simultaneously measured by thermal conductivity measurements with the HFM436 described above.
[熱伝導率]
JIS A1412に記載されているHFM法に準拠して、ネッチジャパン(株)製の熱伝導率測定装置HFM436を用いて25度で、断熱材の熱伝導率を測定した。
熱伝導率が、
0.020W/mK以下であるものをA評価、
0.021~0.025W/mKであるものをB評価、
0.026~0.030W/mKであるものをC評価、
0.031W/mK以上であるものをD評価とした。
D評価としたものを不合格とする。[Thermal conductivity]
Based on the HFM method described in JIS A1412, the thermal conductivity of the heat insulating material was measured at 25 degrees using a thermal conductivity measuring device HFM436 manufactured by Netchi Japan Co., Ltd.
thermal conductivity is
0.020 W / mK or less is evaluated as A,
B evaluation for 0.021 to 0.025 W / mK,
C evaluation for 0.026 to 0.030 W / mK,
A value of 0.031 W/mK or more was evaluated as D.
Those rated as D are rejected.
[実施例1]
<ガス吸収層(B1)の作製及びガス遮断層(C)との複合化>
ガス吸収層(B1)は、基材としてポリエチレン樹脂(ダウケミカル社製ELITE5220G)、二酸化炭素吸収剤として水酸化カルシウム、及び水蒸気吸収剤として酸化カルシウムを用いて作製した。
まず、ポリエチレン樹脂/水酸化カルシウム=51質量部/49質量部の比で溶融混練して、ガス吸収層(B)形成用の樹脂ペレット(b1-1)を作製した。同様に、ポリエチレン樹脂/酸化カルシウム=60質量部/40質量部の比で溶融混練して、ガス吸収層(B)形成用の樹脂ペレット(b1-2)を作製した。
続いて、この樹脂ペレット(b1-1)及び(b1-2)を1対1の比で用いて二層フィルム成型を行い、100μm厚のガス吸収層(B1)を得た。
続いて作製したガス吸収層(B1)の(b1-1)層側に、東洋モートン社製のドライラミネート用接着剤TM250HV及び硬化剤CAT-RT86L-60を酢酸エチルにて2倍に希釈したものをバーコーターで塗布、乾燥させた後に、ガス遮断層(C)としてPET/DL/Al/LDPE/LLDPEの層構成を有する市販のガスバリアフィルム(サンエー化研:レトルトパウチ用,PET:ポリエチレンテレフタレート、DL:接着剤、Al:アルミニウム箔、LDPE:低密度ポリエチレン、LLDPE:直鎖状短鎖分岐ポリエチレン)のLLDPE側をドライラミネートにより接着させて複合化し、ガス吸収層(B1)とガス遮断層(C)とからなる多層フィルムを得た。[Example 1]
<Preparation of Gas Absorption Layer (B1) and Composite with Gas Barrier Layer (C)>
The gas absorption layer (B1) was produced using a polyethylene resin (ELITE5220G manufactured by Dow Chemical Co.) as a base material, calcium hydroxide as a carbon dioxide absorbent, and calcium oxide as a water vapor absorbent.
First, the resin pellets (b1-1) for forming the gas absorption layer (B) were produced by melt-kneading the polyethylene resin/calcium hydroxide at a ratio of 51 parts by mass/49 parts by mass. Similarly, the resin pellets (b1-2) for forming the gas absorption layer (B) were produced by melt-kneading at a ratio of polyethylene resin/calcium oxide=60 parts by mass/40 parts by mass.
Subsequently, the resin pellets (b1-1) and (b1-2) were used at a ratio of 1:1 to form a two-layer film to obtain a gas absorption layer (B1) having a thickness of 100 μm.
Subsequently, on the (b1-1) layer side of the gas absorption layer (B1) prepared, a dry lamination adhesive TM250HV manufactured by Toyo-Morton Co., Ltd. and a curing agent CAT-RT86L-60 were diluted two-fold with ethyl acetate. was applied with a bar coater and dried, and then a commercially available gas barrier film having a layer structure of PET/DL/Al/LDPE/LLDPE as the gas barrier layer (C) (San A Kaken: for retort pouches, PET: polyethylene terephthalate, DL: adhesive, Al: aluminum foil, LDPE: low-density polyethylene, LLDPE: linear short-chain branched polyethylene) is bonded by dry lamination on the LLDPE side to form a composite, and the gas absorption layer (B1) and the gas barrier layer ( A multilayer film consisting of C) was obtained.
<コア層(A1)の作製及び多層フィルムとの複合化>
第一押出機と第二押出機を接続してなるタンデム型押出機を用意した。該タンデム型押出機の第一押出機に、100質量部のポリスチレン樹脂(PSジャパン社製G9305)を供給して溶融混錬し、第一押出機の流路の途中から発泡剤としての二酸化炭素を圧入して、溶融状態のポリスチレン樹脂と二酸化炭素とを均一に混合混練した上で、ポリスチレン樹脂を第二押出機に連続的に供給して溶融混練しつつ発泡に適した温度に冷却した。その後、第二押出機の先端に取り付けたサーキュラー金型からポリスチレン樹脂を押出発泡させ、得られた円筒状の発泡成形体をマンドレルに添わせて冷却し、マンドレル上の一点で、カッターにより円筒状の発泡成形体を切開して、微細中空構造を有する5mm厚のコア層(A1)とした。コア層(A1)の平均中空径、空隙率、独立中空体率は表1の通りであった。
続いて、上記方法で作製したガス吸収層(B1)とガス遮断層(C)とを有する多層フィルムのガス吸収層(B1)の(b1-2)層側に、ガス遮断層(C)を接着させた方法と同様の手法で接着剤を用いてコア層(A)を接着した。そして末端部を幅20mmの範囲でヒートシール(富士インパルス社製)を用いて密閉化した。7日後にこのコア層(A1)-ガス吸収層(B1)-ガス遮断層(C)の複合体(断熱材)の熱伝導率と圧力(手法1)を測定した。結果を表1に示す。<Preparation of core layer (A1) and composite with multilayer film>
A tandem extruder was prepared by connecting a first extruder and a second extruder. 100 parts by mass of polystyrene resin (G9305 manufactured by PS Japan Co., Ltd.) is supplied to the first extruder of the tandem extruder and melt-kneaded, and carbon dioxide as a foaming agent is introduced from the middle of the flow path of the first extruder. was injected to uniformly mix and knead the molten polystyrene resin and carbon dioxide, and then the polystyrene resin was continuously supplied to the second extruder and cooled to a temperature suitable for foaming while being melt-kneaded. After that, the polystyrene resin is extruded and foamed from a circular mold attached to the tip of the second extruder, and the obtained cylindrical foamed molded product is placed on a mandrel and cooled. was cut to form a core layer (A1) having a thickness of 5 mm and having a fine hollow structure. Table 1 shows the average hollow diameter, porosity and independent hollow body ratio of the core layer (A1).
Subsequently, the gas barrier layer (C) is provided on the (b1-2) layer side of the gas absorption layer (B1) of the multilayer film having the gas absorption layer (B1) and the gas barrier layer (C) prepared by the above method. The core layer (A) was adhered using an adhesive in the same manner as the adhesion method. Then, the terminal portion was sealed with a heat seal (manufactured by Fuji Impulse Co., Ltd.) within a width of 20 mm. After 7 days, the thermal conductivity and pressure (Method 1) of this core layer (A1)-gas absorption layer (B1)-gas blocking layer (C) composite (insulating material) were measured. Table 1 shows the results.
[実施例2]
<ガス吸収層(B2)の作製>
ガス吸収層(B2)は、基材としてポリエチレン樹脂(ダウケミカル社製ELITE5220G)、二酸化炭素吸収剤として水酸化カルシウム、及び水蒸気吸収剤として酸化カルシウムを用いて作製した。
まず、ポリエチレン樹脂/水酸化カルシウム=50質量部/50質量部の比で溶融混練して、ガス吸収層(B)形成用の樹脂ペレット(b2-1)を作製した。同様に、ポリエチレン樹脂/酸化カルシウム=50質量部/50質量部の比で溶融混練して、ガス吸収層(B)形成用の樹脂ペレット(b2-2)を作製した。
続いて、この樹脂ペレット(b2-1)及び(b2-2)を1.4対1の比で用いて二層フィルム成型を行い、120μm厚のガス吸収層(B2)を得た。[Example 2]
<Production of gas absorption layer (B2)>
The gas absorption layer (B2) was produced using a polyethylene resin (ELITE5220G manufactured by Dow Chemical Co.) as a base material, calcium hydroxide as a carbon dioxide absorbent, and calcium oxide as a water vapor absorbent.
First, the resin pellets (b2-1) for forming the gas absorption layer (B) were produced by melt-kneading the polyethylene resin/calcium hydroxide at a ratio of 50 parts by mass/50 parts by mass. Similarly, the resin pellets (b2-2) for forming the gas absorption layer (B) were produced by melt-kneading at a ratio of polyethylene resin/calcium oxide=50 parts by mass/50 parts by mass.
Subsequently, the resin pellets (b2-1) and (b2-2) were used at a ratio of 1.4:1 to form a two-layer film to obtain a gas absorption layer (B2) with a thickness of 120 μm.
<コア層(A2)の作製とガス吸収層(B2)との複合化>
発泡剤として二酸化炭素と水を用いた以外は、実施例1と同様の方法でコア層(A)を作製した。作製したコア層(A2)の平均中空径、空隙率、独立中空体率は表1の通りであった。
続いて、前記方法で作製したコア層(A2)にガス吸収層(B2)の(b2-1)層側を接着させて複合体を作製した。この工程は、二酸化炭素雰囲気下で行なった。<Preparation of Core Layer (A2) and Composite with Gas Absorption Layer (B2)>
A core layer (A) was produced in the same manner as in Example 1, except that carbon dioxide and water were used as blowing agents. Table 1 shows the average hollow diameter, porosity, and independent hollow body ratio of the core layer (A2) produced.
Subsequently, the (b2-1) layer side of the gas absorption layer (B2) was adhered to the core layer (A2) produced by the above method to produce a composite. This step was performed under a carbon dioxide atmosphere.
<コア層(A2)ガス吸収層(B2)の複合体とガス遮断層(C)との複合化>
上記で作製したコア層(A2)とガス吸収層(B2)の複合体を、実施例1に記載のガス遮断層(C)で完全に覆い、複合体とガス遮断層(C)の間の気体を出来るだけ除去した後に末端部を幅10mmの範囲でヒートシールを用いて密閉化した。この工程は二酸化炭素雰囲気下で行なった。二週間後にこのコア層(A2)-ガス吸収層(B2)-ガス遮断層(C)の複合体(断熱材)の熱伝導率と圧力(手法2)を測定した。結果を表1に示す。<Composite Composite of Core Layer (A2) Gas Absorption Layer (B2) and Gas Barrier Layer (C)>
The composite of the core layer (A2) and the gas absorption layer (B2) prepared above is completely covered with the gas barrier layer (C) described in Example 1, and the gap between the composite and the gas barrier layer (C) is After removing the gas as much as possible, the end portion was sealed with a heat seal within a width of 10 mm. This step was performed under a carbon dioxide atmosphere. Two weeks later, the thermal conductivity and pressure (Method 2) of this core layer (A2)-gas absorption layer (B2)-gas blocking layer (C) composite (insulating material) were measured. Table 1 shows the results.
[実施例3]
コア層(A)として、表1の平均中空径、空隙率、独立中空体率を有するコア層(A3)を用いた以外は、実施例2と同様に手法で複合体(断熱材)を作製し熱伝導率と圧力(手法2)を測定した。結果を表1に示す。[Example 3]
A composite (heat insulating material) was produced in the same manner as in Example 2, except that the core layer (A3) having the average hollow diameter, porosity, and independent hollow body ratio shown in Table 1 was used as the core layer (A). Then the thermal conductivity and pressure (Method 2) were measured. Table 1 shows the results.
[実施例4]
実施例2と同様の方法でコア層(A2)を得た。続いて、コア層(A2)の表面の1/3をガス吸収層(B2)と接着し、その上から全体をガス遮断層(C)で覆った。ガス遮断層(C)の間の気体を出来るだけ除去した後に末端部を幅10mmの範囲でヒートシールを用いて密閉化した。この工程は二酸化炭素雰囲気下で行なった。二週間後にこのコア層(A2)-ガス吸収層(B2)-ガス遮断層(C)の複合体(断熱材)の熱伝導率と圧力(手法2)を測定した。結果を表1に示す。[Example 4]
A core layer (A2) was obtained in the same manner as in Example 2. Subsequently, ⅓ of the surface of the core layer (A2) was adhered to the gas absorption layer (B2), and the whole was covered with the gas barrier layer (C). After removing the gas between the gas barrier layer (C) as much as possible, the end portion was hermetically sealed with a width of 10 mm using a heat seal. This step was performed under a carbon dioxide atmosphere. Two weeks later, the thermal conductivity and pressure (Method 2) of this core layer (A2)-gas absorption layer (B2)-gas blocking layer (C) composite (insulating material) were measured. Table 1 shows the results.
[比較例1]
従来のポリスチレン発泡体である岩倉化学工業社の製品名セルボードを断熱材として熱伝導率を測定したが、実施例に劣る結果となった(表1)。その他の測定及び評価の結果を表1に示す。[Comparative Example 1]
The thermal conductivity was measured using a conventional polystyrene foam, the product name Cellboard of Iwakura Kagaku Kogyo Co., Ltd., as a heat insulating material, but the results were inferior to those of the examples (Table 1). Table 1 shows the results of other measurements and evaluations.
[比較例2]
ガス吸収層(B1)及びガス遮断層(C)を用いず、実施例1と同様の方法で得たコア層(A1)のみを作製して、それを断熱材として熱伝導率を測定したが、微細中空体の圧力が低下しない為、熱伝導率は実施例に劣る結果となった(表1)。その他の測定及び評価の結果を表1に示す。[Comparative Example 2]
Only the core layer (A1) obtained in the same manner as in Example 1 was prepared without using the gas absorption layer (B1) and the gas barrier layer (C), and the thermal conductivity was measured using it as a heat insulating material. Since the pressure of the fine hollow bodies did not decrease, the thermal conductivity was inferior to the examples (Table 1). Table 1 shows the results of other measurements and evaluations.
[比較例3]
ガス吸収層(B2)及びガス遮断層(C)を用いず、実施例2と同様の方法で得たコア層(A2)のみを作製して、それを断熱材として熱伝導率を測定したが、微細中空体の圧力が低下しない為、熱伝導率は実施例に劣る結果となった(表1)。その他の測定及び評価の結果を表1に示す。[Comparative Example 3]
Only the core layer (A2) obtained in the same manner as in Example 2 was prepared without using the gas absorption layer (B2) and the gas barrier layer (C), and the thermal conductivity was measured using it as a heat insulating material. Since the pressure of the fine hollow bodies did not decrease, the thermal conductivity was inferior to the examples (Table 1). Table 1 shows the results of other measurements and evaluations.
[参考例1]
実施例1のガス吸収層用ペレットを作製する際に用いた水酸化カルシウムと酸化カルシウムの粉末を、通気性を有する小袋に入れてガス吸収小袋を作製した。続いて、実施例1と同様の手法でコア層(A1)を得た後、コア層(A1)の上にガス吸収小袋を乗せた。コア層(A1)とガス吸収小袋の全体をガス遮断層(C)で完全に覆い、ガス遮断層(C)の間の気体を出来るだけ除去した後に末端部を幅10mmの範囲でヒートシールを用いて密閉化した。この工程は二酸化炭素雰囲気下で行なった。二週間後にこの複合体の圧力(手法2)と熱伝導率を測定した。しかし、ガス吸収層(B)ではなく袋状のガス吸収小袋を用いている為、圧力の低下は小さかった。また、小袋部分が断熱材の表面から出っ張ってしまった為、正確に熱伝導率を測定する事はできなかった。[Reference example 1]
The calcium hydroxide and calcium oxide powders used in producing the gas-absorbing layer pellets of Example 1 were placed in an air-permeable sachet to produce a gas-absorbing sachet. Subsequently, after obtaining a core layer (A1) in the same manner as in Example 1, a gas-absorbing sachet was placed on the core layer (A1). The core layer (A1) and the gas-absorbing sachet were completely covered with the gas barrier layer (C), and after removing as much gas as possible between the gas barrier layer (C), the ends were heat-sealed within a width of 10 mm. It was sealed using This step was performed under a carbon dioxide atmosphere. After two weeks, the pressure (method 2) and thermal conductivity of this composite were measured. However, since the bag-shaped gas-absorbing sachet was used instead of the gas-absorbing layer (B), the decrease in pressure was small. In addition, since the small bag protruded from the surface of the heat insulating material, the thermal conductivity could not be measured accurately.
本出願は、2016年7月11日に日本国特許庁へ出願された日本特許出願(特願2016-136563号)に基づくものであり、それらの内容はここに参照として取り込まれる。
This application is based on a Japanese patent application (Japanese Patent Application No. 2016-136563) filed with the Japan Patent Office on July 11, 2016, the contents of which are incorporated herein by reference.
Claims (11)
少なくとも一部が該コア層(A)の外側に位置し、二酸化炭素吸収剤及び水蒸気吸収剤を含む、ガスを吸収可能なガス吸収層(B)、及び
該ガス吸収層(B)の外側に位置し、ガスを遮断可能なガス遮断層(C)を有し、
前記コア層(A)の微細中空構造の独立中空体率が50%以上であり、
前記ガス吸収層(B)が前記コア層(A)の表面積の80%以上を直接又は間接に覆っており、
前記ガス吸収層(B)と前記ガス遮断層(C)とで多層フィルムを形成している、
断熱材。 a core layer (A) having a fine hollow structure,
a gas-absorbing layer (B) at least partially located outside the core layer (A) and containing a carbon dioxide absorbent and a water vapor absorbent, and capable of absorbing gas; has a gas blocking layer (C) that is located and can block gas,
The core layer (A) has a fine hollow structure with an independent hollow body ratio of 50% or more,
The gas absorption layer (B) directly or indirectly covers 80% or more of the surface area of the core layer (A),
The gas absorption layer (B) and the gas barrier layer (C) form a multilayer film,
Insulation.
(1)樹脂を発泡させて、微細中空構造を有するコア層(A)を得る工程
(2)少なくとも一部が該コア層(A)の外側に位置し、ガスを吸収可能なガス吸収層(B)に、前記コア層(A)内部のガスを吸収させ、前記コア層の中空部分の圧力を下げる工程 A method for manufacturing a heat insulating material according to any one of claims 1 to 9, comprising the following steps.
(1) step of foaming a resin to obtain a core layer (A) having a fine hollow structure; A step of causing B) to absorb the gas inside the core layer (A) and lowering the pressure in the hollow portion of the core layer.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016136563 | 2016-07-11 | ||
JP2016136563 | 2016-07-11 | ||
PCT/JP2017/024835 WO2018012402A1 (en) | 2016-07-11 | 2017-07-06 | Heat insulating material and method for producing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018012402A1 JPWO2018012402A1 (en) | 2019-05-09 |
JP7192497B2 true JP7192497B2 (en) | 2022-12-20 |
Family
ID=60952482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018527564A Active JP7192497B2 (en) | 2016-07-11 | 2017-07-06 | Insulating material and its manufacturing method |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7192497B2 (en) |
KR (1) | KR20190027854A (en) |
CN (1) | CN109477606A (en) |
TW (1) | TW201821727A (en) |
WO (1) | WO2018012402A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001114922A (en) | 1999-10-13 | 2001-04-24 | Asahi Kasei Corp | Phenol resin foam |
JP2006123178A (en) | 2004-10-26 | 2006-05-18 | Kaneka Corp | Heat insulating panel |
JP2006336722A (en) | 2005-06-01 | 2006-12-14 | Hitachi Appliances Inc | Vacuum heat insulating material and refrigerator using the same |
JP2007313652A (en) | 2006-05-23 | 2007-12-06 | Toppan Printing Co Ltd | Barrier facing material for vacuum heat insulating material and vacuum heat insulating material |
JP2009063065A (en) | 2007-09-06 | 2009-03-26 | Hitachi Appliances Inc | Vacuum heat insulating material and refrigerator using the same |
JP2010059756A (en) | 2008-09-08 | 2010-03-18 | Toray Ind Inc | High performance heat insulation material |
WO2016084763A1 (en) | 2014-11-26 | 2016-06-02 | 旭硝子株式会社 | Vacuum thermal insulating material and manufacturing method therefor |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2746069B2 (en) | 1993-08-10 | 1998-04-28 | 松下電器産業株式会社 | Foam insulation and method of manufacturing the same |
JPH07103389A (en) * | 1993-10-04 | 1995-04-18 | Fujitsu General Ltd | Heat insulating material |
JPH07234067A (en) | 1994-02-21 | 1995-09-05 | Hitachi Ltd | Vacuum thermal insulation door for refrigerator and the like |
JPH08159373A (en) * | 1994-11-30 | 1996-06-21 | Sanyo Electric Co Ltd | Vacuum heat insulating material |
US5532034A (en) * | 1994-12-06 | 1996-07-02 | Whirlpool Corporation | Getter system for vacuum insulation panel |
JPH09138058A (en) | 1995-11-14 | 1997-05-27 | Sanyo Electric Co Ltd | Vacuum heat insulating material |
JPH10169889A (en) * | 1996-12-10 | 1998-06-26 | Sharp Corp | Heat insulation material pack |
JP3935556B2 (en) * | 1997-05-20 | 2007-06-27 | 大日本印刷株式会社 | Insulating material and manufacturing method thereof |
JPH11257573A (en) * | 1998-03-10 | 1999-09-21 | Sumitomo Chem Co Ltd | Vacuum insulation material |
JPH11334764A (en) | 1998-05-22 | 1999-12-07 | Matsushita Electric Ind Co Ltd | Heat insulating box, its production and use |
JP2007040359A (en) * | 2005-08-02 | 2007-02-15 | Matsushita Electric Ind Co Ltd | Vacuum heat insulating material |
CN201866468U (en) * | 2010-11-11 | 2011-06-15 | 太仓宏大方圆电气有限公司 | Wet superfine glass wool vacuum insulation panel |
JP2013040717A (en) * | 2011-08-16 | 2013-02-28 | Hitachi Appliances Inc | Vacuum heat insulation material, and refrigerator using the same |
CN104132220A (en) * | 2014-08-18 | 2014-11-05 | 李载润 | Vacuum insulation panel for active absorbent and manufacturing method for vacuum insulation panel |
-
2017
- 2017-07-06 KR KR1020197003447A patent/KR20190027854A/en not_active Application Discontinuation
- 2017-07-06 JP JP2018527564A patent/JP7192497B2/en active Active
- 2017-07-06 WO PCT/JP2017/024835 patent/WO2018012402A1/en active Application Filing
- 2017-07-06 CN CN201780042591.0A patent/CN109477606A/en active Pending
- 2017-07-11 TW TW106123225A patent/TW201821727A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001114922A (en) | 1999-10-13 | 2001-04-24 | Asahi Kasei Corp | Phenol resin foam |
JP2006123178A (en) | 2004-10-26 | 2006-05-18 | Kaneka Corp | Heat insulating panel |
JP2006336722A (en) | 2005-06-01 | 2006-12-14 | Hitachi Appliances Inc | Vacuum heat insulating material and refrigerator using the same |
JP2007313652A (en) | 2006-05-23 | 2007-12-06 | Toppan Printing Co Ltd | Barrier facing material for vacuum heat insulating material and vacuum heat insulating material |
JP2009063065A (en) | 2007-09-06 | 2009-03-26 | Hitachi Appliances Inc | Vacuum heat insulating material and refrigerator using the same |
JP2010059756A (en) | 2008-09-08 | 2010-03-18 | Toray Ind Inc | High performance heat insulation material |
WO2016084763A1 (en) | 2014-11-26 | 2016-06-02 | 旭硝子株式会社 | Vacuum thermal insulating material and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
TW201821727A (en) | 2018-06-16 |
WO2018012402A1 (en) | 2018-01-18 |
JPWO2018012402A1 (en) | 2019-05-09 |
CN109477606A (en) | 2019-03-15 |
KR20190027854A (en) | 2019-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102343721B1 (en) | Multilayer foam sheet and interleaf for glass plates | |
TWI674194B (en) | Easy-to-cut absorbent laminate and packaging bag using the same | |
JP2007083537A5 (en) | ||
KR101521410B1 (en) | Polyethylene resin extrusion-foamed sheet, and interleaving paper for glass plates | |
JP2012530008A (en) | Moisture sensitive layer and structural method and structure for reducing moisture content in moisture sensitive layer | |
JP5695212B2 (en) | CORE MATERIAL FOR VACUUM INSULATION MATERIAL COMPRISING PHENOL RESIN CURED FOAM, VACUUM INSULATION MATERIAL USING SAME, AND METHOD FOR PRODUCING THE SAME | |
JP7192497B2 (en) | Insulating material and its manufacturing method | |
KR101917615B1 (en) | Resin foam sheet, and method for producing resin foam molded article | |
TWI722847B (en) | Packing sheet | |
JP4870489B2 (en) | Uncharged desiccant-containing film | |
IT202000007069A1 (en) | Monomaterial polymeric film | |
JP2022117418A (en) | Method for producing polyethylene resin extrusion-foamed sheet | |
JP7056029B2 (en) | Outer packaging material for vacuum heat insulating material, vacuum heat insulating material, and articles with vacuum heat insulating material | |
JP4540027B2 (en) | Open cell foam, vacuum insulation core material and vacuum insulation material | |
JP7020979B2 (en) | Manufacturing method of polyethylene resin foam sheet and polyethylene resin foam sheet and its roll | |
JP6664283B2 (en) | Oxygen absorbing film roll | |
JP5705064B2 (en) | Laminated body and container containing polyvinylidene chloride biaxially stretched film | |
JP2020020431A (en) | Vacuum heat insulating body, and heat insulating container and heat insulating wall using the same | |
CN114889266B (en) | PETG curtain coating membrane | |
JP3733974B2 (en) | Laminated film for food packaging | |
JP3921548B2 (en) | Cellulose acetate biodegradable foam and method for producing the same | |
JP6995600B2 (en) | A method for manufacturing a paper sheet for a glass plate made of a thermoplastic resin foam. | |
JP2017137955A (en) | Jacket material for vacuum heat insulation material and vacuum heat insulation material using the same | |
JP5557486B2 (en) | Polyethylene resin foam sheet | |
KR20160005158A (en) | Vacuum insulation having open cell polyurethane foam and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A529 | Written submission of copy of amendment under article 34 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A5211 Effective date: 20181024 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181106 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200529 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210416 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220531 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221121 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7192497 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |