JP2013204658A - Vacuum heat insulating material and method of manufacturing the same - Google Patents

Vacuum heat insulating material and method of manufacturing the same Download PDF

Info

Publication number
JP2013204658A
JP2013204658A JP2012072989A JP2012072989A JP2013204658A JP 2013204658 A JP2013204658 A JP 2013204658A JP 2012072989 A JP2012072989 A JP 2012072989A JP 2012072989 A JP2012072989 A JP 2012072989A JP 2013204658 A JP2013204658 A JP 2013204658A
Authority
JP
Japan
Prior art keywords
heat
heat insulating
vacuum
water
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012072989A
Other languages
Japanese (ja)
Inventor
Masanori Tateishi
正徳 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STAR HARD KK
Original Assignee
STAR HARD KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STAR HARD KK filed Critical STAR HARD KK
Priority to JP2012072989A priority Critical patent/JP2013204658A/en
Publication of JP2013204658A publication Critical patent/JP2013204658A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material which is excellent in flexibility and heat insulating property, and a method of manufacturing the same.SOLUTION: A kneaded aqueous solution 10 containing a number of ceramic-based or glass-based balloon particles 11 covered with a water-soluble resin and a heat shielding pigment 13 covered with a water-soluble resin 12 is applied onto both surfaces of a core material 2 comprised of deformable platy foamed plastic having flexibility and heat insulating property, and the solution 10 is dried. A heat-shielding heat-insulating coating layer 3 in which the heat shielding pigment 13 and a number of balloon particles 11 are arrayed with the water-soluble resin 12 as a binder is formed on both surfaces of the core material 2. The core material 2 is accommodated in a bag-shaped gas barrier film 4 and sealed under vacuum of 950 mmhg or less.

Description

本発明は、柔軟性および断熱性に優れる真空断熱材と、真空断熱材の製造方法に関する。   The present invention relates to a vacuum heat insulating material excellent in flexibility and heat insulating properties, and a method for manufacturing a vacuum heat insulating material.

従来より、住宅建材等に用いる断熱材としては、一般的にグラスウールやロックウールなどの繊維体やウレタンフォームなどの発泡体が用いられている。これらの断熱材は断熱性能を高めるため、断熱材の厚みを大きくする必要があるが、断熱材の配置空間に制限があったり、断熱材の配置により内部の収容容積が小さくなる等の課題があった。   Conventionally, as a heat insulating material used for a housing building material or the like, a fiber body such as glass wool or rock wool or a foam body such as urethane foam is generally used. These heat insulating materials need to increase the thickness of the heat insulating material in order to improve the heat insulating performance, but there are problems such as a limitation in the space for arranging the heat insulating material and a reduction in the internal accommodation volume due to the arrangement of the heat insulating material. there were.

そこで、グラスウール芯材をガスバリアフィルムで包み、真空状態にして密封した真空断熱材が開発された。かかる真空断熱材は芯材を薄肉化しながら断熱性能を高めることができる。真空断熱材の例として、特開平7−96563号公報、特開平9−136367号公報、特開2006−342839号公報に開示されたものが知られている。   Therefore, a vacuum heat insulating material was developed in which a glass wool core was wrapped with a gas barrier film and sealed in a vacuum state. Such a vacuum heat insulating material can enhance the heat insulating performance while thinning the core material. As examples of the vacuum heat insulating material, those disclosed in Japanese Patent Application Laid-Open Nos. 7-96563, 9-136367, and 2006-342839 are known.

特開平7−96563号公報JP-A-7-96563 特開平9−136367号公報JP-A-9-136367 特開2006−342839号公報JP 2006-342839 A

しかしながら、従来の真空断熱材は、ガラス繊維であるグラスウールやグラスファイバーランダムな繊維配列にして熱伝導率を下げるための空孔を確保するようにしているが、断熱効果を発揮させるために1000mmhg以上の高真空度としているため、硬く、折り曲げようとすると簡単に亀裂破壊する問題があった。したがって、断熱材を配置する空間に屈曲部位や凹凸があるとこれらの形状に追従できず、隙間ができて断熱性を低下させる問題があった。また、かかる屈曲部位や凹凸に適合するように、予め芯材を成型加工しようとすれば、製造コストが高くなるという問題があった。   However, the conventional vacuum heat insulating material is made of glass fiber or glass fiber which is a glass fiber random fiber arrangement so as to secure holes for lowering the thermal conductivity, but 1000 mmhg or more in order to exert a heat insulating effect. Therefore, there was a problem that it was hard and easily cracked when it was bent. Therefore, if there is a bent portion or unevenness in the space where the heat insulating material is arranged, there is a problem that these shapes cannot be followed and a gap is formed, resulting in a decrease in heat insulation. In addition, if the core material is preliminarily molded so as to conform to the bent portion and the unevenness, there is a problem that the manufacturing cost increases.

本発明は、上記課題に鑑みてなされたもので、折り曲げ等の使用に対応し得る柔軟性、断熱性および保温性に優れる真空断熱材と、真空断熱材の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a vacuum heat insulating material excellent in flexibility, heat insulating properties and heat retaining properties that can be used for bending and the like, and a method for manufacturing the vacuum heat insulating material. To do.

上記課題を解決するために、本発明に係る真空断熱材は、変形可能な柔軟性および断熱性のある芯材の少なくとも片面に、水溶性樹脂を遮熱バインダーとして遮熱顔料およびバルーン粒子が多数配列された遮熱断熱膜層を形成してなり、同芯材を950mmhg以下の真空度の下で袋状のガスバリアフィルム内に密封することを第1の特徴とする。   In order to solve the above-mentioned problems, the vacuum heat insulating material according to the present invention has a large number of heat-shielding pigments and balloon particles using a water-soluble resin as a heat-shielding binder on at least one surface of a deformable flexible and heat-insulating core material. The first characteristic is that the heat insulating and heat insulating film layers are arranged, and the concentric material is sealed in a bag-like gas barrier film under a vacuum of 950 mmhg or less.

前記芯材は、板状、角状、断面円形状等が可能であり、発泡プラスチックが望ましいが、両性能を発揮できる材料として他にもウレタンフォーム、スポンジ、ダンボール等が可能である。さらにグラスウールやグラス繊維ファイバーを用いることもできる。断熱可能性のある材料として、布や革、ポリプロピレン、アクリルシート、塩化ビニル、石膏、シラスバルーン、シリカバルーン、中空セラミックなどの粉体等を袋に入れたものも適用可能である。   The core material can be plate-shaped, square-shaped, circular in cross-section, etc., and is preferably foamed plastic, but other materials that can exhibit both performances are urethane foam, sponge, cardboard, and the like. Furthermore, glass wool and glass fiber fiber can also be used. As a material capable of heat insulation, a material in which a bag such as cloth, leather, polypropylene, acrylic sheet, vinyl chloride, gypsum, shirasu balloon, silica balloon, hollow ceramic or the like is put in a bag is also applicable.

バルーン粒子は、比重1未満のセラミック系、アルミナ系またはガラス系等のバルーン粒子からなり、断熱性および保温性に優れる。また、比重が1を超える遮熱顔料は、例えば酸化チタンや鉄クロム等からなり、これらは赤外線反射効果があり、遮熱性に優れ、耐久性に優れる。また、セラミック系またはガラス系等のバルーン粒子は吸水率が0.1%以下であり、防水機能があるため、遮熱断熱膜層に防水機能を付与する。   The balloon particles are made of balloon particles such as ceramic, alumina or glass having a specific gravity of less than 1, and are excellent in heat insulation and heat retention. Further, the heat shielding pigment having a specific gravity of more than 1 is made of, for example, titanium oxide or iron chrome, which has an infrared reflection effect, has excellent heat shielding properties, and is excellent in durability. Moreover, since the ceramic or glass-based balloon particles have a water absorption rate of 0.1% or less and have a waterproof function, the waterproof function is imparted to the heat-insulating and heat-insulating film layer.

本発明に係る真空断熱材によると、芯材の断熱性に、遮熱断熱膜層の断熱性が加わることから、1000mmhg以上の高真空度に保持する必要がなく、950mmhg以下の真空度でガスバリアフィルム内に密封することにより、それらの複合効果により、十分な遮熱性、断熱性、保温性を確保できる。特に、950mmhg以下の真空度の下で密封することで、1000mmhg以上の高真空度の下で密封する場合と異なり、芯材に含まれる空孔が潰れることがなく、真空度維持による断熱効果と空孔維持による断熱効果を両立できる。   According to the vacuum heat insulating material according to the present invention, since the heat insulating property of the heat insulating and heat insulating film layer is added to the heat insulating property of the core material, it is not necessary to maintain a high vacuum degree of 1000 mmhg or more, and the gas barrier has a vacuum degree of 950 mmhg or less. By sealing in the film, sufficient heat shielding properties, heat insulating properties, and heat retaining properties can be secured by their combined effects. In particular, by sealing under a vacuum degree of 950 mmhg or less, unlike the case of sealing under a high vacuum degree of 1000 mmhg or more, the holes contained in the core material are not crushed, and the heat insulation effect by maintaining the vacuum degree It is possible to achieve both heat insulation effects by maintaining pores.

柔軟性のある板状の芯材を用い、水溶性樹脂を遮熱バインダーとして遮熱顔料およびバルーン粒子が多数配列された遮熱断熱膜層は芯材の変形に追従性があることから、本発明に係る真空断熱材は柔軟性に優れる。したがって、自由に折り曲げ可能で亀裂破壊もなく、屈曲部位や凹凸がある場所でも、これらの形状に追従でき、隙間なく適切に配置できる。   Since a heat-insulating and heat-insulating film layer using a flexible plate-shaped core material and a large number of heat-shielding pigments and balloon particles arranged with a water-soluble resin as a heat-insulating binder, can follow the deformation of the core material. The vacuum heat insulating material according to the invention is excellent in flexibility. Therefore, it can be bent freely, there is no crack breakage, and it can follow these shapes even in places where there are bent portions or irregularities, and can be arranged appropriately without gaps.

長年の使用により真空破壊が生じても、遮熱断熱膜層の存在により、一定の遮熱性能、断熱性能、保温性能を確保できる。   Even if a vacuum break occurs due to long-term use, the presence of the heat-insulating and heat-insulating film layer ensures certain heat-insulating performance, heat-insulating performance, and heat-insulating performance.

本発明に係る真空断熱材は、真空度が450mmhg〜750mmhgであることを第2の特徴とする。   The vacuum heat insulating material according to the present invention is characterized in that the degree of vacuum is 450 mmhg to 750 mmhg.

芯材を450mmhg〜750mmhgの低真空度の下でガスバリアフィルム内に密封することにより、芯材の空孔の潰れが防止され、柔軟性、断熱性、保温性の効果をより発揮できる。   By sealing the core material in a gas barrier film under a low vacuum level of 450 mmhg to 750 mmhg, the core material can be prevented from being crushed, and the effects of flexibility, heat insulation, and heat retention can be further exhibited.

本発明に係る真空断熱材は、芯材の周囲に、前記遮熱断熱膜層を形成してなることを第3の特徴とする。   A third feature of the vacuum heat insulating material according to the present invention is that the heat insulating heat insulating film layer is formed around the core material.

芯材の周囲に強固なサンドイッチ構造の遮熱断熱膜層を形成することにより、断熱性、防水性、保温効果が一層向上する。   By forming a heat-insulating and heat-insulating film layer having a strong sandwich structure around the core material, heat insulating properties, waterproof properties, and heat retaining effects are further improved.

本発明に係る真空断熱材は、密封後の芯材の厚さが20μ〜10mmであることを第4の特徴とする。   The vacuum heat insulating material according to the present invention is characterized in that the core material after sealing has a thickness of 20 μm to 10 mm.

本発明に係る真空断熱材は、遮熱断熱膜層の乾燥厚さが100〜3000μであることを第5の特徴とする。   The vacuum heat insulating material according to the present invention is characterized in that the dry thickness of the heat insulating heat insulating film layer is 100 to 3000 μm.

乾燥厚さが100μ未満であると断熱性が低下し、3000μを超えると膜厚み強度が不足し、ひび割れ、亀裂などの原因となる。また、芯材の変形に対する追従性が低下する。このため100〜3000μの範囲が、断熱性と強度、追従性の理由から好ましい。   If the dry thickness is less than 100 μm, the heat insulating property is lowered, and if it exceeds 3000 μm, the film thickness strength is insufficient, which causes cracks and cracks. Moreover, the followability with respect to a deformation | transformation of a core material falls. For this reason, the range of 100-3000 micrometers is preferable from the reason of heat insulation, intensity | strength, and followable | trackability.

本発明に係る真空断熱材は、比重が1を超える遮熱顔料として、酸化チタン(TiO)または鉄クロム(Fe-Cr)を用いることを第6の特徴とする。 The vacuum heat insulating material according to the present invention is characterized in that titanium oxide (TiO 2 ) or iron chrome (Fe—Cr) is used as a heat shielding pigment having a specific gravity exceeding 1.

本発明に係る真空断熱材の製造方法は、変形可能な柔軟性および断熱性のある板状の芯材の少なくとも片面に、水溶性樹脂により被覆されたセラミック系またはガラス系の多数のバルーン粒子と、水溶性樹脂により被覆された遮熱顔料を含む混練水溶液を塗布し、乾燥させて、前記芯材の少なくとも片面に、水溶性樹脂を遮熱バインダーとして遮熱顔料およびバルーン粒子が多数配列された遮熱断熱塗膜層を形成し、同芯材を袋状のガスバリアフィルムに収納するとともに、950mmhg以下の真空度の下で密封することを第1の特徴とする。   The method for producing a vacuum heat insulating material according to the present invention comprises a large number of ceramic or glass balloon particles coated with a water-soluble resin on at least one surface of a deformable flexible and heat insulating plate-shaped core material. Then, a kneaded aqueous solution containing a heat-shielding pigment coated with a water-soluble resin was applied and dried, and at least one surface of the core material was arranged with a large number of heat-shielding pigments and balloon particles using the water-soluble resin as a heat-shielding binder. The first characteristic is that a heat-insulating and heat-insulating coating layer is formed, the concentric material is housed in a bag-shaped gas barrier film, and sealed under a vacuum of 950 mmhg or less.

本発明に係る真空断熱材の製造方法は、変形可能な柔軟性および断熱性のある板状の芯材の少なくとも片面に、水溶性樹脂により被覆された比重1未満のセラミック系またはガラス系の多数のバルーン粒子と、水溶性樹脂をバインダーとして比重1未満のセラミック系またはガラス系のバルーン粒子および比重1超の遮熱顔料が結合された多数のバルーン粒子・遮熱顔料結合体を含む混練水溶液を塗布し、乾燥させて、前記芯材の少なくとも片面に、表層部に水溶性樹脂を遮熱バインダーとしてバルーン粒子と遮熱顔料が結合されたバルーン粒子・遮熱顔料結合体が多数配列され、内層部に水溶性樹脂をバインダーとしてバルーン粒子が多数配列された遮熱断熱塗膜層を形成し、同芯材を袋状のガスバリアフィルムに収納するとともに、950mmhg以下の真空度の下で密封することを第2の特徴とする。   The method for producing a vacuum heat insulating material according to the present invention includes a large number of ceramic or glass materials having a specific gravity of less than 1 and coated with a water-soluble resin on at least one surface of a deformable flexible and heat insulating plate-shaped core material. A kneaded aqueous solution comprising a plurality of balloon particles / heat-shielding pigments combined with ceramic particles or glass-based balloon particles having a specific gravity of less than 1 and a heat-shielding pigment having a specific gravity of more than 1 using a water-soluble resin as a binder. A plurality of balloon particles / heat-shielding pigment assemblies in which balloon particles and a heat-shielding pigment are combined with a water-soluble resin as a heat-shielding binder on the surface layer are arranged on at least one surface of the core material, and the inner layer is coated. A heat-insulating and heat-insulating coating layer in which a large number of balloon particles are arrayed with a water-soluble resin as a binder is formed in the part, and the concentric material is stored in a bag-shaped gas barrier film. The second feature to be sealed under the following vacuum mmHg.

真空断熱材を製造するにあたり、芯材の表面(片面)に、水溶性樹脂により被覆された比重1未満のセラミック系またはガラス系の多数のバルーン粒子と、水溶性樹脂をバインダーとして比重1未満のセラミック系またはガラス系のバルーン粒子および比重1超の遮熱顔料が結合された多数のバルーン粒子・遮熱顔料結合体を含む混練水溶液を塗布することにより、バルーン粒子の浮力によって、バルーン粒子に結合された比重が1を超える遮熱顔料が塗膜層の表層部に浮上する。   In producing a vacuum heat insulating material, the surface (one surface) of the core material is coated with a water-soluble resin, and a large number of ceramic or glass balloon particles having a specific gravity of less than 1, and a specific gravity of less than 1 using a water-soluble resin as a binder. By applying a kneaded aqueous solution containing a large number of balloon particles / heat shield pigments combined with ceramic or glass balloon particles and a heat shield pigment with a specific gravity of more than 1, it is bonded to the balloon particles by the buoyancy of the balloon particles. The heat-shielding pigment having a specific gravity exceeding 1 floats on the surface layer portion of the coating layer.

比重1超の遮熱顔料は、その重さによって沈降し、単体では塗膜層の表層部に浮上しないのに対し、バルーン粒子の浮力を利用して塗膜層の表層部に浮上させ遮熱顔料を表面に並べて露出および強固に定着させることができる。これにより、乾燥後の芯材の表層部に遮熱顔料が並ぶことにより、芯材の断熱性と、遮熱断熱膜層の断熱性、真空密封による断熱性の複合効果により、断熱性、防水性が向上する。これにより、遮熱性、断熱性、防水性、保温性に優れた断熱材を製造できる。   A thermal barrier pigment with a specific gravity of more than 1 settles according to its weight and does not float on the surface layer of the coating layer by itself, but floats on the surface layer of the coating layer using the buoyancy of the balloon particles. The pigment can be exposed and firmly fixed on the surface. As a result, heat insulating pigments are arranged on the surface layer of the core material after drying, so that the heat insulating property and waterproofing are achieved by the combined effect of the heat insulating property of the core material, the heat insulating property of the heat insulating heat insulating film layer, and the heat insulating property by vacuum sealing. Improves. Thereby, the heat insulating material excellent in heat insulation, heat insulation, waterproofness, and heat retention can be manufactured.

塗膜層の乾燥後は、遮熱バインダーがバルーン粒子と遮熱顔料の結合状態を強固かつ柔軟に保持し、塗膜層の耐久性、柔軟性を発揮する。水溶性樹脂を用い、有機溶剤を使用しないから、作業環境や安全衛生にも最適である。   After the coating layer is dried, the thermal barrier binder holds the bonding state between the balloon particles and the thermal barrier pigment firmly and flexibly, and demonstrates the durability and flexibility of the coating layer. Because it uses water-soluble resin and does not use organic solvent, it is ideal for work environment and safety and health.

本発明に係る真空断熱材の製造方法は、混練水溶液を得るにあたり、バルーン粒子100重量%に対し、水10〜55重量%、水溶性樹脂10〜80を混錬して一次混練水溶液を得、一次混練水溶液100重量%に対し、遮熱顔料1〜80重量%を混錬して最終の混練水溶液を得ることを第3の特徴とする。   The method for producing a vacuum heat insulating material according to the present invention is to obtain a primary kneaded aqueous solution by kneading 10 to 55% by weight of water and 10 to 80% water-soluble resin with respect to 100% by weight of balloon particles in obtaining a kneaded aqueous solution. A third feature is that the final kneaded aqueous solution is obtained by kneading 1 to 80% by weight of the heat shielding pigment with respect to 100% by weight of the primary kneaded aqueous solution.

以上説明したように、本発明に係る真空断熱材によると、自由に折り曲げ可能な柔軟性をもち、遮熱性、断熱性、保温性、耐久性に優れた真空断熱材を得ることができる。これにより、曲面や凹凸面にも隙間なく断熱材を配置することができ、優れた断熱効果を発揮させることができる。また、優れた遮熱断熱層をガスバリアフィルム内に備えることにより、ガスバリアフィルムが破損した場合でも、一定の遮熱断熱効果を維持でき、これらの効果により、住宅・建物用の遮熱材、断熱材として、あるいは冷蔵庫、冷温機、自動販売機等の断熱材として、幅広い用途に適用できるという優れた効果を奏する。   As described above, according to the vacuum heat insulating material according to the present invention, it is possible to obtain a vacuum heat insulating material having flexibility that can be bent freely and excellent in heat shielding properties, heat insulating properties, heat retaining properties, and durability. Thereby, a heat insulating material can be arrange | positioned without a clearance gap also on a curved surface or an uneven surface, and the outstanding heat insulation effect can be exhibited. In addition, by providing an excellent heat-insulating and heat-insulating layer in the gas barrier film, even if the gas barrier film is damaged, a certain heat-insulating and insulating effect can be maintained. As a material or as a heat insulating material for a refrigerator, a cooler / heater, a vending machine, etc., it has an excellent effect that it can be applied to a wide range of applications.

また、本発明に係る真空断熱材の製造方法によると、上に述べた優れた性能を備える真空断熱材を低コストで容易に製造できるという優れた効果を奏する。さらに、芯材や遮熱断熱膜層にひび割れ・亀裂などを起こさない柔軟性に優れた真空断熱材を得ることができるという優れた効果を奏する。   Moreover, according to the manufacturing method of the vacuum heat insulating material which concerns on this invention, there exists the outstanding effect that the vacuum heat insulating material provided with the outstanding performance described above can be manufactured easily at low cost. Furthermore, an excellent effect is obtained in that it is possible to obtain a vacuum heat insulating material having excellent flexibility that does not cause cracks or cracks in the core material or the heat insulating heat insulating film layer.

真空断熱材の断面図、Cross section of vacuum insulation material, 真空断熱材の要部拡大断面図、The main part enlarged sectional view of the vacuum heat insulating material, 混練水溶液を製造するフローチャート図、Flow chart for producing a kneaded aqueous solution, (A)は一次混練物を示す図、(B)は二次混練物(混練水溶液)を示す図、(A) is a diagram showing a primary kneaded product, (B) is a diagram showing a secondary kneaded product (kneaded aqueous solution), 真空包装機を用いて芯材をガスバリアフィルムに密封する様子を示す説明図である。It is explanatory drawing which shows a mode that a core material is sealed to a gas barrier film using a vacuum packaging machine.

本発明を実施するための形態について、図面を参照して説明する。図1ないし図5は本発明の一実施形態を示すもので、図1において、符号1は真空断熱材を示している。   DESCRIPTION OF EMBODIMENTS Embodiments for carrying out the present invention will be described with reference to the drawings. 1 to 5 show an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a vacuum heat insulating material.

真空断熱材1は、図1に示すように、板状の芯材2の両面に遮熱断熱膜層3が形成され、所定の真空度でガスバリアフィルム4に密封された構造をしている。   As shown in FIG. 1, the vacuum heat insulating material 1 has a structure in which a heat insulating heat insulating film layer 3 is formed on both surfaces of a plate-like core material 2 and is sealed with a gas barrier film 4 at a predetermined degree of vacuum.

芯材2は、折り曲げ可能な柔軟性および断熱性のある板状の材料、具体的には発泡プラスチックから構成されており、密封前の芯材2の厚さは1.5〜30mm(図示例では3mm)であるが、密封後の芯材2の厚さは密封前の1/3、すなわち0.5〜10mm(図示例では1mm)の薄い断面をしている。発泡プラスチックは、合成樹脂を発泡成形させたもので、多数の空孔5を備えており、発泡スチロール(EPS)、発泡スチレンなどからなる。発泡プラスチックに用いられる原料は、ポリスチロール(PS)、ポリスチレン(PS)の他、ポリエチレン(PE)、ポリプロピレン(PP)、ポリウレタン(PUR)、フェノール樹脂(PF)、ポリ塩化ビニル(PVC)、ポリミイド(PI)、シリコン(SI)などがある。   The core material 2 is composed of a plate-like material having flexibility and heat insulation that can be bent, specifically, foamed plastic. The thickness of the core material 2 before sealing is 1.5 to 30 mm (illustration example). However, the thickness of the core 2 after sealing has a thin cross section of 1/3 before sealing, that is, 0.5 to 10 mm (1 mm in the illustrated example). The foamed plastic is obtained by foaming a synthetic resin, has a large number of pores 5, and is made of foamed polystyrene (EPS), foamed styrene, or the like. Raw materials used for foamed plastics are polystyrene (PS), polystyrene (PS), polyethylene (PE), polypropylene (PP), polyurethane (PUR), phenolic resin (PF), polyvinyl chloride (PVC), polyimide (PI), silicon (SI), and the like.

なお、芯材2としては、折り曲げ可能な柔軟性および断熱性のある他の材料も適用可能である。例えば、ウレタンフォーム、スポンジ、ダンボールが可能である。さらにグラスウール、グラス繊維ファイバー等の断熱材も適用できる。断熱可能性のある材料として、布や革、ポリプロピレン、アクリルシート、塩化ビニル、石膏、シラスバルーン、シリカバルーン、中空セラミック等の粉体等を袋に入れたものも適用可能である。後者の粉体を袋に入れた芯材は、密封前および密封後の厚さを20μと薄く形成することができる。したがって、上記材料も考慮すると、密封前の芯材2の厚さは20μ〜60mm、密封前の芯材2の厚さは20μ〜20mmに拡大できる。   In addition, as the core material 2, other materials having flexibility and heat insulation that can be bent are also applicable. For example, urethane foam, sponge, and cardboard are possible. Furthermore, heat insulating materials such as glass wool and glass fiber fibers can be applied. As a material capable of heat insulation, a material in which a bag of cloth, leather, polypropylene, acrylic sheet, vinyl chloride, gypsum, shirasu balloon, silica balloon, hollow ceramic or the like is put in a bag can be applied. The core material in which the latter powder is put in a bag can be formed as thin as 20 μm before and after sealing. Therefore, when the above materials are taken into consideration, the thickness of the core material 2 before sealing can be increased to 20 to 60 mm, and the thickness of the core material 2 before sealing can be increased to 20 to 20 mm.

遮熱断熱膜層3は、図2に示すように、表層部3Aに水溶性樹脂12を遮熱バインダーとしてバルーン粒子11と遮熱顔料13が結合したバルーン粒子・遮熱顔料結合体16が多数配列され、内層部3Bに水溶性樹脂12をバインダーとしてバルーン粒子11が多数配列されている。かかる遮熱断熱膜層3は、芯材2の両面に、混練水溶液10、すなわち水溶性樹脂12により被覆された多数のバルーン粒子11と、水溶性樹脂12をバインダーとしてバルーン粒子11および遮熱顔料13が結合された多数のバルーン粒子・遮熱顔料結合体Uを含む混練水溶液10が塗布および乾燥されて形成されている。遮熱断熱膜層3の乾燥厚さtは、混練水溶液10の1回または数回の重ね塗りによって、100〜3000μに設定されている。図2に示すように、遮熱断熱膜層3の表層部3Aは内層部3Bよりも遮熱顔料13の占める割合が高く、内層部3Bは表層部3Aよりもバルーン粒子11の占める割合が高くなっている。バルーン粒子11には比重が1未満のセラミック系またはガラス系が用いられ、遮熱顔料13には比重が1を超える酸化チタンまたは鉄クロムが用いられる。   As shown in FIG. 2, the heat-insulating and heat-insulating film layer 3 has a large number of balloon particles / heat-insulating pigment assemblies 16 in which the balloon particles 11 and the heat-insulating pigment 13 are bonded to the surface layer portion 3A using the water-soluble resin 12 as a heat-insulating binder. A large number of balloon particles 11 are arranged in the inner layer portion 3B using the water-soluble resin 12 as a binder. Such a heat-insulating and heat-insulating film layer 3 is composed of a large number of balloon particles 11 coated on both surfaces of the core material 2 with a kneaded aqueous solution 10, that is, a water-soluble resin 12, and balloon particles 11 and a heat-shielding pigment using the water-soluble resin 12 as a binder. A kneaded aqueous solution 10 containing a large number of balloon particles / heat-shielding pigment conjugates U to which 13 is bonded is formed by coating and drying. The dry thickness t of the heat-insulating and heat-insulating film layer 3 is set to 100 to 3000 μm by applying the kneaded aqueous solution 10 once or several times. As shown in FIG. 2, the surface layer portion 3A of the heat insulating heat insulating film layer 3 has a higher proportion of the heat shielding pigment 13 than the inner layer portion 3B, and the inner layer portion 3B has a higher proportion of the balloon particles 11 than the surface layer portion 3A. It has become. A ceramic or glass system having a specific gravity of less than 1 is used for the balloon particles 11, and titanium oxide or iron chromium having a specific gravity of more than 1 is used for the thermal barrier pigment 13.

遮熱断熱膜層3中、表層部3Aの遮熱顔料13と水溶性樹脂遮熱バインダー12により遮熱効果が発揮される。また、表層部3Aおよび内層部3Bのバルーン粒子11により断熱されて断熱効果が発揮される。そして、芯材2を構成する発泡プラスチックの断熱効果と、後述する真空断熱の複合効果により断熱材としての断熱性能が向上する。   In the heat insulating and heat insulating film layer 3, the heat insulating effect is exhibited by the heat insulating pigment 13 and the water-soluble resin heat insulating binder 12 in the surface layer portion 3 </ b> A. Moreover, it is thermally insulated by the balloon particles 11 of the surface layer part 3A and the inner layer part 3B, and the heat insulation effect is exhibited. And the heat insulation performance as a heat insulating material improves by the heat insulation effect of the foamed plastic which comprises the core material 2, and the composite effect of the vacuum heat insulation mentioned later.

バルーン粒子11は、保温性に優れるとともに、吸水率が0.1%以下で防水機能があり、遮熱断熱膜層3に防水機能を付与する。これにより、真空断熱材1に優れた保温性と防水性を付与できる。   The balloon particles 11 are excellent in heat retention and have a waterproof function with a water absorption rate of 0.1% or less, and impart a waterproof function to the heat-insulating and heat-insulating film layer 3. Thereby, the heat insulating property and waterproofness which were excellent in the vacuum heat insulating material 1 can be provided.

ガスバリアフィルム4は、袋状をなすとともに、一方の開口部4Aから内部に芯材2を収容すると共に、同芯材2を所定の真空度の下で密封するもので、開口部4Aを上下から熱圧着可能なようにポリエチレン(PE)、ポリプロピレン(PP)、塩化ビニル等の合成樹脂から構成されている。なお、断熱性、遮熱性を高めるためにアルミニウム等の外装材を積層することができる。   The gas barrier film 4 is formed in a bag shape, accommodates the core material 2 inside from one opening 4A, and seals the core material 2 under a predetermined degree of vacuum. It is made of synthetic resin such as polyethylene (PE), polypropylene (PP), vinyl chloride so that it can be thermocompression bonded. In addition, in order to improve heat insulation and heat insulation, exterior materials, such as aluminum, can be laminated | stacked.

上記構成の真空断熱材1は以下のようにして製造される。   The vacuum heat insulating material 1 of the said structure is manufactured as follows.

まず、混錬水溶液10を準備する。図3のフローチャートに示すように、混練装置の容器内にバルーン粒子11、水14、水溶性樹脂12の各材料を投入し、攪拌および混練して、一次混錬物15を得る。各材料の配合割合はバルーン粒子100重量部に対し、水50重量部、水溶性樹脂50重量部とする。なお、バルーン粒子100重量部に対し、水は10〜55重量部のうちから、水溶性樹脂は10〜80重量部のうちから、それぞれ適宜選択できる。容器内で攪拌板を回転させることにより、個々のバルーン粒子11の周囲に水溶性樹脂12がコーティングされる。バルーン粒子11はセラミック系を用い、粒径20ミクロン〜60ミクロン、平均空孔率10%以上、比重0.8以下の酸化アルミニウム(Al)の球状体を用いる。酸化アルミニウムは、約1400℃の高温で焼成されることによって球体形状で平均空孔率10%以上のバルーン粒子が安定して得られる。水溶性樹脂12にはアクリル樹脂等を用いる。 First, the kneaded aqueous solution 10 is prepared. As shown in the flowchart of FIG. 3, each material of balloon particles 11, water 14, and water-soluble resin 12 is put into a container of a kneading apparatus, and stirred and kneaded to obtain a primary kneaded material 15. The blending ratio of each material is 50 parts by weight of water and 50 parts by weight of water-soluble resin with respect to 100 parts by weight of balloon particles. In addition, water can be appropriately selected from 10 to 55 parts by weight and water-soluble resin from 10 to 80 parts by weight with respect to 100 parts by weight of the balloon particles. By rotating the stirring plate in the container, the water-soluble resin 12 is coated around each balloon particle 11. The balloon particles 11 are made of ceramic, and use a spherical body of aluminum oxide (Al 2 O 3 ) having a particle size of 20 to 60 microns, an average porosity of 10% or more, and a specific gravity of 0.8 or less. When the aluminum oxide is fired at a high temperature of about 1400 ° C., balloon particles having a spherical shape and an average porosity of 10% or more can be stably obtained. An acrylic resin or the like is used for the water-soluble resin 12.

次に、容器中の一次混練物15に遮熱顔料(酸化チタン)13を投入し、攪拌および混練して、最終の混練水溶液(二次混練物)10を得る。このときの配合割合は、一次混練物100重量部に対し、遮熱顔料30重量部とする。なお、一次混錬物100重量部に対し、酸化チタンは1〜80重量部のうちから適宜選択することができる。酸化チタン13を後から投入することで個々のバルーン粒子11の周囲に水溶性樹脂12が遮熱バインダーとなって遮熱顔料13が結合し、バルーン粒子・遮熱顔料結合体16を形成する。また、バルーン粒子・遮熱顔料結合体16が互いに結合し、複合ユニットUを構成する場合もある。そして、個々のバルーン粒子11の浮力の合計が、遮熱顔料13の沈降力を上回ることにより、個々のバルーン粒子・遮熱顔料結合体16(あるいはそれらの複合ユニット)が混練水溶物10の表層部に浮上する。   Next, the heat shielding pigment (titanium oxide) 13 is put into the primary kneaded material 15 in the container, and stirred and kneaded to obtain the final kneaded aqueous solution (secondary kneaded material) 10. The blending ratio at this time is 30 parts by weight of the heat shielding pigment with respect to 100 parts by weight of the primary kneaded product. In addition, a titanium oxide can be suitably selected from 1-80 weight part with respect to 100 weight part of primary kneaded materials. When the titanium oxide 13 is introduced later, the water-soluble resin 12 becomes a heat-shielding binder around each balloon particle 11 to bond the heat-shielding pigment 13 to form a balloon particle / heat-shielding pigment combined body 16. Further, the balloon particle / heat-shielding pigment combination 16 may be combined with each other to form a composite unit U. When the total buoyancy of the individual balloon particles 11 exceeds the settling force of the heat shielding pigment 13, the individual balloon particles / heat shielding pigment combination 16 (or their composite unit) becomes a surface layer of the kneaded aqueous solution 10. Rise to the club.

そして、かかる混練水溶物10を平板状の芯材2の両面に塗布することにより、図4に示すように、乾燥前の塗膜層3の表層部3Aにバルーン粒子・遮熱顔料結合体16が浮上して多数配列され、また、内層部3Bにバルーン粒子11が多数配列され、乾燥後、遮熱顔料13が表層部3Aに並ぶように定着する。   Then, by applying the kneaded aqueous solution 10 to both surfaces of the flat core material 2, as shown in FIG. 4, the balloon particle / heat-shield pigment combination 16 is applied to the surface layer portion 3A of the coating layer 3 before drying. As a result, a large number of balloon particles 11 are arranged in the inner layer portion 3B, and after drying, the heat shielding pigment 13 is fixed so as to be arranged in the surface layer portion 3A.

乾燥後は、水溶性樹脂12が遮熱バインダーとしてバルーン粒子11と遮熱顔料13の結合状態を強固に保持し、芯材1の変形に柔軟に追随し、塗膜層3の耐久性を発揮する。さらには、水溶性樹脂12を用い、有機溶剤を使用しないから、有機溶剤を使用する場合に有機溶剤が表層に表出し、遮熱顔料のもつ本来の機能を阻害する事態を防止できる。   After drying, the water-soluble resin 12 firmly holds the bonded state of the balloon particles 11 and the heat-shielding pigment 13 as a heat-shielding binder, flexibly follows the deformation of the core material 1, and exhibits the durability of the coating layer 3. To do. Furthermore, since the water-soluble resin 12 is used and no organic solvent is used, it is possible to prevent the organic solvent from appearing on the surface layer when the organic solvent is used, thereby inhibiting the original function of the heat-shielding pigment.

芯材2の片面に塗膜層3を形成した後、芯材2を上下反対にして反対側の片面に混錬水溶物10を塗布して乾燥させ塗膜層3を形成することで、内層部3Bにバルーン粒子11が多数配列され、表層部3Aに遮熱顔料13が並ぶ塗膜層3が両面に形成された芯材2を得ることができる。   After the coating layer 3 is formed on one side of the core material 2, the core material 2 is turned upside down, the kneaded water solution 10 is applied to the opposite side and dried to form the coating layer 3. A core material 2 in which a large number of balloon particles 11 are arranged in the portion 3B and the coating layer 3 in which the heat shielding pigment 13 is arranged on the surface layer portion 3A is formed on both surfaces can be obtained.

次に、塗膜層3が両面に形成された芯材2を袋状のガスバリアフィルム4内に収容し、図5に示す真空包装機100を用いて、真空断熱材1を得る。   Next, the core material 2 having the coating film layer 3 formed on both sides is accommodated in a bag-like gas barrier film 4, and the vacuum heat insulating material 1 is obtained using the vacuum packaging machine 100 shown in FIG.

真空包装機100は、図5に示すように、ベース101の上面にゴムシール部103、O−リング部105、真空引き管107が配置され、上部材102の下面にヒータ部104、ゴムシール部106が配置されている。ガスバリアフィルム4の他方の開口部4Aは既にゴムシール部とヒータ部104により熱圧着され、熱圧着部6が形成されている。   As shown in FIG. 5, the vacuum packaging machine 100 has a rubber seal portion 103, an O-ring portion 105, and a vacuum pulling tube 107 disposed on the upper surface of the base 101, and a heater portion 104 and a rubber seal portion 106 on the lower surface of the upper member 102. Has been placed. The other opening 4A of the gas barrier film 4 is already thermocompression bonded by the rubber seal part and the heater part 104, and the thermocompression bonding part 6 is formed.

そして、芯材2を収容したガスバリアフィルム4の開口部4Aを真空包装機100のベース101上面のO−リング105、105間に位置決めし、上部材102を矢印のように下降させ、ガスバリアフィルム4の開口部4A側の被圧着部をゴムシール部103およびヒータ部104で上下方向から密着状態に閉じ、かかる状態でガスバリアフィルム4内が450mmhg〜675mmhgの低真空度となるように真空引き管107から真空引きし、その後、同低真空度の下でガスバリアフィルム4の開口部4A側の被圧着部をヒータ部104により熱圧着し、芯材2を密封する。これにより、真空断熱材1が完成する。   Then, the opening 4A of the gas barrier film 4 containing the core material 2 is positioned between the O-rings 105, 105 on the upper surface of the base 101 of the vacuum packaging machine 100, the upper member 102 is lowered as shown by the arrow, and the gas barrier film 4 The pressure-bonded portion on the side of the opening 4A is closed in close contact with the rubber seal portion 103 and the heater portion 104 from above and below, and in this state, the gas barrier film 4 has a vacuum degree of 450 mmhg to 675 mmhg. Vacuum is applied, and then the pressure-bonded part on the opening 4A side of the gas barrier film 4 is thermocompression-bonded by the heater part 104 under the same low vacuum degree, and the core material 2 is sealed. Thereby, the vacuum heat insulating material 1 is completed.

塗膜層3が両面に形成された芯材2を、950mmhg以下、より具体的には450mmhg〜675mmhgの低真空度の下でガスバリアフィルム4に密封することで、1000mmhg以上の高真空度の下で密封する場合と異なり、芯材2の断面に含まれる空孔5が潰れることがなく、真空度維持による断熱効果と空孔維持による断熱効果を両立させることができる。   By sealing the core material 2 on which the coating layer 3 is formed on both sides with a gas barrier film 4 under a low vacuum level of 950 mmhg or less, more specifically 450 mmhg to 675 mmhg, a high vacuum level of 1000 mmhg or more is achieved. Unlike the case of sealing with, the holes 5 included in the cross section of the core material 2 are not crushed, and the heat insulating effect by maintaining the degree of vacuum and the heat insulating effect by maintaining the holes can be made compatible.

得られた真空断熱材1には、外側のガスバリアフィルム4の表面に遮熱断熱膜層3を積層してよい。遮熱断熱膜層3の積層により内装材や外装材としても利用できる。   In the obtained vacuum heat insulating material 1, a heat insulating heat insulating film layer 3 may be laminated on the surface of the outer gas barrier film 4. It can also be used as an interior material or an exterior material by laminating the heat insulating and heat insulating film layer 3.

軽量で薄く、遮熱性、断熱性、保温性、抗菌性、耐久性、耐候性に優れた真空断熱材1が得られるので、従来用途である住宅・建築用断熱材、断熱構造部品、冷蔵庫等の家電製品用断熱材、冷凍冷蔵庫・自動販売機等の業務用断熱材、自動車用断熱材などの用途に好適である。また、新用途として、抗菌・断熱シート(屋根や室内天井用など)、抗菌・結露防止構造材、抗菌・断熱・保温容器、家畜・口蹄疫対応部材に適用できる。   Light and thin, heat insulation, heat insulation, heat retention, antibacterial, durability, weather resistance, and vacuum insulation material 1 can be obtained, so conventional residential and architectural insulation materials, heat insulation structural parts, refrigerators, etc. It is suitable for applications such as heat insulating materials for home appliances, heat insulating materials for commercial use such as refrigerators and vending machines, and heat insulating materials for automobiles. As new applications, it can be applied to antibacterial / heat insulation sheets (for roofs, indoor ceilings, etc.), antibacterial / condensation prevention structural materials, antibacterial / heat insulation / heat insulation containers, and livestock / foot-and-mouth disease response materials.

本発明者は、図1に示す真空断熱材の試料を製作し、比較品と本発明品の断熱評価試験を行った。比較品は厚さ10mmの発泡ウレタン製断熱材を用いた。図1に示す真空断熱材は、厚さ3mmの芯材(発泡スチロール)の両面に混練水溶液を1回塗布し順次乾燥させて、乾燥厚さ100μの遮熱断熱膜層を両面に形成した。混練水溶液は、セラミック系バルーン粒子100重量部に対し、水50重量部、水溶性エポキシ樹脂50重量部の割合で攪拌し一次混練物を得、一次混練物100重量部に酸化チタン30重量部の割合で攪拌し最終の混練水溶液を得た。両面に遮熱断熱層を形成した芯材をガスバリアフィルムに入れて475mmhgの低真空度下で密封した(実施例1)。得られた真空断熱材の厚さは1mmであった。   The inventor manufactured a sample of the vacuum heat insulating material shown in FIG. 1, and conducted a heat insulation evaluation test of the comparative product and the product of the present invention. As a comparative product, a foamed urethane heat insulating material having a thickness of 10 mm was used. In the vacuum heat insulating material shown in FIG. 1, a kneaded aqueous solution was applied once on both surfaces of a core material (foamed polystyrene) having a thickness of 3 mm and dried sequentially to form a heat insulating heat insulating film layer having a dry thickness of 100 μm on both surfaces. The kneaded aqueous solution was stirred at a ratio of 50 parts by weight of water and 50 parts by weight of water-soluble epoxy resin with respect to 100 parts by weight of the ceramic balloon particles to obtain a primary kneaded product, and 30 parts by weight of titanium oxide was added to 100 parts by weight of the primary kneaded product. Stirring at a ratio yielded the final kneaded aqueous solution. A core material having a heat insulating and heat insulating layer formed on both sides was put in a gas barrier film and sealed under a low vacuum of 475 mmhg (Example 1). The thickness of the obtained vacuum heat insulating material was 1 mm.

比較品(発泡ウレタン断熱材)と実施例1の真空断熱材を室内に設置し、それぞれ60℃の熱源を0.5時間照射させ、試料の裏面温度を測定したところ、比較品は70.5℃であったのに対し、実施例1の真空断熱材は38.5℃で、比較品よりも32.0℃低く、比較品よりも発明品の断熱効果が高いことが確認された。また、実施例1の真空断熱材は折り曲げ可能な柔軟性を十分に備えていた。   When the comparative product (urethane foam heat insulating material) and the vacuum heat insulating material of Example 1 were installed indoors, each was irradiated with a heat source at 60 ° C. for 0.5 hour, and the back surface temperature of the sample was measured, the comparative product was 70.5. In contrast, the vacuum heat insulating material of Example 1 was 38.5 ° C., 32.0 ° C. lower than the comparative product, and the heat insulating effect of the invention product was higher than that of the comparative product. Moreover, the vacuum heat insulating material of Example 1 was sufficiently provided with the flexibility which can be bent.

本発明に係る真空断熱材は、住宅・建築用断熱材、断熱構造部品、冷蔵庫等の家電製品用断熱材、冷凍冷蔵庫・自動販売機・食品トレイ等の業務用断熱材、自動車用断熱材などの用途に利用可能である。   The vacuum heat insulating material according to the present invention is a heat insulating material for houses and buildings, a heat insulating structural component, a heat insulating material for household appliances such as a refrigerator, a heat insulating material for commercial use such as a refrigerator / freezer / vending machine / food tray, a heat insulating material for automobiles, etc. It can be used for

1 真空断熱材
2 芯材
3 遮熱断熱膜層
3A 表層部
3B 内層部
4 ガスバリアフィルム
5 空孔
10 混練水溶液
11 バルーン粒子
12 水溶性樹脂(水溶性樹脂バインダー)
13 遮熱顔料
14 水
15 一次混錬物
16 バルーン粒子・遮熱顔料結合体
100 真空包装機
101 ベース
102 上部材
103,106 ゴムシール部
104 ヒータ部
105 O−リング
107 真空引き管
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 2 Core material 3 Heat insulation heat insulating film layer 3A Surface layer part 3B Inner layer part 4 Gas barrier film 5 Hole 10 Kneading aqueous solution 11 Balloon particle 12 Water-soluble resin (water-soluble resin binder)
DESCRIPTION OF SYMBOLS 13 Thermal insulation pigment 14 Water 15 Primary kneaded material 16 Balloon particle and thermal insulation pigment combination 100 Vacuum packaging machine 101 Base 102 Upper member 103,106 Rubber seal part 104 Heater part 105 O-ring 107 Vacuum drawing pipe

Claims (9)

変形可能な柔軟性および断熱性のある芯材の少なくとも片面に、水溶性樹脂を遮熱バインダーとして遮熱顔料およびバルーン粒子が多数配列された遮熱断熱膜層が形成されてなり、同芯材が950mmhg以下の真空度の下で袋状のガスバリアフィルム内に密封されていることを特徴とする真空断熱材。   A heat-insulating and heat-insulating film layer in which a large number of heat-shielding pigments and balloon particles are arranged using a water-soluble resin as a heat-shielding binder is formed on at least one surface of a deformable flexible and heat-insulating core material. Is sealed in a bag-like gas barrier film under a vacuum degree of 950 mmhg or less. 真空度が450mmhg〜750mmhgであることを特徴とする請求項1記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the degree of vacuum is 450 mmhg to 750 mmhg. 芯材の周囲に、前記遮熱断熱膜層が形成されていることを特徴とする請求項1記載又は請求項2記載の真空断熱材。   The vacuum heat insulating material according to claim 1 or 2, wherein the heat insulating and heat insulating film layer is formed around the core material. 密封後の芯材の厚さが20μ〜10mmであることを特徴とする請求項1ないし請求項3のいずれか一項に記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 3, wherein the core material after sealing has a thickness of 20 µm to 10 mm. 遮熱断熱性膜層の乾燥厚さが100〜3000μであることを特徴とする請求項1ないし請求項4のいずれか一項に記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 4, wherein a dry thickness of the heat insulating and heat insulating film layer is 100 to 3000 µm. 遮熱顔料として、酸化チタンまたは鉄クロムが用いられることを特徴とする請求項1ないし請求項5のいずれか一項に記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 5, wherein titanium oxide or iron chrome is used as the heat shielding pigment. 変形可能な柔軟性および断熱性のある芯材の少なくとも片面に、水溶性樹脂により被覆されたセラミック系またはガラス系の多数のバルーン粒子と、水溶性樹脂により被覆された遮熱顔料を含む混練水溶液を塗布し、乾燥させて、前記芯材の少なくとも片面に、水溶性樹脂を遮熱バインダーとして遮熱顔料およびバルーン粒子が多数配列された遮熱断熱塗膜層を形成し、同芯材を袋状のガスバリアフィルムに収納するとともに、950mmhg以下の真空度の下で密封することを特徴とする真空断熱材の製造方法。   A kneaded aqueous solution containing a large number of ceramic or glass balloon particles coated with a water-soluble resin on at least one surface of a deformable flexible and heat-insulating core material and a heat-shielding pigment coated with a water-soluble resin Is applied to the core material and dried to form a heat-insulating and heat-insulating coating layer in which a large number of heat-shielding pigments and balloon particles are arranged using a water-soluble resin as a heat-insulating binder on at least one side of the core material, A vacuum heat insulating material manufacturing method comprising: storing in a gas barrier film and sealing under a vacuum degree of 950 mmhg or less. 変形可能な柔軟性および断熱性のある芯材の少なくとも片面に、水溶性樹脂により被覆された比重1未満のセラミック系またはガラス系の多数のバルーン粒子と、水溶性樹脂をバインダーとして比重1未満のセラミック系またはガラス系のバルーン粒子および比重1超の遮熱顔料が結合された多数のバルーン粒子・遮熱顔料結合体を含む混練水溶液を塗布し、乾燥させて、前記芯材の少なくとも片面に、表層部に水溶性樹脂を遮熱バインダーとしてバルーン粒子と遮熱顔料が結合されたバルーン粒子・遮熱顔料結合体が多数配列され、内層部に水溶性樹脂をバインダーとしてバルーン粒子が多数配列された遮熱断熱塗膜層を形成し、同芯材を袋状のガスバリアフィルムに収納するとともに、950mmhg以下の真空度の下で密封することを特徴とする真空断熱材の製造方法。   A large number of ceramic or glass-based balloon particles having a specific gravity of less than 1 coated with a water-soluble resin on at least one surface of a deformable flexible and heat-insulating core, and a specific gravity of less than 1 using a water-soluble resin as a binder A kneaded aqueous solution containing a large number of balloon particles / heat shielding pigments combined with ceramic or glass-based balloon particles and a heat shielding pigment having a specific gravity of more than 1 is applied and dried, on at least one side of the core material, A large number of balloon particles / heat-shielding pigment assemblies in which balloon particles and a heat-shielding pigment are bonded with water-soluble resin as a heat-shielding binder are arranged on the surface layer portion, and a large number of balloon particles are arranged on the inner layer portion with a water-soluble resin as a binder. Forming a heat-insulating and heat-insulating coating layer, storing the concentric material in a bag-like gas barrier film, and sealing under a vacuum of 950 mmhg or less Manufacturing method of the vacuum heat insulating material according to symptoms. 混練水溶液を得るにあたり、バルーン粒子100重量%に対し、水10〜55重量%、水溶性樹脂10〜80を混錬して一次混練水溶液を得、一次混練水溶液100重量%に対し、遮熱顔料1〜80重量%を混錬して最終の混練水溶液を得ることを特徴とする請求項7または請求項8記載の真空断熱材の製造方法。   In obtaining the kneaded aqueous solution, 10 to 55% by weight of water and 10 to 80% of the water-soluble resin are kneaded with respect to 100% by weight of the balloon particles to obtain a primary kneaded aqueous solution. The method for producing a vacuum heat insulating material according to claim 7 or 8, wherein 1 to 80 wt% is kneaded to obtain a final kneaded aqueous solution.
JP2012072989A 2012-03-28 2012-03-28 Vacuum heat insulating material and method of manufacturing the same Pending JP2013204658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012072989A JP2013204658A (en) 2012-03-28 2012-03-28 Vacuum heat insulating material and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012072989A JP2013204658A (en) 2012-03-28 2012-03-28 Vacuum heat insulating material and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013204658A true JP2013204658A (en) 2013-10-07

Family

ID=49523983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012072989A Pending JP2013204658A (en) 2012-03-28 2012-03-28 Vacuum heat insulating material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013204658A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107816601A (en) * 2016-09-12 2018-03-20 松下电器产业株式会社 Vacuumed insulation panel
KR20210098118A (en) 2020-01-31 2021-08-10 주식회사 케이티앤지 Insulation for aerosol-generating apparatus and aerosol-generating apparatus including the same
KR20210098115A (en) 2020-01-31 2021-08-10 주식회사 케이티앤지 Insulation for aerosol-generating apparatus and aerosol-generating apparatus including the same
WO2023008869A1 (en) * 2021-07-29 2023-02-02 Kt&G Corporation Insulating material for aerosol generating device and aerosol generating device including the same
WO2023008742A1 (en) * 2021-07-29 2023-02-02 주식회사 케이티앤지 Heat insulation material for aerosol generator, preparation method thereof, and aerosol generator comprising same heat insulation material for aerosol generator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107816601A (en) * 2016-09-12 2018-03-20 松下电器产业株式会社 Vacuumed insulation panel
KR20210098118A (en) 2020-01-31 2021-08-10 주식회사 케이티앤지 Insulation for aerosol-generating apparatus and aerosol-generating apparatus including the same
KR20210098115A (en) 2020-01-31 2021-08-10 주식회사 케이티앤지 Insulation for aerosol-generating apparatus and aerosol-generating apparatus including the same
KR102402063B1 (en) * 2020-01-31 2022-05-24 주식회사 케이티앤지 Insulation for aerosol-generating apparatus and aerosol-generating apparatus including the same
KR102466511B1 (en) * 2020-01-31 2022-11-11 주식회사 케이티앤지 Insulation for aerosol-generating apparatus and aerosol-generating apparatus including the same
WO2023008869A1 (en) * 2021-07-29 2023-02-02 Kt&G Corporation Insulating material for aerosol generating device and aerosol generating device including the same
WO2023008742A1 (en) * 2021-07-29 2023-02-02 주식회사 케이티앤지 Heat insulation material for aerosol generator, preparation method thereof, and aerosol generator comprising same heat insulation material for aerosol generator

Similar Documents

Publication Publication Date Title
US10603865B2 (en) Insulating member and its attaching method
JP5955413B2 (en) Spacer for insulation glazing unit
JP2013204658A (en) Vacuum heat insulating material and method of manufacturing the same
US20090029147A1 (en) Aerogel-foam composites
JP5744039B2 (en) Method for manufacturing a vacuum insulation panel
JP5992523B2 (en) Insulating glass with thermal insulation panel
CA2547231C (en) Super light weight ceramic panel and process for preparing the same
CN201970522U (en) Foam heat insulation material
KR100850965B1 (en) Adhesive composition for insulating and insulator panel for using same
KR102201266B1 (en) Vacuum thermal insulation material
CN105544749B (en) A kind of rear-mounted structure fire thermal insulation board
CN105705854B (en) The heat insulating structure body and its manufacturing method be made of heat-insulated unit bodies
JP6617540B2 (en) Insulating member and method of attaching the same
WO2016062318A1 (en) Vacuum insulation and production process for such vacuum insulation
CN201487482U (en) Glass fiber reinforced plastic compound vacuum insulated panel
CN105546279A (en) Vacuum heat insulating member and heat insulating box
KR20160124605A (en) Complex insulator for construction and construction method the same
Alam Development of vacuum insulation panel with low cost core material
CN102493564A (en) Vacuum insulation board for exterior construction wall and production method thereof
CN202450730U (en) Three-dimensional composite plate of grid cloth and foam cement for insulation and decoration, and exterior insulation and finish system
JP2013014037A (en) Foamed plastic composite heat insulation material and production method thereof
KR101634865B1 (en) Complex insulator for construction
KR100639478B1 (en) Acoustic, thermos, humidity insulation pad
CN205444545U (en) Green thermal insulation wall body that insulates against heat
RU135962U1 (en) WATERPROOFING BENTONITE MAT WITH HEAT INSULATION FUNCTION