WO2016084763A1 - Vacuum thermal insulating material and manufacturing method therefor - Google Patents

Vacuum thermal insulating material and manufacturing method therefor Download PDF

Info

Publication number
WO2016084763A1
WO2016084763A1 PCT/JP2015/082834 JP2015082834W WO2016084763A1 WO 2016084763 A1 WO2016084763 A1 WO 2016084763A1 JP 2015082834 W JP2015082834 W JP 2015082834W WO 2016084763 A1 WO2016084763 A1 WO 2016084763A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
insulating material
resin member
vacuum heat
resin
Prior art date
Application number
PCT/JP2015/082834
Other languages
French (fr)
Japanese (ja)
Inventor
伸広 篠原
裕也 濱田
弘法 佐藤
孝夫 土居
知治 林
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2016561569A priority Critical patent/JPWO2016084763A1/en
Publication of WO2016084763A1 publication Critical patent/WO2016084763A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum

Definitions

  • a vacuum heat insulating material 10D shown in FIGS. 7A and 7B is obtained by removing the outer covering material 3 corresponding to the different material member 8 together with the different material member 8 from the vacuum heat insulating material 10B shown in FIGS. 4A and B.
  • This is a hole-insulated vacuum heat insulating material obtained by opening a hole 9 having a size corresponding to.
  • Example 2 The vacuum insulation similar to Example 1 except that instead of the closed cell resin resin sheet, a low density polyethylene resin sheet processed to 50 mm ⁇ 50 mm ⁇ thickness 5 mm was used as the replacement material 7 (resin member 6). Material A2 was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)

Abstract

Provided are: a vacuum thermal insulating material with which machining such as drilling and recess machining can be stably performed, for which the ease of work during manufacturing is favorable, and surface flatness has been maintained; and a manufacturing method therefor. A vacuum thermal insulating material is provided with: an outer covering material obtained by disposing a gas-tight film with a thermal welding layer on one surface so that the thermal welding layers face each other; a sheet-shaped core material with a lacuna that penetrates in the sheet thickness direction; and a replacement material, which is disposed in the lacuna so as to occlude the lacuna and has a gas-tight resin member with a pair of surfaces that are roughly parallel to the main surface of the core material. In the vacuum thermal insulating material in which the interior of the outer covering material is in a reduced pressure state, the core material in which said replacement material has been disposed is held within the outer covering material, and the region that is located outside the perimeter of the core material and entirely surrounds the core material is bonded tightly by thermal welding of the thermal welding layers to each other. The resin member is bonded with the outer covering material so as to maintain gas-tightness.

Description

真空断熱材およびその製造方法Vacuum insulation material and manufacturing method thereof
 本発明は、真空断熱材およびその製造方法に関し、特に穴加工や凹状加工等の加工に適する真空断熱材およびその製造方法に関する。 The present invention relates to a vacuum heat insulating material and a manufacturing method thereof, and more particularly to a vacuum heat insulating material suitable for processing such as hole processing and concave processing and a manufacturing method thereof.
 通常、真空断熱材は、ガラス繊維やシリカ等の粉末を固めた多孔体の芯材を、内面に熱溶着層を有する気密性フィルム中に装填し、減圧下で気密性フィルムの芯材が存在しない部分、すなわち芯材の外周の外側部分の熱溶着層同士を熱溶着することで熱シール等を施すことによって作製される。したがって、一旦真空断熱材が構成されると、フィルムに傷を付けたり、穴を開けることはできないため、後から真空断熱材を加工することができないという問題を有していた。 Normally, vacuum insulation is loaded with a porous core material made of glass fiber, silica, or other powder solidified in an airtight film having a heat-welded layer on the inner surface, and the core material of the airtight film exists under reduced pressure. It is produced by heat-sealing etc. by heat-welding the heat-welding layers of the outer part of the outer periphery of the core material. Therefore, once the vacuum heat insulating material is constructed, the film cannot be scratched or perforated, and thus the vacuum heat insulating material cannot be processed later.
 このような問題に対して、例えば、図10A、Bに示すように板状の芯材5に対して貫通孔4を形成し、芯材5の外周の外側部分について気密性フィルム2の熱溶着層1同士を熱溶着させてシール部分Yとするとともに、芯材5のない貫通孔部分についても気密性フィルム2の熱溶着層1同士を上記同様に熱溶着させて貫通孔4に対応する熱溶着部分Xを有する真空断熱材10Fを製造する技術が知られている(例えば、特許文献1参照)。このような、真空断熱材10Fにおいては、貫通孔4に対応する熱溶着部分Xを穴加工等に利用することができる。 To solve such a problem, for example, as shown in FIGS. 10A and 10B, a through-hole 4 is formed in the plate-like core material 5, and the airtight film 2 is thermally welded to the outer portion of the outer periphery of the core material 5. The layers 1 are thermally welded together to form a seal portion Y, and the heat-bonding layers 1 of the airtight film 2 are also heat-sealed in the same manner as described above for the through-hole portion without the core material 5. A technique for manufacturing a vacuum heat insulating material 10F having a welded portion X is known (see, for example, Patent Document 1). In such a vacuum heat insulating material 10F, the heat-welded portion X corresponding to the through hole 4 can be used for drilling or the like.
 しかしながら、上記方法で得られる真空断熱材10Fにおける穴加工等に利用可能な熱溶着部分Xは、真空断熱材10Fの芯材5が収納されている部分に比べて厚みが小さく真空断熱材10F全体としての表面平坦性が損なわれるばかりでなく、その部分は機械的強度が十分でない。また、段差を有するために熱溶着における作業性が悪く、シワ等を生じやすい。結果として、熱溶着が十分に行われず、穴を開けることで密封性が損なわれるという恐れもあった。 However, the heat-welded portion X that can be used for drilling or the like in the vacuum heat insulating material 10F obtained by the above method is smaller in thickness than the portion in which the core material 5 of the vacuum heat insulating material 10F is accommodated, and the entire vacuum heat insulating material 10F. As a result, not only the surface flatness is impaired but also the mechanical strength of the portion is not sufficient. Moreover, since it has a level | step difference, the workability | operativity in heat welding is bad and it is easy to produce wrinkles. As a result, heat welding is not performed sufficiently, and there is a fear that the sealing performance is impaired by making a hole.
特開2011-153715号公報JP 2011-153715 A
 本発明は、上記観点からなされたものであって、穴加工や凹状加工等の加工が安定して行える真空断熱材であって、作製時の作業性が良好であり、かつ表面平坦性が確保された真空断熱材およびその製造方法を提供することを目的とする。 The present invention has been made from the above viewpoint, and is a vacuum heat insulating material that can stably perform processing such as hole processing and concave processing, and has good workability at the time of fabrication and ensures surface flatness. It is an object of the present invention to provide a vacuum heat insulating material and a manufacturing method thereof.
 本発明は、以下の構成を有する。
 [1]片面に熱溶着層を有する気密性のフィルムを前記熱溶着層同士が対向するように配置してなる外被材と、
 板厚方向に貫通する欠落部を有する板状の芯材と、
 前記欠落部を閉塞するように前記欠落部に配設される、前記芯材の主面に略平行する一対の表面を有する気密性の樹脂部材を有する、置換材と、を備え、
 前記外被材の内部に前記置換材が配設された芯材が収納されており、前記芯材の外周よりも外側に位置し前記芯材の周囲全体に亘る領域が前記熱溶着層同士の熱溶着により密着された、前記外被材の内部が減圧状態である真空断熱材であって、前記樹脂部材は気密性が保持されるように前記外被材と接合された真空断熱材。
The present invention has the following configuration.
[1] A jacket material formed by disposing an airtight film having a heat-welded layer on one side so that the heat-welded layers face each other;
A plate-like core material having a missing portion penetrating in the thickness direction;
A replacement material having an airtight resin member having a pair of surfaces substantially parallel to the main surface of the core material, which is disposed in the missing portion so as to close the missing portion,
A core material in which the replacement material is disposed is housed in the outer jacket material, and an area extending outside the outer periphery of the core material and covering the entire periphery of the core material is between the heat-welded layers. A vacuum heat insulating material that is in close contact by heat welding and in which the inside of the outer cover material is in a reduced pressure state, wherein the resin member is bonded to the outer cover material so that airtightness is maintained.
 [2]前記樹脂部材の少なくとも前記一対の表面近傍は前記熱溶着層の構成材料と熱溶着可能な樹脂で構成され、前記樹脂部材は前記一対の表面において前記外被材の前記熱溶着層と熱溶着された[1]の真空断熱材。
 [3]前記芯材の厚みに対する前記置換材の厚みの比は、0.8~1.2である[1]または[2]の真空断熱材。
 [4]前記樹脂部材は気孔率が10~98%の独立気泡性の樹脂部材である[1]~[3]のいずれかに記載の真空断熱材。
 [5]前記置換材は、前記樹脂部材のみで構成される[1]~[4]のいずれかに記載の真空断熱材。
 [6]前記樹脂部材は前記表面に対して直交する方向に貫通する貫通孔を有し、前記置換材は、前記樹脂部材の貫通孔に嵌合するように配設される前記樹脂部材の樹脂とは異なる材料からなる異種材料部材をさらに有する[1]~[4]のいずれかに記載の真空断熱材。
[2] At least the vicinity of the pair of surfaces of the resin member is made of a heat-weldable resin with a constituent material of the heat-welding layer, and the resin member has the heat-welding layer of the jacket material on the pair of surfaces. [1] Vacuum heat insulating material heat-welded.
[3] The vacuum heat insulating material according to [1] or [2], wherein the ratio of the thickness of the replacement material to the thickness of the core material is 0.8 to 1.2.
[4] The vacuum heat insulating material according to any one of [1] to [3], wherein the resin member is a closed cell resin member having a porosity of 10 to 98%.
[5] The vacuum heat insulating material according to any one of [1] to [4], wherein the replacement material includes only the resin member.
[6] The resin member has a through-hole penetrating in a direction perpendicular to the surface, and the replacement member is a resin of the resin member disposed so as to be fitted into the through-hole of the resin member. The vacuum heat insulating material according to any one of [1] to [4], further including a dissimilar material member made of a material different from the above.
 [7]前記異種材料部材を構成する材料が、前記樹脂部材の樹脂とは異なる樹脂、ゴム、木、紙、繊維集積材、またはセラミックスである[6]の真空断熱材。
 [8]前記置換材の周縁部を除く領域に穴加工が施された[1]~[7]のいずれかに記載の真空断熱材。
 [9]前記穴加工された穴は、配線および/または配管を通す、前記真空断熱材を被断熱材に固定する固定部材を配する、および前記真空断熱材を被断熱材の突起部に掛ける、から選ばれる用途に用いられる[8]の真空断熱材。
[7] The vacuum heat insulating material according to [6], wherein the material constituting the dissimilar material member is a resin, rubber, wood, paper, fiber accumulation material, or ceramics different from the resin of the resin member.
[8] The vacuum heat insulating material according to any one of [1] to [7], wherein a hole is formed in a region excluding a peripheral edge portion of the replacement material.
[9] The hole-processed hole is used for wiring and / or piping, a fixing member for fixing the vacuum heat insulating material to the heat insulating material is disposed, and the vacuum heat insulating material is hung on the protrusion of the heat insulating material. [8] The vacuum heat insulating material used for the use selected from.
 [10]板状の芯材に、板厚方向に貫通する欠落部を形成し、
 前記芯材の主面に略平行する一対の表面を有する気密性の樹脂部材を有する置換材を、前記欠落部を閉塞するように前記欠落部に配設し、
 片面に熱溶着層を有する気密性のフィルムを前記熱溶着層同士が対向するように配置してなる外被材の内部に、前記置換材が配設された芯材を収納し、前記外被材の内部を減圧状態とするとともに前記芯材の外周よりも外側に位置し前記芯材の周囲全体に亘る領域を前記熱溶着層同士の熱溶着により密着し、さらに、前記樹脂部材を前記一対の表面において前記外被材の前記熱溶着層と接合する真空断熱材の製造方法。
 [11]前記樹脂部材と前記外被材の前記熱溶着層との接合は、前記樹脂部材の前記一対の表面に対応する前記外被材の領域を前記外被材の外側から加熱圧着して熱溶着することで行う[10]の真空断熱材の製造方法。
[10] Form a missing portion penetrating in the plate thickness direction in the plate-shaped core material,
A replacement material having a gas-tight resin member having a pair of surfaces substantially parallel to the main surface of the core material is disposed in the missing portion so as to close the missing portion,
A core material in which the replacement material is disposed is housed in an outer cover material in which an airtight film having a heat-welded layer on one side is disposed so that the heat-welded layers face each other. The inside of the material is in a reduced pressure state, the region located outside the outer periphery of the core material and covering the entire periphery of the core material is adhered by heat welding of the heat welding layers, and the resin member is attached to the pair The manufacturing method of the vacuum heat insulating material joined to the said heat welding layer of the said jacket | cover material in the surface.
[11] The bonding between the resin member and the heat-welded layer of the jacket material is performed by heat-pressing a region of the jacket material corresponding to the pair of surfaces of the resin member from the outside of the jacket material. [10] The method for producing a vacuum heat insulating material according to [10], which is performed by heat welding.
 本発明によれば、表面平坦性が確保された真空断熱材であって、作製時の作業性が良好であり、かつ穴加工や凹状加工等の加工が安定して行える真空断熱材およびその製造方法を提供できる。 According to the present invention, it is a vacuum heat insulating material in which surface flatness is ensured, the workability at the time of manufacturing is good, and the vacuum heat insulating material which can stably perform processing such as hole processing and concave processing, and its manufacture Can provide a method.
本発明の真空断熱材の実施形態の一例を示す平面図である。It is a top view which shows an example of embodiment of the vacuum heat insulating material of this invention. 図1Aに示す真空断熱材のA-A線における断面図である。It is sectional drawing in the AA line of the vacuum heat insulating material shown to FIG. 1A. 図1A、Bに示す真空断熱材における置換材が配設された芯材を示す展開図である。It is an expanded view which shows the core material by which the substitution material in the vacuum heat insulating material shown to FIG. 1A and B was arrange | positioned. 図1A、Bに示す真空断熱材における置換材が配設された芯材を示す平面図である。It is a top view which shows the core material by which the substitution material in the vacuum heat insulating material shown to FIG. 1A and B was arrange | positioned. 図1A、Bに示す真空断熱材における置換材が配設された芯材を示す断面図である。It is sectional drawing which shows the core material by which the substitution material in the vacuum heat insulating material shown to FIG. 1A and B was arrange | positioned. 本発明の真空断熱材における置換材が配設された芯材の変形例を示す図である。It is a figure which shows the modification of the core material by which the substitution material in the vacuum heat insulating material of this invention was arrange | positioned. 本発明の真空断熱材における置換材が配設された芯材の変形例を示す図である。It is a figure which shows the modification of the core material by which the substitution material in the vacuum heat insulating material of this invention was arrange | positioned. 本発明の真空断熱材における置換材が配設された芯材の変形例を示す図である。It is a figure which shows the modification of the core material by which the substitution material in the vacuum heat insulating material of this invention was arrange | positioned. 本発明の真空断熱材の実施形態の変形例を示す平面図である。It is a top view which shows the modification of embodiment of the vacuum heat insulating material of this invention. 図4Aに示す真空断熱材のB-B線における断面図である。It is sectional drawing in the BB line of the vacuum heat insulating material shown to FIG. 4A. 図4A、Bに示す真空断熱材における置換材および置換材が配設された芯材を示す展開図である。4A and 4B are development views showing a replacement material in the vacuum heat insulating material shown in FIGS. 4A and 4B and a core material provided with the replacement material. 図4A、Bに示す真空断熱材における置換材および置換材が配設された芯材を示す平面図である。It is a top view which shows the core material by which the substitution material and substitution material in the vacuum heat insulating material shown to FIG. 4A and B were arrange | positioned. 図4A、Bに示す真空断熱材における置換材および置換材が配設された芯材を示す断面図である。It is sectional drawing which shows the core material by which the substitution material and substitution material in the vacuum heat insulating material shown to FIG. 4A and B were arrange | positioned. 本発明の真空断熱材の実施形態の別の変形例を示す平面図である。It is a top view which shows another modification of embodiment of the vacuum heat insulating material of this invention. 図6Aに示す真空断熱材のC-C線における断面図である。FIG. 6B is a cross-sectional view taken along line CC of the vacuum heat insulating material shown in FIG. 6A. 本発明の真空断熱材の実施形態のさらに別の変形例を示す平面図である。It is a top view which shows another modification of embodiment of the vacuum heat insulating material of this invention. 図7Aに示す真空断熱材のD-D線における断面図(b)である。FIG. 7B is a cross-sectional view (b) taken along line DD of the vacuum heat insulating material shown in FIG. 7A. 本発明の真空断熱材の実施形態のまた別の変形例を示す平面図である。It is a top view which shows another modification of embodiment of the vacuum heat insulating material of this invention. 図8Aに示す真空断熱材のE-E線における断面図である。It is sectional drawing in the EE line of the vacuum heat insulating material shown to FIG. 8A. 本発明の真空断熱材の製造方法の一例を模式的に示す図である。It is a figure which shows typically an example of the manufacturing method of the vacuum heat insulating material of this invention. 従来の真空断熱材の一例を示す平面図である。It is a top view which shows an example of the conventional vacuum heat insulating material. 図10Aに示す真空断熱材のF-F線における断面図である。It is sectional drawing in the FF line of the vacuum heat insulating material shown to FIG. 10A.
 以下、本発明の実施の形態について図面を参照しながら説明する。本発明はこれに限定されない。以下の説明において、「略同寸」等における略は目視で見た際にそう見える範囲を意味する。本明細書において、ある部材が「欠落部」を有するとは、所定の形状において該部材が主体となるように該形状の一部が欠落した状態をいう。本発明の真空断熱材においては、芯材が主体となって真空断熱材の充填部分を構成し、芯材の欠落部を置換材が補填する構成である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to this. In the following description, an abbreviation such as “substantially the same size” means a range that can be seen by visual observation. In this specification, that a certain member has a “missing portion” refers to a state in which a part of the shape is missing so that the member is mainly used in a predetermined shape. In the vacuum heat insulating material of the present invention, the core material mainly constitutes the filling portion of the vacuum heat insulating material, and the replacement material compensates for the missing portion of the core material.
[真空断熱材]
 図1A、B、図4A、Bは本発明の真空断熱材の実施形態の一例および変形例を示すそれぞれ平面図(図1A、図4A)および断面図(図1B、図4B)である。図2A-Cおよび図5A-Cは、図1A、Bおよび図4A、Bに示す真空断熱材におけるそれぞれ置換材が配設された芯材を示す図である。図2A-C、図5A-Cに示す芯材において、欠落部は貫通孔である。図3A-Cは、種々の形状の欠落部に置換材が配設された芯材の平面図を示す。図6A、B、図7A、B、図8A、Bは本発明の実施形態の別の変形例およびさらに別の変形例を示すそれぞれ平面図(図6A、図7A、図8A)および断面図(図6B、図7B、図8B)である。図6A、B、図7A、Bおよび図8A、Bに示す真空断熱材は穴加工がされた実施形態の真空断熱材の例である。
[Vacuum insulation]
1A, B, 4A, and B are a plan view (FIGS. 1A and 4A) and a cross-sectional view (FIGS. 1B and 4B), respectively, illustrating an example and a modification of the vacuum heat insulating material of the present invention. FIGS. 2A to 2C and FIGS. 5A to 5C are diagrams showing core materials in which replacement materials are respectively disposed in the vacuum heat insulating materials shown in FIGS. 1A and 1B and FIGS. 4A and 4B. In the core material shown in FIGS. 2A to 2C and FIGS. 5A to 5C, the missing portion is a through hole. 3A to 3C are plan views of the core material in which the replacement material is disposed in the missing portions having various shapes. FIGS. 6A, B, 7A, B, 8A, and B are a plan view (FIGS. 6A, 7A, and 8A) and a cross-sectional view, respectively, showing another modification example and still another modification example of the embodiment of the present invention. 6B, 7B, and 8B). The vacuum heat insulating material shown in FIGS. 6A, B, 7A, B and 8A, B is an example of the vacuum heat insulating material according to the embodiment in which the hole is processed.
 図1A、Bに示す真空断熱材10Aは、片面に熱溶着層1を有する気密性のフィルム2を有し、フィルム2を熱溶着層1同士が対向するように配置してなる外被材3と、図2A-Cに細部を示す板厚方向に貫通する貫通孔4を有する板状の芯材5と、貫通孔4と嵌合するように貫通孔4に配設される、芯材5の貫通孔内面4aに接する外周面6cおよび芯材5の両面5a、5bに平行する一対の表面6a、6bを有する気密性の樹脂部材6からなる置換材7と、を備える。図1A、Bにおいて置換材7と樹脂部材6は同一の部材であり符号は6(7)とする。図2A-Cにおいても同様である。 A vacuum heat insulating material 10A shown in FIGS. 1A and 1B has an airtight film 2 having a heat-welding layer 1 on one side, and a covering material 3 formed by arranging the film 2 so that the heat-welding layers 1 face each other. 2A-C, a plate-like core material 5 having a through-hole 4 penetrating in the thickness direction shown in detail in FIG. 2A-C, and a core material 5 disposed in the through-hole 4 so as to be fitted to the through-hole 4 And a replacement material 7 made of an airtight resin member 6 having a pair of surfaces 6a, 6b parallel to both the outer peripheral surface 6c and the both surfaces 5a, 5b of the core material 5. In FIGS. 1A and 1B, the replacement material 7 and the resin member 6 are the same member, and the reference numeral is 6 (7). The same applies to FIGS. 2A-C.
 真空断熱材10Aにおいては、熱溶着層1同士が対向する外被材3の内部に、置換材7が配設された芯材5が収納され、芯材5の外周よりも外側に位置し芯材5の周囲全体に亘る領域Yが熱溶着層1同士の熱溶着により密着され、外被材3の内部は減圧状態とされている。以下、熱溶着された上記の領域Yをシール領域Yともいう。 In the vacuum heat insulating material 10 </ b> A, the core material 5 in which the replacement material 7 is disposed is accommodated in the outer cover material 3 in which the heat-welding layers 1 face each other, and is positioned outside the outer periphery of the core material 5. A region Y extending over the entire periphery of the material 5 is brought into close contact by heat welding between the heat welding layers 1, and the inside of the jacket material 3 is in a reduced pressure state. Hereinafter, the heat-welded area Y is also referred to as a seal area Y.
 また、真空断熱材10Aにおいては、樹脂部材6は熱溶着層1を構成する材料と接合可能な樹脂で構成され、樹脂部材6は一対の表面6a、6bにおいて気密性が保持されるように接合されている。ここで、接合された界面は、樹脂部材6が有する一対の表面6a、6bに相当する。 Further, in the vacuum heat insulating material 10A, the resin member 6 is made of a resin that can be bonded to the material constituting the heat-welding layer 1, and the resin member 6 is bonded so that airtightness is maintained on the pair of surfaces 6a and 6b. Has been. Here, the joined interface corresponds to a pair of surfaces 6 a and 6 b included in the resin member 6.
 なお、樹脂部材6と熱溶着層1は必ずしも樹脂部材6の表面6a、6bの全面と接合されていなくてもよい。必要に応じて表面6a、6bの端部の一部が接合されない状態であってもよい。すなわち、真空断熱材10Aは通常、使用に際して樹脂部材6(置換材7)に対応する部分に、特には略中央部に穴開けや釘打ち等の加工が施される。なお、気密性が保持されるように接合されていれば、略中央部以外に穴開けや釘打ち等の加工がされてもよい。少なくとも該加工が施される部分の周辺を取り囲む位置の樹脂部材6の表面6a、6bと熱溶着層1が気密性を保持されるように接合されていれば、加工後においても真空断熱材10A内部を安定して減圧状態に維持することが可能である。具体的には、上記穴等の加工が施された部分の外周から5mm以上の範囲が接合されていることが好ましい。 In addition, the resin member 6 and the heat welding layer 1 do not necessarily have to be joined to the entire surface 6a, 6b of the resin member 6. If necessary, a part of the end portions of the surfaces 6a and 6b may not be joined. In other words, the vacuum heat insulating material 10A is usually subjected to processing such as drilling and nailing at a portion corresponding to the resin member 6 (substitution material 7), in particular, at a substantially central portion in use. In addition, as long as it joins so that airtightness may be hold | maintained, holes, nailing, etc. may be processed in addition to a substantially center part. As long as the surfaces 6a and 6b of the resin member 6 at a position surrounding at least the periphery of the portion to be processed and the heat-welded layer 1 are joined so as to maintain airtightness, the vacuum heat insulating material 10A is processed even after processing. It is possible to stably maintain a reduced pressure inside. Specifically, it is preferable that a range of 5 mm or more is joined from the outer periphery of the portion where the hole or the like is processed.
 ただし、穴開けや釘打ち等の加工の自由度を大きくする点や、より安定して真空断熱材10A内部を減圧状態に維持する観点から、好ましくは、表面6a、6bの全面において樹脂部材6と熱溶着層1が接合される。また、樹脂部材6の表面6a、6bは、該表面において熱溶着層1と接合が可能な程度に、芯材5の両面5a、5bに対して若干の傾きをもって、あるいは微小な凹凸をもって設けられてもよい。 However, from the viewpoint of increasing the degree of freedom of processing such as drilling and nailing, and more stably maintaining the inside of the vacuum heat insulating material 10A in a reduced pressure state, the resin member 6 is preferably formed on the entire surface 6a, 6b. And the heat welding layer 1 are joined. Further, the surfaces 6a and 6b of the resin member 6 are provided with a slight inclination with respect to both surfaces 5a and 5b of the core material 5 or with minute unevenness to such an extent that the surfaces 6a and 6b can be bonded to the heat-welding layer 1 on the surface. May be.
 熱溶着層1と樹脂部材6の表面6a、6bは公知の手法によって接合することができる。具体的には、接着剤による接合や熱溶着による接合が挙げられる。接合に接着剤を使用する場合には、熱溶着層と樹脂部材の表面の間に接着剤層が介在し、接着剤の接着力により両者が接合される。したがって、この場合には、樹脂部材の表面は必ずしも熱溶着層と熱溶着できる材料から構成されなくてもよい。また、熱溶着層と樹脂部材の表面が気密性をもって接合される限り接着剤の種類は特に制限されない。 The heat-welding layer 1 and the surfaces 6a and 6b of the resin member 6 can be joined by a known method. Specifically, joining by an adhesive and joining by heat welding are mentioned. In the case of using an adhesive for bonding, an adhesive layer is interposed between the heat-welded layer and the surface of the resin member, and both are bonded by the adhesive force of the adhesive. Therefore, in this case, the surface of the resin member does not necessarily need to be made of a material that can be thermally welded to the heat-welded layer. Further, the type of the adhesive is not particularly limited as long as the heat-welded layer and the surface of the resin member are bonded with airtightness.
 熱溶着層1と樹脂部材6の表面6a、6bは、作業性の観点から、熱溶着により接合されることが好ましい。熱溶着を行う場合、少なくとも樹脂部材表面6a、6bは熱溶着層1と熱溶着できる材料から構成されていることが好ましい。接合が熱溶着により行われる場合、加熱の方法は特に制限されない。公知の加熱方法、例えば超音波溶着、高周波溶着、熱媒体の接触による熱溶着等が挙げられる。 The surfaces 6a and 6b of the heat welding layer 1 and the resin member 6 are preferably joined by heat welding from the viewpoint of workability. When performing thermal welding, it is preferable that at least the resin member surfaces 6 a and 6 b are made of a material that can be thermally welded to the thermal welding layer 1. When joining is performed by thermal welding, the heating method is not particularly limited. Known heating methods such as ultrasonic welding, high frequency welding, and thermal welding by contact with a heat medium can be mentioned.
 図1A、Bに示す真空断熱材10Aにおいて、具体的には、樹脂部材6は熱溶着層1を構成する材料と熱溶着可能な樹脂で構成され、樹脂部材6は一対の表面6a、6bにおいて外被材3の熱溶着層1と熱溶着されている。なお、樹脂部材6と熱溶着層1との界面は、実際には熱溶着により明確に存在するものではない。図1Bでは、樹脂部材6と熱溶着層1との界面を熱溶着の前における界面として破線で示している。 In the vacuum heat insulating material 10A shown in FIGS. 1A and 1B, specifically, the resin member 6 is made of a material capable of being thermally welded to the material constituting the heat-welding layer 1, and the resin member 6 is formed on a pair of surfaces 6a and 6b. The outer cover material 3 is thermally welded to the heat-welded layer 1. Note that the interface between the resin member 6 and the heat-welded layer 1 does not actually exist clearly due to heat-welding. In FIG. 1B, the interface between the resin member 6 and the heat welding layer 1 is indicated by a broken line as the interface before the heat welding.
 真空断熱材10Aにおける貫通孔4を有する芯材5と、樹脂部材6からなる置換材7の関係を図2A-Cに示す。図2Aは展開図であり、図2Bは平面図であり、図2Cは図2BのA’-A’線における断面図である。真空断熱材10Aにおいて芯材5は1対の主面5a、5bが正方形の板状の形状を有し略中央に開口部が正方形の貫通孔4を有する。樹脂部材6からなる置換材7は芯材5の貫通孔4に嵌合するように配設されている。すなわち、樹脂部材6の外周面6cは、貫通孔4の内面4aと接するように配設される。 The relationship between the core material 5 having the through hole 4 in the vacuum heat insulating material 10A and the replacement material 7 made of the resin member 6 is shown in FIGS. 2A to 2C. 2A is a developed view, FIG. 2B is a plan view, and FIG. 2C is a cross-sectional view taken along the line A′-A ′ of FIG. 2B. In the vacuum heat insulating material 10A, the core member 5 has a pair of main surfaces 5a and 5b having a square plate shape, and a through hole 4 having a square opening at a substantially center. The replacement member 7 made of the resin member 6 is disposed so as to fit into the through hole 4 of the core member 5. That is, the outer peripheral surface 6 c of the resin member 6 is disposed so as to contact the inner surface 4 a of the through hole 4.
 樹脂部材6は、貫通孔により切り欠かれた部分と略同寸、同形である。すなわち、樹脂部材6は、芯材5の主面5a、5bに平行な1対の表面6a、6bを有し、厚みが芯材5の厚みと略同じである。したがって、芯材5の貫通孔4に樹脂部材6が嵌め込まれた部材において主面は全体として平坦な面となる。なお、芯材5の厚みについては、特に制限されないが、通常の真空断熱材における芯材の厚みとして3~40mm程度が挙げられる。 Resin member 6 has approximately the same size and shape as the portion cut out by the through hole. That is, the resin member 6 has a pair of surfaces 6 a and 6 b parallel to the main surfaces 5 a and 5 b of the core material 5, and the thickness is substantially the same as the thickness of the core material 5. Therefore, the main surface of the member in which the resin member 6 is fitted in the through hole 4 of the core member 5 is a flat surface as a whole. The thickness of the core material 5 is not particularly limited, but the thickness of the core material in a normal vacuum heat insulating material is about 3 to 40 mm.
 ここで、真空断熱材10Aにおいて、芯材5が有する貫通孔4の内面4aは、主面5a、5bに対して垂直となるように形成されているが、本発明の実施形態の真空断熱材において、必ずしも垂直である必要はなく、必要に応じてテーパー状、階段状等であってもよい。作業性の観点からは、芯材における貫通孔はその内面が芯材の主面に対して垂直となるように形成されることが好ましい。 Here, in the vacuum heat insulating material 10A, the inner surface 4a of the through hole 4 of the core material 5 is formed so as to be perpendicular to the main surfaces 5a and 5b, but the vacuum heat insulating material of the embodiment of the present invention. However, it is not necessarily vertical, and may be tapered, stepped, or the like as necessary. From the viewpoint of workability, the through hole in the core material is preferably formed so that the inner surface thereof is perpendicular to the main surface of the core material.
 貫通孔4の開口部の形状、すなわち置換材7の表面の形状は、三角形、四角形、多角形、略円形、略楕円形、L型、およびこれらの組み合わせからなる任意形状とすることができる。なお、置換材7の表面の形状は後述のようにして置換材7に対応する部分に施される穴開けや釘打ち等の加工に支障のない形状が好ましい。併せて、置換材7の表面の面積についても穴開けや釘打ち等の加工に問題がない面積に設定する。置換材7の表面の形状や面積は、真空断熱材の用途に応じて適宜調整される。 The shape of the opening of the through-hole 4, that is, the shape of the surface of the replacement material 7 can be an arbitrary shape including a triangle, a quadrangle, a polygon, a substantially circular shape, a substantially elliptical shape, an L shape, and a combination thereof. In addition, the shape of the surface of the replacement material 7 is preferably a shape that does not hinder drilling, nailing, or the like applied to a portion corresponding to the replacement material 7 as described later. At the same time, the area of the surface of the replacement material 7 is set to an area where there is no problem in drilling or nailing. The shape and area of the surface of the replacement material 7 are appropriately adjusted according to the use of the vacuum heat insulating material.
 また、芯材5と樹脂部材6の厚みについても必ずしも同じでなくてもよい。樹脂部材6が有する一対の表面6a、6bにおいて外被材3が有する熱溶着層1との接合が十分に行われる限りは、樹脂部材の厚みは芯材の厚みよりも厚くても、薄くてもよい。樹脂部材6の厚みは、上記熱溶着性の観点に加えて、真空断熱材に求められる平坦性を考慮に入れて適宜選択される。具体的には、樹脂部材6すなわち置換材7の厚みは、芯材5の厚みの0.8~1.2倍が好ましい。なお、樹脂部材6の厚みが芯材5の厚みの1.0超1.2倍であると、芯材5を外被材3の中に減圧密封した後でも樹脂部材6の位置が外被材3の外から確認しやすいため好ましい。 Further, the thicknesses of the core material 5 and the resin member 6 are not necessarily the same. As long as the bonding with the heat welding layer 1 of the jacket material 3 is sufficiently performed on the pair of surfaces 6a and 6b of the resin member 6, the thickness of the resin member is thin even if it is thicker than the thickness of the core material. Also good. The thickness of the resin member 6 is appropriately selected in consideration of the flatness required for the vacuum heat insulating material in addition to the above-described viewpoint of the heat weldability. Specifically, the thickness of the resin member 6, that is, the replacement material 7 is preferably 0.8 to 1.2 times the thickness of the core material 5. When the thickness of the resin member 6 is more than 1.0 and 1.2 times the thickness of the core material 5, the position of the resin member 6 is not changed even after the core material 5 is sealed in the envelope material 3 under reduced pressure. Since it is easy to confirm from the outside of the material 3, it is preferable.
 真空断熱材10Aにおいて、芯材5が有する貫通孔4の数は1個である。本発明の実施形態の真空断熱材において、芯材は必要に応じて貫通孔を複数個有し、該貫通孔の全てに置換材が嵌め込まれた構成であってもよい。置換材は、断熱性が小さい樹脂部材を含む。したがって、真空断熱材としての断熱性を考慮すれば、貫通孔の開口部の合計面積は、芯材の主面の面積(貫通孔開口部を含まない)の20%までとすることが好ましい。貫通孔を複数個有する場合、貫通孔と貫通孔の外周間の間隔は特に制限はないが、貫通孔間での芯材の割れや不要な欠落等を防ぐためには少なくとも5mm以上であることが好ましい。 In the vacuum heat insulating material 10A, the number of the through holes 4 included in the core material 5 is one. In the vacuum heat insulating material according to the embodiment of the present invention, the core material may have a plurality of through holes as necessary, and the replacement material may be fitted into all of the through holes. The replacement material includes a resin member having a small heat insulating property. Therefore, in consideration of the heat insulating property as the vacuum heat insulating material, the total area of the openings of the through holes is preferably up to 20% of the area of the main surface of the core material (not including the through hole openings). When there are a plurality of through-holes, the distance between the through-holes and the outer periphery of the through-hole is not particularly limited, but it is at least 5 mm or more in order to prevent the core material from cracking or unnecessary missing between the through-holes. preferable.
 本発明の真空断熱材において置換材を構成する樹脂部材の材質は気密性を有する樹脂であれば特に制限されない。また、真空断熱材の断熱性を高く維持する観点からは、置換材を構成する樹脂部材は気密性のある独立気泡性樹脂であることが好ましい。なお、気密性があるとは、具体的には、JIS K 6400-7によって規定される通気性の評価手法により、通気量が0cm/cmsecであることをいう。置換材が気密性のある独立気泡性樹脂であると、熱伝導率の上昇を小さく抑えることができる。また軽量かつ強度の維持もされる。 If the material of the resin member which comprises a substitution material in the vacuum heat insulating material of this invention is resin which has airtightness, it will not restrict | limit in particular. Further, from the viewpoint of maintaining high heat insulating properties of the vacuum heat insulating material, the resin member constituting the replacement material is preferably an air-tight closed cell resin. Note that airtightness specifically means that the air flow rate is 0 cm 3 / cm 2 sec by the air permeability evaluation method defined by JIS K 6400-7. When the replacement material is an airtight closed cell resin, an increase in thermal conductivity can be suppressed to a small level. It is also lightweight and strong.
 樹脂部材は例えば表面に平行な方向、または直交する方向に複数の樹脂層が積層された構成であってもよく、単一部材で構成されていてもよい。複数の樹脂層からなる場合、各樹脂層は同一の樹脂からなってもよく、異なる樹脂からなってもよい。樹脂部材が独立気泡性樹脂からなる場合には、表面に直行する方向に複数の樹脂層が積層された構成である場合、すべての樹脂層が独立気泡性樹脂からなってもよく、一部の樹脂層のみが独立気泡性樹脂からなってもよい。例えば、中心部の層や所定の層をくり抜いて穴開けを行う設計がされている場合、それらの層は独立気泡性樹脂で形成されなくてもよい。 The resin member may have a configuration in which a plurality of resin layers are laminated in a direction parallel to the surface or in a direction orthogonal to the surface, or may be configured as a single member. In the case of a plurality of resin layers, each resin layer may be made of the same resin or different resins. When the resin member is made of closed cell resin, if the resin member has a structure in which a plurality of resin layers are laminated in a direction perpendicular to the surface, all the resin layers may be made of closed cell resin. Only the resin layer may be made of closed cell resin. For example, when a hole is formed by punching a central layer or a predetermined layer, these layers may not be formed of closed cell resin.
 熱溶着層と樹脂部材を熱溶着で接合する場合、樹脂部材が単一の樹脂からなる場合であっても複数の樹脂からなる場合であっても、少なくとも樹脂部材は上記一対の表面近傍は、外被材が有する熱溶着層の構成材料と熱溶着可能な樹脂で構成される。生産性の観点から樹脂部材は全体が、外被材が有する熱溶着層の構成材料と熱溶着可能な樹脂で構成されることが好ましい。なお、樹脂部材が表面に平行な方向に複数の層が積層された構成の場合は、層間が気密性を保持するように密着していることが必須である。 When joining the heat-welded layer and the resin member by heat-welding, even if the resin member is made of a single resin or a case of being made of a plurality of resins, at least the resin member is near the pair of surfaces, It is comprised with the constituent material of the heat welding layer which a jacket material has, and the resin which can be heat-welded. From the viewpoint of productivity, the entire resin member is preferably composed of a heat-weldable constituent material of the outer cover material and a resin that can be heat-welded. In the case where the resin member has a structure in which a plurality of layers are laminated in a direction parallel to the surface, it is essential that the layers are in close contact so as to maintain airtightness.
 熱溶着層と樹脂部材を熱溶着で接合する場合、具体的な樹脂としては、外被材が有する熱溶着層を構成する材料による。外被材が有する熱溶着層を構成する材料としては、低密度ポリエチレン、鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリアクリロニトリル、無延伸ポリエチレンテレフタレート、エチレン-ビニルアルコール共重合体等が挙げられる。したがって、熱溶着層と樹脂部材を熱溶着で接合する場合、樹脂部材を構成する樹脂は、これらの樹脂と熱溶着可能な樹脂材料が好ましく、具体的にはこれらの樹脂と同様の樹脂を用いることができる。好ましくは、外被材が有する熱溶着層を構成する材料と、樹脂部材を構成する樹脂は同じ樹脂である。 When joining the heat-welding layer and the resin member by heat-welding, the specific resin depends on the material constituting the heat-welding layer of the jacket material. Examples of the material constituting the heat-welded layer of the jacket material include low density polyethylene, chain low density polyethylene, high density polyethylene, polypropylene, polyacrylonitrile, unstretched polyethylene terephthalate, and ethylene-vinyl alcohol copolymer. . Therefore, when the heat-welded layer and the resin member are joined by heat-welding, the resin constituting the resin member is preferably a resin material that can be heat-welded with these resins. Specifically, the same resin as these resins is used. be able to. Preferably, the material constituting the heat-welded layer of the outer cover material and the resin constituting the resin member are the same resin.
 また、例えば、樹脂部材に後述のようにして穴開け加工を行う場合、形成された穴の壁面からガスや水分が侵入し芯材にまで拡散するのを低く抑えることが求められる。このような観点から樹脂部材を構成する樹脂は、上記のなかでもガス拡散性の低い高密度の樹脂が好ましく、高密度ポリエチレンおよびポリプロピレンが特に好ましい。
 また、樹脂部材はアウトガスを減らすために予め乾燥してあることが好ましい。
Further, for example, when drilling a resin member as described later, it is required to keep gas and moisture from entering through the wall surface of the formed hole and diffusing into the core material. From such a viewpoint, the resin constituting the resin member is preferably a high-density resin with low gas diffusibility, and particularly preferably high-density polyethylene and polypropylene.
The resin member is preferably dried in advance to reduce outgas.
 樹脂部材を構成する樹脂が独立気泡性樹脂の場合、その気孔率は、樹脂部材による熱伝導率の上昇を抑制しつつ、軽量かつ強度維持が可能な点から、10~98%であるのが好ましく、20~90%がより好ましく、30~80%が特に好ましい。気孔率が高すぎると樹脂部材の強度が低いために真空封止後に大気圧によって破壊されてしまうおそれがある。気孔率が低すぎると樹脂部材の断熱性が芯材と比較して小さいために熱橋を生じ、真空断熱材の断熱性を低下させるおそれがある。独立気泡性樹脂の気孔率は、独立気泡性樹脂の全体積を100%とした際の該樹脂中に占める気泡の体積の割合として求められる。 When the resin constituting the resin member is a closed-cell resin, the porosity is 10 to 98% from the viewpoint that light weight and strength can be maintained while suppressing an increase in thermal conductivity by the resin member. Preferably, 20 to 90% is more preferable, and 30 to 80% is particularly preferable. If the porosity is too high, the strength of the resin member is low, so that it may be destroyed by atmospheric pressure after vacuum sealing. If the porosity is too low, the heat insulating property of the resin member is smaller than that of the core material, so that a thermal bridge is formed and the heat insulating property of the vacuum heat insulating material may be lowered. The porosity of the closed cell resin is determined as a ratio of the volume of bubbles in the resin when the total volume of the closed cell resin is 100%.
 独立気泡性樹脂としては、気密性を確保でき、好ましくは上記気泡率を確保できる独立気泡性樹脂であれば、特に制限されない。例えば、連通孔をもたない発泡樹脂や中空粒子をフィラーとするコンパウンド樹脂が挙げられる。作業性および中空気泡内から真空断熱材内への気体の流入を抑制する観点から、中空粒子をフィラーとするコンパウンド樹脂が好ましい。 The closed cell resin is not particularly limited as long as it is a closed cell resin capable of ensuring airtightness, and preferably ensuring the above-mentioned cell ratio. For example, a foamed resin having no communication hole or a compound resin using a hollow particle as a filler can be used. From the viewpoint of workability and suppressing the inflow of gas from the inside of the hollow bubbles into the vacuum heat insulating material, a compound resin having hollow particles as fillers is preferable.
 コンパウンド樹脂の場合、気孔率は、フィラーとして用いる中空粒子自体の気孔率とコンパウンド樹脂中の中空粒子の含有割合による。独立気泡性樹脂の気孔率を上記範囲にするために、用いる中空粒子の気孔率は、60~98%程度が好ましく、粒子径はD50で5~300μm程度が好ましい。中空粒子のシェルを構成する材料は、樹脂部材による熱伝導率の上昇を抑制する観点から熱伝導性が低い材料、例えば、樹脂が好ましい。一方、気密性の観点からは無機材料が好ましい。また、熱伝導性を低くできる観点から、中空粒子の内部は減圧状態であるものが好ましい。 In the case of a compound resin, the porosity depends on the porosity of the hollow particles themselves used as the filler and the content ratio of the hollow particles in the compound resin. In order to make the porosity of the closed cell resin within the above range, the porosity of the hollow particles used is preferably about 60 to 98%, and the particle diameter is preferably about 50 to 300 μm in D50. The material constituting the shell of the hollow particles is preferably a material having low thermal conductivity, for example, a resin, from the viewpoint of suppressing an increase in thermal conductivity due to the resin member. On the other hand, an inorganic material is preferable from the viewpoint of airtightness. Further, from the viewpoint of reducing the thermal conductivity, it is preferable that the inside of the hollow particles is in a reduced pressure state.
 コンパウンド樹脂のフィラーとして用いる中空粒子として、具体的には、ガラスバルーン、シリカバルーン、シラスバルーン、セラミックバルーン、樹脂バルーン等が挙げられる。これらのうちでも、上記熱伝導率の上昇を抑制する観点からは樹脂バルーンが好ましく、気密性の観点からはシェルの気密性の高いガラスバルーン、シリカバルーンが好ましい。中空粒子の内部を減圧状態とできる点ではシラスバルーン、セラミックバルーン等が好ましい。 Specific examples of the hollow particles used as the filler of the compound resin include glass balloons, silica balloons, shirasu balloons, ceramic balloons, and resin balloons. Among these, a resin balloon is preferable from the viewpoint of suppressing the increase in the thermal conductivity, and a glass balloon and a silica balloon having high shell airtightness are preferable from the viewpoint of airtightness. Shirasu balloons, ceramic balloons and the like are preferable in that the inside of the hollow particles can be in a reduced pressure state.
 独立気泡性樹脂を構成する樹脂、例えば、連通孔をもたない発泡樹脂やコンパウンド樹脂の樹脂としては、特に制限されないが、外被材が有する熱溶着層との接合性が良好な樹脂が好ましい。さらには、熱溶着層と樹脂部材を熱溶着で接合する場合、上記のとおり、樹脂部材を構成する樹脂はこれらの樹脂と熱溶着可能な樹脂材料が好ましく、具体的にはこれらの樹脂と同様の樹脂を用いることができる。 The resin constituting the closed cell resin, for example, a foam resin or a compound resin having no communication hole is not particularly limited, but a resin having a good bondability with the heat-welded layer of the jacket material is preferable. . Furthermore, when the heat-welded layer and the resin member are joined by heat-welding, as described above, the resin constituting the resin member is preferably a resin material that can be heat-welded with these resins, and specifically, the same as these resins. These resins can be used.
 真空断熱材10Aにおいて、外被材3は、例えば、片面に熱溶着層1を有する同形、同寸の2枚の気密性のフィルム2を、各フィルム2が有する熱溶着層1を互いに対向させて重ね合わせた構成とすることができる。 In the vacuum heat insulating material 10 </ b> A, the outer cover material 3 is formed, for example, by having two identical and identical airtight films 2 having the heat welding layer 1 on one side, and the heat welding layers 1 of the respective films 2 facing each other. And can be superposed.
 外被材3の大きさおよび形状は、貫通孔4に樹脂部材6が嵌め込まれた芯材5を上記2枚の気密性のフィルム2の間に収納し、かつ芯材5の外周よりも外側にシール領域Yが設けられる大きさおよび形状であれば特に限定されない。芯材5の大きさおよび形状に合わせて適宜選択可能である。また、図1A、BにおいてYwで示すシール領域Yの幅は、外被材3内部を減圧状態に密封可能な幅であれば特に制限されない。シール領域Yの幅Ywは、具体的には5~20mm程度が好ましい。 The size and shape of the jacket material 3 is such that the core material 5 in which the resin member 6 is fitted in the through hole 4 is accommodated between the two airtight films 2 and is outside the outer periphery of the core material 5. If it is the magnitude | size and shape in which the seal | sticker area | region Y is provided in, it will not specifically limit. It can be appropriately selected according to the size and shape of the core material 5. Moreover, the width | variety of the seal | sticker area | region Y shown by Yw in FIG. 1A and B will not be restrict | limited especially if it is the width | variety which can seal the inside of the jacket material 3 in a pressure-reduced state. Specifically, the width Yw of the seal region Y is preferably about 5 to 20 mm.
 真空断熱材10Aにおいて、外被材3のシール領域Yの内側における外被材3内部の真空度は、優れた断熱性能が得られ、また真空断熱材の寿命が長くなる点から、1×10Pa以下が好ましく、1×10Pa以下がより好ましい。 In the vacuum heat insulating material 10A, the degree of vacuum inside the cover material 3 inside the seal region Y of the cover material 3 is 1 × 10 from the viewpoint that excellent heat insulating performance can be obtained and the life of the vacuum heat insulating material becomes long. 3 Pa or less is preferable, and 1 × 10 2 Pa or less is more preferable.
 外被材3の材料としては、真空断熱材に使用される公知のものを制限なく使用できる。外被材3の材料として用いる熱溶着層1を有する気密性のフィルム2としては、ガスバリア層と表面保護層を有するラミネートフィルムが挙げられる。前記ラミネートフィルムとしては、例えば、ガスバリア層としての金属箔または金属蒸着層を表面保護層の片面上に有するラミネートフィルムが適用できる。この場合、外被材は、最も内側に熱溶着層を有し、中間層として金属箔または金属蒸着層を有し、最外層として表面保護層を有する構成となる。また、ラミネートフィルムは、金属箔を有するラミネートフィルムと金属蒸着層を有するラミネートフィルムの2種類のラミネートフィルムを組み合わせて適用してもよい。 As the material of the jacket material 3, a known material used for a vacuum heat insulating material can be used without limitation. Examples of the airtight film 2 having the heat-welding layer 1 used as the material of the covering material 3 include a laminate film having a gas barrier layer and a surface protective layer. As the laminate film, for example, a laminate film having a metal foil or a metal vapor deposition layer as a gas barrier layer on one surface of the surface protective layer can be applied. In this case, the outer cover material has a heat welding layer on the innermost side, a metal foil or a metal vapor deposition layer as an intermediate layer, and a surface protective layer as an outermost layer. In addition, the laminate film may be applied by combining two types of laminate films, ie, a laminate film having a metal foil and a laminate film having a metal vapor-deposited layer.
 熱溶着層としては、上に説明した熱溶着層を構成する材料からなるフィルムやこれらのフィルムを組み合わせた複合体からなってもよい。表面保護層としては、ナイロンフィルム、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルムの延伸加工品など、公知の材料が利用できる。 The heat-welded layer may be composed of a film made of the material constituting the heat-welded layer described above or a composite obtained by combining these films. As the surface protective layer, known materials such as nylon film, polyethylene terephthalate film, and stretched polypropylene film can be used.
 芯材としては、真空断熱材に用いられる公知の芯材を使用できる。具体的には、気相比率90%前後の多孔体を材料として、これを板状に加工した芯材が挙げられる。工業的に利用できる多孔体として、通気性を有する発泡体、粉体、および繊維体等がある。これらは、その使用用途や必要特性に応じて公知の材料を使用することができる。 As the core material, a known core material used for a vacuum heat insulating material can be used. Specifically, a core material obtained by processing a porous body having a gas phase ratio of about 90% into a plate shape is used. Examples of the porous body that can be industrially used include foams, powders, and fiber bodies having air permeability. These can use a well-known material according to the use use and required characteristic.
 このうち、発泡体としては、ウレタンフォーム、スチレンフォーム、フェノールフォーム等の連続気泡体が利用できる。真空封入時の真空引きが容易になる点から、芯材として利用する連続気泡体の通気量は1cm/cmsec以上が好ましい。また、粉体としては、無機系、有機系、およびこれらの混合物を利用できるが、工業的には、乾式シリカ、湿式シリカ、パーライト等を主成分とするものが使用できる。 Among these, as the foam, open-cell bodies such as urethane foam, styrene foam, and phenol foam can be used. In view of facilitating evacuation at the time of vacuum encapsulation, the air flow rate of the open cell body used as the core material is preferably 1 cm 3 / cm 2 sec or more. In addition, inorganic, organic, and mixtures thereof can be used as the powder, but industrially, powders mainly composed of dry silica, wet silica, pearlite, and the like can be used.
 また、繊維体としては、無機系、有機系、およびこれらの混合物が利用できるが、コストと断熱性能の観点から無機繊維が有利である。無機繊維の一例としては、グラスウール、グラスファイバー、アルミナ繊維、シリカアルミナ繊維、シリカ繊維、ロックウール等、公知の材料を使用することができる。 In addition, inorganic, organic, and mixtures thereof can be used as the fibrous body, but inorganic fibers are advantageous from the viewpoint of cost and heat insulation performance. As an example of the inorganic fiber, a known material such as glass wool, glass fiber, alumina fiber, silica alumina fiber, silica fiber, rock wool, or the like can be used.
 さらに、これらの発泡体、粉体、および繊維体等の混合物や複合体も芯材に適用することができる。このような芯材として、具体的には、多孔質粉体と繊維体の複合体、例えば、エアロゲルブランケットが挙げられる。 Furthermore, mixtures and composites of these foams, powders, and fiber bodies can also be applied to the core material. Specific examples of such a core material include a composite of a porous powder and a fibrous body, for example, an airgel blanket.
 これらのうち、粉体を含む断熱材材料が板状に成形された芯材について以下に説明する。粉体を含む芯材の断熱材材料としては、高強度な芯材を得やすい点から、粉体に加えて繊維およびバインダのいずれか一方もしくは両方が含まれていることが好ましい。 Among these, the core material in which the heat insulating material containing powder is formed into a plate shape will be described below. As the heat insulating material of the core material containing powder, it is preferable that either or both of fibers and binders are contained in addition to the powder from the viewpoint of easily obtaining a high-strength core material.
≪粉体≫
 以下に粉体を含む芯材の場合を例にとって説明する。
 粉体としては、芯材に通常用いられる公知の粉体を使用できる。具体的には、ヒュームドシリカ、多孔質シリカ、輻射抑制材等が挙げられる。粉体としては、充分な強度を有する芯材が得られやすい点から、ヒュームドシリカを含むことが好ましい。
 粉体は、1種のみを使用してもよく、2種以上を併用してもよい。
<< Powder >>
The case of a core material containing powder will be described below as an example.
As powder, the well-known powder normally used for a core material can be used. Specific examples include fumed silica, porous silica, and a radiation suppressing material. The powder preferably contains fumed silica from the viewpoint of easily obtaining a core material having sufficient strength.
Only one type of powder may be used, or two or more types may be used in combination.
 ヒュームドシリカは極めて微細な粉末であるため、粒の大きさを表す指標としては通常比表面積が用いられる。 Since fumed silica is an extremely fine powder, a specific surface area is usually used as an index representing the particle size.
 ヒュームドシリカの比表面積は、50~400m/gが好ましく、100~350m/gがより好ましく、200~300m/gが特に好ましい。ヒュームドシリカの比表面積が前記範囲の下限値以上であれば、優れた断熱性能が得られやすい。ヒュームドシリカの比表面積が前記範囲の上限値以下であれば、粒子の表面にバインダを付けやすい。
 比表面積は、窒素吸着法(BET法)により測定される。
The specific surface area of the fumed silica is preferably 50 ~ 400m 2 / g, more preferably 100 ~ 350m 2 / g, particularly preferably 200 ~ 300m 2 / g. If the specific surface area of fumed silica is not less than the lower limit of the above range, excellent heat insulating performance can be easily obtained. If the specific surface area of fumed silica is not more than the upper limit of the above range, it is easy to attach a binder to the surface of the particles.
The specific surface area is measured by a nitrogen adsorption method (BET method).
 ヒュームドシリカの具体例としては、例えば、アエロジル200(比表面積200m/g、日本アエロジル株式会社製)、アエロジル300(比表面積300m/g、日本アエロジル株式会社製)、CAB-O-SIL M-5(比表面積200m/g、キャボットジャパン株式会社製)、CAB-O-SIL H-300(比表面積300m/g、キャボットジャパン株式会社製)、レオロシールQS30(比表面積300m/g、株式会社トクヤマ製)等が挙げられる。
 ヒュームドシリカは、1種のみを使用してもよく、2種以上を併用してもよい。
Specific examples of fumed silica include Aerosil 200 (specific surface area 200 m 2 / g, manufactured by Nippon Aerosil Co., Ltd.), Aerosil 300 (specific surface area 300 m 2 / g, manufactured by Nippon Aerosil Co., Ltd.), CAB-O-SIL. M-5 (specific surface area 200 m 2 / g, manufactured by Cabot Japan KK), CAB-O-SIL H-300 (specific surface area 300 m 2 / g, manufactured by Cabot Japan KK), Leoroseal QS30 (specific surface area 300 m 2 / g) , Manufactured by Tokuyama Corporation).
Fumed silica may use only 1 type and may use 2 or more types together.
 多孔質シリカを併用する場合、多孔質シリカの比表面積は、100~800m/gが好ましく、200~750m/gがより好ましく、300~700m/gが特に好ましい。多孔質シリカの比表面積が前記範囲の下限値以上であれば、優れた断熱性能が得られやすい。多孔質シリカの比表面積が前記範囲の上限値以下であれば、バインダを用いた場合に多孔質シリカに吸収されるバインダ量を少なくできる。そのため、添加するバインダ量が少なくてもより低い圧力で芯材を成形できる。その結果、芯材の密度を低くでき、優れた断熱性能が得られやすくなる。 When used in combination porous silica, the specific surface area of porous silica is preferably 100 ~ 800m 2 / g, more preferably 200 ~ 750m 2 / g, particularly preferably 300 ~ 700m 2 / g. If the specific surface area of the porous silica is not less than the lower limit of the above range, excellent heat insulating performance can be easily obtained. When the specific surface area of the porous silica is not more than the upper limit of the above range, the amount of the binder absorbed by the porous silica can be reduced when the binder is used. Therefore, the core material can be molded with a lower pressure even if the amount of the binder to be added is small. As a result, the density of the core material can be lowered, and excellent heat insulation performance can be easily obtained.
 多孔質シリカの気孔率は、60~90%が好ましく、65~85%がより好ましく、70~80%が特に好ましい。多孔質シリカの気孔率が前記範囲の下限値以上であれば、固体の熱伝導を少なくできるため、優れた断熱性能が得られやすい。多孔質シリカの気孔率が前記範囲の上限値以下であれば、成形時に多孔質シリカ粒子がつぶれにくく、多孔性が維持されるために優れた断熱性能が得られやすい。
 多孔質シリカの気孔率は、窒素吸着法(BJH法)により測定される。
The porosity of the porous silica is preferably 60 to 90%, more preferably 65 to 85%, and particularly preferably 70 to 80%. If the porosity of the porous silica is equal to or higher than the lower limit of the above range, the heat conduction of the solid can be reduced, so that excellent heat insulation performance is easily obtained. When the porosity of the porous silica is not more than the upper limit of the above range, the porous silica particles are hardly crushed at the time of molding, and excellent heat insulating performance is easily obtained because the porosity is maintained.
The porosity of the porous silica is measured by a nitrogen adsorption method (BJH method).
 多孔質シリカの平均粒子径は、コールターカウンター法により、体積基準で測定された場合において、1~300μmが好ましく、2~150μmがより好ましく、3~100μmが特に好ましい。多孔質シリカの平均粒子径が前記範囲の下限値以上であれば、高い気孔率を有する多孔質シリカが得られやすく、優れた断熱性能が得られやすい。多孔質シリカの平均粒子径が前記範囲の上限値以下であれば、芯材の密度が高くなりすぎず、優れた断熱性能が得られやすい。 The average particle diameter of the porous silica is preferably 1 to 300 μm, more preferably 2 to 150 μm, and particularly preferably 3 to 100 μm, when measured on a volume basis by the Coulter counter method. If the average particle diameter of the porous silica is not less than the lower limit of the above range, porous silica having a high porosity can be easily obtained, and excellent heat insulation performance can be easily obtained. If the average particle diameter of the porous silica is not more than the upper limit of the above range, the density of the core material does not become too high, and excellent heat insulation performance is easily obtained.
 多孔質シリカの具体例としては、例えば、M.S.GELやサンスフェア(いずれもAGCエスアイテック株式会社製)等が挙げられる。 Specific examples of porous silica include M.I. S. GEL and sunsphere (both manufactured by AGC S-Tech Co., Ltd.) are included.
 輻射抑制材としては、例えば、金属粒子(アルミニウム粒子、銀粒子、金粒子等)、無機粒子(グラファイト、カーボンブラック、炭化ケイ素、酸化チタン、酸化スズ、酸化鉄、チタン酸カリウム等)等が挙げられる。 Examples of the radiation suppressing material include metal particles (aluminum particles, silver particles, gold particles, etc.), inorganic particles (graphite, carbon black, silicon carbide, titanium oxide, tin oxide, iron oxide, potassium titanate, etc.). It is done.
≪バインダ≫
 芯材を低密度にしても充分な強度が得られやすい点から、芯材の形状を維持するために断熱材材料はバインダを含むことができる。例えば、粉体としてヒュームドシリカを使用し、予め該ヒュームドシリカの表面にバインダを付与してバインダ付きヒュームドシリカとすることができる。ヒュームドシリカの表面に付与されたバインダによって、成形時の圧力が低くても、バインダ付きヒュームドシリカ同士、またはバインダ付きヒュームドシリカと他の材料(多孔質シリカ、繊維等)が互いに接着される。
 多孔質シリカにバインダを付与しても、バインダが多孔質シリカに吸収されてしまうためにバインダによる効果は得られにくい。
≪Binder≫
The heat insulating material can contain a binder in order to maintain the shape of the core material from the viewpoint that sufficient strength can be easily obtained even if the core material has a low density. For example, fumed silica can be used as powder, and a fumed silica with a binder can be obtained by previously applying a binder to the surface of the fumed silica. Binder applied to the surface of fumed silica allows fumed silica with binder or fumed silica with binder and other materials (porous silica, fibers, etc.) to adhere to each other even when the pressure during molding is low. The
Even if the binder is applied to the porous silica, the binder is absorbed by the porous silica, so that it is difficult to obtain the effect of the binder.
 バインダとしては、有機バインダであってもよく、無機バインダであってもよい。なかでも、バインダとしては、熱伝導性が低く、優れた断熱性能が得られやすい点から、無機バインダが好ましい。
 無機バインダとしては、例えば、ケイ酸ナトリウム、リン酸アルミニウム、硫酸マグネシウム、塩化マグネシウム等が挙げられる。なかでも、優れた断熱性能が得られやすい点から、ケイ酸ナトリウムが特に好ましい。
The binder may be an organic binder or an inorganic binder. Especially, as a binder, an inorganic binder is preferable from the point that heat conductivity is low and the outstanding heat insulation performance is easy to be obtained.
Examples of the inorganic binder include sodium silicate, aluminum phosphate, magnesium sulfate, magnesium chloride and the like. Among these, sodium silicate is particularly preferable because it is easy to obtain excellent heat insulation performance.
 バインダは溶媒に溶解してバインダ液として用いることが好ましく、水溶液がより好ましい。 The binder is preferably dissolved in a solvent and used as a binder liquid, and more preferably an aqueous solution.
≪繊維≫
 断熱材材料に繊維が含まれると、高強度な芯材が得られやすい。
 繊維としては、真空断熱材に通常使用される繊維が使用でき、例えば、樹脂繊維、無機繊維が挙げられる。なかでも、真空下でのアウトガスが少なく、真空度の低下による断熱性能の低下を抑制しやすい点、および耐熱性に優れる点から、無機繊維が好ましい。
≪Fiber≫
When fibers are included in the heat insulating material, a high-strength core material is easily obtained.
As a fiber, the fiber normally used for a vacuum heat insulating material can be used, For example, a resin fiber and an inorganic fiber are mentioned. Of these, inorganic fibers are preferred because they have less outgas in a vacuum, can easily suppress a decrease in heat insulation performance due to a decrease in the degree of vacuum, and are excellent in heat resistance.
 無機繊維としては、例えば、アルミナ繊維、ムライト繊維、シリカ繊維、グラスウール、グラスファイバー、ロックウール、スラグウール、炭化ケイ素繊維、カーボン繊維、シリカアルミナ繊維、シリカアルミナマグネシア繊維、シリカアルミナジルコニア繊維、シリカマグネシアカルシア繊維等が挙げられる。 Examples of the inorganic fiber include alumina fiber, mullite fiber, silica fiber, glass wool, glass fiber, rock wool, slag wool, silicon carbide fiber, carbon fiber, silica alumina fiber, silica alumina magnesia fiber, silica alumina zirconia fiber, silica magnesia. Examples include calcia fiber.
 使用する繊維の繊維長D30は、100μm以上が好ましく、200μm以上がより好ましい。繊維長D30が前記下限値以上であれば、芯材に割れが生じることを抑制しやすい。
 使用する繊維の繊維長D90は、20mm以下が好ましく、10mm以下がより好ましい。繊維長D90が前記上限値以下であれば、繊維同士が過度に絡まりにくいために粉体と均一に混合しやすく、繊維による効果が得られやすい。
 繊維の太さ(直径)は、繊維による固体伝熱の増大を抑制できる点から、15μm以下が好ましい。また、繊維の太さ(直径)は、芯材に割れが生じることを抑制しやすい点から、1μm以上が好ましい。
The fiber length D30 of the fibers used is preferably 100 μm or more, and more preferably 200 μm or more. If fiber length D30 is more than the said lower limit, it will be easy to suppress that a core material will generate a crack.
The fiber length D90 of the fiber used is preferably 20 mm or less, and more preferably 10 mm or less. If the fiber length D90 is equal to or less than the above upper limit value, the fibers are not easily entangled with each other, so that they are easily mixed with the powder and the effect of the fibers is easily obtained.
The thickness (diameter) of the fiber is preferably 15 μm or less from the viewpoint of suppressing an increase in solid heat transfer due to the fiber. Moreover, the thickness (diameter) of the fiber is preferably 1 μm or more from the viewpoint of easily preventing the core material from cracking.
 なお、本明細書において「繊維長D30」とは、個数基準で求めた繊維長分布の全個数を100%とした累積個数分布曲線において30%となる点の繊維長を意味する。また、「繊維長D90」とは、個数基準で求めた繊維長分布の全個数を100%とした累積個数分布曲線において90%となる点の繊維長を意味する。繊維長分布は、光学顕微鏡で観察した写真において無作為に50本以上の繊維の長さを測定して得られる頻度分布および累積個数分布曲線で求められる。 In this specification, “fiber length D30” means the fiber length at 30% in the cumulative number distribution curve where the total number of fiber length distributions obtained on the basis of the number is 100%. “Fiber length D90” means a fiber length at a point of 90% in a cumulative number distribution curve where the total number of fiber length distributions obtained on the basis of the number is 100%. The fiber length distribution is obtained from a frequency distribution and a cumulative number distribution curve obtained by randomly measuring the length of 50 or more fibers in a photograph observed with an optical microscope.
≪粉体、バインダ、繊維の割合≫
 粉体(100質量%)中のヒュームドシリカの割合は、50~100質量%が好ましく、70~100質量%がより好ましく、80~100質量%が特に好ましい。ヒュームドシリカの割合が前記範囲の下限値以上であれば、強度の高い芯材が得られやすい。
≪Powder, binder, fiber ratio≫
The proportion of fumed silica in the powder (100% by mass) is preferably 50 to 100% by mass, more preferably 70 to 100% by mass, and particularly preferably 80 to 100% by mass. If the ratio of fumed silica is not less than the lower limit of the above range, a core material with high strength can be easily obtained.
 粉体(100質量%)中の多孔質シリカの割合は、0~50質量%が好ましく、0~30質量%がより好ましく、0~20質量%が特に好ましい。多孔質シリカの割合が多いほど、断熱性能に優れた真空断熱材が得られやすい。多孔質シリカの割合が前記範囲の上限値以下であれば、強度の高い芯材が得られやすい。 The proportion of porous silica in the powder (100% by mass) is preferably 0 to 50% by mass, more preferably 0 to 30% by mass, and particularly preferably 0 to 20% by mass. The larger the proportion of porous silica, the easier it is to obtain a vacuum heat insulating material with excellent heat insulating performance. If the ratio of the porous silica is not more than the upper limit of the above range, a core material with high strength can be easily obtained.
 粉体が予め表面にバインダを付与したバインダ付きヒュームドシリカと多孔質シリカを含む場合、バインダ付与前のヒュームドシリカの質量Mと多孔質シリカの質量Mとの比M/Mは、50/50以上が好ましく、70/30以上がより好ましく、80/20以上が特に好ましい。前記比M/Mが前記下限値以上であれば、より低密度で優れた断熱性能を有し、かつ充分な強度を有する芯材が得られやすい。 If the powder contains a pre-binder with fumed silica was applied a binder on the surface and the porous silica, the ratio M A / M B of the mass M B of the mass M A and the porous silica fumed silica before the binder imparting Is preferably 50/50 or more, more preferably 70/30 or more, and particularly preferably 80/20 or more. If the ratio M A / M B is more than the lower limit, it has excellent thermal insulation performance at lower density, and tends core material is obtained having a sufficient strength.
 粉体が輻射抑制材を含む場合、粉体(100質量%)中の輻射抑制材の割合は、3~30質量%が好ましく、5~25質量%がより好ましく、10~20質量%が特に好ましい。輻射抑制材の割合が前記範囲の下限値以上であれば、輻射抑制材の効果が得られやすい。輻射抑制材の割合が前記範囲の上限値以下であれば、輻射抑制材による固体伝熱の増大を抑制できるため、優れた断熱性能が得られやすい。 When the powder contains a radiation suppressing material, the proportion of the radiation suppressing material in the powder (100% by mass) is preferably 3 to 30% by mass, more preferably 5 to 25% by mass, and particularly 10 to 20% by mass. preferable. If the ratio of the radiation suppressing material is equal to or higher than the lower limit of the above range, the effect of the radiation suppressing material is easily obtained. If the ratio of a radiation suppression material is below the upper limit of the said range, since the increase in the solid heat transfer by a radiation suppression material can be suppressed, the outstanding heat insulation performance is easy to be obtained.
 バインダの割合は、予め表面にバインダを付与したバインダ付きヒュームドシリカを使用する場合、バインダ付与前のヒュームドシリカ100質量部に対して、0.1~15質量部が好ましく、0.5~10質量部がより好ましく、1~4質量部が特に好ましい。前記バインダの割合が前記範囲の下限値以上であれば、より低密度で充分な強度を有する芯材が得られやすく、また優れた断熱性能が得られやすい。前記バインダの割合が前記範囲の上限値以下であれば、バインダによる固体伝熱の増大を抑制できるため、断熱性能の低下を抑制しやすい。 When using a fumed silica with a binder having a binder provided on the surface in advance, the binder ratio is preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the fumed silica before applying the binder, 10 parts by mass is more preferable, and 1 to 4 parts by mass is particularly preferable. When the ratio of the binder is equal to or higher than the lower limit of the above range, a core material having a lower density and sufficient strength can be easily obtained, and excellent heat insulation performance can be easily obtained. If the ratio of the said binder is below the upper limit of the said range, since the increase in the solid heat transfer by a binder can be suppressed, it is easy to suppress the fall of heat insulation performance.
 なお、芯材の形状維持性が確保できれば、より良い断熱性能を得るために、断熱材材料におけるバインダの含有割合は少ないことが好ましい。芯材の形状維持性が確保できればヒュームドシリカ表面へのバインダの付与は行わなくてもよい。 In addition, if the shape maintenance property of the core material can be secured, it is preferable that the binder content in the heat insulating material is small in order to obtain better heat insulating performance. As long as the shape maintaining property of the core material can be ensured, the binder need not be applied to the fumed silica surface.
 また、ヒュームドシリカ、バインダおよびそれ以外の成分(多孔質シリカ、繊維等)を同時に混合する場合等、予め表面にバインダを付与したバインダ付きヒュームドシリカを使用しない場合のバインダの割合は、粉体100質量部に対して、0.1~15質量部が好ましく、0.5~10質量部がより好ましく、1~4質量部が特に好ましい。バインダの割合が前記範囲の下限値以上であれば、より低密度で充分な強度を有する芯材が得られやすく、また優れた断熱性能が得られやすい。バインダの割合が前記範囲の上限値以下であれば、バインダによる固体伝熱の増大を抑制できるため、断熱性能の低下を抑制しやすい。 In addition, when fumed silica with a binder that has been previously provided with a binder is not used, such as when fumed silica, a binder and other components (porous silica, fibers, etc.) are mixed at the same time, The amount is preferably 0.1 to 15 parts by mass, more preferably 0.5 to 10 parts by mass, and particularly preferably 1 to 4 parts by mass with respect to 100 parts by mass of the body. If the binder ratio is at least the lower limit of the above range, a core material having a lower density and sufficient strength can be easily obtained, and excellent heat insulation performance can be easily obtained. If the ratio of a binder is below the upper limit of the said range, since the increase in the solid heat transfer by a binder can be suppressed, it is easy to suppress the fall of heat insulation performance.
 芯材として粉体を用いる場合の、粉体の好ましい組成は質量比で、ヒュームドシリカ:多孔質シリカ:輻射抑制材が、70~90:0~20:10~20が好ましい。 When the powder is used as the core material, the preferred composition of the powder is a mass ratio, and fumed silica: porous silica: radiation suppression material is preferably 70 to 90: 0 to 20:10 to 20.
 繊維の割合は、粉体100質量部に対して、1~30質量部が好ましく、2~20質量部がより好ましく、4~10質量部が特に好ましい。繊維の割合が前記範囲の下限値以上であれば、高強度な芯材が得られやすい。繊維の割合が前記範囲の上限値以下であれば、繊維による固体伝熱の増大を抑制できるため、断熱性能の低下を抑制しやすい。 The fiber ratio is preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass, and particularly preferably 4 to 10 parts by mass with respect to 100 parts by mass of the powder. When the fiber ratio is equal to or higher than the lower limit of the above range, a high-strength core material is easily obtained. If the ratio of the fiber is equal to or less than the upper limit of the above range, an increase in solid heat transfer due to the fiber can be suppressed, so that it is easy to suppress a decrease in heat insulation performance.
 以上、図1A、Bに示す置換材7が樹脂部材6からなる場合の真空断熱材10Aの構成について説明した。上記構成の真空断熱材10Aにおいては、真空断熱材10Aの略中央部に芯材5に代わって気密性の樹脂部材6が配設され、樹脂部材6は両表面6a、6bにおいて外被材3の熱溶着層1と熱溶着されている。したがって、真空断熱材10Aの樹脂部材6に相当する部分に、樹脂部材6の外周面から内側にかけて所定の領域を残すようにして、外被材3の一方の表層から他方の表層まで貫通して、穴を開ける、釘等を打ち付ける等の加工を施した場合においても、真空断熱材10A内部を安定して減圧状態に維持することが可能である。真空断熱材10Aは、釘打ちや穴開け可能な真空断熱材として有用である。 The configuration of the vacuum heat insulating material 10 </ b> A when the replacement material 7 shown in FIGS. 1A and 1B is made of the resin member 6 has been described above. In the vacuum heat insulating material 10A having the above-described configuration, an airtight resin member 6 is disposed in place of the core material 5 at a substantially central portion of the vacuum heat insulating material 10A, and the resin member 6 has an outer cover material 3 on both surfaces 6a and 6b. The heat-welded layer 1 is heat-welded. Accordingly, a portion of the vacuum heat insulating material 10A corresponding to the resin member 6 is penetrated from one surface layer to the other surface layer of the covering material 3 so as to leave a predetermined region from the outer peripheral surface of the resin member 6 to the inside. Even when processing such as making a hole or hitting a nail or the like is performed, the inside of the vacuum heat insulating material 10A can be stably maintained in a reduced pressure state. The vacuum heat insulating material 10A is useful as a vacuum heat insulating material capable of nailing and punching.
 真空断熱材10Aにおいて芯材は図2A-Cに示すとおり略中央部に欠落部として貫通孔を有する構成であるが、本発明に係る芯材の欠落部は貫通孔に限定されない。真空断熱材10Aが有する芯材と外形は略同一の正方形の板状の芯材であるが、芯材が有する欠落部が貫通孔ではない場合の例を図3A-Cに示す。なお、本明細書において正方形との記載には正方形ではない四角形も含まれるものとする。 In the vacuum heat insulating material 10A, the core material is configured to have a through hole as a missing portion in a substantially central portion as shown in FIGS. 2A to 2C. However, the missing portion of the core material according to the present invention is not limited to the through hole. FIGS. 3A to 3C show an example in which the vacuum heat insulating material 10A has a substantially square plate-like core material whose outer shape is substantially the same, but the missing portion of the core material is not a through hole. Note that in this specification, the term “square” includes a quadrangle that is not a square.
 図3Aは、正方形の芯材5が、その一辺の略中央部を芯材より小さい正方形状にかつ板厚方向に貫通するように切欠いた欠落部を有し、該欠落部を閉塞するように、該欠落部と略同形状の気密性の樹脂部材6からなる置換材7が配設された例を示す。 FIG. 3A shows that the square core material 5 has a notch part that is cut out so as to penetrate a substantially central part of one side in a square shape smaller than the core material in the plate thickness direction, and close the missing part. An example is shown in which a replacement material 7 made of an airtight resin member 6 having substantially the same shape as the missing portion is disposed.
 図3Bは、正方形の芯材5が、その4か所の角を頂点とする三角形状にかつ板厚方向に貫通するように切欠いた欠落部を4箇所有し、該欠落部を閉塞するように、該欠落部と略同形状の気密性の樹脂部材6からなる置換材7の4個が配設された例を示す。 FIG. 3B shows that the square core material 5 has four missing portions cut out so as to penetrate in the plate thickness direction in a triangular shape having apexes at the four corners, and closes the missing portions. 4 shows an example in which four replacement members 7 made of an airtight resin member 6 having substantially the same shape as the missing portion are arranged.
 図3Cは、正方形の芯材5が、一辺の内側に所定の距離を置いて、該辺に平行し該辺と同じ長さで所定の幅を有する帯状にかつ板厚方向に貫通するように設けられた欠落部を有し、該欠落部を閉塞するように、該欠落部と略同形状の気密性の樹脂部材6からなる置換材7が配設された例を示す。 FIG. 3C shows that the square core member 5 has a predetermined distance inside one side, is parallel to the side, has the same length as the side, has a predetermined width, and penetrates in the plate thickness direction. An example is shown in which a replacement material 7 having an airtight resin member 6 having substantially the same shape as the missing portion is provided so as to have the missing portion provided and close the missing portion.
 このように本発明の真空断熱材において芯材が有する欠落部が図2A-Cに示すような貫通孔ではない場合についても、形状は特に限定されない。また、芯材は図2A-Cに示すような貫通孔と図3A-Cに示すような切欠き部等を組み合わせた欠落部を有していてもよい。なお、真空断熱材としての断熱性を考慮すれば、欠落部の主面(板厚方向に直交する面)の合計面積は、芯材の主面の面積(欠落部を含まない)の20%までとすることが好ましい。 Thus, the shape of the vacuum heat insulating material of the present invention is not particularly limited even when the missing portion of the core material is not a through hole as shown in FIGS. 2A to 2C. Further, the core material may have a missing portion obtained by combining a through hole as shown in FIGS. 2A to 2C and a notch as shown in FIGS. 3A to 3C. In consideration of heat insulation as a vacuum heat insulating material, the total area of the main surface of the missing portion (surface orthogonal to the thickness direction) is 20% of the area of the main surface of the core material (not including the missing portion). It is preferable that
 図3A-Cに示す、芯材の欠落部を閉塞するように配設された、該欠落部と略同形状の気密性の樹脂部材6からなる置換材7は、上記図2A-Cに示す貫通孔に嵌め込まれた樹脂部材6からなる置換材7と、材料、厚み等同様にできる。さらに、樹脂部材6からなる置換材7に施されてもよい穴加工や釘打ち等の加工についても、上記図2A-Cに示す貫通孔に嵌め込まれた樹脂部材6からなる置換材7の場合と、全て同様にできる。 The replacement material 7 shown in FIGS. 3A to 3C, which is disposed so as to close the missing portion of the core material and is made of the airtight resin member 6 having substantially the same shape as the missing portion, is shown in FIGS. 2A to 2C. The replacement material 7 made of the resin member 6 fitted in the through hole can be made in the same manner as the material, thickness, and the like. Further, with respect to processing such as drilling and nailing that may be performed on the replacement material 7 made of the resin member 6, the replacement material 7 made of the resin member 6 fitted in the through hole shown in FIGS. 2A to 2C is used. And you can do all the same.
 次に、図4A、Bに示す置換材7が樹脂部材6と異種材料部材8からなる真空断熱材10Bについて説明する。真空断熱材10Bは、図5A-Cに細部を示す、芯材5が有する貫通孔4の開口部の形状が真空断熱材10Aと異なり円形であること、および置換材7が樹脂部材6と異種材料部材8からなること以外は、真空断熱材10Aと同様である。 Next, a vacuum heat insulating material 10B in which the replacement material 7 shown in FIGS. 4A and 4B is composed of the resin member 6 and the dissimilar material member 8 will be described. The vacuum heat insulating material 10B, as shown in detail in FIGS. 5A to 5C, is different from the vacuum heat insulating material 10A in the shape of the opening of the through hole 4 of the core material 5, and the replacement material 7 is different from the resin member 6. Except for the material member 8, it is the same as the vacuum heat insulating material 10A.
 真空断熱材10Bにおける貫通孔4を有する芯材5と、樹脂部材6と異種材料部材8からなる置換材7の関係を図5A-Cに示す。図5Aは展開図であり、図5Bは平面図であり、図5Cは図5BのB’-B’線における断面図である。真空断熱材10Bにおいて芯材5は1対の主面5a、5bが正方形の板状の形状を有し略中央に開口部が円形の貫通孔4を有する。樹脂部材6と異種材料部材8からなる置換材7は芯材5の貫通孔4に嵌合するように配設されている。 The relationship between the core material 5 having the through holes 4 in the vacuum heat insulating material 10B and the replacement material 7 made of the resin member 6 and the dissimilar material member 8 is shown in FIGS. 5A to 5C. 5A is a developed view, FIG. 5B is a plan view, and FIG. 5C is a cross-sectional view taken along line B′-B ′ in FIG. 5B. In the vacuum heat insulating material 10B, the core member 5 has a pair of main surfaces 5a, 5b having a square plate shape, and a through hole 4 having a circular opening at a substantially central portion. A replacement material 7 composed of a resin member 6 and a dissimilar material member 8 is disposed so as to fit in the through hole 4 of the core material 5.
 置換材7は、貫通孔4により切り欠かれた部分と略同寸、同形である。すなわち、置換材7は、高さが芯材5の厚さと略同等、かつ直径が貫通孔4の開口部の直径と略同等の円柱形状であり、芯材5の両面5a、5bに平行する一対の表面を有する部材である。したがって、芯材5の貫通孔4に置換材7が嵌め込まれた部材において主面は全体として平坦な面となる。なお、芯材5の厚みについては、真空断熱材10Aにおける芯材5の厚みと同様にできる。また、置換材7の表面は、該表面において熱溶着層1と接合が可能な程度に、芯材5の両面5a、5bに対して若干の傾きをもって、あるいは微小な凹凸をもって設けられてもよい。 The replacement material 7 has substantially the same size and shape as the portion cut out by the through hole 4. That is, the replacement material 7 has a cylindrical shape whose height is substantially equal to the thickness of the core material 5 and whose diameter is substantially equal to the diameter of the opening of the through hole 4, and is parallel to both surfaces 5 a and 5 b of the core material 5. A member having a pair of surfaces. Therefore, the main surface of the member in which the replacement material 7 is fitted in the through hole 4 of the core material 5 is a flat surface as a whole. In addition, about the thickness of the core material 5, it can do similarly to the thickness of the core material 5 in 10 A of vacuum heat insulating materials. Further, the surface of the replacement material 7 may be provided with a slight inclination with respect to both surfaces 5a and 5b of the core material 5 or with minute unevenness so that the surface can be bonded to the heat welding layer 1 on the surface. .
 置換材7は、略中央部に置換材7と同じ高さであるが直径が置換材7より小さい円柱形状の異種材料部材8を有し、その周囲を囲むようにしてリング状の気密性の樹脂部材6を備える。すなわち、樹脂部材6は、芯材5の両面5a、5bに平行する一対の表面6a、6bを有し、芯材5の貫通孔内面4aに接する外周面6cを有するとともに、該表面6a、6bに対して直交する方向に貫通する貫通孔を有し、この貫通孔に嵌合するように異種材料部材8が配設されて置換材7を構成している。また、置換材7は、樹脂部材6の外周面6cが、貫通孔4の内面4aと接するように芯材5の貫通孔4に嵌め込まれている。 The replacement material 7 has a column-shaped dissimilar material member 8 that is substantially the same height as the replacement material 7 but has a diameter smaller than that of the replacement material 7 in a substantially central portion, and is a ring-shaped airtight resin member surrounding the periphery thereof. 6 is provided. That is, the resin member 6 has a pair of surfaces 6 a and 6 b parallel to both surfaces 5 a and 5 b of the core material 5, an outer peripheral surface 6 c in contact with the through hole inner surface 4 a of the core material 5, and the surfaces 6 a and 6 b. The dissimilar material member 8 is disposed so as to fit in the through hole, and the replacement material 7 is configured. The replacement member 7 is fitted into the through hole 4 of the core member 5 so that the outer peripheral surface 6 c of the resin member 6 is in contact with the inner surface 4 a of the through hole 4.
 異種材料部材8は、樹脂部材6の樹脂とは異なる材料からなる。置換材7において、樹脂部材6は加工後においても真空断熱材10Bの減圧状態が維持できるように設けられる部材であり、異種材料部材8は主として、真空断熱材10Bに、例えば、穴開けや釘打ち等の加工を施すために設けられる層である。したがって、異種材料部材8を構成する材料としては、加工が容易に行える材料が好ましい。具体的には、樹脂部材6の樹脂とは異なる樹脂、ゴム、木、紙、繊維集積材、セラミックス等が挙げられる。樹脂部材6の樹脂とは異なる樹脂としては、例えば、ウレタン樹脂、スチロール樹脂、シリコーン樹脂等が挙げられる。異種材料部材8は通気性を有していてもよく、気密性を有していてもよい。 The dissimilar material member 8 is made of a material different from the resin of the resin member 6. In the replacement material 7, the resin member 6 is a member provided so that the reduced pressure state of the vacuum heat insulating material 10 </ b> B can be maintained even after processing. The dissimilar material member 8 is mainly provided in the vacuum heat insulating material 10 </ b> B, for example, with holes or nails. It is a layer provided for processing such as striking. Therefore, the material constituting the dissimilar material member 8 is preferably a material that can be easily processed. Specifically, a resin different from the resin of the resin member 6, rubber, wood, paper, fiber integrated material, ceramics, and the like can be given. Examples of the resin different from the resin of the resin member 6 include urethane resin, styrene resin, and silicone resin. The dissimilar material member 8 may have air permeability or airtightness.
 異種材料部材8は例えば表面に平行な方向、または直交する方向に複数の層が積層された構成であってもよく、単一部材で構成されていてもよい。複数の層からなる場合、各層は同一の材料からなってもよく、異なる材料からなってもよい。例えば、異種材料部材8の両表面である円筒形状の上面と底面近傍を熱溶着層1の構成材料と熱溶着可能な樹脂からなる層で形成して、樹脂部材6と同様に、異種材料部材8を上面と底面において外被材3の熱溶着層1と熱溶着してもよい。なお、このように異種材料部材8を上面と底面において外被材3の熱溶着層1と熱溶着する場合、例えば、異種材料部材8の全体を樹脂部材6を構成する樹脂とは異なる熱溶着層1の構成材料と熱溶着可能な樹脂で構成してもよい。 The dissimilar material member 8 may have a structure in which a plurality of layers are laminated in a direction parallel to the surface or in a direction orthogonal to the surface, or may be composed of a single member. In the case of a plurality of layers, each layer may be made of the same material or different materials. For example, the upper surface and the bottom surface of the cylindrical shape, which are both surfaces of the dissimilar material member 8, are formed of a layer made of a resin that can be heat welded to the constituent material of the heat welding layer 1, 8 may be heat-welded to the heat-welding layer 1 of the jacket material 3 on the top and bottom surfaces. When the dissimilar material member 8 is heat-welded to the heat-welding layer 1 of the outer cover material 3 on the upper surface and the bottom surface in this way, for example, the dissimilar material member 8 as a whole is heat-welded different from the resin constituting the resin member 6. You may comprise with the constituent material of the layer 1, and resin which can be heat-welded.
 図5A-Cに示す、異種材料部材8、樹脂部材6、芯材5は、厚みが略同等であるが、本発明の効果を損なわない範囲において、必要に応じて異種材料部材8および樹脂部材6の芯材5に対する厚みを厚くしたり、薄くしたりしてもよい。異種材料部材8および樹脂部材6の芯材5に対する厚みは、具体的は、真空断熱材10Aにおける芯材5の厚みと樹脂部材6の厚みの関係と同様にできる。なお、該範囲内であれば異種材料部材8の厚みと樹脂部材6の厚みは同一であっても異なってもよい。 5A-C, the dissimilar material member 8, the resin member 6, and the core material 5 have substantially the same thickness. However, the dissimilar material member 8 and the resin member are necessary as long as the effects of the present invention are not impaired. The thickness of the core material 5 of 6 may be increased or decreased. Specifically, the thickness of the dissimilar material member 8 and the resin member 6 with respect to the core material 5 can be made similar to the relationship between the thickness of the core material 5 and the thickness of the resin member 6 in the vacuum heat insulating material 10A. In addition, if it is in this range, the thickness of the dissimilar material member 8 and the thickness of the resin member 6 may be the same or different.
 樹脂部材6は、形状が異なる以外は真空断熱材10Aにおける樹脂部材6と同様とできる。真空断熱材10Bにおいては、樹脂部材6は熱溶着層1を構成する材料と接合可能な樹脂で構成され、樹脂部材6は一対の表面6a、6bにおいて外被材3の熱溶着層1と気密性を保持するように接合されている。なお、接合が熱溶着により行われた場合、樹脂部材6と熱溶着層1との界面は、明確に存在するものではない。図4Bでは、樹脂部材6と熱溶着層1とを熱溶着した場合の界面を熱溶着の前における界面として破線で示す。ここで、該界面は、樹脂部材6が有する一対の表面6a、6bに相当する。 The resin member 6 can be the same as the resin member 6 in the vacuum heat insulating material 10A except that the shape is different. In the vacuum heat insulating material 10B, the resin member 6 is made of a resin that can be bonded to the material constituting the heat-welding layer 1, and the resin member 6 is air-tight with the heat-welding layer 1 of the jacket material 3 on a pair of surfaces 6a and 6b. It is joined so as to maintain the sex. In addition, when joining is performed by heat welding, the interface of the resin member 6 and the heat welding layer 1 does not exist clearly. In FIG. 4B, the interface when the resin member 6 and the heat-welding layer 1 are heat-welded is indicated by a broken line as the interface before heat-welding. Here, the interface corresponds to a pair of surfaces 6 a and 6 b included in the resin member 6.
 ここで、樹脂部材6と熱溶着層1は必ずしも樹脂部材6の表面6a、6bの全面と接合されていなくてもよい。必要に応じて表面6a、6bの端部の一部が接合されない状態であってもよい。好ましくは、表面6a、6bの全面において樹脂部材6と熱溶着層1が接合される。 Here, the resin member 6 and the heat welding layer 1 do not necessarily have to be joined to the entire surface 6a, 6b of the resin member 6. If necessary, a part of the end portions of the surfaces 6a and 6b may not be joined. Preferably, the resin member 6 and the heat-welding layer 1 are bonded on the entire surface 6a, 6b.
 樹脂部材6において、上記熱溶着層1との接合による効果を十分に発揮するために、樹脂部材6におけるリング形状の内周と外周の距離である肉厚w1は、5mm以上が好ましい。 In the resin member 6, the wall thickness w <b> 1, which is the distance between the inner periphery and the outer periphery of the ring shape in the resin member 6, is preferably 5 mm or more in order to sufficiently exhibit the effect of the bonding with the heat welding layer 1.
 真空断熱材10Bにおいては、真空断熱材10Bの略中央部に芯材5に代わって外側に気密性の樹脂部材6、内側に異種材料部材8を有する置換材7が配設され、樹脂部材6がその両表面において外被材3の熱溶着層1と気密性を保持するように接合されている。したがって、真空断熱材10Bから、異種材料部材8と共に、異種材料部材8に相当する部分の外被材3を真空断熱材10Bの両面において、取り除くことで真空断熱材10Bに異種材料部材8に相当する大きさの穴を開けることが可能である。その場合、置換材7のうち気密性の樹脂部材6は除去されずに真空断熱材10Bの一部として残るので、異種材料部材8相当部分を除去した後でも、真空断熱材10B内部を安定して減圧状態に維持することが可能である。 In the vacuum heat insulating material 10B, a replacement material 7 having an airtight resin member 6 on the outer side and a dissimilar material member 8 on the inner side is disposed in place of the core material 5 at a substantially central portion of the vacuum heat insulating material 10B. Are bonded to the heat-welded layer 1 of the jacket material 3 on both surfaces so as to maintain airtightness. Therefore, by removing the covering material 3 corresponding to the different material member 8 from both sides of the vacuum heat insulating material 10B together with the different material member 8 from the vacuum heat insulating material 10B, the vacuum heat insulating material 10B corresponds to the different material member 8 It is possible to make a hole of the size to be. In that case, since the airtight resin member 6 of the replacement material 7 is not removed and remains as a part of the vacuum heat insulating material 10B, the interior of the vacuum heat insulating material 10B is stabilized even after the dissimilar material member 8 equivalent part is removed. It is possible to maintain a reduced pressure state.
 真空断熱材10Bが上記のようにして使用される場合、穴開け加工については異種材料部材8に相当する部分の外被材3のみを切断する加工のみで穴開けが可能であり作業効率の点で有利である。 When the vacuum heat insulating material 10B is used as described above, the hole can be drilled only by cutting only the outer covering material 3 corresponding to the dissimilar material member 8, so that the work efficiency is improved. Is advantageous.
 また、同様に真空断熱材10Bの異種材料部材8に相当する部分に、外被材3の一方の表層から他方の表層まで貫通して、穴を開ける、釘等を打ち付ける等の加工を施すことも可能であり、その場合においても、樹脂部材6の存在により真空断熱材10B内部を安定して減圧状態に維持することが可能である。この場合、異種材料部材8の材料を加工に有利な材料とすることで、置換材7全体が樹脂部材6で構成されている場合に比べて、加工性が良好となる。 Similarly, a part corresponding to the dissimilar material member 8 of the vacuum heat insulating material 10B is penetrated from one surface layer of the jacket material 3 to the other surface layer, and a process such as making a hole or hitting a nail or the like is performed. In this case, the presence of the resin member 6 can stably maintain the inside of the vacuum heat insulating material 10B in a reduced pressure state. In this case, by making the material of the dissimilar material member 8 a material advantageous for processing, the workability is improved as compared with the case where the entire replacement material 7 is constituted by the resin member 6.
 さらに、必要に応じて、真空断熱材10Bの異種材料部材8相当部分に加えて樹脂部材6についてもその外周面から内側にかけて所定の領域を残すようにして、それ以外の部分を切り取る加工を真空断熱材10Bに施してもよい。このような加工を施す場合においても、加工後について真空断熱材10B内部を安定して減圧状態に維持することが可能である。このように、真空断熱材10Bは、釘打ちや穴開け可能な真空断熱材として有用である。 Further, if necessary, in addition to the portion corresponding to the dissimilar material member 8 of the vacuum heat insulating material 10B, the resin member 6 is also subjected to vacuum processing to leave a predetermined region from the outer peripheral surface to the inside, and to cut off other portions. You may give to the heat insulating material 10B. Even when such processing is performed, the inside of the vacuum heat insulating material 10B can be stably maintained in a reduced pressure state after processing. Thus, the vacuum heat insulating material 10B is useful as a vacuum heat insulating material capable of nailing and punching.
 次に、図6A、B、図7A、Bおよび図8A、Bに示す穴加工が施された実施形態の真空断熱材の例について説明する。なお、本発明の真空断熱材において、置換材が図6A、B、図7A、B、図8A、Bに示す穴を有する場合、該穴は置換材の周縁部を除く領域に設けられる。置換材の周縁部領域に穴が存在すると、置換材を構成する樹脂部材と外被材、熱溶着層との接合部における密着性が確保できなくなるおそれがある。このような観点から、上記周縁部の幅は5mm以上とすることが好ましい。また、図8A、Bに示す実施形態の真空断熱材のように置換材に複数の穴加工が施される場合の穴同士の間隔についても上記周縁部の幅と同様の理由から5mm以上とすることが好ましい。 Next, an example of the vacuum heat insulating material according to the embodiment in which the hole machining shown in FIGS. 6A and 6B, FIGS. 7A and 7B and FIGS. 8A and 8B is performed will be described. In addition, in the vacuum heat insulating material of this invention, when a substitution material has the hole shown to FIG. 6A, B, FIG. 7A, B, FIG. 8A, B, this hole is provided in the area | region except the peripheral part of a substitution material. If there is a hole in the peripheral region of the replacement material, there is a possibility that the adhesiveness at the joint between the resin member constituting the replacement material, the jacket material, and the heat welding layer cannot be secured. From such a viewpoint, the width of the peripheral edge portion is preferably 5 mm or more. Further, the interval between holes in the case where a plurality of holes are processed in the replacement material as in the vacuum heat insulating material of the embodiment shown in FIGS. 8A and 8B is also set to 5 mm or more for the same reason as the width of the peripheral portion. It is preferable.
 図6A、Bに示す真空断熱材10Cは、芯材5が貫通孔4を2か所に有し、該2か所の貫通孔4のそれぞれに、芯材5の貫通孔内面4aに接する外周面6cおよび芯材5の両面5a、5bに平行する一対の表面6a、6bを有する気密性の樹脂部材6からなる置換材7が嵌め込まれ、さらに各置換材7(=樹脂部材6)の略中央部に相当する位置に穴9が形成されている点を除いては、図1A、Bに示す真空断熱材10Aと同様である。 The vacuum heat insulating material 10C shown in FIGS. 6A and 6B has an outer periphery in which the core material 5 has the through holes 4 at two locations, and each of the two through holes 4 is in contact with the inner surface 4a of the through hole of the core material 5. A replacement material 7 made of an airtight resin member 6 having a pair of surfaces 6a and 6b parallel to the surface 6c and both surfaces 5a and 5b of the core material 5 is fitted, and each replacement material 7 (= resin member 6) is abbreviated. Except for the point that the hole 9 is formed at a position corresponding to the central portion, it is the same as the vacuum heat insulating material 10A shown in FIGS. 1A and 1B.
 真空断熱材10Cにおいて、樹脂部材6の略中央部に相当する位置に形成された穴9は、平面図である図6Aにおける形状が、一か所において円形であり、他の一か所において正方形である。図6Bは、図6Aに示す真空断熱材10Cの、正方形の穴9を有する樹脂部材6の中心を通るC-C線における断面図である。 In the vacuum heat insulating material 10C, the hole 9 formed at a position corresponding to the substantially central portion of the resin member 6 has a circular shape in one place in FIG. 6A, which is a plan view, and a square in the other place. It is. 6B is a cross-sectional view taken along the line CC of the vacuum heat insulating material 10C shown in FIG. 6A and passing through the center of the resin member 6 having the square holes 9. As shown in FIG.
 真空断熱材10Cにおける、平面図において正方形の穴9を有する樹脂部材6は、例えば、真空断熱材10Aが有する樹脂部材6に相当する部分に、樹脂部材6の外周面から内側にかけて所定の領域、すなわち周縁部領域を残すようにして、外被材3の一方の表層から他方の表層まで貫通して、穴9を開けた構成と同様である。真空断熱材10Cにおいては、図6A、Bに示すように、上記でいう残された所定の領域が、外周面6cと内周面の距離として肉厚w2を有する角筒状の樹脂部材6である。樹脂部材6の肉厚w2は真空断熱材10Cにおいて、安定して減圧状態を保持する観点から5mm以上が好ましい。 The resin member 6 having the square hole 9 in the plan view in the vacuum heat insulating material 10C is, for example, a predetermined region extending from the outer peripheral surface of the resin member 6 to the inside in a portion corresponding to the resin member 6 included in the vacuum heat insulating material 10A. That is, it is the same as the structure which penetrated from one surface layer of the coating | covering material 3 to the other surface layer, and opened the hole 9, leaving the peripheral region. In the vacuum heat insulating material 10C, as shown in FIGS. 6A and 6B, the remaining predetermined region is a rectangular tube-shaped resin member 6 having a wall thickness w2 as a distance between the outer peripheral surface 6c and the inner peripheral surface. is there. The thickness w2 of the resin member 6 is preferably 5 mm or more from the viewpoint of stably maintaining a reduced pressure state in the vacuum heat insulating material 10C.
 図6Bに示すように、樹脂部材6は両表面6a、6bにおいて外被材3の熱溶着層1と気密性を保持するように接合されている。このような構造の真空断熱材10Cによれば、穴9を有しているにも関わらず、真空断熱材10Aと同等程度に、その内部が安定して減圧状態に維持されている。 As shown in FIG. 6B, the resin member 6 is joined to both the surfaces 6a and 6b so as to maintain airtightness with the heat-welded layer 1 of the outer jacket material 3. According to the vacuum heat insulating material 10C having such a structure, although the hole 9 is provided, the inside thereof is stably maintained in a reduced pressure state to the same extent as the vacuum heat insulating material 10A.
 真空断熱材10Cに示す穴9の形状は平面図において円形、正方形であるが、形状は特に制限されない。例えば、三角形、四角形、多角形、略円形、略楕円形、L型、およびこれらの組み合わせからなる任意形状とすることができる。また、穴9を形成する真空断熱材10Cの内面は、樹脂部材6の主面に対して垂直となるように形成されているが、本発明の実施形態の真空断熱材において、必ずしも垂直である必要はなく、必要に応じてテーパー状、階段状等であってもよい。作業性の観点からは、穴を形成する内面は樹脂部材6の主面に対して垂直となるように形成されることが好ましい。 The shape of the hole 9 shown in the vacuum heat insulating material 10C is circular or square in the plan view, but the shape is not particularly limited. For example, it may be an arbitrary shape made of a triangle, a quadrangle, a polygon, a substantially circular shape, a substantially elliptical shape, an L shape, and a combination thereof. Further, the inner surface of the vacuum heat insulating material 10C forming the hole 9 is formed to be perpendicular to the main surface of the resin member 6, but is not necessarily vertical in the vacuum heat insulating material of the embodiment of the present invention. There is no need, and a taper shape, a staircase shape, etc. may be sufficient as needed. From the viewpoint of workability, the inner surface forming the hole is preferably formed to be perpendicular to the main surface of the resin member 6.
 図7A、Bに示す真空断熱材10Dは、図4A、Bに示す真空断熱材10Bから、異種材料部材8に相当する部分の外被材3を異種材料部材8と共に取り除いて、異種材料部材8に相当する大きさの穴9を開けて得られた穴加工済の真空断熱材である。 A vacuum heat insulating material 10D shown in FIGS. 7A and 7B is obtained by removing the outer covering material 3 corresponding to the different material member 8 together with the different material member 8 from the vacuum heat insulating material 10B shown in FIGS. 4A and B. This is a hole-insulated vacuum heat insulating material obtained by opening a hole 9 having a size corresponding to.
 このような構成の真空断熱材10Dは、上記特性を有するとともに、比較的大きな穴9を形成する場合の作業性も良好である。 The vacuum heat insulating material 10D having such a configuration has the above characteristics and also has good workability when a relatively large hole 9 is formed.
 図6A、B、図7A、Bに示す真空断熱材において、各置換材は各1個の穴を有するが、本発明の真空断熱材において置換材が有する穴の個数は1個に限定されない。図8A、Bは複数個の穴加工がされた置換材を有する真空断熱材10Eの平面図(図8A)および、図8Aに示す真空断熱材10EのE-E線における断面図(図8B)を示す。 6A, B, 7A, and B, each replacement material has one hole, but the number of holes that the replacement material has in the vacuum heat insulating material of the present invention is not limited to one. 8A and 8B are a plan view (FIG. 8A) of a vacuum heat insulating material 10E having a plurality of holes drilled replacement materials, and a cross-sectional view taken along line EE of the vacuum heat insulating material 10E shown in FIG. 8A (FIG. 8B). Indicates.
 図8A、Bに示す真空断熱材10Eは、図7A、Bに示す真空断熱材10Dにおいて樹脂部材6が中央部に有する1個の穴9の代わりにそれよりも小さい5個の穴9が設けられた構成の真空断熱材である。真空断熱材10Eには、樹脂部材6の略中央部に円筒状の穴9が1個とその周りに均等にそれより小さい円筒状の穴9が4個設けられている。 The vacuum heat insulating material 10E shown in FIGS. 8A and 8B is provided with five smaller holes 9 instead of the single hole 9 that the resin member 6 has in the center in the vacuum heat insulating material 10D shown in FIGS. 7A and 7B. It is the vacuum heat insulating material of the structure comprised. The vacuum heat insulating material 10E is provided with one cylindrical hole 9 in the substantially central portion of the resin member 6 and four cylindrical holes 9 that are equally smaller around it.
 真空断熱材10Eにおいて、図8A、B中、例えば、w12、w13等で示される各穴9の間隔は5mm以上が好ましい。また、図8A、B中、例えば、w11、w14等で示される樹脂部材6の外周に最も近い穴9の樹脂部材6の外周側の外周と樹脂部材6の外周の距離は5mm以上が好ましい。上記、各間隔や距離を5mm以上とすることで、樹脂部材6と外被材3の熱溶着層1との接合部における密着性が十分に確保できる。なお、図8A、Bにおいて各穴9の間隔はw12、w13を代表して示したが、他の穴9同士の間隔についても同様である。また、穴9と樹脂部材6の外周との距離についても、w11、w14を代表して示したが、他の穴9と樹脂部材6の外周との距離についても同様である。 In the vacuum heat insulating material 10E, in FIG. 8A and B, for example, the interval between the holes 9 indicated by w12, w13, etc. is preferably 5 mm or more. 8A and 8B, for example, the distance between the outer periphery of the resin member 6 in the hole 9 closest to the outer periphery of the resin member 6 indicated by w11, w14 and the like and the outer periphery of the resin member 6 is preferably 5 mm or more. By setting the intervals and distances to 5 mm or more, sufficient adhesion at the joint between the resin member 6 and the thermal welding layer 1 of the jacket material 3 can be secured. 8A and 8B, the intervals between the holes 9 are represented by w12 and w13, but the same applies to the intervals between the other holes 9. The distance between the hole 9 and the outer periphery of the resin member 6 is also representative of w11 and w14, but the same applies to the distance between the other hole 9 and the outer periphery of the resin member 6.
 なお、真空断熱材10Eは、例えば、図4A、Bに示す真空断熱材10Bにおいて、中央部に有する1個の異種材料部材8の代わりに、図8A、Bに示す5個の穴9に相当する位置に5個の異種材料部材8を設け、該異種材料部材8に相当する部分の外被材3を異種材料部材8と共に取り除いて、異種材料部材8に相当する大きさの穴9を開けることで作製できる。 Note that the vacuum heat insulating material 10E corresponds to, for example, the five holes 9 shown in FIGS. 8A and 8B instead of the single dissimilar material member 8 provided in the center in the vacuum heat insulating material 10B shown in FIGS. 4A and 4B. Five dissimilar material members 8 are provided at positions where the outer material 3 corresponding to the dissimilar material member 8 is removed together with the dissimilar material member 8, and a hole 9 having a size corresponding to the dissimilar material member 8 is formed. Can be produced.
 本発明の実施形態の真空断熱材において、真空断熱材中の複数箇所に置換材を有する場合、その個数や配置は用途に応じて適宜調整される。複数箇所に置換材を有する真空断熱材においては、置換材に相当する部分の一部または全部の置換材に相当する部分に上記のような穴加工が施されていてもよい。また、複数箇所に置換材を有する真空断熱材においては、全部の置換材に相当する部分に穴加工が施されていなくてもよい。さらに、置換材に穴加工が施される場合、1個の置換材に複数個の穴加工が施されてもよい。また、複数個の置換材を用いる場合、その全てを、樹脂部材のみからなる置換材としてもよく、樹脂部材と異種材料部材からなる置換材としてもよく、さらにはこれらの組み合わせとしてもよい。 In the vacuum heat insulating material of the embodiment of the present invention, when there are substitution materials at a plurality of locations in the vacuum heat insulating material, the number and arrangement thereof are appropriately adjusted according to the application. In a vacuum heat insulating material having a replacement material at a plurality of locations, a part of a portion corresponding to the replacement material or a portion corresponding to all of the replacement material may be subjected to the above hole processing. Moreover, in the vacuum heat insulating material which has a substitute material in multiple places, the hole process does not need to be given to the part corresponded to all the substitute materials. Furthermore, when a hole is drilled in the replacement material, a plurality of holes may be drilled in one replacement material. Further, when a plurality of replacement materials are used, all of them may be replaced with a replacement material made of only a resin member, a replacement material made of a resin member and a different material member, or a combination thereof.
 本発明の実施形態の真空断熱材において上記のように置換材に設けられた穴は、例えば、配線および/または配管を通す用途や、真空断熱材を被断熱材に固定する際に固定部材、例えば、ネジや釘を配する用途、真空断熱材を被断熱材の突起部に掛ける用途等に用いられる。真空断熱材を被断熱材の突起部に掛ける用途においては、被断熱材自体が突起して突起部を形成していてもよく、被断熱材に設けられたフック等の掛け具を突起部としてもよい。なお、真空断熱材を被断熱材に固定する際には、真空断熱材と被断熱材の間にさらに別の部材を設けてもよい。 In the vacuum heat insulating material according to the embodiment of the present invention, the hole provided in the replacement material as described above is, for example, a fixing member when fixing the vacuum heat insulating material to the heat insulating material, for example, an application of wiring and / or piping. For example, it is used for applications such as disposing screws and nails, and applications where a vacuum heat insulating material is hung on a protrusion of a heat insulating material. In applications where the vacuum heat insulating material is hung on the protrusion of the heat insulating material, the heat insulating material itself may protrude to form a protrusion, and a hook or other hook provided on the heat insulating material may be used as the protrusion. Also good. When fixing the vacuum heat insulating material to the heat insulating material, another member may be provided between the vacuum heat insulating material and the heat insulating material.
 ここで、本発明の実施形態の真空断熱材に穴加工が施されていない場合においても、置換部材や異種材料部材が設けられた部分に釘打ち等して真空断熱材を被断熱材に固定することができる。上記同様に、真空断熱材を被断熱材に固定する際には、真空断熱材と被断熱材の間にさらに別の部材を設けてもよい。 Here, even when the hole is not drilled in the vacuum heat insulating material of the embodiment of the present invention, the vacuum heat insulating material is fixed to the heat insulating material by nailing the portion where the replacement member or the dissimilar material member is provided. can do. Similarly to the above, when fixing the vacuum heat insulating material to the heat insulating material, another member may be provided between the vacuum heat insulating material and the heat insulating material.
[真空断熱材の製造方法]
 本発明の真空断熱材の製造方法は以下の(1)~(5)の工程を備える。
 (1)板状の芯材に、板厚方向に貫通する貫通孔を形成する工程
 (2)前記芯材の貫通孔内面に接する外周面および前記芯材の両面に平行する一対の表面を有する気密性の樹脂部材を有する置換材を、前記貫通孔と嵌合するように前記貫通孔に配設する工程
 (3)片面に熱溶着層を有する気密性のフィルムを前記熱溶着層同士が対向するように配置してなる外被材の内部に、前記置換材が配設された芯材を収納する工程
 (4)前記外被材の内部を減圧状態とするとともに、前記芯材の外周よりも外側に位置し前記芯材の周囲全体に亘る領域を前記熱溶着層同士の熱溶着により密着する工程
 (5)前記樹脂部材を前記一対の表面において前記外被材の前記熱溶着層と接合する工程
[Method of manufacturing vacuum insulation]
The method for manufacturing a vacuum heat insulating material of the present invention includes the following steps (1) to (5).
(1) A step of forming a through-hole penetrating in the plate thickness direction in a plate-shaped core material (2) An outer peripheral surface in contact with an inner surface of the through-hole of the core material and a pair of surfaces parallel to both surfaces of the core material A step of disposing a replacement material having an airtight resin member in the through hole so as to be fitted to the through hole. (3) An airtight film having a heat welding layer on one side is opposed to the heat welding layers. The step of storing the core material in which the replacement material is disposed inside the outer cover material that is arranged in such a manner (4) The inside of the outer cover material is brought into a reduced pressure state, and the outer periphery of the core material (5) Bonding the resin member to the heat-welded layer of the jacket material on the pair of surfaces, the step of closely adhering the entire region around the core material by heat-welding the heat-welded layers Process
 以下、図9を参照しながら、図1A、Bで示す真空断熱材10Aの製造方法を例にして本発明の真空断熱材の製造方法の実施形態の1例を説明する。真空断熱材10Aは、樹脂部材と外被材の接合が熱溶着で行われた例である。なお、図9において(1)~(5)の符号は、それぞれ、上記(1)~(5)の工程に対応する。 Hereinafter, an example of an embodiment of the method for manufacturing a vacuum heat insulating material according to the present invention will be described with reference to FIG. 9, taking the method for manufacturing the vacuum heat insulating material 10A shown in FIGS. 1A and 1B as an example. The vacuum heat insulating material 10A is an example in which the resin member and the jacket material are joined by heat welding. In FIG. 9, reference numerals (1) to (5) correspond to the steps (1) to (5), respectively.
 図9において(1)は板状の芯材5に貫通孔4を形成する工程を示す。貫通孔4を形成する手段や方法は特に限定されない。芯材を板状に加工し、所定の大きさに切断する際に、通常用いられる手段や方法がそのまま適用可能である。 9 (1) shows a process of forming the through hole 4 in the plate-like core material 5. FIG. The means and method for forming the through hole 4 are not particularly limited. When a core material is processed into a plate shape and cut into a predetermined size, means and methods that are usually used can be applied as they are.
 図9において(2)は、芯材5の貫通孔4に貫通孔4と略同形、同寸の気密性の樹脂部材6からなる置換材7を嵌め込む工程を示す。本例において樹脂部材6と置換材7は同一部材であり、図9において符号は6(7)を用いている。樹脂部材6の外周面は、貫通孔内面に接するように形成され、芯材5の厚みと樹脂部材6の厚みは略同じである。ここで、樹脂部材6を構成する樹脂は、次の工程で説明する外被材3が内面に有する熱溶着層と熱溶着可能な樹脂で構成される。 9 (2) shows a process of fitting a replacement material 7 made of an airtight resin member 6 having substantially the same shape and the same size as the through hole 4 into the through hole 4 of the core material 5. FIG. In this example, the resin member 6 and the replacement member 7 are the same member, and the reference numeral 6 (7) is used in FIG. The outer peripheral surface of the resin member 6 is formed so as to be in contact with the inner surface of the through hole, and the thickness of the core member 5 and the thickness of the resin member 6 are substantially the same. Here, the resin constituting the resin member 6 is composed of a heat-weldable layer and a heat-weldable layer on the inner surface of the jacket material 3 described in the next step.
 図9において(3)は、上記(2)工程で得られた樹脂部材6が嵌め込まれた芯材5を、熱溶着層を有する気密性のフィルムを有し、前記フィルムを前記熱溶着層同士が対向するように配置してなる外被材3の内部に、収納する工程を示す。 In FIG. 9, (3) includes a core material 5 into which the resin member 6 obtained in the above step (2) is fitted, an airtight film having a heat-welded layer, and the film is bonded to the heat-welded layers. The process of accommodating in the inside of the jacket material 3 arrange | positioned so that may oppose is shown.
 (3)において、外被材3は片面に熱溶着層を有する正方形で同じ大きさの2枚の気密性のフィルムを、各フィルムが有する熱溶着層を互いに対向させて重ね合わせた構成であり、3辺が予め所定の幅で熱溶着された袋状の外被材である。すなわち、(3)の工程で、最終的に4辺で構成されるシール領域Yの一部がすでに形成された外被材3を使用する。袋状に成形された外被材3の開口部から樹脂部材6が嵌め込まれた芯材5を、その内部に挿入する。なお、このように袋状に成形された外被材を用いることは通常行われる手法である。 In (3), the outer cover material 3 has a structure in which two air-tight films having the same size and having a square shape having a heat-welded layer on one side are overlapped with the heat-welded layers of the respective films facing each other. This is a bag-shaped outer cover material in which three sides are heat-welded in advance with a predetermined width. That is, in the step (3), the jacket material 3 in which a part of the seal region Y finally composed of four sides is already formed is used. The core material 5 into which the resin member 6 is fitted is inserted into the inside of the cover material 3 formed into a bag shape. In addition, it is a method usually performed to use the jacket material formed into a bag shape in this way.
 このように、本発明の製造方法において(4)工程の外被材の芯材の外周よりも外側に位置し芯材の周囲全体に亘る領域(シール領域Y)を対向する熱溶着層同士の熱溶着により密着する工程は、(4)工程において、シール領域Yが全て熱溶着により密着された状態を得る工程である。(4)工程においてシール領域Y全て密着された状態が得られれば、上記のように(3)の収納工程の前にシール領域Yの一部がすでに形成され、(4)工程において残りのシール領域Yを密着する操作を行う態様も、本発明の製造方法に含まれる。 Thus, in the manufacturing method of the present invention, between the heat-welded layers facing the region (sealing region Y) located outside the outer periphery of the core material of the outer cover material in the step (4) and covering the entire periphery of the core material (sealing region Y). The step of closely adhering by thermal welding is a step of obtaining a state in which all of the seal regions Y are closely adhered by thermal welding in step (4). If a state where all the seal regions Y are in close contact is obtained in the step (4), a part of the seal region Y is already formed before the storing step (3) as described above, and the remaining seals in the step (4). A mode of performing an operation of bringing the region Y into close contact is also included in the manufacturing method of the present invention.
 図9では、(4)・(5)において、(3)で準備した内部に樹脂部材6が嵌め込まれた芯材5が収納された袋状の外被材3を減圧条件下に置き、外被材3の開口部を対向する熱溶着層同士の熱溶着により密着する(上記(4)の工程)。その後、外被材3の外部を大気圧条件に戻し、樹脂部材6に相当する領域に外被材3の外側から熱と圧力を加えて、樹脂部材6をその表面を介して熱溶着層と熱溶着する((5)の工程)ことで真空断熱材10Aを得る。 In FIG. 9, in (4) and (5), the bag-shaped outer covering material 3 in which the core material 5 in which the resin member 6 is fitted is housed in (3) is placed under reduced pressure, The opening part of the to-be-processed material 3 is closely_contact | adhered by the heat welding of the heat welding layers which oppose (process of said (4)). Thereafter, the outside of the jacket material 3 is returned to the atmospheric pressure condition, heat and pressure are applied to the region corresponding to the resin member 6 from the outside of the jacket material 3, and the resin member 6 is bonded to the heat welding layer through the surface. 10A of vacuum heat insulating materials are obtained by carrying out heat welding (process of (5)).
 ここで、上記の説明において、(5)の工程は、(4)の工程後に行われている。しかしながら、(5)の工程は(4)の工程の前に行われてもよく、同時に行われてもよい。通常、(4)の工程、(5)の工程の順に行われる。 Here, in the above description, the step (5) is performed after the step (4). However, the step (5) may be performed before the step (4) or may be performed simultaneously. Usually, the steps (4) and (5) are performed in this order.
 上記(4)の工程を実行するための装置としては、板状の芯材を袋状の外被材に挿入して製造される真空断熱材において、通常使用される装置を、特に制限なく使用できる。また、製造時の減圧条件および熱溶着の条件についても、通常、このような装置を用いて上記のような真空断熱材を製造する場合と同様の条件を適用できる。 As a device for executing the step (4), a normally used device is used without particular limitation in a vacuum heat insulating material manufactured by inserting a plate-shaped core material into a bag-shaped jacket material. it can. In addition, the same conditions as in the case of producing the vacuum heat insulating material as described above using such an apparatus can be applied to the decompression conditions and the heat welding conditions during the production.
 なお、真空断熱材10Aにおいて、外被材3のシール領域Yの内側における外被材3内部の真空度は、優れた断熱性能が得られ、また真空断熱材の寿命が長くなる点から、上記のとおり1×10Pa以下が好ましく、1×10Pa以下がより好ましい。 Note that, in the vacuum heat insulating material 10A, the degree of vacuum inside the jacket material 3 inside the seal region Y of the jacket material 3 is such that excellent heat insulating performance is obtained, and the life of the vacuum heat insulating material is increased. As described above, 1 × 10 3 Pa or less is preferable, and 1 × 10 2 Pa or less is more preferable.
 製造条件は、好ましくは上記真空度が達成できる条件に設定される。また、外被材3が有する熱溶着層を構成する材料は上記のとおりであり、上記熱溶着の際には該材料に合わせて好適な溶着温度を設定する。さらに、通常1~5kg/cm程度の加圧条件下で熱溶着が行われる。 The manufacturing conditions are preferably set to conditions that can achieve the above degree of vacuum. Moreover, the material which comprises the heat welding layer which the jacket material 3 has is as above, In the case of the said heat welding, suitable welding temperature is set according to this material. Further, heat welding is usually performed under a pressurized condition of about 1 to 5 kg / cm 2 .
 樹脂部材6に相当する領域に外被材3の外側から熱と圧力を加えて、樹脂部材6をその表面を介して熱溶着層と熱溶着する際の温度条件は、外被材3が有する熱溶着層を構成する材料および樹脂部材6を構成する樹脂の種類に合わせて好適な溶着温度を設定する。また、圧力条件としては、上記、熱溶着層同士を熱溶着させる際の加圧条件と同様の加圧条件が適用できる。加熱時間は1~15秒間程度が好ましい。また、熱溶着を安定させる観点より、加熱後に加圧を保持する冷却時間を設けることが好ましい。冷却時間は1~15秒間程度が好ましい。 The jacket material 3 has a temperature condition when heat and pressure are applied to the region corresponding to the resin member 6 from the outside of the jacket material 3 and the resin member 6 is thermally welded to the heat-welded layer through the surface. A suitable welding temperature is set according to the material constituting the thermal welding layer and the type of resin constituting the resin member 6. Moreover, as a pressure condition, the pressurization condition similar to the pressurization condition at the time of carrying out the heat welding of the said heat welding layers can be applied. The heating time is preferably about 1 to 15 seconds. Moreover, it is preferable to provide the cooling time which hold | maintains pressurization after a heating from a viewpoint of stabilizing heat welding. The cooling time is preferably about 1 to 15 seconds.
 以上、図1A、B~図8A、Bに示す真空断熱材10A~10Eを例にして本発明の実施の形態の真空断熱材を説明したが、本発明の真空断熱材においては、本発明の趣旨に反しない限度において各構成部材の形状や材料等の設計を適宜変更できる。また、必要に応じて上に説明した以外の構成部材を設けてもよい。例えば、本発明の真空断熱材を発泡系や繊維系等他の断熱材や、軟質ポリウレタンフォーム等の弾性部材と組み合わせた複合部材とすることができる。 The vacuum heat insulating material according to the embodiment of the present invention has been described above by taking the vacuum heat insulating materials 10A to 10E shown in FIGS. 1A, B to 8A and B as examples. The design of the shape, material, and the like of each component can be changed as appropriate without departing from the spirit. Moreover, you may provide structural members other than having demonstrated above as needed. For example, the vacuum heat insulating material of the present invention can be a composite member that is combined with other heat insulating materials such as foamed or fiber-based materials and elastic members such as flexible polyurethane foam.
 また、図9に示す模式図によって真空断熱材10Aを例に本発明の実施の形態の真空断熱材の製造方法を説明したが、本発明の製造方法においては、本発明の趣旨に反しない限度において、各工程における条件や工程の順番等を適宜変更できる。また、必要に応じて上に説明した以外の工程を設けてもよい。 Moreover, although the manufacturing method of the vacuum heat insulating material of embodiment of this invention was demonstrated to the example of vacuum heat insulating material 10A with the schematic diagram shown in FIG. 9, in the manufacturing method of this invention, the limit which is not contrary to the meaning of this invention The conditions in each step, the order of steps, etc. can be changed as appropriate. Further, steps other than those described above may be provided as necessary.
 以下、本発明の実施例を説明するが、本発明はこれらの実施例に限定されない。
[例1]
 図1A、Bに示す真空断熱材10Aと同様の構成の真空断熱材A1を、図9に示す製造方法により製造した。
Examples of the present invention will be described below, but the present invention is not limited to these examples.
[Example 1]
A vacuum heat insulating material A1 having the same configuration as the vacuum heat insulating material 10A shown in FIGS. 1A and 1B was manufactured by the manufacturing method shown in FIG.
(1)板状の芯材5の作製
 ヒュームドシリカ(商品名「アエロジル300」、比表面積300m/g、日本アエロジル株式会社製。以下、同じ。)40質量部に対して、けい酸ソーダ3号(AGCエスアイテック株式会社製)の3.4質量部(固形分換算にて1.3質量部)をイオン交換水22.9質量部で希釈したバインダ液をブレンダによって混合した。次いで、ヒュームドシリカ40質量部と、多孔質シリカとしてM.S.GEL(AGCエスアイテック株式会社製、平均粒径70μm)10質量部を加え、輻射抑制材としてグラファイト(商品名「CP.B」、日本黒鉛工業株式会社製)を10重量部、さらに無機繊維としてシリカマグネシアカルシア繊維(商品名「スーパーウール」、D30:227μm、D90:902μm、新日本サーマルセラミックス株式会社製)10質量部を追加して、ブレンダにより混合して断熱材材料を得た。
(1) Production of plate-like core material 5 Fumed silica (trade name “Aerosil 300”, specific surface area 300 m 2 / g, manufactured by Nippon Aerosil Co., Ltd., the same shall apply hereinafter) 40 parts by mass of sodium silicate A binder solution obtained by diluting 3.4 parts by mass (1.3 parts by mass in terms of solid content) of No. 3 (manufactured by AGC S-Tech Co., Ltd.) with 22.9 parts by mass of ion-exchanged water was mixed with a blender. Next, 40 parts by mass of fumed silica and M. as porous silica. S. 10 parts by weight of GEL (manufactured by AGC S-Tech Co., Ltd., average particle size 70 μm), 10 parts by weight of graphite (trade name “CP.B”, manufactured by Nippon Graphite Industry Co., Ltd.) as a radiation suppressing material, and further as inorganic fibers 10 parts by mass of silica magnesia calcia fiber (trade name “Super Wool”, D30: 227 μm, D90: 902 μm, manufactured by Shin Nippon Thermal Ceramics Co., Ltd.) was added and mixed with a blender to obtain a heat insulating material.
 得られた断熱材材料を金型に投入し、圧力をかけて縦150mm×横150mm×厚み5mmの平板状に成形した後、200℃で1時間加熱して芯材を作製した。 The obtained heat insulating material was put into a mold, pressed to form a flat plate of 150 mm long × 150 mm wide × 5 mm thick, and then heated at 200 ° C. for 1 hour to produce a core material.
(2)貫通孔4の形成
 上記(1)で得られた芯材5の中央部にカッターを用いて、50mm×50mmの貫通孔4を形成した。
(2) Formation of the through-hole 4 The through-hole 4 of 50 mm x 50 mm was formed in the center part of the core material 5 obtained by said (1) using the cutter.
(3)置換材7(樹脂部材6)の嵌め込み
 フィラーとしてのガラスバルーン(商品名「グラスバブルズiM16K」、粒子径D50;20μm、スリーエムジャパン株式会社製)34gと低密度ポリエチレン(融点120℃)100gからなるコンパウンド樹脂(気孔率32%、通気性0cm/cmsecの独立気泡性樹脂)を50mm×50mm×厚み5mmのシート状に加工した樹脂シートを置換材7(樹脂部材6)として準備し、上記(2)で得られた貫通孔4を有する芯材5の貫通孔4内に嵌め込んだ。
(3) Insertion of replacement material 7 (resin member 6) Glass balloon as a filler (trade name “Glass Bubbles iM16K”, particle size D50; 20 μm, manufactured by 3M Japan Ltd.) 34 g and low density polyethylene (melting point 120 ° C.) A resin sheet obtained by processing 100 g of a compound resin (a closed cell resin having a porosity of 32% and a gas permeability of 0 cm 3 / cm 2 sec) into a sheet of 50 mm × 50 mm × thickness 5 mm is used as the replacement material 7 (resin member 6). Prepared and fitted into the through hole 4 of the core member 5 having the through hole 4 obtained in (2) above.
(4)減圧密封
 市販のガスバリアフィルム(ADY-134、エーディーワイ株式会社製、熱溶着層/金属層/表面保護層の3層構造)の2枚を熱溶着層が対向するように重ね合わせ、その三方のみをヒートシールした袋状の外被材3の内部に上記(3)で得られた樹脂部材6が嵌め込まれた芯材5を入れ、ヒートシール機能付きの真空チャンバー内に設置した。その後、チャンバー内を3Paまで減圧し、その状態で袋状の外被材3の開口部を熱溶着層同士の熱溶着により密着して密封した。その後、外被材3の外部を大気圧条件に戻して、芯材5に対応する部分が縦150mm×横150mm×厚み5mmサイズの真空断熱材前駆体を得た。
(4) Depressurization sealing Two commercially available gas barrier films (ADY-134, manufactured by ADWY Co., Ltd., three-layer structure of heat welding layer / metal layer / surface protective layer) are superposed so that the heat welding layers face each other, The core material 5 in which the resin member 6 obtained in the above (3) was fitted was placed in the bag-shaped outer cover material 3 in which only three sides were heat-sealed, and placed in a vacuum chamber with a heat-sealing function. Thereafter, the pressure in the chamber was reduced to 3 Pa, and in this state, the opening of the bag-shaped outer covering material 3 was adhered and sealed by thermal welding between the thermal welding layers. Thereafter, the outside of the jacket material 3 was returned to atmospheric pressure conditions to obtain a vacuum heat insulating material precursor in which the portion corresponding to the core material 5 was 150 mm long, 150 mm wide, and 5 mm thick.
(5)置換材7(樹脂部材6)相当部の加熱加圧による熱溶着
 上記で得られた真空断熱材前駆体の置換材7(樹脂部材6)相当部を外被材3の両側から加圧条件下(2kg/cm)において、150℃で10秒間加熱した。これにより、置換材7(樹脂部材6)がその両表面を介して外被材3の熱溶着層と熱溶着された、真空断熱材A1を得た。
(5) Thermal welding by heating and pressurizing the corresponding portion of the replacement material 7 (resin member 6) Add the corresponding portion of the replacement material 7 (resin member 6) of the vacuum heat insulating material precursor obtained above from both sides of the jacket material 3. Heating was performed at 150 ° C. for 10 seconds under pressure (2 kg / cm 2 ). Thereby, the vacuum heat insulating material A1 by which the substitute material 7 (resin member 6) was heat-welded with the heat welding layer of the jacket material 3 via the both surfaces was obtained.
[例2]
 置換材7(樹脂部材6)として上記独立気泡性樹脂の樹脂シートのかわりに低密度ポリエチレンの樹脂シートを50mm×50mm×厚み5mmに加工したものを用いた点以外は例1と同様の真空断熱材A2を得た。
[Example 2]
The vacuum insulation similar to Example 1 except that instead of the closed cell resin resin sheet, a low density polyethylene resin sheet processed to 50 mm × 50 mm × thickness 5 mm was used as the replacement material 7 (resin member 6). Material A2 was obtained.
[例3]
 芯材5としてエアロゲルブランケット(商品名「PyrogelXT」、Aspen Aerogels,Inc.製)を縦150mm×横150mm×厚み5mmにカッターで切断した後、200℃で1時間加熱したものを用いた点以外は例1と同様の真空断熱材B1を得た。
[Example 3]
Except that the airgel blanket (trade name “PyrogelXT”, manufactured by Aspen Aerogels, Inc.) was cut as a core material 5 with a cutter into a length of 150 mm × width of 150 mm × thickness of 5 mm and then heated at 200 ° C. for 1 hour. A vacuum heat insulating material B1 similar to Example 1 was obtained.
[例4]
 芯材5としてエアロゲルブランケット(商品名「PyrogelXT」、Aspen Aerogels,Inc.製)を縦150mm×横150mm×厚み5mmにカッターで切断した後、200℃で1時間加熱したものを用いた点以外は例2と同様の真空断熱材B2を得た。
[Example 4]
Except that the airgel blanket (trade name “PyrogelXT”, manufactured by Aspen Aerogels, Inc.) was cut as a core material 5 with a cutter into a length of 150 mm × width of 150 mm × thickness of 5 mm and then heated at 200 ° C. for 1 hour. A vacuum heat insulating material B2 similar to Example 2 was obtained.
(穴開け試験)
 上記のようにして得られた真空断熱材A1、A2、B1およびB2の置換材7(樹脂部材6)に相当する部分の略中央に、それぞれ外被材の一方の表層面から他方の表層面まで貫通するように釘を打ち込んで穴を開けたが、真空断熱材A1、A2、B1およびB2の芯材5に対応する部分の減圧密封状態にはいずれも変化はなかった。
(Drilling test)
In the center of the portion corresponding to the replacement material 7 (resin member 6) of the vacuum heat insulating materials A1, A2, B1 and B2 obtained as described above, from one surface layer surface to the other surface layer surface of the jacket material, respectively. A nail was driven so as to penetrate the hole, and a hole was made, but there was no change in the reduced-pressure sealed state of the portion corresponding to the core material 5 of the vacuum heat insulating materials A1, A2, B1, and B2.
(熱伝導率測定)
 上記のようにして得られた真空断熱材A1とA2の熱伝導率を測定したところ、A1と比較してA2の熱伝導率は高い値を示していた。真空断熱材A1とA2では穴開け加工性において差がないものの断熱性については真空断熱材A1の方が優れることがわかる。
(Thermal conductivity measurement)
When the thermal conductivity of the vacuum heat insulating materials A1 and A2 obtained as described above was measured, the thermal conductivity of A2 was higher than that of A1. It can be seen that although the vacuum heat insulating materials A1 and A2 have no difference in drilling workability, the vacuum heat insulating material A1 is superior in terms of heat insulating properties.
 また、上記のようにして得られた真空断熱材B1とB2の熱伝導率を測定したところ、B1と比較してB2の熱伝導率は高い値を示していた。真空断熱材B1とB2では穴開け加工性において差がないものの断熱性については真空断熱材B1の方が優れることがわかる。 Further, when the thermal conductivity of the vacuum heat insulating materials B1 and B2 obtained as described above was measured, the thermal conductivity of B2 was higher than that of B1. It can be seen that although the vacuum heat insulating materials B1 and B2 have no difference in drilling workability, the vacuum heat insulating material B1 is superior in heat insulating properties.
 本発明の真空断熱材は、省エネルギー化が求められる、保温や保冷、断熱が必要な箇所に適用できる。具体的には、例えば住宅およびビルの壁・屋根・床・配管、太陽光・熱設備等の住設分野;恒温槽、湯沸かし器、温水タンク、炊飯器、冷蔵庫、冷凍庫、保冷庫・保冷タンク、液化ガスタンク、自動販売機、クーラーボックス、保冷カバー、防寒服等の保温・保冷分野;ノートパソコン、液晶プロジェクター、コピー機、バッテリー、燃料電池等の電気・電子機器、半導体製造装置等の産業機器分野;自動車、バス、トラック、保冷車、列車、貨物車、船舶等の移動体分野;プラントの配管等に適用が可能である。 The vacuum heat insulating material of the present invention can be applied to places where energy saving is required and where heat insulation, cold insulation and heat insulation are required. Specifically, for example, residential and building walls / roofs / floors / piping, solar / heat facilities, etc .; constant temperature baths, water heaters, hot water tanks, rice cookers, refrigerators, freezers, cold storage / cold storage tanks, Refrigerated gas tanks, vending machines, cooler boxes, cold covers, heat insulation and other cold insulation fields; notebook and liquid crystal projectors, photocopiers, batteries, fuel cells and other electrical and electronic equipment, and industrial equipment fields such as semiconductor manufacturing equipment Mobile fields such as automobiles, buses, trucks, cold trucks, trains, freight cars, ships, etc .; can be applied to plant piping, etc.
 また、本発明の真空断熱材(図1A、図3C等)に穴を施して施工すると真空断熱材の外周が固定されずに取り付けられるので、被断熱面の寸法が変化しても真空断熱材に変形応力が伝達しにくい。また寸法変化が大きい用途においては特に有用である。さらに軟質ポリウレタンフォーム等の弾性部材を被断熱部材と本発明の真空断熱材との間に設置するとより高い断熱効果が得られる。 Moreover, since the outer periphery of the vacuum heat insulating material is mounted without being fixed when the vacuum heat insulating material of the present invention (FIG. 1A, FIG. 3C, etc.) is provided with a hole, the vacuum heat insulating material is changed even if the dimension of the surface to be insulated changes. Deformation stress is difficult to be transmitted. Further, it is particularly useful in applications where dimensional changes are large. Furthermore, if an elastic member such as flexible polyurethane foam is installed between the member to be insulated and the vacuum heat insulating material of the present invention, a higher heat insulating effect can be obtained.
 10A,10B,10C,10D,10E,10F…真空断熱材
1…熱溶着層、2…フィルム、3…外被材、4…貫通孔、5…芯材、6…樹脂部材、7…置換材、8…異種材料部材、9…穴、Y…シール領域。
10A, 10B, 10C, 10D, 10E, 10F ... Vacuum heat insulating material 1 ... Thermal welding layer, 2 ... Film, 3 ... Jacket material, 4 ... Through hole, 5 ... Core material, 6 ... Resin member, 7 ... Replacement material 8, dissimilar material member, 9 ... hole, Y ... seal region.

Claims (11)

  1.  片面に熱溶着層を有する気密性のフィルムを前記熱溶着層同士が対向するように配置してなる外被材と、
     板厚方向に貫通する欠落部を有する板状の芯材と、
     前記欠落部を閉塞するように前記欠落部に配設される、前記芯材の主面に略平行する一対の表面を有する気密性の樹脂部材を有する、置換材と、を備え、
     前記外被材の内部に前記置換材が配設された芯材が収納されており、前記芯材の外周よりも外側に位置し前記芯材の周囲全体に亘る領域が前記熱溶着層同士の熱溶着により密着された、前記外被材の内部が減圧状態である真空断熱材であって、前記樹脂部材は気密性が保持されるように前記外被材と接合された真空断熱材。
    A jacket material formed by arranging an airtight film having a heat-welded layer on one side so that the heat-welded layers face each other;
    A plate-like core material having a missing portion penetrating in the thickness direction;
    A replacement material having an airtight resin member having a pair of surfaces substantially parallel to the main surface of the core material, which is disposed in the missing portion so as to close the missing portion,
    A core material in which the replacement material is disposed is housed in the outer jacket material, and an area extending outside the outer periphery of the core material and covering the entire periphery of the core material is between the heat-welded layers. A vacuum heat insulating material that is in close contact by heat welding and in which the inside of the outer cover material is in a reduced pressure state, wherein the resin member is bonded to the outer cover material so that airtightness is maintained.
  2.  前記樹脂部材の少なくとも前記一対の表面近傍は前記熱溶着層の構成材料と熱溶着可能な樹脂で構成され、前記樹脂部材は前記一対の表面において前記外被材の前記熱溶着層と熱溶着された請求項1記載の真空断熱材。 At least the vicinity of the pair of surfaces of the resin member is made of a heat-weldable resin with a constituent material of the heat-welding layer, and the resin member is heat-welded with the heat-welding layer of the jacket material on the pair of surfaces. The vacuum heat insulating material according to claim 1.
  3.  前記芯材の厚みに対する前記置換材の厚みの比は、0.8~1.2である請求項1または2に記載の真空断熱材。 The vacuum heat insulating material according to claim 1 or 2, wherein the ratio of the thickness of the replacement material to the thickness of the core material is 0.8 to 1.2.
  4.  前記樹脂部材は気孔率が10~98%の独立気泡性の樹脂部材である請求項1~3に記載の真空断熱材。 4. The vacuum heat insulating material according to claim 1, wherein the resin member is a closed cell resin member having a porosity of 10 to 98%.
  5.  前記置換材は、前記樹脂部材のみで構成される請求項1~4記載のいずれか1項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 4, wherein the replacement material is composed of only the resin member.
  6.  前記樹脂部材は前記表面に対して直交する方向に貫通する貫通孔を有し、前記置換材は、前記樹脂部材の貫通孔に嵌合するように配設される前記樹脂部材の樹脂とは異なる材料からなる異種材料部材をさらに有する請求項1~4記載のいずれか1項に記載の真空断熱材。 The resin member has a through-hole penetrating in a direction orthogonal to the surface, and the replacement material is different from the resin of the resin member disposed so as to be fitted into the through-hole of the resin member. The vacuum heat insulating material according to any one of claims 1 to 4, further comprising a dissimilar material member made of a material.
  7.  前記異種材料部材を構成する材料が、前記樹脂部材の樹脂とは異なる樹脂、ゴム、木、紙、繊維集積材、またはセラミックスである請求項6記載の真空断熱材。 The vacuum heat insulating material according to claim 6, wherein the material constituting the dissimilar material member is a resin, rubber, wood, paper, fiber integrated material, or ceramics different from the resin of the resin member.
  8.  前記置換材の周縁部を除く領域に穴加工が施された請求項1~7のいずれか1項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 7, wherein a hole is formed in a region excluding a peripheral edge portion of the replacement material.
  9.  前記穴加工された穴は、配線および/または配管を通す、前記真空断熱材を被断熱材に固定する固定部材を配する、および前記真空断熱材を被断熱材の突起部に掛ける、から選ばれる用途に用いられる請求項8記載の真空断熱材。 The hole processed hole is selected from passing wiring and / or piping, arranging a fixing member for fixing the vacuum heat insulating material to the heat insulating material, and hanging the vacuum heat insulating material on the protrusion of the heat insulating material. The vacuum heat insulating material of Claim 8 used for the use used.
  10.  板状の芯材に、板厚方向に貫通する欠落部を形成し、
     前記芯材の主面に略平行する一対の表面を有する気密性の樹脂部材を有する置換材を、前記欠落部を閉塞するように前記欠落部に配設し、
     片面に熱溶着層を有する気密性のフィルムを前記熱溶着層同士が対向するように配置してなる外被材の内部に、前記置換材が配設された芯材を収納し、前記外被材の内部を減圧状態とするとともに前記芯材の外周よりも外側に位置し前記芯材の周囲全体に亘る領域を前記熱溶着層同士の熱溶着により密着し、さらに、前記樹脂部材を前記一対の表面において前記外被材の前記熱溶着層と接合する真空断熱材の製造方法。
    Form a missing part that penetrates in the plate thickness direction in the plate-shaped core material,
    A replacement material having a gas-tight resin member having a pair of surfaces substantially parallel to the main surface of the core material is disposed in the missing portion so as to close the missing portion,
    A core material in which the replacement material is disposed is housed in an outer cover material in which an airtight film having a heat-welded layer on one side is disposed so that the heat-welded layers face each other. The inside of the material is in a reduced pressure state, the region located outside the outer periphery of the core material and covering the entire periphery of the core material is adhered by heat welding of the heat welding layers, and the resin member is attached to the pair The manufacturing method of the vacuum heat insulating material joined to the said heat welding layer of the said jacket | cover material in the surface.
  11.  前記樹脂部材と前記外被材の前記熱溶着層との接合は、前記樹脂部材の前記一対の表面に対応する前記外被材の領域を前記外被材の外側から加熱圧着して熱溶着することで行う請求項10記載の真空断熱材の製造方法。 The bonding between the resin member and the thermal welding layer of the jacket material is performed by heat-bonding the outer jacket material region corresponding to the pair of surfaces of the resin member from outside the jacket material. The manufacturing method of the vacuum heat insulating material of Claim 10 performed by this.
PCT/JP2015/082834 2014-11-26 2015-11-24 Vacuum thermal insulating material and manufacturing method therefor WO2016084763A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016561569A JPWO2016084763A1 (en) 2014-11-26 2015-11-24 Vacuum insulation material and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-238735 2014-11-26
JP2014238735 2014-11-26
JP2015031807 2015-02-20
JP2015-031807 2015-02-20

Publications (1)

Publication Number Publication Date
WO2016084763A1 true WO2016084763A1 (en) 2016-06-02

Family

ID=56074323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082834 WO2016084763A1 (en) 2014-11-26 2015-11-24 Vacuum thermal insulating material and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JPWO2016084763A1 (en)
WO (1) WO2016084763A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026101A1 (en) * 2015-08-10 2017-02-16 川崎重工業株式会社 Heat insulation structure
WO2018029997A1 (en) * 2016-08-09 2018-02-15 パナソニックIpマネジメント株式会社 Heat insulating sheet and method for manufacturing same
WO2018100897A1 (en) * 2016-11-30 2018-06-07 パナソニックIpマネジメント株式会社 Thermally-insulating sheet and method of manufacturing same
WO2018194001A1 (en) * 2017-04-20 2018-10-25 Agc株式会社 Heat insulating structure
CN109477606A (en) * 2016-07-11 2019-03-15 三菱瓦斯化学株式会社 Heat-insulating material and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08312880A (en) * 1995-05-19 1996-11-26 Mitsubishi Chem Corp Vacuum heat insulating panel and its manufacture
JPH0972488A (en) * 1995-08-31 1997-03-18 Sekisui Plastics Co Ltd Vacuum heat insulation body and manufacture thereof
JP2006226298A (en) * 2005-02-15 2006-08-31 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and method for manufacturing the same
JP2007016834A (en) * 2005-07-06 2007-01-25 Matsushita Electric Ind Co Ltd Method of bending and cutting vacuum heat insulating material
JP2014503054A (en) * 2010-12-24 2014-02-06 エルジー・ハウシス・リミテッド CORE MATERIAL FOR VACUUM INSULATION MATERIAL COMPRISING PHENOL RESIN CURED FOAM, VACUUM INSULATION MATERIAL USING THE SAME AND PROCESS FOR PRODUCING THE SAME

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08312880A (en) * 1995-05-19 1996-11-26 Mitsubishi Chem Corp Vacuum heat insulating panel and its manufacture
JPH0972488A (en) * 1995-08-31 1997-03-18 Sekisui Plastics Co Ltd Vacuum heat insulation body and manufacture thereof
JP2006226298A (en) * 2005-02-15 2006-08-31 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and method for manufacturing the same
JP2007016834A (en) * 2005-07-06 2007-01-25 Matsushita Electric Ind Co Ltd Method of bending and cutting vacuum heat insulating material
JP2014503054A (en) * 2010-12-24 2014-02-06 エルジー・ハウシス・リミテッド CORE MATERIAL FOR VACUUM INSULATION MATERIAL COMPRISING PHENOL RESIN CURED FOAM, VACUUM INSULATION MATERIAL USING THE SAME AND PROCESS FOR PRODUCING THE SAME

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10378696B2 (en) 2015-08-10 2019-08-13 Kawasaki Jukogyo Kabushiki Kaisha Thermal insulating structure
WO2017026101A1 (en) * 2015-08-10 2017-02-16 川崎重工業株式会社 Heat insulation structure
JP7192497B2 (en) 2016-07-11 2022-12-20 三菱瓦斯化学株式会社 Insulating material and its manufacturing method
CN109477606A (en) * 2016-07-11 2019-03-15 三菱瓦斯化学株式会社 Heat-insulating material and its manufacturing method
JPWO2018012402A1 (en) * 2016-07-11 2019-05-09 三菱瓦斯化学株式会社 Thermal insulation material and method of manufacturing the same
US10948120B2 (en) 2016-08-09 2021-03-16 Panasonic Intellectual Property Management Co., Ltd. Heat insulating sheet
WO2018029997A1 (en) * 2016-08-09 2018-02-15 パナソニックIpマネジメント株式会社 Heat insulating sheet and method for manufacturing same
JP7050230B2 (en) 2016-08-09 2022-04-08 パナソニックIpマネジメント株式会社 Insulation sheet and its manufacturing method
CN109642695A (en) * 2016-08-09 2019-04-16 松下知识产权经营株式会社 Heat shield and its manufacturing method
JPWO2018029997A1 (en) * 2016-08-09 2019-06-20 パナソニックIpマネジメント株式会社 Thermal insulation sheet and method of manufacturing the same
JPWO2018100897A1 (en) * 2016-11-30 2019-10-17 パナソニックIpマネジメント株式会社 Insulation sheet and manufacturing method thereof
WO2018100897A1 (en) * 2016-11-30 2018-06-07 パナソニックIpマネジメント株式会社 Thermally-insulating sheet and method of manufacturing same
WO2018194001A1 (en) * 2017-04-20 2018-10-25 Agc株式会社 Heat insulating structure

Also Published As

Publication number Publication date
JPWO2016084763A1 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
WO2016084763A1 (en) Vacuum thermal insulating material and manufacturing method therefor
TWI457233B (en) Groove type vacuum heat insulation material
US10603865B2 (en) Insulating member and its attaching method
WO2018110055A1 (en) Heat insulation sheet, method for producing same, and secondary cell in which same is used
US20090031659A1 (en) Evacuated Thermal Insulation Panel
JP5261616B2 (en) Gas adsorption device and vacuum heat insulating material provided with the same
JP6214648B2 (en) Vacuum insulation material with improved rupture failure and manufacturing method thereof
JP2017172724A (en) Heat insulation panel and heat insulation structure
TWI599737B (en) Vacuum thermal insulator,thermal insulating box,and method for manufacturing vacuum thermal insulator
JP2014228135A (en) Method of manufacturing vacuum heat insulation material, and the vacuum heat insulation material
WO2016190176A1 (en) Layered heat insulator having through hole, and heat insulating structure
JP6617540B2 (en) Insulating member and method of attaching the same
JP2008008431A (en) Composite heat insulating material comprising vacuum heat insulating material and expanded polystyrene, and its manufacturing method
JP2007138976A (en) Vacuum heat insulating material and its manufacturing method
JP2011089740A (en) Bag body and vacuum heat insulating material
ES2250841T3 (en) MANUFACTURING PROCEDURE OF A COMPOSITE STRUCTURE PANEL WITH HIGH RIGIDITY PARAMENT, VERY LITTLE THICKNESS AND INTEGRATING A LOW EMPTY SUPER INSULATION.
JP2001128860A (en) Vacuum thermally insulating container
EP3181980B1 (en) Method for manufacturing vacuum heat insulator and vacuum heat insulator
JP2016064845A (en) Bag body and vacuum heat insulation material using the bag body
JP2017116097A (en) Method for manufacturing vacuum heat insulation material and vacuum heat insulation material
JP2010024673A (en) Composite heat-insulating material
WO2023190569A1 (en) Heat insulating sheet
JP2010139006A (en) Vacuum heat insulating material
JP2017137955A (en) Jacket material for vacuum heat insulation material and vacuum heat insulation material using the same
JP2008208845A (en) Composite heat insulating material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561569

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863723

Country of ref document: EP

Kind code of ref document: A1