JP6617540B2 - Insulating member and method of attaching the same - Google Patents

Insulating member and method of attaching the same Download PDF

Info

Publication number
JP6617540B2
JP6617540B2 JP2015238058A JP2015238058A JP6617540B2 JP 6617540 B2 JP6617540 B2 JP 6617540B2 JP 2015238058 A JP2015238058 A JP 2015238058A JP 2015238058 A JP2015238058 A JP 2015238058A JP 6617540 B2 JP6617540 B2 JP 6617540B2
Authority
JP
Japan
Prior art keywords
heat insulating
foam
elastic body
insulating material
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015238058A
Other languages
Japanese (ja)
Other versions
JP2016121804A (en
Inventor
伸広 篠原
伸広 篠原
裕也 濱田
裕也 濱田
弘法 佐藤
弘法 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to US14/964,725 priority Critical patent/US10603865B2/en
Priority to EP15003609.3A priority patent/EP3037261B1/en
Priority to CN201510982778.1A priority patent/CN105736904A/en
Publication of JP2016121804A publication Critical patent/JP2016121804A/en
Application granted granted Critical
Publication of JP6617540B2 publication Critical patent/JP6617540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Description

本発明は、断熱部材およびその取付方法に関する。   The present invention relates to a heat insulating member and a mounting method thereof.

住宅、ビル、車輛、保温保冷容器、冷蔵庫、給湯器等においては、断熱によってエネルギー消費を低減するために真空断熱材が使用される。真空断熱材としては、例えば、粉体や繊維で構成される芯材が、ガスバリア性フィルムで構成される外袋内に減圧封入されたものが知られている(例えば、特許文献1)。   In a house, a building, a vehicle, a heat insulation container, a refrigerator, a water heater, and the like, a vacuum heat insulating material is used to reduce energy consumption by heat insulation. As a vacuum heat insulating material, for example, a core material composed of powder or fiber is known that is sealed under reduced pressure in an outer bag composed of a gas barrier film (for example, Patent Document 1).

真空断熱材は、通常は板状であり、両面粘着テープ等を用いて断熱対象物の施工面に貼り付けられる。断熱対象物の施工面が湾曲している場合は、真空断熱材は該施工面に合わせて湾曲されつつ貼り付けられる。   The vacuum heat insulating material is usually plate-shaped, and is affixed to the construction surface of the heat insulating object using a double-sided adhesive tape or the like. When the construction surface of the object to be insulated is curved, the vacuum heat insulating material is attached while being curved according to the construction surface.

特開2004−239300号公報JP 2004-239300 A

しかし、断熱対象物の施工面に真空断熱材を設ける方法では、断熱効果が充分に得られないことがある。特に、真空断熱材を湾曲させることで表面に皺ができるなど、真空断熱材表面に凹凸がある場合、真空断熱材におけるガスバリア性フィルムの端部が耳折りされている場合等において、充分な断熱効果を得ることが難しい。また、厚みのある両面粘着テープであっても充分な断熱効果を得ることが難しい。   However, in the method of providing a vacuum heat insulating material on the construction surface of the heat insulating object, the heat insulating effect may not be sufficiently obtained. In particular, when the surface of the vacuum heat insulating material is uneven, such as when the surface of the vacuum heat insulating material is curved by bending the vacuum heat insulating material, or when the end of the gas barrier film in the vacuum heat insulating material is folded over, etc. It is difficult to obtain an effect. Moreover, even if it is a thick double-sided adhesive tape, it is difficult to obtain sufficient heat insulation effect.

本発明は、高い断熱効果が安定して得られる断熱部材およびその取付方法を提供することを目的とする。   An object of this invention is to provide the heat insulation member from which the high heat insulation effect is obtained stably, and its attachment method.

本発明は、以下の構成を有する。
[1]板状の真空断熱材と弾性体とを備え、前記真空断熱材は、芯材と前記芯材を覆うガスバリア性フィルムとを備え、前記芯材が前記ガスバリア性フィルムで形成された外袋内に減圧封入されており、前記弾性体は厚さが3mm以上、伸び率が10%以上、アスカーF硬度が10以上、アスカーC硬度が30以下であり、該弾性体が前記真空断熱材の施工面の少なくとも周縁に設けられた断熱部材
]前記弾性体の材質が、合成樹脂、天然ゴムまたは合成ゴムである、[1]の断熱部材。
]前記弾性体が、弾性発泡体である、[1]または2]の断熱部材。
]前記弾性発泡体が、軟質ポリウレタンフォーム、ポリエチレンフォーム、ポリプロピレンフォーム、メラミンフォーム、ポリイミド発泡体、天然ゴム発泡体および合成ゴム発泡体からなる群から選ばれる1種以上である、[]の断熱部材。
]前記弾性発泡体が、吸音性と吸水性の少なくとも一方を有する、[]または[]の断熱部材。
]前記弾性発泡体が、100℃以上の耐熱温度を有する、[]〜[]のいずれかの断熱部材。
]前記[1]〜[]のいずれかの断熱部材を断熱対象物に貼り付ける、断熱部材の取付方法。
]前記[1]〜[]のいずれかの断熱部材を断熱対象物に組み付ける方法であって、前記真空断熱材と前記弾性体とを別々に用意し、断熱対象物に前記弾性体を介して前記真空断熱材を貼り付ける、断熱部材の取付方法。
The present invention has the following configuration.
[1] A plate-like vacuum heat insulating material and an elastic body, wherein the vacuum heat insulating material includes a core material and a gas barrier film covering the core material, and the core material is formed of the gas barrier film. The bag is sealed under reduced pressure, and the elastic body has a thickness of 3 mm or more, an elongation of 10% or more, an Asker F hardness of 10 or more, an Asker C hardness of 30 or less, and the elastic body is the vacuum heat insulating material. A heat insulating member provided at least on the periphery of the construction surface .
[ 2 ] The heat insulating member according to [1 ], wherein the elastic body is made of synthetic resin, natural rubber, or synthetic rubber.
[ 3 ] The heat insulating member according to [1] or [ 2], wherein the elastic body is an elastic foam.
[ 4 ] The elastic foam is at least one selected from the group consisting of flexible polyurethane foam, polyethylene foam, polypropylene foam, melamine foam, polyimide foam, natural rubber foam, and synthetic rubber foam. [ 3 ] Insulation member.
[ 5 ] The heat insulating member according to [ 3 ] or [ 4 ], wherein the elastic foam has at least one of sound absorption and water absorption.
[ 6 ] The heat insulating member according to any one of [ 3 ] to [ 5 ], wherein the elastic foam has a heat resistant temperature of 100 ° C or higher.
[ 7 ] A method for attaching a heat insulating member, wherein the heat insulating member according to any one of [1] to [ 6 ] is attached to a heat insulating object.
[ 8 ] A method of assembling the heat insulating member of any one of [1] to [ 6 ] to an object to be insulated, wherein the vacuum heat insulating material and the elastic body are separately prepared, and the elastic body is attached to the heat insulating object. A method for attaching a heat insulating member, wherein the vacuum heat insulating material is pasted through a heat sink.

本発明の断熱部材は、高い断熱効果が安定して得られる。
また、本発明の断熱部材の取付方法によれば、高い断熱効果が安定して得られる。
The heat insulating member of the present invention can stably obtain a high heat insulating effect.
Moreover, according to the attachment method of the heat insulation member of this invention, a high heat insulation effect is obtained stably.

本発明の断熱部材の一例を示した斜視図である。It is the perspective view which showed an example of the heat insulation member of this invention. 図1の断熱部材の断面図である。It is sectional drawing of the heat insulation member of FIG. 本発明の断熱部材の他の例を示した斜視図である。It is the perspective view which showed the other example of the heat insulation member of this invention. 断熱対象物に図2の断熱部材を取り付けた様子を示した断面図である。It is sectional drawing which showed a mode that the heat insulation member of FIG. 2 was attached to the heat insulation target object. 断熱対象物に図3の断熱部材を取り付けた様子を示した断面図である。It is sectional drawing which showed a mode that the heat insulation member of FIG. 3 was attached to the heat insulation target object. 例1における経過時間に対する水温の変化を示したグラフである。5 is a graph showing changes in water temperature with respect to elapsed time in Example 1. 本発明の断熱部材の他の例を示した断面図である。It is sectional drawing which showed the other example of the heat insulation member of this invention. 本発明の断熱部材の他の例を示した断面図である。It is sectional drawing which showed the other example of the heat insulation member of this invention. 本発明の断熱部材の他の例を示した断面図である。It is sectional drawing which showed the other example of the heat insulation member of this invention. 例8及び例9における吸音グラフである。10 is a sound absorption graph in Example 8 and Example 9.

[断熱部材]
本発明の断熱部材は、真空断熱材と、該真空断熱材の施工面の少なくとも周縁に設けられた後述する弾性体と、を備える。
[Insulation material]
The heat insulation member of this invention is equipped with a vacuum heat insulating material and the elastic body mentioned later provided in the at least periphery of the construction surface of this vacuum heat insulating material.

本発明の断熱部材における弾性体は、真空断熱材の施工面の少なくとも周縁に設けられていればよく、真空断熱材の施工面における周縁のみに設けられていてもよく、真空断熱材の施工面の全体に設けられていてもよい。
具体的には、例えば、図1および図2に示すように、平面視矩形状で平板状の真空断熱材10と、真空断熱材10における施工面10aの周縁に全周にわたって設けられた弾性体12と、を備える断熱部材1が挙げられる。また、図3に示すように、平面視矩形状で平板状の真空断熱材10と、真空断熱材10における施工面10aの全体に設けられた弾性体12Aと、を備える断熱部材2が挙げられる。
The elastic body in the heat insulating member of the present invention may be provided on at least the peripheral edge of the construction surface of the vacuum heat insulating material, and may be provided only on the peripheral edge of the construction surface of the vacuum heat insulating material. May be provided throughout.
Specifically, for example, as shown in FIGS. 1 and 2, a flat plate-like vacuum heat insulating material 10 having a rectangular shape in plan view, and an elastic body provided around the entire periphery of the construction surface 10 a of the vacuum heat insulating material 10. 12 is mentioned. Moreover, as shown in FIG. 3, the heat insulation member 2 provided with the flat-shaped vacuum heat insulating material 10 by the planar view rectangular shape, and the elastic body 12A provided in the whole construction surface 10a in the vacuum heat insulating material 10 is mentioned. .

また、本発明の断熱部材は、弾性体が断熱対象物側となるように断熱対象物の施工面に設けられるものである。
具体的には、断熱部材1であれば、例えば図4に示すように、上部開口部を有する容器本体110、および蓋体112を備える断熱対象物100の側面を施工面110aとする場合、弾性体12が施工面110a側となるように取り付けられる。同様に、断熱部材2であれば、図5に示すように、弾性体12Aが施工面110a側となるように断熱対象物100に取り付けられる。
Moreover, the heat insulation member of this invention is provided in the construction surface of a heat insulation target object so that an elastic body may become a heat insulation target object side.
Specifically, in the case of the heat insulating member 1, for example, as shown in FIG. 4, when the side surface of the heat insulating object 100 including the container body 110 having the upper opening and the lid body 112 is used as the construction surface 110a, the elastic member 1 is elastic. It attaches so that the body 12 may become the construction surface 110a side. Similarly, if it is the heat insulation member 2, as shown in FIG. 5, 12 A of elastic bodies will be attached to the heat insulation target object 100 so that it may become the construction surface 110a side.

本発明の断熱部材は、湾曲した施工面を有する真空断熱材を備えるものであってもよい。例えば、図8に示すように曲げ加工した真空断熱材10と、真空断熱材10における施工面10aの周縁に全周にわたって設けられた弾性体12とを備えた断熱部材3であってもよい。   The heat insulating member of the present invention may include a vacuum heat insulating material having a curved construction surface. For example, as shown in FIG. 8, the heat insulation member 3 provided with the vacuum heat insulating material 10 bent and the elastic body 12 provided over the perimeter of the construction surface 10a in the vacuum heat insulating material 10 may be sufficient.

本発明の断熱部材は、真空断熱材における施工面でない側の面に、さらに弾性体を備えるものであってもよい。例えば、図9に示すように、真空断熱材10の施工面10aと施工面ではない面10bの両方に弾性体12Aが設けられた断熱部材4であってもよい。   The heat insulating member of the present invention may further include an elastic body on the surface of the vacuum heat insulating material that is not the construction surface. For example, as shown in FIG. 9, the heat insulating member 4 in which the elastic body 12A is provided on both the construction surface 10a of the vacuum heat insulating material 10 and the surface 10b that is not the construction surface may be used.

(真空断熱材)
真空断熱材は、芯材と、芯材を覆うガスバリア性フィルムとを備え、芯材がガスバリア性フィルムで形成された外袋内に減圧封入されたものである。
真空断熱材の形状は、特に限定されず、断熱対象物の施工面の形状に応じて適宜決定できる。通常、真空断熱材の形状は板状であり、施工面に対して平面状であっても、曲面状であってもよい。
(Vacuum insulation)
The vacuum heat insulating material includes a core material and a gas barrier film that covers the core material, and the core material is sealed under reduced pressure in an outer bag formed of the gas barrier film.
The shape of a vacuum heat insulating material is not specifically limited, It can determine suitably according to the shape of the construction surface of a heat insulation target object. Usually, the shape of the vacuum heat insulating material is plate-like, and may be flat or curved with respect to the construction surface.

<芯材>
芯材としては、真空断熱材に用いられる公知の芯材を使用できる。例えば、粉体を含む断熱材材料が板状に成形されたもの、グラスウール、エアロゲルブランケット等が挙げられるが、それに限定されるものではない。粉体を含む芯材の場合は、断熱材材料としては、高強度な芯材を得やすい点から、粉体に加えて繊維が含まれていることが好ましい。
<Core>
As a core material, the well-known core material used for a vacuum heat insulating material can be used. For example, although the heat insulating material material containing a powder shape | molded in plate shape, glass wool, an airgel blanket etc. are mentioned, it is not limited to it. In the case of a core material containing powder, the heat insulating material preferably contains fibers in addition to the powder from the viewpoint of easily obtaining a high-strength core material.

≪粉体≫
以下に粉体を含む芯材の場合を例にとって説明する。
粉体としては、芯材に通常用いられる公知の粉体を使用できる。具体的には、ヒュームドシリカ、多孔質シリカ、輻射抑制材等が挙げられる。粉体としては、充分な強度を有する芯材が得られやすい点から、ヒュームドシリカを含むことが好ましい。
粉体は、1種のみを使用してもよく、2種以上を併用してもよい。
<< Powder >>
The case of a core material containing powder will be described below as an example.
As powder, the well-known powder normally used for a core material can be used. Specific examples include fumed silica, porous silica, and a radiation suppressing material. The powder preferably contains fumed silica from the viewpoint of easily obtaining a core material having sufficient strength.
Only one type of powder may be used, or two or more types may be used in combination.

ヒュームドシリカは極めて微細な粉末であるため、粒の大きさを表す指標としては通常比表面積が用いられる。
ヒュームドシリカの比表面積は、50〜400m/gが好ましく、100〜350m/gがより好ましく、200〜300m/gが特に好ましい。ヒュームドシリカの比表面積が前記範囲の下限値以上であれば、優れた断熱性能が得られやすい。ヒュームドシリカの比表面積が前記範囲の上限値以下であれば、粒子の表面にバインダを付けやすい。
比表面積は、窒素吸着法(BET法)により測定される。
Since fumed silica is an extremely fine powder, a specific surface area is usually used as an index representing the particle size.
The specific surface area of the fumed silica is preferably 50 to 400 m 2 / g, more preferably 100~350m 2 / g, 200~300m 2 / g is particularly preferred. If the specific surface area of fumed silica is not less than the lower limit of the above range, excellent heat insulating performance can be easily obtained. If the specific surface area of fumed silica is not more than the upper limit of the above range, it is easy to attach a binder to the surface of the particles.
The specific surface area is measured by a nitrogen adsorption method (BET method).

ヒュームドシリカの具体例としては、例えば、アエロジル200(比表面積200m/g、日本アエロジル(株)製)、アエロジル300(比表面積300m/g、日本アエロジル(株)製)、CAB−O−SIL M−5(比表面積200m/g、キャボットジャパン(株)製)、CAB−O−SIL H−300(比表面積300m/g、キャボットジャパン(株)製)、レオロシールQS30(比表面積300m/g、(株)トクヤマ製)等が挙げられる。
ヒュームドシリカは、1種のみを使用してもよく、2種以上を併用してもよい。
Specific examples of fumed silica include, for example, Aerosil 200 (specific surface area 200 m 2 / g, manufactured by Nippon Aerosil Co., Ltd.), Aerosil 300 (specific surface area 300 m 2 / g, manufactured by Nippon Aerosil Co., Ltd.), CAB-O. -SIL M-5 (specific surface area 200 m 2 / g, manufactured by Cabot Japan Co., Ltd.), CAB-O-SIL H-300 (specific surface area 300 m 2 / g, manufactured by Cabot Japan Co., Ltd.), Leolosil QS30 (specific surface area) 300 m 2 / g, manufactured by Tokuyama Corporation) and the like.
Fumed silica may use only 1 type and may use 2 or more types together.

多孔質シリカを併用する場合、多孔質シリカの比表面積は、100〜800m/gが好ましく、200〜750m/gがより好ましく、300〜700m/gが特に好ましい。多孔質シリカの比表面積が前記範囲の下限値以上であれば、優れた断熱性能が得られやすい。多孔質シリカの比表面積が前記範囲の上限値以下であれば、バインダを用いた場合に多孔質シリカに吸収されるバインダ量を少なくできる。そのため、添加するバインダ量が少なくてもより低い圧力で芯材を成形できる。その結果、芯材の密度を低くでき、優れた断熱性能が得られやすくなる。 When used in combination porous silica, the specific surface area of porous silica is preferably 100~800m 2 / g, more preferably 200~750m 2 / g, 300~700m 2 / g is particularly preferred. If the specific surface area of the porous silica is not less than the lower limit of the above range, excellent heat insulating performance can be easily obtained. When the specific surface area of the porous silica is not more than the upper limit of the above range, the amount of the binder absorbed by the porous silica can be reduced when the binder is used. Therefore, the core material can be molded with a lower pressure even if the amount of the binder to be added is small. As a result, the density of the core material can be lowered, and excellent heat insulation performance can be easily obtained.

多孔質シリカの気孔率は、60〜90%が好ましく、65〜85%がより好ましく、70〜80%が特に好ましい。多孔質シリカの気孔率が前記範囲の下限値以上であれば、固体の熱伝導を少なくできるため、優れた断熱性能が得られやすい。多孔質シリカの気孔率が前記範囲の上限値以下であれば、成形時に多孔質シリカ粒子がつぶれにくく、多孔性が維持されるために優れた断熱性能が得られやすい。
気孔率は、窒素吸着法(BJH法)により測定される。
The porosity of the porous silica is preferably 60 to 90%, more preferably 65 to 85%, and particularly preferably 70 to 80%. If the porosity of the porous silica is equal to or higher than the lower limit of the above range, the heat conduction of the solid can be reduced, so that excellent heat insulation performance is easily obtained. When the porosity of the porous silica is not more than the upper limit of the above range, the porous silica particles are hardly crushed at the time of molding, and excellent heat insulating performance is easily obtained because the porosity is maintained.
The porosity is measured by a nitrogen adsorption method (BJH method).

多孔質シリカの平均粒子径は、レーザー回折散乱法やコールターカウンター法等により、体積基準で測定された場合において、1〜300μmが好ましく、2〜150μmがより好ましく、3〜100μmが特に好ましい。多孔質シリカの平均粒子径が前記範囲の下限値以上であれば、高い気孔率を有する多孔質シリカが得られやすく、優れた断熱性能が得られやすい。多孔質シリカの平均粒子径が前記範囲の上限値以下であれば、芯材の密度が高くなりすぎず、優れた断熱性能が得られやすい。   The average particle diameter of the porous silica is preferably 1 to 300 μm, more preferably 2 to 150 μm, and particularly preferably 3 to 100 μm when measured on a volume basis by a laser diffraction scattering method, a Coulter counter method, or the like. If the average particle diameter of the porous silica is not less than the lower limit of the above range, porous silica having a high porosity can be easily obtained, and excellent heat insulation performance can be easily obtained. If the average particle diameter of the porous silica is not more than the upper limit of the above range, the density of the core material does not become too high, and excellent heat insulation performance is easily obtained.

多孔質シリカの具体例としては、例えば、M.S.GELやサンスフェア(いずれもAGCエスアイテック(株)製)等が挙げられる。   Specific examples of the porous silica include M.I. S. GEL and sunsphere (both manufactured by AGC S-Tech Co., Ltd.) are included.

輻射抑制材としては、例えば、金属粒子(アルミニウム粒子、銀粒子、金粒子等)、無機粒子(グラファイト、カーボンブラック、炭化ケイ素、酸化チタン、酸化スズ、酸化鉄、チタン酸カリウム等)等が挙げられる。   Examples of the radiation suppressing material include metal particles (aluminum particles, silver particles, gold particles, etc.), inorganic particles (graphite, carbon black, silicon carbide, titanium oxide, tin oxide, iron oxide, potassium titanate, etc.). It is done.

≪バインダ≫
芯材を低密度にしても充分な強度が得られやすい点から、芯材の形状を維持するために断熱材材料にはバインダを含ませることができる。例えば粉体としてヒュームドシリカを使用し、予め該ヒュームドシリカの表面にバインダを付与してバインダ付きヒュームドシリカとすることができる。ヒュームドシリカの表面に付与されたバインダによって、成形時の圧力が低くても、バインダ付きヒュームドシリカ同士、またはバインダ付きヒュームドシリカと他の材料(多孔質シリカ、繊維等)が互いに接着される。
多孔質シリカにバインダを付与しても、バインダが多孔質シリカに吸収されてしまうためにバインダによる効果は得られにくい。
≪Binder≫
A binder can be included in the heat insulating material in order to maintain the shape of the core material from the viewpoint that sufficient strength can be easily obtained even if the core material has a low density. For example, fumed silica is used as a powder, and a fumed silica with a binder can be obtained by previously applying a binder to the surface of the fumed silica. The binder applied to the surface of fumed silica allows fumed silica with binder or fumed silica with binder and other materials (porous silica, fibers, etc.) to adhere to each other even when the pressure during molding is low. The
Even if the binder is applied to the porous silica, the binder is absorbed by the porous silica, so that it is difficult to obtain the effect of the binder.

バインダとしては、有機バインダであってもよく、無機バインダであってもよい。なかでも、バインダとしては、熱伝導性が低く、優れた断熱性能が得られやすい点から、無機バインダが好ましい。
無機バインダとしては、例えば、ケイ酸ナトリウム、リン酸アルミニウム、硫酸マグネシウム、塩化マグネシウム等が挙げられる。なかでも、優れた断熱性能が得られやすい点から、ケイ酸ナトリウムが特に好ましい。
The binder may be an organic binder or an inorganic binder. Especially, as a binder, an inorganic binder is preferable from the point that heat conductivity is low and the outstanding heat insulation performance is easy to be obtained.
Examples of the inorganic binder include sodium silicate, aluminum phosphate, magnesium sulfate, magnesium chloride and the like. Among these, sodium silicate is particularly preferable because it is easy to obtain excellent heat insulation performance.

バインダは溶媒に溶解してバインダ液として用いることが好ましく、水溶液がより好ましい。   The binder is preferably dissolved in a solvent and used as a binder solution, and an aqueous solution is more preferable.

≪繊維≫
断熱材材料に繊維が含まれると、高強度な芯材が得られやすい。
繊維としては、真空断熱材に通常使用される繊維が使用でき、例えば、樹脂繊維、無機繊維が挙げられる。なかでも、真空下でのアウトガスが少なく、真空度の低下による断熱性能の低下を抑制しやすい点、および耐熱性に優れる点から、無機繊維が好ましい。
≪Fiber≫
When fibers are included in the heat insulating material, a high-strength core material is easily obtained.
As a fiber, the fiber normally used for a vacuum heat insulating material can be used, For example, a resin fiber and an inorganic fiber are mentioned. Of these, inorganic fibers are preferred because they have less outgas in a vacuum, can easily suppress a decrease in heat insulation performance due to a decrease in the degree of vacuum, and are excellent in heat resistance.

無機繊維としては、例えば、アルミナ繊維、ムライト繊維、シリカ繊維、グラスウール、グラスファイバー、ロックウール、スラグウール、炭化ケイ素繊維、カーボン繊維、シリカアルミナ繊維、シリカアルミナマグネシア繊維、シリカアルミナジルコニア繊維、シリカマグネシアカルシア繊維等が挙げられる。   Examples of the inorganic fiber include alumina fiber, mullite fiber, silica fiber, glass wool, glass fiber, rock wool, slag wool, silicon carbide fiber, carbon fiber, silica alumina fiber, silica alumina magnesia fiber, silica alumina zirconia fiber, silica magnesia. Examples include calcia fiber.

使用する繊維の繊維長D30は、100μm以上が好ましく、200μm以上がより好ましい。繊維長D30が前記下限値以上であれば、芯材に割れが生じることを抑制しやすい。
使用する繊維の繊維長D90は、20mm以下が好ましく、10mm以下がより好ましい。繊維長D90が前記上限値以下であれば、繊維同士が過度に絡まりにくいために粉体と均一に混合しやすく、繊維による効果が得られやすい。
繊維の太さ(直径)は、繊維による固体伝熱の増大を抑制できる点から、15μm以下が好ましい。また、繊維の太さ(直径)は、芯材に割れが生じることを抑制しやすい点から、1μm以上が好ましい。なお、本明細書において「繊維長D30」とは、個数基準で求めた繊維長分布の全個数を100%とした累積個数分布曲線において30%となる点の繊維長を意味する。また、「繊維長D90」とは、個数基準で求めた繊維長分布の全個数を100%とした累積個数分布曲線において90%となる点の繊維長を意味する。繊維長分布は、光学顕微鏡で観察した写真において無作為に50本以上の繊維の長さを測定して得られる頻度分布および累積個数分布曲線で求められる。
The fiber length D30 of the fibers used is preferably 100 μm or more, and more preferably 200 μm or more. If fiber length D30 is more than the said lower limit, it will be easy to suppress that a core material will generate a crack.
The fiber length D90 of the fiber used is preferably 20 mm or less, and more preferably 10 mm or less. If the fiber length D90 is equal to or less than the above upper limit value, the fibers are not easily entangled with each other, so that they are easily mixed with the powder and the effect of the fibers is easily obtained.
The thickness (diameter) of the fiber is preferably 15 μm or less from the viewpoint of suppressing an increase in solid heat transfer due to the fiber. Moreover, the thickness (diameter) of the fiber is preferably 1 μm or more from the viewpoint of easily preventing the core material from cracking. In the present specification, “fiber length D30” means the fiber length at 30% in the cumulative number distribution curve where the total number of fiber length distributions obtained on the basis of the number is 100%. “Fiber length D90” means a fiber length at a point of 90% in a cumulative number distribution curve where the total number of fiber length distributions obtained on the basis of the number is 100%. The fiber length distribution is obtained from a frequency distribution and a cumulative number distribution curve obtained by randomly measuring the length of 50 or more fibers in a photograph observed with an optical microscope.

≪粉体、バインダ、繊維の割合≫
粉体(100質量%)中のヒュームドシリカの割合は、50〜100質量%が好ましく、70〜100質量%がより好ましく、80〜100質量%が特に好ましい。ヒュームドシリカの割合が前記範囲の下限値以上であれば、強度の高い芯材が得られやすい。
≪Powder, binder, fiber ratio≫
The ratio of fumed silica in the powder (100% by mass) is preferably 50 to 100% by mass, more preferably 70 to 100% by mass, and particularly preferably 80 to 100% by mass. If the ratio of fumed silica is not less than the lower limit of the above range, a core material with high strength can be easily obtained.

粉体(100質量%)中の多孔質シリカの割合は、0〜50質量%が好ましく、0〜30質量%がより好ましく、0〜20質量%が特に好ましい。多孔質シリカの割合が多いほど、断熱性能に優れた真空断熱材が得られやすい。多孔質シリカの割合が前記範囲の上限値以下であれば、強度の高い芯材が得られやすい。   0-50 mass% is preferable, as for the ratio of the porous silica in powder (100 mass%), 0-30 mass% is more preferable, and 0-20 mass% is especially preferable. The larger the proportion of porous silica, the easier it is to obtain a vacuum heat insulating material with excellent heat insulating performance. If the ratio of porous silica is below the upper limit of the said range, a core material with high intensity | strength will be easy to be obtained.

粉体が予め表面にバインダを付与したバインダ付きヒュームドシリカと多孔質シリカを含む場合、バインダ付与前のヒュームドシリカの質量Mと多孔質シリカの質量Mとの比M/Mは、50/50以上が好ましく、70/30以上がより好ましく、80/20以上が特に好ましい。前記比M/Mが前記下限値以上であれば、より低密度で優れた断熱性能を有し、かつ充分な強度を有する芯材が得られやすい。 If the powder contains a pre-binder with fumed silica was applied a binder on the surface and the porous silica, the ratio M A / M B of the mass M B of the mass M A and the porous silica fumed silica before the binder imparting Is preferably 50/50 or more, more preferably 70/30 or more, and particularly preferably 80/20 or more. If the ratio M A / M B is more than the lower limit, it has excellent thermal insulation performance at lower density, and tends core material is obtained having a sufficient strength.

粉体が輻射抑制材を含む場合、粉体(100質量%)中の輻射抑制材の割合は、3〜30質量%が好ましく、5〜25質量%がより好ましく、10〜20質量%が特に好ましい。輻射抑制材の割合が前記範囲の下限値以上であれば、輻射抑制材の効果が得られやすい。輻射抑制材の割合が前記範囲の上限値以下であれば、輻射抑制材による固体伝熱の増大を抑制できるため、優れた断熱性能が得られやすい。   When the powder includes a radiation suppressing material, the proportion of the radiation suppressing material in the powder (100% by mass) is preferably 3 to 30% by mass, more preferably 5 to 25% by mass, and particularly preferably 10 to 20% by mass. preferable. If the ratio of the radiation suppressing material is equal to or higher than the lower limit of the above range, the effect of the radiation suppressing material is easily obtained. If the ratio of a radiation suppression material is below the upper limit of the said range, since the increase in the solid heat transfer by a radiation suppression material can be suppressed, the outstanding heat insulation performance is easy to be obtained.

バインダの割合は、予め表面にバインダを付与したバインダ付きヒュームドシリカを使用する場合、バインダ付与前のヒュームドシリカ100質量部に対して、0.1〜15質量部が好ましく、0.5〜10質量部がより好ましく、1〜4質量部が特に好ましい。前記バインダの割合が前記範囲の下限値以上であれば、より低密度で充分な強度を有する芯材が得られやすく、また優れた断熱性能が得られやすい。前記バインダの割合が前記範囲の上限値以下であれば、バインダによる固体伝熱の増大を抑制できるため、断熱性能の低下を抑制しやすい。芯材の形状維持性が確保できれば、より良い断熱性能を得るためバインダの割合は少ないことが好ましく、無添加でもよい。   When using a fumed silica with a binder having a binder provided on the surface in advance, the binder ratio is preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the fumed silica before the binder is applied. 10 mass parts is more preferable, and 1-4 mass parts is especially preferable. When the ratio of the binder is equal to or higher than the lower limit of the above range, a core material having a lower density and sufficient strength can be easily obtained, and excellent heat insulation performance can be easily obtained. If the ratio of the said binder is below the upper limit of the said range, since the increase in the solid heat transfer by a binder can be suppressed, it is easy to suppress the fall of heat insulation performance. If the shape maintaining property of the core material can be ensured, the binder ratio is preferably small in order to obtain better heat insulation performance, and may not be added.

また、ヒュームドシリカ、バインダおよびそれ以外の成分(多孔質シリカ、繊維等)を同時に混合する場合等、予め表面にバインダを付与したバインダ付きヒュームドシリカを使用しない場合のバインダの割合は、粉体100質量部に対して、0.1〜15質量部が好ましく、0.5〜10質量部がより好ましく、1〜4質量部が特に好ましい。バインダの割合が前記範囲の下限値以上であれば、より低密度で充分な強度を有する芯材が得られやすく、また優れた断熱性能が得られやすい。バインダの割合が前記範囲の上限値以下であれば、バインダによる固体伝熱の増大を抑制できるため、断熱性能の低下を抑制しやすい。
芯材として粉体を用いる場合の、粉体の好ましい組成は、質量比で、ヒュームドシリカ:多孔質シリカ:輻射抑制材が、70〜90:0〜20:10〜20(合計を100とする。)が好ましい。
In addition, when fumed silica with a binder that has been previously provided with a binder is not used, such as when fumed silica, a binder and other components (porous silica, fibers, etc.) are mixed at the same time, 0.1-15 mass parts is preferable with respect to 100 mass parts of a body, 0.5-10 mass parts is more preferable, and 1-4 mass parts is especially preferable. If the binder ratio is at least the lower limit of the above range, a core material having a lower density and sufficient strength can be easily obtained, and excellent heat insulation performance can be easily obtained. If the ratio of a binder is below the upper limit of the said range, since the increase in the solid heat transfer by a binder can be suppressed, it is easy to suppress the fall of heat insulation performance.
When powder is used as the core material, the preferred composition of the powder is 70 to 90: 0 to 20:10 to 20 in terms of mass ratio (fumed silica: porous silica: radiation suppression material (the total is 100). Is preferred).

繊維の割合は、粉体100質量部に対して、1〜30質量部が好ましく、2〜20質量部がより好ましく、4〜10質量部が特に好ましい。繊維の割合が前記範囲の下限値以上であれば、高強度な芯材が得られやすい。繊維の割合が前記範囲の上限値以下であれば、繊維による固体伝熱の増大を抑制できるため、断熱性能の低下を抑制しやすい。   1-30 mass parts is preferable with respect to 100 mass parts of powder, as for the ratio of a fiber, 2-20 mass parts is more preferable, and 4-10 mass parts is especially preferable. When the fiber ratio is equal to or higher than the lower limit of the above range, a high-strength core material is easily obtained. If the ratio of the fiber is equal to or less than the upper limit of the above range, an increase in solid heat transfer due to the fiber can be suppressed, and thus a decrease in heat insulation performance can be easily suppressed.

<ガスバリア性フィルム>
ガスバリア性フィルムは、真空断熱材に使用される公知のものを制限なく使用できる。
ガスバリア性フィルムにより形成する外袋の大きさおよび形状は、特に限定されず、芯材の大きさおよび形状に合わせて適宜決定すればよい。
<Gas barrier film>
As the gas barrier film, a known film used for a vacuum heat insulating material can be used without limitation.
The size and shape of the outer bag formed of the gas barrier film are not particularly limited, and may be appropriately determined according to the size and shape of the core material.

<真空度>
真空断熱材における外袋内の真空度は、優れた断熱性能が得られ、また真空断熱材の寿命が長くなる点から、1×10Pa以下が好ましく、1×10Pa以下がより好ましい。
<Degree of vacuum>
The vacuum degree in the outer bag of the vacuum heat insulating material is preferably 1 × 10 3 Pa or less and more preferably 1 × 10 2 Pa or less from the viewpoint that excellent heat insulating performance is obtained and the life of the vacuum heat insulating material is increased. .

<真空断熱材の製造方法>
真空断熱材の製造方法は、特に限定されず、例えば、断熱材材料を成形して芯材を得る成形工程と、芯材をガスバリア性フィルムからなる外袋内に減圧封入して真空断熱材を得る減圧封入工程と、を有する方法が挙げられる。
断熱材材料を成形して芯材を得る方法としては、公知の方法を採用でき、例えば、断熱材材料を金型に投入し、加圧して成形する方法等が挙げられる。
<Manufacturing method of vacuum heat insulating material>
The manufacturing method of the vacuum heat insulating material is not particularly limited, for example, a molding step of forming a heat insulating material material to obtain a core material, and the vacuum heat insulating material by sealing the core material under reduced pressure in an outer bag made of a gas barrier film. And a vacuum encapsulation step to be obtained.
As a method for obtaining a core material by molding a heat insulating material, a known method can be adopted, and examples thereof include a method in which a heat insulating material is put into a mold and pressed to form.

減圧封入工程では、例えば、ガスバリア性フィルムにより形成された開口部を有する外袋内に芯材を収納し、減圧条件下において該外袋の開口部をヒートシール等で密封した後、外袋の外部を大気圧条件に戻して真空断熱材を得る。
真空断熱材において芯材の周囲にヒートシール等によって形成されたシール部(耳)は、耳折りされていてもいなくてもよい。耳折りされていない場合は、真空断熱材の芯材部分と耳の部分で段差が生じ、耳の部分は断熱対象物と密着しないため、熱が放出されやすい。具体的には、図7に示すように、外袋13内に芯材14が収納され、外袋13の周縁部がヒートシールされてシール部11が形成された真空断熱材10では、真空断熱材10における芯材14が収納された部分の施工面10aとシール部11には段差が生じる。この場合は、例えば、シール部11の断熱対象物側に段差と同じ厚みの弾性体12Cを貼り付けて、真空断熱材10における施工面10aとシール部11との段差を解消し、施工面10aとシール部11上の弾性体12Cを覆うように弾性体12Bを設けることが好ましい。これにより、断熱対象物の施工面とシール部との間に隙間が生じにくく、該施工面と真空断熱材との間に空気が出入りして熱の出入りが起こることを抑制しやすくなる。
In the reduced pressure sealing step, for example, the core material is housed in an outer bag having an opening formed of a gas barrier film, and the outer bag is sealed with a heat seal or the like under a reduced pressure condition. The outside is returned to atmospheric pressure conditions to obtain a vacuum heat insulating material.
The seal portion (ear) formed by heat sealing or the like around the core material in the vacuum heat insulating material may or may not be folded. When the ear is not folded, a step is generated between the core portion and the ear portion of the vacuum heat insulating material, and the ear portion is not in close contact with the heat insulating object, so that heat is easily released. Specifically, as shown in FIG. 7, in the vacuum heat insulating material 10 in which the core material 14 is housed in the outer bag 13 and the peripheral portion of the outer bag 13 is heat sealed to form the seal portion 11, the vacuum heat insulating material 10 A step is generated on the construction surface 10a of the portion of the material 10 in which the core material 14 is accommodated and the seal portion 11. In this case, for example, the elastic body 12C having the same thickness as the step is attached to the heat insulation object side of the seal portion 11 to eliminate the step between the construction surface 10a and the seal portion 11 in the vacuum heat insulating material 10, and the construction surface 10a. It is preferable to provide the elastic body 12B so as to cover the elastic body 12C on the seal portion 11. Thereby, it is hard to produce a clearance gap between the construction surface of a heat insulation target object, and a seal | sticker part, and it becomes easy to suppress that air goes in / out between this construction surface and a vacuum heat insulating material, and heat enters / exits.

(弾性体)
本発明の断熱部材における弾性体は、伸び率が10%以上であり、アスカーF硬度が10以上であり、かつアスカーC硬度が30以下の部材である。
(Elastic body)
The elastic body in the heat insulating member of the present invention is a member having an elongation percentage of 10% or more, an Asker F hardness of 10 or more, and an Asker C hardness of 30 or less.

弾性体の伸び率は、10%以上であり、15〜1000%が好ましく、18〜800%がより好ましい。弾性体の伸び率が下限値以上であれば、断熱対象物の施工面と真空断熱材との間に空気が出入りして熱の出入りが起こることを抑制できる。弾性体の伸び率が前記範囲の上限値以下であれば、弾性体が過剰に変形して断熱が不充分になることを抑制できる。
なお、伸び率とは、JIS K 6400(2012年度版)に準拠して測定された値を意味する。
The elongation percentage of the elastic body is 10% or more, preferably 15 to 1000%, and more preferably 18 to 800%. If the elongation percentage of the elastic body is equal to or greater than the lower limit, it is possible to suppress the entry and exit of heat between the construction surface of the heat insulation object and the vacuum heat insulating material. If the elongation percentage of the elastic body is less than or equal to the upper limit of the above range, it can be suppressed that the elastic body is deformed excessively and the heat insulation becomes insufficient.
The term “elongation rate” means a value measured according to JIS K 6400 (2012 edition).

弾性体のアスカーF硬度は、10以上であり、12以上が好ましく、15以上がより好ましい。弾性体のアスカーF硬度が前記下限値以上であれば、弾性体が過剰に変形して断熱が不充分になることを抑制できる。
弾性体のアスカーC硬度は、30以下であり、25以下が好ましく、20以下がより好ましい。弾性体のアスカーC硬度が前記上限値以下であれば、断熱対象物の施工面と真空断熱材との間に空気が出入りして熱の出入りが起こることを抑制しやすい。
The Asker F hardness of the elastic body is 10 or more, preferably 12 or more, and more preferably 15 or more. If the Asker F hardness of an elastic body is more than the said lower limit, it can suppress that an elastic body deform | transforms excessively and heat insulation becomes inadequate.
The Asker C hardness of the elastic body is 30 or less, preferably 25 or less, and more preferably 20 or less. If the Asker C hardness of the elastic body is less than or equal to the above upper limit value, it is easy to suppress the entry and exit of heat between the construction surface of the object to be insulated and the vacuum heat insulating material.

弾性体の厚さは、1mm以上が好ましく、1mm以上50mm以下がより好ましく、2mm以上40mm以下がさらに好ましく、3mm以上30mm以下が特に好ましい。弾性体の厚さが前記範囲の下限値以上であれば、弾性体による効果が得られやすい。弾性体の厚さが前記範囲の上限値以下であれば、真空断熱材の断熱性能が有効に発揮されやすい。   The thickness of the elastic body is preferably 1 mm or more, more preferably 1 mm or more and 50 mm or less, further preferably 2 mm or more and 40 mm or less, and particularly preferably 3 mm or more and 30 mm or less. If the thickness of the elastic body is not less than the lower limit of the above range, the effect of the elastic body can be easily obtained. If the thickness of the elastic body is not more than the upper limit of the above range, the heat insulating performance of the vacuum heat insulating material is likely to be effectively exhibited.

断熱部材1のように真空断熱材の施工面における周縁のみに弾性体を設ける場合、該弾性体の幅は、3mm以上が好ましく、5mm以上がより好ましい。弾性体の幅が前記範囲の下限値以上であれば、優れた断熱性能が得られやすい。   When the elastic body is provided only on the peripheral edge on the construction surface of the vacuum heat insulating material like the heat insulating member 1, the width of the elastic body is preferably 3 mm or more, and more preferably 5 mm or more. If the width | variety of an elastic body is more than the lower limit of the said range, the outstanding heat insulation performance will be easy to be obtained.

弾性体の形状は、特に限定されず、断熱対象物の施工面の形状に応じて適宜決定できる。
弾性体には、無機の弾性体と有機の弾性体が含まれる。
有機の弾性体の材質としては、合成樹脂、天然ゴムまたは合成ゴムが好ましい。
合成樹脂としては、例えば、ポリウレタン樹脂、ポリオレフィン樹脂、メラミン樹脂、ポリイミド樹脂、ポリアミド樹脂、フッ素樹脂等が挙げられる。
合成ゴムとしては、例えば、エチレン・プロピレン・ジエンゴム(EPDM)、シリコンゴム、フッ素ゴム等が挙げられる。
The shape of the elastic body is not particularly limited, and can be appropriately determined according to the shape of the construction surface of the heat insulating object.
The elastic body includes an inorganic elastic body and an organic elastic body.
As the material for the organic elastic body, synthetic resin, natural rubber or synthetic rubber is preferable.
Examples of the synthetic resin include polyurethane resin, polyolefin resin, melamine resin, polyimide resin, polyamide resin, and fluorine resin.
Examples of the synthetic rubber include ethylene / propylene / diene rubber (EPDM), silicon rubber, and fluorine rubber.

また弾性体の材質は、断熱対象物や真空断熱材が使用される雰囲気温度に応じて選択されることが好ましい。例えば、高温の断熱対象物の場合は、メラミン樹脂、ポリイミド樹脂、ポリアミド樹脂、フッ素樹脂、EPDM、シリコンゴム、およびフッ素ゴムが好ましい。また低温の断熱対象物の場合は、合成樹脂および合成ゴムから任意に選ぶことができる。
弾性体は、1種のみを使用してもよく、2種以上を組み合わせ使用してもよい。
弾性体を2種以上組み合せる場合は2種以上の弾性体を層状に積層し、断熱対象部の温度が高温の場合は耐熱性の高い弾性体が断熱対象部側に配置されるように真空断熱材に設けると弾性体の劣化が抑制できる。
Moreover, it is preferable that the material of an elastic body is selected according to the atmospheric temperature in which a heat insulation target object and a vacuum heat insulating material are used. For example, in the case of a high-temperature heat insulation object, melamine resin, polyimide resin, polyamide resin, fluororesin, EPDM, silicon rubber, and fluororubber are preferable. Moreover, in the case of a low-temperature heat insulation object, it can be arbitrarily selected from synthetic resins and synthetic rubbers.
Only one type of elastic body may be used, or two or more types may be used in combination.
When two or more types of elastic bodies are combined, two or more types of elastic bodies are laminated in layers, and when the temperature of the heat insulation target part is high, the heat-resistant elastic body is placed on the heat insulation target part side. When provided on the heat insulating material, deterioration of the elastic body can be suppressed.

弾性体は、弾性発泡体であってもよい。弾性体発泡体であると施工時に断熱対象物の施工面に設ける際に変形して隙間が生じにくく、施工面と真空断熱材との間に空気が出入りして熱の出入りが起こることを抑制しやすい点から、弾性発泡体が好ましい。
弾性発泡体は、1種のみを使用してもよく、2種以上を組み合わせ使用してもよい。
The elastic body may be an elastic foam. When it is an elastic foam, it is difficult to form gaps when it is installed on the construction surface of the object to be insulated during construction, and it prevents air from going in and out between the construction surface and the vacuum insulation material. An elastic foam is preferable from the point of being easy to do.
Only one type of elastic foam may be used, or two or more types may be used in combination.

弾性発泡体としては、軟質ポリウレタンフォーム、ポリエチレンフォーム、ポリプロピレンフォーム、メラミンフォーム、ポリイミド発泡体、天然ゴム発泡体および合成ゴム発泡体からなる群から選ばれる1種以上が好ましい。   The elastic foam is preferably at least one selected from the group consisting of flexible polyurethane foam, polyethylene foam, polypropylene foam, melamine foam, polyimide foam, natural rubber foam and synthetic rubber foam.

また弾性発泡体の材質は、断熱対象物や真空断熱材が使用される雰囲気温度に応じて選択されることが好ましい。例えば、高温の断熱対象物の場合は、メラミンフォーム、ポリエチレンフォーム、ポリプロピレンフォーム、天然ゴム発泡体および合成ゴム発泡体が好ましい。また低温の断熱対象物の場合は、合成樹脂発泡体および合成ゴム発泡体から任意に選ぶことができる。   Moreover, it is preferable that the material of an elastic foam is selected according to the atmospheric temperature in which a heat insulation target object and a vacuum heat insulating material are used. For example, in the case of a high-temperature insulation object, melamine foam, polyethylene foam, polypropylene foam, natural rubber foam and synthetic rubber foam are preferred. Moreover, in the case of a low-temperature heat insulation object, it can be arbitrarily selected from a synthetic resin foam and a synthetic rubber foam.

さらに、弾性発泡体は吸音性および吸水性の少なくとも一方を有することが好ましい。
弾性発泡体は、連続気泡を有するものであってもよく、独立気泡を有するものであってもよい。
弾性発泡体が連続気泡を有すると、熱の出入りが起こるのを抑制しやすく、かつ吸音性および/または吸水性が良いため音および/または水の出入りも抑制できる。連続気泡を有する弾性発泡体としては、連続気泡を有するものであれば特に制限はないが、軟質ポリウレタンフォームは連続気泡発泡体が得られやすく、吸音性および/または吸水性が良好なため好ましい。
Furthermore, the elastic foam preferably has at least one of sound absorption and water absorption.
The elastic foam may have open cells or may have closed cells.
When the elastic foam has open cells, it is easy to suppress the entry and exit of heat, and since sound absorption and / or water absorption is good, entry and exit of sound and / or water can be suppressed. The elastic foam having open cells is not particularly limited as long as it has open cells, but a flexible polyurethane foam is preferable because an open cell foam can be easily obtained and sound absorption and / or water absorption are good.

熱の出入りの抑制と吸音性を有する真空断熱材は、断熱と共に、断熱対象物から発生する音を低減することができるため、音が発生する断熱対象物に好適に用いることができる。また、熱の出入りの抑制と吸音性を有する真空断熱材を居住空間の壁面や天井の断熱材として用いると、断熱と共に、外からの音を低減することができる。
また、断熱対象物が低温度の場合、結露によって対象物に水が付着することがある。熱の出入りの抑制と吸水性を有する真空断熱材は、断熱と共に、結露によって発生する水分を吸収するため、結露が発生するような対象物の断熱に好適に用いることができる。
Since the heat insulation and the vacuum heat insulating material having a sound absorbing property can reduce the sound generated from the heat insulation object together with the heat insulation, it can be suitably used for the heat insulation object where the sound is generated. Moreover, when the vacuum heat insulating material which has the suppression of heat | fever entry / exit and a sound absorption property is used as a heat insulating material of the wall surface and ceiling of a living space, the sound from the outside can be reduced with heat insulation.
Moreover, when a heat insulation target object is low temperature, water may adhere to a target object by dew condensation. Since the vacuum heat insulating material having suppression of heat in / out and water absorption absorbs moisture generated by dew condensation together with heat insulation, it can be suitably used for heat insulation of an object in which dew condensation occurs.

弾性発泡体の密度は、3〜500kg/mが好ましく、5〜400kg/mがより好ましい。弾性体の密度が下限値以上であれば、弾性体が過剰に変形して断熱が不充分になることを抑制できる。弾性体の密度が前記範囲の上限値以下であれば、優れた断熱性能が得られやすい。 The density of the elastic foam is preferably 3 to 500 kg / m 3 , more preferably 5 to 400 kg / m 3 . If the density of an elastic body is more than a lower limit, it can control that an elastic body deforms excessively and heat insulation becomes insufficient. If the density of the elastic body is equal to or less than the upper limit of the above range, excellent heat insulating performance can be easily obtained.

弾性発泡体は耐熱性を有することが好ましい。耐熱性とは、断熱材が通常用いられる温度において連続使用が可能であることを意味する。また、前記連続使用が可能な温度を耐熱温度という。   The elastic foam preferably has heat resistance. The heat resistance means that continuous use is possible at a temperature at which the heat insulating material is normally used. The temperature at which continuous use is possible is referred to as heat resistant temperature.

真空断熱材の施工面に弾性体を設ける態様としては、特に限定されず、例えば、真空断熱材の施工面に両面粘着テープによって弾性体を貼り付ける態様、接着剤を介して貼り付ける態様等が挙げられる。   The aspect of providing the elastic body on the construction surface of the vacuum heat insulating material is not particularly limited. For example, the aspect of attaching the elastic body to the construction surface of the vacuum heat insulating material with a double-sided adhesive tape, the aspect of attaching via an adhesive, Can be mentioned.

(用途)
本発明の断熱部材の用途としては、特に限定されず、例えば、住宅、車輛、保温保冷容器、冷凍庫、給湯器等が挙げられる。
本発明の断熱部材は、優れた断熱性能を長期間維持しやすい点から、保温・保冷用途に用いることが好ましい。
(Use)
The use of the heat insulating member of the present invention is not particularly limited, and examples thereof include a house, a vehicle, a heat and cold insulation container, a freezer, and a water heater.
The heat insulation member of the present invention is preferably used for heat insulation / cold insulation from the viewpoint of maintaining excellent heat insulation performance for a long period of time.

例えば、本発明の断熱部材を備える給湯器としては、給湯器における貯湯タンクの外側面に本発明の断熱部材を取り付けたもの等が挙げられる。本発明の断熱部材を備えることで、高い断熱効果が安定して発揮される。
また、本発明の断熱部材を給湯器に用いる場合は、使われるお湯の温度にもよるが、長期に渡って安定した保温性を発揮するためには、耐熱温度が100℃以上の弾性発泡体を用いることが好ましい。
For example, as a water heater provided with the heat insulation member of this invention, what attached the heat insulation member of this invention to the outer surface of the hot water storage tank in a water heater, etc. are mentioned. By providing the heat insulating member of the present invention, a high heat insulating effect is stably exhibited.
In addition, when the heat insulating member of the present invention is used in a water heater, an elastic foam having a heat resistant temperature of 100 ° C. or higher is required to exhibit stable heat retention over a long period of time, depending on the temperature of hot water used. Is preferably used.

(作用効果)
前述したように、従来のような、断熱対象物の施工面に真空断熱材を貼り付ける方法では、充分な断熱効果が得られないことがある。この問題について本発明者が検討したところ、真空断熱材と施工面との間に隙間が生じていることで、該隙間を流れる空気によって断熱対象物の熱が周囲に拡散されることが要因であることが判明した。特に、真空断熱材の表面に皺等の凹凸がある場合、真空断熱材の端部が耳折りされている場合等は、真空断熱材と施工面との間に隙間が生じやすいため、充分な断熱効果が得られにくいと考えられる。また真空断熱材を貼り付ける両面粘着テープが厚い場合であっても充分に施工面に追随できず、真空断熱材と施工面との間に隙間が生じやすいと考えられる。
(Function and effect)
As described above, the conventional method of attaching the vacuum heat insulating material to the construction surface of the heat insulating object may not provide a sufficient heat insulating effect. When the present inventor examined this problem, because a gap is formed between the vacuum heat insulating material and the construction surface, the heat of the heat insulation object is diffused around by the air flowing through the gap. It turned out to be. In particular, if there are irregularities such as wrinkles on the surface of the vacuum heat insulating material, or if the end of the vacuum heat insulating material is folded over the ear, a gap is likely to occur between the vacuum heat insulating material and the construction surface, It is considered that the heat insulation effect is difficult to obtain. Moreover, even if the double-sided pressure-sensitive adhesive tape to which the vacuum heat insulating material is attached is thick, it cannot sufficiently follow the construction surface, and it is considered that a gap is likely to be generated between the vacuum heat insulating material and the construction surface.

これに対して、本発明の断熱部材においては、真空断熱材の施工面の少なくとも周縁に、真空断熱材に比べて変形しやすい弾性体が設けられている。これにより、本発明の断熱部材を弾性体が施工面側となるように断熱対象物に取り付けた状態では、弾性体が真空断熱材と施工面の形状に応じて変形し、それらに密着できるため、真空断熱材の少なくとも周縁と施工面との間に隙間が生じることが抑制される。その結果、断熱対象物と真空断熱材の間を流れる空気によって断熱対象物の熱が周囲に拡散されることが抑制されることで、高い断熱効果が安定して得られる。
さらに、真空断熱材に取り付ける材料が弾性体であるため、例えば施工面に真空断熱材を取り付けられる空間が限られていても、取り付けられた弾性体を切断することなく、厚み方向に圧縮変形させて施工することが可能である。
On the other hand, in the heat insulation member of this invention, the elastic body which is easy to deform | transform compared with a vacuum heat insulating material is provided in the at least periphery of the construction surface of a vacuum heat insulating material. Thereby, in a state where the heat insulating member of the present invention is attached to the heat insulating object so that the elastic body is on the construction surface side, the elastic body is deformed according to the shape of the vacuum heat insulating material and the construction surface, and can be in close contact with them. Moreover, it is suppressed that a clearance gap produces between at least the periphery of a vacuum heat insulating material, and a construction surface. As a result, it is possible to stably obtain a high heat insulating effect by suppressing the heat of the heat insulating object from being diffused around by the air flowing between the heat insulating object and the vacuum heat insulating material.
Furthermore, since the material attached to the vacuum heat insulating material is an elastic body, for example, even if the space where the vacuum heat insulating material can be attached to the construction surface is limited, the attached elastic body is compressed and deformed in the thickness direction without cutting. Can be installed.

(断熱部材の取付方法)
本発明の断熱部材を断熱対象物に取り付ける方法としては、例えば、予め真空断熱材の施工面に弾性体を設けた断熱部材を用意し、弾性体が断熱対象物の施工面側となるように両面粘着テープ等で該断熱部材を貼り付ける方法が挙げられる。
(Installation method of heat insulation member)
As a method of attaching the heat insulating member of the present invention to a heat insulating object, for example, a heat insulating member in which an elastic body is provided in advance on the construction surface of the vacuum heat insulating material is prepared, and the elastic body is on the construction surface side of the heat insulating object. The method of sticking this heat insulation member with a double-sided adhesive tape etc. is mentioned.

また、真空断熱材と弾性体とを別々に用意し、断熱対象物に弾性体を介して真空断熱材を貼り付けることにより、断熱対象物の施工面で断熱部材を組み立てながら取り付ける方法を採用してもよい。
具体的には、例えば、断熱対象物の施工面に、軟質ウレタンフォーム等の弾性体を両面粘着テープ等により貼り付けた後、該弾性体上に真空断熱材を両面粘着テープ等により貼り付ける方法等が挙げられる。また、断熱対象物の施工面からわずかに離間するように真空断熱材を設置した状態で、施工面と真空断熱材の周縁との間にコーキング材を充填して弾性体を形成し、真空断熱材を貼り付けてもよい。また、断熱対象物の施工面からわずかに離間するように真空断熱材を設置した状態で、施工面と真空断熱材の周縁との間に、スプレー法によって軟質ウレタンフォームからなる弾性発泡体を形成し、真空断熱材を貼り付けてもよい。
In addition, the vacuum heat insulating material and the elastic body are prepared separately, and the vacuum heat insulating material is attached to the heat insulating object through the elastic body, so that the heat insulating member is assembled while being assembled on the construction surface of the heat insulating target object. May be.
Specifically, for example, after attaching an elastic body such as a flexible urethane foam to a construction surface of a heat insulation object using a double-sided adhesive tape or the like, a method of attaching a vacuum heat insulating material to the elastic body using a double-sided adhesive tape or the like Etc. In addition, with the vacuum heat insulating material installed so that it is slightly separated from the construction surface of the object to be insulated, a caulking material is filled between the construction surface and the peripheral edge of the vacuum heat insulating material to form an elastic body. A material may be pasted. In addition, an elastic foam made of flexible urethane foam is formed by spraying between the work surface and the periphery of the vacuum heat insulating material in a state where the vacuum heat insulating material is placed slightly away from the work surface of the object to be insulated. And you may affix a vacuum heat insulating material.

以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。例1〜4、および例8は実施例であり、例5〜7、および例9は比較例である。
[アスカーF硬度、アスカーC硬度]
弾性体のアスカーF硬度は、JISK6253に従い、室温(22℃)において、アスカー硬度計F型を用いて測定した。なお、軟質ポリウレタンフォームについては厚さ38mmの弾性体に対して測定し、加圧後20秒後に読み取った値とした。
弾性体のアスカーC硬度は、アスカー硬度計C型を用いる以外は、アスカーF硬度と同様にして測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by the following description. Examples 1-4 and 8 are examples, and examples 5-7 and 9 are comparative examples.
[Asker F hardness, Asker C hardness]
The Asker F hardness of the elastic body was measured using an Asker hardness meter F type at room temperature (22 ° C.) according to JIS K6253. In addition, about the flexible polyurethane foam, it measured with respect to the elastic body of thickness 38mm, and made it the value read 20 seconds after pressurization.
The Asker C hardness of the elastic body was measured in the same manner as the Asker F hardness except that an Asker hardness meter C type was used.

[伸び率、通気性、密度]
伸び率、通気性、密度はJIS K6400(2004年版および2012年版)に準拠して測定した。
[Elongation rate, air permeability, density]
The elongation, air permeability, and density were measured according to JIS K6400 (2004 edition and 2012 edition).

[製造例1]
ヒュームドシリカ(商品名「アエロジル300」、比表面積300m/g、日本アエロジル(株)製。以下、同じ。)40質量部に対して、けい酸ソーダ3号(AGCエスアイテック(株)製)の3.4質量部(固形分換算にて1.3質量部)をイオン交換水22.9質量部で希釈したバインダ液をブレンダによって混合した。次いで、ヒュームドシリカ40質量部と、多孔質シリカとしてM.S.GEL(AGCエスアイテック(株)製)20質量部を加え、さらに無機繊維としてシリカマグネシアカルシア繊維(商品名「スーパーウール」、D30:227μm、D90:902μm、新日本サーマルセラミックス(株)製)2質量部を追加して、ブレンダにより混合して断熱材材料を得た。
得られた断熱材材料を金型に投入し、圧力をかけて縦90mm×横100mm×厚さ10mmの平板状に成形した後、200℃で1時間加熱して芯材を作製した。次いで、市販のガスバリアフィルム(ADY−134、エーディーワイ(株)製)2枚をヒートシール層を内側にして重ね合わせ、その三方のみをヒートシールした外袋内に芯材を入れ、ヒートシール機能付きの真空チャンバー内に設置した。その後、チャンバー内を30Paまで減圧し、その状態で外袋の開口部をヒートシールして密封し、外袋の外部を大気圧条件に戻して、縦90mm×横100mm×厚さ10mmサイズの真空断熱材を得た。
次いで、該真空断熱材の片面全体に、弾性体Aとして縦90mm×横100mm×厚さ5mmの軟質ウレタンフォームを両面粘着テープにより貼り付けて断熱部材を作製した。使用した軟質ウレタンフォームのアスカーF硬度は25(厚さ38mm)、伸び率は280%、耐熱温度は70℃であった。使用した軟質ウレタンフォームのその他の物性値は、通気性が24L/分、密度が59.8kg/mであった。
[Production Example 1]
Fumed silica (trade name “Aerosil 300”, specific surface area 300 m 2 / g, manufactured by Nippon Aerosil Co., Ltd., the same shall apply hereinafter) 40 parts by mass, sodium silicate 3 (manufactured by AGC S-Tech Co., Ltd.) ) Was mixed with a blender by diluting 3.4 parts by mass (1.3 parts by mass in terms of solid content) with 22.9 parts by mass of ion exchange water. Next, 40 parts by mass of fumed silica and M. as porous silica. S. 20 parts by mass of GEL (manufactured by AGC S-Itech Co., Ltd.) is added, and silica magnesia calcia fiber (trade name “Super Wool”, D30: 227 μm, D90: 902 μm, manufactured by Shin Nippon Thermal Ceramics Co., Ltd.) 2 as inorganic fiber A mass part was added and mixed by a blender to obtain a heat insulating material.
The obtained heat insulating material was put into a mold and formed into a flat plate having a length of 90 mm × width of 100 mm × thickness of 10 mm under pressure, and then heated at 200 ° C. for 1 hour to produce a core material. Next, two commercially available gas barrier films (ADY-134, manufactured by ADW Co., Ltd.) are stacked with the heat seal layer inside, and the core material is put into an outer bag in which only three sides are heat sealed, and the heat seal function It was installed in the attached vacuum chamber. After that, the pressure inside the chamber is reduced to 30 Pa, and the opening of the outer bag is heat-sealed and sealed in that state, and the outside of the outer bag is returned to the atmospheric pressure condition, and the vacuum is 90 mm long × 100 mm wide × 10 mm thick. Insulation was obtained.
Next, a flexible urethane foam having a length of 90 mm, a width of 100 mm, and a thickness of 5 mm was attached as an elastic body A to the entire surface of the vacuum heat insulating material with a double-sided adhesive tape to produce a heat insulating member. The flexible urethane foam used had an Asker F hardness of 25 (thickness 38 mm), an elongation of 280%, and a heat resistant temperature of 70 ° C. Other physical property values of the used flexible urethane foam were a permeability of 24 L / min and a density of 59.8 kg / m 3 .

[製造例2]
弾性体Bとして、軟質ウレタンフォームの代わりに、同形状のエチレン・プロピレン・ジエンゴム(EPDM)スポンジ(製品名「ゴムスポンジE−4088」、(株)イノアックコーポレーション製)を用いた以外は、製造例1と同様にして断熱部材を作製した。使用したゴムスポンジのアスカーC硬度は6、伸び率は220%、耐熱温度は120℃であった。
[Production Example 2]
Production Example, except that the elastic body B is made of ethylene / propylene / diene rubber (EPDM) sponge (product name “Rubber Sponge E-4088”, manufactured by Inoac Corporation) instead of flexible urethane foam. In the same manner as in Example 1, a heat insulating member was produced. The rubber sponge used had an Asker C hardness of 6, an elongation of 220%, and a heat resistant temperature of 120 ° C.

[製造例3]
弾性体Cとして、軟質ウレタンフォームの代わりに、同形状のメラミンフォーム(製品名「バソテクトG」、(株)イノアックコーポレーション製)を用いた以外は、製造例1と同様にして断熱部材を作製した。使用したメラミンフォームのアスカーF硬度は60、伸び率は18%、耐熱温度は150℃であった。
[Production Example 3]
A heat insulating member was produced in the same manner as in Production Example 1 except that melamine foam having the same shape (product name “Basotect G”, manufactured by Inoac Corporation) was used instead of flexible urethane foam as elastic body C. . The melamine foam used had an Asker F hardness of 60, an elongation of 18%, and a heat resistant temperature of 150 ° C.

[製造例4]
真空断熱材の片面における4辺に、幅20mm、厚さ5mmで、製造例1で用いたものと同じ軟質ウレタンフォームを周縁に沿って貼り付けた以外は、製造例1と同様にして断熱部材を作製した。
[Production Example 4]
A heat insulating member in the same manner as in Production Example 1 except that the same flexible urethane foam as used in Production Example 1 was attached to the four sides on one side of the vacuum heat insulating material along the periphery with a width of 20 mm and a thickness of 5 mm. Was made.

[例1]
上部開口部の縦横サイズが概ね140mm×140mmで、深さが100mmのステンレス容器を用意した。
ステンレス容器の底面に、製造例1と同様にして得た縦140mm×横140mm×厚さ10mmサイズの真空断熱材を、両面粘着テープを用いて貼り付けた。次いで、ステンレス容器の4つの側面に、製造例1で得た4つの断熱部材を、弾性体がステンレス容器側となるように両面粘着テープで貼り付けた。ステンレス容器の外面における、真空断熱材および断熱部材が貼り付けられていない部分には、製造例1で用いた厚さ5mmの軟質ウレタンフォームを貼り付けた。
ステンレス容器内を水で満たし、投げ込みヒーターを用いて加熱し、水温を90℃とした後、投げ込みヒーターを取り出して、厚さ25mmの発泡スチロール樹脂板(スタイロフォームEX)でステンレス容器の上部開口部に蓋をした。該ステンレス容器を室温(22℃)で放置した状態で、熱電対により水温の変化を測定し、水温が50℃になるまでの時間を測定した。
[Example 1]
A stainless steel container having a vertical and horizontal size of the upper opening of approximately 140 mm × 140 mm and a depth of 100 mm was prepared.
A vacuum heat insulating material having a size of length 140 mm × width 140 mm × thickness 10 mm obtained in the same manner as in Production Example 1 was attached to the bottom surface of the stainless steel container using a double-sided adhesive tape. Next, the four heat insulating members obtained in Production Example 1 were attached to the four side surfaces of the stainless steel container with a double-sided adhesive tape so that the elastic body was on the stainless steel container side. The flexible urethane foam having a thickness of 5 mm used in Production Example 1 was attached to the portion of the outer surface of the stainless steel container where the vacuum heat insulating material and the heat insulating member were not attached.
Fill the inside of the stainless steel container with water and heat it with a throwing heater. After setting the water temperature to 90 ° C, take out the throwing heater and cover the upper opening of the stainless steel container with a 25 mm thick Styrofoam resin plate (Styrofoam EX). Did. In the state which left this stainless steel container at room temperature (22 degreeC), the change of water temperature was measured with the thermocouple, and the time until water temperature became 50 degreeC was measured.

[例2]
製造例1の断熱部材の代わりに、製造例2の断熱部材を用いた以外は、例1と同様にして水温の変化を測定し、水温が50℃になるまでの時間を測定した。
[Example 2]
Instead of the heat insulating member of Production Example 1, the change in water temperature was measured in the same manner as in Example 1 except that the heat insulating member of Production Example 2 was used, and the time until the water temperature reached 50 ° C. was measured.

[例3]
製造例1の断熱部材の代わりに、製造例3の断熱部材を用いた以外は、例1と同様にして水温の変化を測定し、水温が50℃になるまでの時間を測定した。
[Example 3]
Instead of the heat insulating member of Production Example 1, the change in water temperature was measured in the same manner as in Example 1 except that the heat insulating member of Production Example 3 was used, and the time until the water temperature reached 50 ° C. was measured.

[例4]
製造例1の断熱部材の代わりに、製造例4の断熱部材を用いた以外は、例1と同様にして水温の変化を測定し、水温が50℃になるまでの時間を測定した。
[Example 4]
Instead of the heat insulating member of Production Example 1, the change in water temperature was measured in the same manner as in Example 1 except that the heat insulating member of Production Example 4 was used, and the time until the water temperature reached 50 ° C. was measured.

[例5]
ステンレス容器の4つの側面に、製造例1で得た断熱部材の代わりに、製造例1の真空断熱材を貼り付けた以外は、例1と同様にして水温の変化を測定し、水温が50℃になるまでの時間を測定した。
[Example 5]
The change in the water temperature was measured in the same manner as in Example 1 except that the vacuum heat insulating material of Production Example 1 was attached to the four side surfaces of the stainless steel container instead of the heat insulating member obtained in Production Example 1, and the water temperature was 50 The time to reach ° C was measured.

[例6]
例1におけるステンレス容器の底面の真空断熱材、側面の断熱部材および軟質ウレタンフォームのうち、断熱部材だけを貼り付けなかった以外は、例1と同様にして水温の変化を測定し、水温が50℃になるまでの時間を測定した。
[Example 6]
The change in water temperature was measured in the same manner as in Example 1 except that only the heat insulating member was not attached among the vacuum heat insulating material on the bottom surface of the stainless steel container, the heat insulating member on the side surface, and the flexible urethane foam in Example 1, and the water temperature was 50 The time to reach ° C was measured.

[例7]
例1と同様にしてステンレス容器の底面に真空断熱材を貼り付けた。次いで、ステンレス容器の4つの側面に、該側面における幅方向の中央部分が縦方向に幅60mmの帯状に露出するように、製造例1と同じ厚さ5mmの軟質ウレタンフォームを両面粘着テープで貼り付けた。次いで、ステンレス容器の4つの側面における軟質ウレタンフォーム上に製造例1の真空断熱材を両面粘着テープで貼り付け、ステンレス容器の側面における幅方向の中央部分と真空断熱材との間に5mmの隙間ができるようにした。
次いで、例1と同様にステンレス容器に水を満たして加熱し、熱電対により水温の変化を測定し、水温が90℃から50℃になるまでの時間を測定した。
[Example 7]
In the same manner as in Example 1, a vacuum heat insulating material was attached to the bottom surface of the stainless steel container. Next, a flexible urethane foam having the same thickness of 5 mm as in Production Example 1 is attached to the four side surfaces of the stainless steel container with a double-sided adhesive tape so that the central portion in the width direction on the side surface is exposed in a strip shape having a width of 60 mm in the vertical direction. I attached. Next, the vacuum heat insulating material of Production Example 1 is attached to the flexible urethane foam on the four side surfaces of the stainless steel container with a double-sided adhesive tape, and a 5 mm gap is formed between the central portion in the width direction on the side surface of the stainless steel container and the vacuum heat insulating material. I was able to.
Next, as in Example 1, the stainless steel container was filled with water and heated, the change in the water temperature was measured with a thermocouple, and the time until the water temperature changed from 90 ° C. to 50 ° C. was measured.

例1における経過時間に対する水温の変化を示したグラフを図6に示す。
また、各例の弾性部材における弾性体の各物性値、および水温が50℃になるまでの時間を表1に示す。
The graph which showed the change of the water temperature with respect to the elapsed time in Example 1 is shown in FIG.
Further, Table 1 shows each physical property value of the elastic body in the elastic member of each example and the time until the water temperature reaches 50 ° C.

Figure 0006617540
Figure 0006617540

表1に示すように、本発明の弾性部材を用いた例1〜4では、本発明の弾性部材を用いていない例5〜7に比べて、水温が50℃に変化するまでの時間が長く、優れた断熱性能が得られた。   As shown in Table 1, in Examples 1 to 4 using the elastic member of the present invention, the time until the water temperature changes to 50 ° C. is longer than in Examples 5 to 7 not using the elastic member of the present invention. Excellent heat insulation performance was obtained.

[例8]
製造例1と同様にして縦500mm×横500mm×厚さ10mmサイズの真空断熱材を得た。次いで、真空断熱材の両面全体に、弾性体Aとして縦500mm×横500mm×厚さ5mmの例1と同様の軟質ウレタンフォームを両面粘着テープにより貼り付けて断熱部材を作成した。
得られた断熱部材について、ISO140−3に準拠した残響室法によって、周波数400Hz〜5000Hzの範囲で吸音率を測定した。
[Example 8]
In the same manner as in Production Example 1, a vacuum heat insulating material having a size of length 500 mm × width 500 mm × thickness 10 mm was obtained. Next, a flexible urethane foam similar to Example 1 having a length of 500 mm, a width of 500 mm, and a thickness of 5 mm was attached as an elastic body A to both surfaces of the vacuum heat insulating material with a double-sided adhesive tape to prepare a heat insulating member.
About the obtained heat insulation member, the sound absorption rate was measured in the range of frequency 400Hz-5000Hz by the reverberation room method based on ISO140-3.

[例9]
例8で用いた真空断熱材について、例8と同様の方法で吸音率を測定した。
[Example 9]
About the vacuum heat insulating material used in Example 8, the sound absorption rate was measured by the same method as Example 8.

例8及び例9の測定結果を図10に示す。図10に示すように、軟質ウレタンフォームを真空断熱材に貼り付けることによって断熱性能が優れるだけでなく吸音性も付与できる。   The measurement results of Examples 8 and 9 are shown in FIG. As shown in FIG. 10, by sticking a flexible urethane foam to a vacuum heat insulating material, not only the heat insulating performance is excellent, but also sound absorbing properties can be imparted.

本発明の製造方法で製造される断熱部材は、省エネルギー化が求められる、保温や保冷、断熱が必要な箇所に適用できる。具体的には、例えば住宅およびビルの壁・屋根・床・配管、太陽光・熱設備等の住設分野;恒温槽、湯沸かし器、温水タンク、炊飯器、冷蔵庫、冷凍庫、保冷庫・保冷タンク、自動販売機、クーラーボックス、保冷カバー、防寒服等の保温・保冷分野;ノートパソコン、液晶プロジェクター、コピー機、バッテリー、燃料電池等の電気・電子機器、半導体製造装置等の産業機器分野;自動車、バス、トラック、保冷車、列車、貨物車、船舶等の移動体分野;プラントの配管等に適用が可能である。   The heat insulating member manufactured by the manufacturing method of the present invention can be applied to a place where energy saving is required and heat insulation, cold insulation, and heat insulation are required. Specifically, for example, housing and building walls / roofs / floors / piping, solar / heat facilities, etc .; constant temperature baths, water heaters, hot water tanks, rice cookers, refrigerators, freezers, cold storage / cold storage tanks, Warm and cold storage fields such as vending machines, cooler boxes, cold covers, and cold clothes; electrical and electronic equipment such as notebook computers, liquid crystal projectors, copiers, batteries and fuel cells, and industrial equipment such as semiconductor manufacturing equipment; automobiles, It can be applied to mobile fields such as buses, trucks, cold trucks, trains, freight cars, ships, etc .;

1、2 断熱部材
10 真空断熱材
10a 施工面
12、12A 弾性体
1, 2 Heat insulation member 10 Vacuum heat insulation material 10a Construction surface 12, 12A Elastic body

Claims (8)

板状の真空断熱材と弾性体とを備え、
前記真空断熱材は、芯材と前記芯材を覆うガスバリア性フィルムとを備え、前記芯材が前記ガスバリア性フィルムで形成された外袋内に減圧封入されており、
前記弾性体は厚さが3mm以上、伸び率が10%以上、アスカーF硬度が10以上、アスカーC硬度が30以下であり、該弾性体が前記真空断熱材の施工面の少なくとも周縁に設けられた断熱部材。
It has a plate-shaped vacuum heat insulating material and an elastic body,
The vacuum heat insulating material includes a core material and a gas barrier film covering the core material, and the core material is sealed under reduced pressure in an outer bag formed of the gas barrier film,
The elastic body has a thickness of 3 mm or more, an elongation of 10% or more, an Asker F hardness of 10 or more, an Asker C hardness of 30 or less, and the elastic body is provided at least on the periphery of the construction surface of the vacuum heat insulating material. Insulation member.
前記弾性体の材質が、合成樹脂、天然ゴムまたは合成ゴムである、請求項1に記載の断熱部材。 The heat insulating member according to claim 1, wherein a material of the elastic body is synthetic resin, natural rubber, or synthetic rubber. 前記弾性体が、弾性発泡体である、請求項1または2に記載の断熱部材。 The elastic body is an elastic foam insulation member according to claim 1 or 2. 前記弾性発泡体が、軟質ポリウレタンフォーム、ポリエチレンフォーム、ポリプロピレンフォーム、メラミンフォーム、ポリイミド発泡体、天然ゴム発泡体および合成ゴム発泡体からなる群から選ばれる1種以上である、請求項に記載の断熱部材。 The elastic foam, flexible polyurethane foam, polyethylene foam, polypropylene foam, melamine foam, polyimide foam is natural rubber foam and at least one member selected from the group consisting of synthetic rubber foam, according to claim 3 Thermal insulation member. 前記弾性発泡体が、吸音性および吸水性の少なくとも一方を有する、請求項またはに記載の断熱部材。 The heat insulating member according to claim 3 or 4 , wherein the elastic foam has at least one of sound absorption and water absorption. 前記弾性発泡体が、100℃以上の耐熱温度を有する、請求項のいずれか一項に記載の断熱部材。 The heat insulation member according to any one of claims 3 to 5 , wherein the elastic foam has a heat resistant temperature of 100 ° C or higher. 請求項1〜のいずれか一項に記載の断熱部材を断熱対象物に貼り付ける、断熱部材の取付方法。 The heat insulation member attachment method which affixes the heat insulation member as described in any one of Claims 1-6 to a heat insulation target object. 請求項1〜のいずれか一項に記載の断熱部材を断熱対象物に組み付ける方法であって、
前記真空断熱材と前記弾性体とを別々に用意し、断熱対象物に前記弾性体を介して前記真空断熱材を貼り付ける、断熱部材の取付方法。
A method for assembling the heat insulating member according to any one of claims 1 to 6 to an object to be insulated,
A method for attaching a heat insulating member, wherein the vacuum heat insulating material and the elastic body are separately prepared, and the vacuum heat insulating material is attached to a heat insulating object via the elastic body.
JP2015238058A 2014-12-25 2015-12-04 Insulating member and method of attaching the same Active JP6617540B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/964,725 US10603865B2 (en) 2014-12-25 2015-12-10 Insulating member and its attaching method
EP15003609.3A EP3037261B1 (en) 2014-12-25 2015-12-17 Insulating member and its attaching method
CN201510982778.1A CN105736904A (en) 2014-12-25 2015-12-24 Insulating member and its attaching method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014262121 2014-12-25
JP2014262121 2014-12-25

Publications (2)

Publication Number Publication Date
JP2016121804A JP2016121804A (en) 2016-07-07
JP6617540B2 true JP6617540B2 (en) 2019-12-11

Family

ID=56326665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015238058A Active JP6617540B2 (en) 2014-12-25 2015-12-04 Insulating member and method of attaching the same

Country Status (1)

Country Link
JP (1) JP6617540B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110055A1 (en) * 2016-12-12 2018-06-21 パナソニックIpマネジメント株式会社 Heat insulation sheet, method for producing same, and secondary cell in which same is used
JP6702933B2 (en) * 2017-12-28 2020-06-03 株式会社ニフコ Insulation structure of vehicle window device
JP7067615B2 (en) * 2018-03-30 2022-05-16 三菱ケミカル株式会社 Partition members and assembled batteries
WO2020194939A1 (en) * 2019-03-27 2020-10-01 三洋電機株式会社 Power supply device and electric vehicle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3382499B2 (en) * 1997-03-18 2003-03-04 三和化工株式会社 Crosslinked polyethylene resin foam and method for producing the same
JP4297756B2 (en) * 2003-08-29 2009-07-15 三洋電機株式会社 Core material for vacuum insulation
JP2007155279A (en) * 2005-12-08 2007-06-21 Matsushita Electric Ind Co Ltd Heat insulated case body
JP4609305B2 (en) * 2005-12-19 2011-01-12 パナソニック株式会社 Thermal insulation structure and building using thermal insulation structure
JP2007246059A (en) * 2006-03-20 2007-09-27 Honda Motor Co Ltd Fitting structure of vacuum insulation material
JP2011153406A (en) * 2010-01-26 2011-08-11 Takenaka Komuten Co Ltd Heat insulating stiffener for framework, and heat insulating structure of insulating material for stiffener and the stiffener
JP2012026588A (en) * 2010-07-20 2012-02-09 Panasonic Corp Hot water storage tank
JP2013163947A (en) * 2012-02-13 2013-08-22 Lixil Corp Installation structure for vacuum heat insulation material
JP6038713B2 (en) * 2013-04-02 2016-12-07 象印マホービン株式会社 Vacuum insulation panel

Also Published As

Publication number Publication date
JP2016121804A (en) 2016-07-07

Similar Documents

Publication Publication Date Title
US10603865B2 (en) Insulating member and its attaching method
JP6617540B2 (en) Insulating member and method of attaching the same
US11530880B2 (en) Phase-change energy-storage structure for building insulation
US6485805B1 (en) Multilayer insulation composite
EP2555276A1 (en) Battery pack
JP2005036975A (en) Heat insulation material, method for manufacturing the same, and device using the heat insulation material
WO2010143408A1 (en) Battery pack
KR20080011272A (en) Evacuated thermal insulation panel
JP6281197B2 (en) Thermal storage laminate
ES2779035T3 (en) Fire Barrier Layer and Fire Barrier Film Laminate
WO2016047041A1 (en) Fireproof construction and method for using same
TW201130653A (en) Groove type vacuum heat insulation material
ES2682461T3 (en) Sound absorbing sandwich panel
CN107042952A (en) A kind of double-layer detachable formula thermal insulation thermal insulation box body
JPWO2016084763A1 (en) Vacuum insulation material and manufacturing method thereof
JP3528846B1 (en) Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using the vacuum insulation material
JP2013204658A (en) Vacuum heat insulating material and method of manufacturing the same
JP2009168091A (en) Vacuum heat insulation material, and building using vacuum heat insulation material in wall
CN107042936A (en) A kind of double-layer detachable formula thermal insulation incubator lid
JP7209467B2 (en) Insulated container and manufacturing method of the insulated container
CN206255428U (en) A kind of thermal insulation box body of demountable structure
ES2300678T3 (en) USE OF A MELAMINE FOAM / FORMALDEHYDE AS A COOLING ACCUMULATOR.
JP3155315U (en) Insulation
JP2001336692A (en) Heat insulating structure
CA2876324C (en) High resistance panels (hrp)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191028

R150 Certificate of patent or registration of utility model

Ref document number: 6617540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250