JPH08312880A - Vacuum heat insulating panel and its manufacture - Google Patents

Vacuum heat insulating panel and its manufacture

Info

Publication number
JPH08312880A
JPH08312880A JP7121558A JP12155895A JPH08312880A JP H08312880 A JPH08312880 A JP H08312880A JP 7121558 A JP7121558 A JP 7121558A JP 12155895 A JP12155895 A JP 12155895A JP H08312880 A JPH08312880 A JP H08312880A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
hole
gas barrier
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7121558A
Other languages
Japanese (ja)
Inventor
Motoyuki Miyoshi
元之 三好
Shohachi Morita
章八 森田
Hiromichi Hotta
浩通 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP7121558A priority Critical patent/JPH08312880A/en
Publication of JPH08312880A publication Critical patent/JPH08312880A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To form a through-hole portion through which wiring, piping and equipment are inserted on a heat insulating core material by fitting a cylindrical edge material in a through-hole formed on a heat insulating base material, and forming the through-hole portion by means of a sealing part which is prepared by welding a gas barrier lapping member to both ends of the edge member. CONSTITUTION: A heat insulating core material has a heat insulating base material 1a formed with a through-hole 11a and a cylindrical edge material 12a. The edge material 12a is inserted into the through-hole 11a formed on the heat insulating base material 1a with its both ends being substantially flush with both surfaces of the heat insulating base member 1a. As for the heat insulating core material, both ends 2a of the edge material 12a are welded to a gas barrier lapping member, showing function for forming a sealing part. A through-hole portion of a vacuum heat insulating panel is formed by the sealing part and the through-hole as a hollow portion of the edge material 12a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は真空断熱パネルおよびそ
の製造方法に関する。さらに詳しくは、冷蔵庫、保冷庫
等の断熱箱体の断熱材として好適に使用することのでき
る貫通孔部を有する真空断熱パネルおよびその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum insulation panel and a method for manufacturing the same. More specifically, the present invention relates to a vacuum heat insulating panel having a through hole that can be suitably used as a heat insulating material for a heat insulating box such as a refrigerator or a cool box, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来より、シリカや珪酸カルシウム等の
無機微粉末を断熱材とし、これをガスバリアー性フィル
ムよりなる袋内に減圧状態で封入した真空断熱パネルが
知られている。この微粉末封入型の真空断熱パネルは、
断熱材として微粉末を使用しているため端部の型決まり
が悪いうえ廃棄する際に発塵が激しく満足なものとは云
えない。また、微粉末封入型の真空断熱パネルの欠点を
改良したものとして、断熱材として発泡ポリウレタン成
形体や珪酸カルシウム成形体等を用いた成形体封入型の
真空断熱パネルが知られている。
2. Description of the Related Art Conventionally, there has been known a vacuum heat insulating panel in which an inorganic fine powder such as silica or calcium silicate is used as a heat insulating material, and this is sealed in a bag made of a gas barrier film under reduced pressure. This fine powder enclosed vacuum insulation panel is
Since fine powder is used as the heat insulating material, the end part is not well-defined and dust is severe when it is discarded, so it cannot be said to be satisfactory. Further, as an improvement of the drawbacks of the fine powder-filled type vacuum heat insulation panel, there is known a molded body-filled type vacuum heat insulation panel using a foamed polyurethane molded body, a calcium silicate molded body or the like as a heat insulating material.

【0003】このような真空断熱パネルは、封入されて
いる断熱材自体の低熱伝導率に加え、内部が減圧状態に
されていることにより断熱パネル内部での対流伝熱が大
幅に抑制され、この相乗効果により優れた断熱性能を発
揮する点に特徴がある。そして、従来より平板状のもの
を、冷蔵庫、保冷庫等の内壁と外壁とで形成される空間
内に配設して使用されている。しかしながら、この種の
真空断熱パネルは、上記相乗効果により優れた断熱性能
は発揮するものの、これには後加工としての孔開け加工
ができないため、使用上多くの制約を受けていた。
In such a vacuum heat insulating panel, in addition to the low thermal conductivity of the heat insulating material itself enclosed, the depressurized state of the inside greatly suppresses convective heat transfer inside the heat insulating panel. It is characterized in that it exhibits excellent heat insulation performance due to a synergistic effect. Conventionally, a flat plate-shaped object has been used by arranging it in a space formed by an inner wall and an outer wall of a refrigerator, a cool box or the like. However, although this type of vacuum heat insulation panel exhibits excellent heat insulation performance due to the above synergistic effect, it cannot be perforated as a post-process, and therefore has many restrictions in use.

【0004】冷蔵庫を例にとると、断熱壁面を貫通して
電気配線、冷媒ガス配管、温度調節用機器等が設けられ
ている。このような配線、配管、機器等を設ける部位に
は、孔開け加工のできる従来からの断熱板(例えば発泡
ポリウレタン成形体や珪酸カルシウム成形体)を使用す
ることが考えられるが、真空断熱パネルに比べると断熱
性能が劣り、この断熱性能の差異は、年単位の使用期間
を勘案する無視できずその経済的損失は甚大なものとな
る。また、大面積の真空断熱パネルと小面積の真空断熱
パネルとを組み合わせ、配線、配管、機器等を設ける部
位では小面積の真空断熱パネルを使用し、配線、配管、
機器等を避けて配設することも考えられるが、組み合わ
せ接合面に隙間ができ、断熱性能を低下させてしまう。
Taking a refrigerator as an example, an electric wire, a refrigerant gas pipe, a temperature adjusting device, etc. are provided through the heat insulating wall. It is conceivable to use a conventional heat insulating plate (for example, foamed polyurethane molded body or calcium silicate molded body) that can be punched in the area where such wiring, piping, equipment, etc. are provided. Insulation performance is inferior in comparison, and this difference in insulation performance cannot be ignored considering the period of use in units of years, and its economic loss becomes enormous. Also, by combining a large-area vacuum heat insulation panel and a small area vacuum heat insulation panel, use a small area vacuum heat insulation panel at the site where wiring, piping, equipment, etc. are provided.
Although it may be possible to dispose the device away from the equipment, a gap is formed on the combined joint surface, and the heat insulation performance is deteriorated.

【0005】このような問題は、真空断熱パネルとし
て、その面内に配線、配管、機器等を通せる貫通孔部を
有するものを用い、このような真空断熱パネルを配線、
配管、機器等、およびドアヒンジ固定用部材等を設ける
位置に合致させて配設することにより解決することがで
きる。しかしながら、この目的に使用できる貫通孔部を
有する真空断熱パネル、およびこのような構造の真空断
熱パネルの製造方法は未だ開発されておらず、その開発
が強く望まれていた。
To solve this problem, a vacuum heat insulating panel having a through hole for passing wiring, piping, equipment, etc. in its surface is used.
The problem can be solved by arranging the pipes, equipment, etc., and the door hinge fixing member, etc. so as to match the positions where they are provided. However, a vacuum heat insulating panel having a through hole that can be used for this purpose and a method for manufacturing a vacuum heat insulating panel having such a structure have not been developed yet, and the development thereof has been strongly desired.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記のよう
な従来技術の現状に鑑み、配線、配管、機器等を通せる
貫通孔部、特に縁部材により保護された貫通孔部を有す
る真空断熱パネル、およびその製造方法を提供すること
を目的とするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional state of the art, the present invention is a vacuum having a through hole portion through which wiring, piping, equipment, etc. can be passed, particularly a through hole portion protected by an edge member. It is an object of the present invention to provide a heat insulating panel and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】しかして、本発明に係る
真空断熱パネルにおいては、断熱芯材がガスバリアー性
包装材よりなる袋の中に真空排気された状態で封入され
てなる真空断熱パネルにおいて、上記断熱芯材は、断熱
基材に穿設された貫通孔に筒状の縁部材が嵌着されてな
り、該縁部材の両端面にガスバリアー性包装材が融着さ
れたシール部により貫通孔部が形成されてなる構成の真
空断熱パネルにすると云う手段を講じている。
In the vacuum heat insulation panel according to the present invention, however, the heat insulation core material is enclosed in a bag made of a gas barrier packaging material in a vacuum-exhausted state. In the above heat insulating core material, a tubular edge member is fitted in a through hole formed in a heat insulating base material, and a seal portion in which a gas barrier packaging material is fused to both end surfaces of the edge member. Therefore, a means for forming a vacuum heat insulating panel having a through hole is formed.

【0008】また、本発明に係る真空断熱パネルの製造
方法においては、断熱芯材がガスバリアー性包装材より
なる袋の中に真空排気された状態で封入されてなる真空
断熱パネルの製造方法において、断熱基材に貫通孔を穿
設し該貫通孔に筒状の縁部材を嵌着した断熱芯材を作成
し、該断熱芯材をガスバリアー性包装材よりなる袋の開
口部より袋内に収納し、袋の開口部より袋内を真空排気
して所望の真空度に維持しつつ、縁部材の両端面にガス
バリアー性包装材が融着したシール部(A)、および袋
の開口部のガスバリアー性包装材同士を融着したシール
部(B)を形成させる製造方法にすると云う手段を講じ
ている。
Further, in the method for manufacturing a vacuum heat insulating panel according to the present invention, in the method for manufacturing a vacuum heat insulating panel, the heat insulating core material is enclosed in a bag made of a gas barrier packaging material while being evacuated. , A through hole is formed in the heat insulating base material and a tubular edge member is fitted into the through hole to form a heat insulating core material, and the heat insulating core material is introduced into the bag from the opening of the bag made of the gas barrier packaging material. And the inside of the bag is evacuated from the opening of the bag to maintain a desired degree of vacuum, and a seal portion (A) in which the gas barrier packaging material is fused to both end surfaces of the edge member, and the opening of the bag. The manufacturing method of forming the seal part (B) in which the gas barrier packaging materials of the parts are fused to each other is taken.

【0009】以下、本発明に係る真空断熱パネル、およ
び真空断熱パネルの製造方法を、実施態様例を示す図1
〜図6を参照しつつ詳細に説明するが、本発明はここに
例示の真空断熱パネルや製造方法に限定されるものでは
ない。
The vacuum heat insulating panel and the method for manufacturing the vacuum heat insulating panel according to the present invention will be described below with reference to FIG.
Although detailed description will be given with reference to FIGS. 6A to 6C, the present invention is not limited to the vacuum heat insulating panel and the manufacturing method illustrated here.

【0010】先ず、本発明に係る真空断熱パネルについ
て説明する。本発明の真空断熱パネルは、断熱芯材がガ
スバリアー性包装材よりなる袋の中に真空排気された状
態で封入された基本構造を有する。
First, the vacuum heat insulating panel according to the present invention will be described. The vacuum heat insulating panel of the present invention has a basic structure in which a heat insulating core material is enclosed in a bag made of a gas barrier packaging material in a vacuum-exhausted state.

【0011】[断熱芯材]上記断熱芯材としては、断熱
基材に予め貫通孔が穿設され、この貫通孔に筒状の縁部
材が嵌着された特定構造の断熱芯材が用いられている。
その具体例を図3(a)および図3(b)に示す。図3
(a)および図3(b)において、(3a)、(3b)
は断熱芯材、(12a)、(12b)は縁部材、(13
a)、(13b)は縁部材の中空部である貫通孔を各々
表す。
[Heat Insulating Core Material] As the heat insulating core material, there is used a heat insulating core material having a specific structure in which a through hole is preliminarily formed in a heat insulating base material, and a cylindrical edge member is fitted in the through hole. ing.
Specific examples thereof are shown in FIGS. 3 (a) and 3 (b). FIG.
(A) and FIG. 3 (b), (3a), (3b)
Is a heat insulating core material, (12a) and (12b) are edge members, and (13
Reference characters a) and (13b) respectively denote through holes that are hollow portions of the edge member.

【0012】図3(a)に例示の断熱芯材(3a)は、
図1(a)に示すような貫通孔(11a)が穿設された
断熱基材(1a)と図2(a)に示すような筒状の縁部
材(12a)を用い、断熱基材(1a)に穿設された貫
通孔(11a)に、縁部材(12a)をその両端面が断
熱基材(1a)の表面および裏面とほぼ面一になるよう
に嵌着させることによって容易に作成することができ
る。
The heat insulating core material (3a) illustrated in FIG. 3 (a) is
A heat insulating substrate (1a) having a through hole (11a) as shown in FIG. 1 (a) and a cylindrical edge member (12a) shown in FIG. 2 (a) are used. 1a) is easily formed by fitting the edge member (12a) into the through hole (11a) formed so that both end surfaces thereof are substantially flush with the front and back surfaces of the heat insulating base material (1a). can do.

【0013】そして、ここに例示の断熱芯材(3a)に
おいては、縁部材(12a)の両端面(102a)がガ
スバリアー性包装材と融着されてシール部を形成する機
能を果たし、このシール部および縁部材(12a)の中
空部である貫通孔(13a)によって、得られる真空断
熱パネルの貫通孔部が形成される。
In the heat insulating core material (3a) illustrated here, both end surfaces (102a) of the edge member (12a) have a function of being fused with the gas barrier packaging material to form a seal portion. The through hole (13a), which is the hollow portion of the seal portion and the edge member (12a), forms the through hole of the obtained vacuum heat insulating panel.

【0014】ここに例示の断熱芯材(3a)は、貫通孔
部が1個設けられた真空断熱パネルを得るためのもので
あるが、貫通孔部が複数設けられた真空断熱パネルを得
るときには、断熱基材(1a)に貫通孔(11a)を複
数穿設し、各々の貫通孔に縁部材(12a)を上記の要
領で嵌着させたものを用いる。
The heat-insulating core material (3a) illustrated here is for obtaining a vacuum heat-insulating panel having a single through-hole, but when obtaining a vacuum heat-insulating panel having a plurality of through-holes. A plurality of through holes (11a) are formed in the heat insulating base material (1a), and the edge member (12a) is fitted into each through hole in the above manner.

【0015】図3(b)に例示の断熱芯材(3b)は、
図1(b)に示すような貫通孔(11b)が穿設された
断熱基材(1b)と図2(b)に示すようなフランジ部
(103)を有する筒状の縁部材(12b)2箇を用
い、断熱基材(1b)の貫通孔(11b)に、縁部材
(12b)をそのフランジ部(103)の端面が各々断
熱基材(1b)の表面および裏面とほぼ面一になるよう
に嵌着させることによって容易に作成することができ
る。この場合、断熱基材(1b)には表裏両面にフラン
ジ嵌合部(111b)を設けた貫通孔(11b)を穿設
し、この貫通孔(11b)の表面側より1箇の縁部材を
そのフランジ部(103)の反対側を先頭にして挿入
し、裏面より他の縁部材を同様にして挿入し、両者の先
端同士を接着等により固定すればよい。
The heat insulating core material (3b) illustrated in FIG. 3 (b) is
A tubular edge member (12b) having a heat insulating substrate (1b) having a through hole (11b) as shown in FIG. 1 (b) and a flange portion (103) as shown in FIG. 2 (b). The two end portions of the flange member (103) of the edge member (12b) are substantially flush with the front surface and the back surface of the heat insulating substrate (1b) in the through hole (11b) of the heat insulating substrate (1b). It can be easily created by fitting it so that In this case, the heat insulating base material (1b) is provided with a through hole (11b) provided with flange fitting portions (111b) on both front and back surfaces, and one edge member is provided from the surface side of the through hole (11b). The opposite side of the flange portion (103) may be inserted first, other edge members may be similarly inserted from the back surface, and the tips of both may be fixed by adhesion or the like.

【0016】ここに例示の断熱芯材(3b)において
は、縁部材(12b)の両フランジ面(102b)がガ
スバリアー性包装材と融着されてシール部を形成する機
能を果たし、このシール部および縁部材(12b)の中
空部である貫通孔(13b)によって、得られる真空断
熱パネルの貫通孔部が形成される。この断熱芯材(3
b)を用いるときには、大きな面積をとれるフランジ面
(102b)によりシール部が形成されるので、シール
部の形成が容易であると共に、形成されるシール部がよ
り丈夫なものとなり好適である。
In the heat insulating core material (3b) exemplified here, both flange surfaces (102b) of the edge member (12b) are fused with the gas barrier packaging material to form a seal portion, and this seal is formed. The through hole (13b), which is a hollow portion of the portion and the edge member (12b), forms the through hole of the vacuum insulation panel obtained. This insulation core (3
When b) is used, since the seal portion is formed by the flange surface (102b) which can take a large area, the seal portion can be easily formed and the formed seal portion is more durable, which is preferable.

【0017】図3(a)および図3(b)に示す断熱芯
材おいては、断熱基材の面に対し直角方向の貫通孔が穿
設され、この貫通孔に縁部材を嵌着させているが、本発
明に用いる断熱芯材は、断熱基材の面に対し斜め方向の
貫通孔が穿設され、この貫通孔に縁部材を嵌着させたも
のも使用でき、この場合円筒状の縁部材を嵌着させたと
きには、縁部材の端面形状は楕円形となる。
In the heat insulating core material shown in FIGS. 3 (a) and 3 (b), a through hole is formed in a direction perpendicular to the surface of the heat insulating base material, and an edge member is fitted into this through hole. However, the heat insulating core material used in the present invention may be one in which a through hole is formed in an oblique direction with respect to the surface of the heat insulating base material, and an edge member is fitted into this through hole, and in this case, a cylindrical shape is used. When the edge member is fitted, the end surface of the edge member has an elliptical shape.

【0018】上記断熱芯材に用いる断熱基材(1a、1
b)は、後記ガスバリアー性包装材よりなる袋の中に収
納可能な外形を有するものであれば特に限定はなく、従
来より知られている各種の断熱材よりなる成形体を任意
に使用することができる。その代表例としては珪酸カル
シウム成形体等の多孔質無機成形体、発泡ポリウレタン
成形体等の発泡樹脂成形体を挙げることができる。
Insulating base materials (1a, 1) used for the above insulating core material.
b) is not particularly limited as long as it has an outer shape that can be stored in a bag made of a gas barrier packaging material described later, and a molded body made of various conventionally known heat insulating materials is arbitrarily used. be able to. Typical examples thereof include porous inorganic moldings such as calcium silicate moldings and foamed resin moldings such as polyurethane foam moldings.

【0019】断熱基材として上記のような多孔質無機成
形体や発泡樹脂成形体を用いると、その内部に形成され
ている連通多孔状の空間が容易に真空排気されることに
より、断熱芯材自体の低熱伝導率に加えて真空排気され
た空間の存在により対流伝熱が大幅に抑制され、全体と
して優れた断熱性能を発揮する。
When the above-mentioned porous inorganic molded body or foamed resin molded body is used as the heat insulating base material, the communicating porous space formed therein can be easily evacuated to form a heat insulating core material. In addition to its own low thermal conductivity, the presence of a vacuum-exhausted space significantly suppresses convective heat transfer, resulting in excellent heat insulation performance as a whole.

【0020】上記断熱基材の中では、低熱伝導率、軽量
性、機械的強度、成形性、耐久性、再利用性等を兼ね備
えている点から、珪酸カルシウムを50重量%以上含有
する珪酸カルシウム系組成物からなる成形体が好まし
く、珪酸カルシウム成形体が最も好ましい。珪酸カルシ
ウム成形体は、断熱材用として各種グレードのものが開
発されており見掛け密度が低く圧縮強度にも優れ、断熱
芯材として好適である。
Among the above heat insulating base materials, calcium silicate containing 50% by weight or more of calcium silicate from the viewpoint of having low thermal conductivity, light weight, mechanical strength, moldability, durability, reusability and the like. Molded bodies made of the system composition are preferable, and calcium silicate molded bodies are most preferable. Various grades of calcium silicate compacts have been developed for heat insulating materials, have a low apparent density and excellent compressive strength, and are suitable as heat insulating core materials.

【0021】上記珪酸カルシウム成形体は、通常、珪酸
質原料と石灰質原料とを水中に分散させ、加熱下に水熱
合成反応を行わせて珪酸カルシウム水和物の水性スラリ
ーを得、次いで、得られた水性スラリーを脱水成形した
後、乾燥または水蒸気養生後に乾燥を行う方法によって
製造されるが、使用できる珪酸カルシウム成形体は勿論
この方法で得られるものには限定されない。
The above-mentioned calcium silicate compact is usually obtained by dispersing a siliceous raw material and a calcareous raw material in water and carrying out a hydrothermal synthesis reaction under heating to obtain an aqueous slurry of calcium silicate hydrate. It is produced by a method of dehydrating the obtained aqueous slurry, followed by drying or steam curing, but the calcium silicate compact that can be used is not limited to the one obtained by this method.

【0022】珪酸カルシウム成形体を製造する上記方法
においては、珪酸質原料は、非晶質または結晶質の何れ
であってもよく、珪酸質原料の具体例としては珪藻土、
珪石、石英などの天然品、シリコンダスト、湿式燐酸製
造プロセスで副生する珪弗化水素酸と水酸化アルミニウ
ムの反応で得られるシリカ等の工業副産物が挙げられ
る。また、石灰質原料の具体例としては生石灰、消石
灰、カーバイト滓等が挙げられ、これらは嵩高の石灰粒
子を含有する石灰乳に調製して使用されることが多い。
また、上記の水熱合成反応は、通常、固形分(珪酸質原
料と石灰質原料)に対する水の量を15重量倍以上と
し、飽和蒸気圧が10kg/cm2 以上の加熱条件下で
反応時間1〜5時間の条件で行い、この水熱合成反応に
より珪酸カルシウム水和物の水性スラリーが得られる。
In the above method for producing a calcium silicate compact, the siliceous raw material may be amorphous or crystalline, and specific examples of the siliceous raw material include diatomaceous earth,
Examples thereof include natural products such as silica stone and quartz, silicon dust, and industrial by-products such as silica obtained by the reaction of hydrosilicofluoric acid by-produced in the wet phosphoric acid production process and aluminum hydroxide. In addition, specific examples of calcareous raw materials include quick lime, slaked lime, and slag of slag, and these are often used by preparing lime milk containing bulky lime particles.
In the hydrothermal synthesis reaction, the amount of water is usually 15 times by weight or more relative to the solid content (silicic material and calcareous material), and the reaction time is 1 at a saturated vapor pressure of 10 kg / cm 2 or more. It is carried out under the condition of ˜5 hours, and this hydrothermal synthesis reaction gives an aqueous slurry of calcium silicate hydrate.

【0023】水性スラリーの脱水成形は、通常フイルタ
ープレス等を利用した脱水成形機でて行われ、その脱水
部の形状により平板や曲部を有する種々の形状の成形体
が得られる。この脱水成形体を直接、または水蒸気養生
後に乾燥することによって目的とする珪酸カルシウム成
形体が得られる。乾燥は、通常、150〜200℃の温
度にて5〜30時間行われ、乾燥前の水蒸気養生は、通
常、水熱合成反応の条件と同様の条件で行われる。
Dehydration molding of the aqueous slurry is usually carried out by a dehydration molding machine utilizing a filter press or the like, and molded articles having various shapes having flat plates or curved portions can be obtained depending on the shape of the dehydration section. The desired calcium silicate compact can be obtained by drying the dehydrated compact directly or after steam curing. Drying is usually performed at a temperature of 150 to 200 ° C. for 5 to 30 hours, and steam curing before drying is usually performed under the same conditions as in the hydrothermal synthesis reaction.

【0024】上記方法で製造された珪酸カルシウム成形
体は、珪酸カルシウムの針状結晶が三次元的に絡合した
構造のものであり、高い比強度を有し断熱芯材として極
めて好適である。具体的には、見掛け密度が0.02〜
0.09g/cm3 のものが得られ、これらの圧縮強度
は2kg/cm2 以上、通常2〜6kg/cm2 であ
る。上記の針状結晶は、主として、トベルモライト、ゾ
ーノトライトまたはこれらが混在したものからなってい
る。結晶種の調整は、水熱合成反応におけるCaO/S
iO2 のモル比によってなされるが、通常このモル比は
0.8〜1.2の範囲とされ、モル比が大きくなるに従
ってゾーノトライトが優位に生成することがわかってい
る。
The calcium silicate compact produced by the above method has a structure in which needle crystals of calcium silicate are three-dimensionally entangled, and has a high specific strength and is very suitable as a heat insulating core material. Specifically, the apparent density is 0.02 to
Are obtained as a 0.09 g / cm 3, these compression strength 2 kg / cm 2 or more, usually 2~6kg / cm 2. The needle crystals are mainly composed of tobermorite, zonotorite or a mixture thereof. The crystal seed is adjusted by CaO / S in the hydrothermal synthesis reaction.
Although made by the molar ratio of iO 2, typically this molar ratio is in the range of 0.8 to 1.2, Zonotoraito are found to predominantly generated according molar ratio increases.

【0025】断熱基材として使用する発泡ポリウレタン
成形体は、従来より断熱材として用いられている通常の
発泡成形体が使用できる。断熱芯材の外形寸法の一例と
しては、縦および横が400mm、厚さが10mmの例
を挙げることができる。しかしながら、縦および横の長
さは、用途により例えば、150〜1000mmの広範
囲において適宜変更されるが、厚さは、通常10〜10
0mmの範囲とされる。
As the foamed polyurethane molded body used as the heat insulating base material, a usual foamed molded body conventionally used as a heat insulating material can be used. An example of the outer dimensions of the heat insulating core material is 400 mm in length and width and 10 mm in thickness. However, the vertical and horizontal lengths are appropriately changed in a wide range of 150 to 1000 mm depending on the use, but the thickness is usually 10 to 10 mm.
The range is 0 mm.

【0026】上記縁部材(12a、12b)としては、
中空筒状の外形を有し、筒の両端面にガスバリアー性包
装材を融着可能であり、その長さが断熱基材(1a、1
b)の厚さとほぼ同じものであれば特に限定はない。図
2(b)に示される縁部材(12b)においては、その
2箇を突き合わせた際の長さ、即ち両フランジ面(10
2b)間の間隔が縁部材の長さである。
As the edge members (12a, 12b),
It has a hollow cylindrical outer shape, and a gas barrier packaging material can be fused to both end faces of the cylinder, and its length is longer than that of the heat insulating base material (1a, 1
There is no particular limitation as long as it is almost the same as the thickness of b). In the edge member (12b) shown in FIG. 2 (b), the length when the two are abutted, that is, both flange surfaces (10
The distance between 2b) is the length of the edge member.

【0027】図1(a)に示すタイプの縁部材において
は、断面が円であるもののほか、断面が四角形、六角形
等の多角形であってもよい。図1(b)に示すタイプの
縁部材においては、フランジ部および筒部とも断面が円
であるもののほか、フランジ部および筒部とも、図1
(a)に示すタイプの縁部材同様、断面が四角形、六角
形等の多角形であってもよい。また、上記のような長
さ、断面形状を有する縁部材の中空部の寸法は、断熱芯
材の厚さに関係なく、ここを利用して貫通させる配線、
配管、機器等の大きさ、数等に応じて適宜決定すること
ができるが、通常直径もしくは一辺の長さは1〜100
mm程度とされる。
The edge member of the type shown in FIG. 1 (a) may have a circular cross section or a polygonal shape such as a quadrangle or a hexagon. In the edge member of the type shown in FIG. 1 (b), the flange portion and the tubular portion both have a circular cross section, and the flange portion and the tubular portion both have a circular shape.
Similar to the edge member of the type shown in (a), the cross section may be a polygon such as a quadrangle or a hexagon. Further, the length as described above, the dimension of the hollow portion of the edge member having a cross-sectional shape, regardless of the thickness of the heat insulating core material, the wiring to be penetrated using here,
It can be appropriately determined according to the size and number of pipes, equipment, etc., but usually the diameter or the length of one side is 1 to 100.
It is about mm.

【0028】縁部材(12a、12b)は、熱可塑性樹
脂、各種のゴム、金属、ガラス、セラミック等よりなる
ものを使用できるが、その筒状部はガスバリアー性を有
すること、縁部材(12a)の両端面および縁部材(1
2b)の両フランジ面はガスバリアー性包装材と融着さ
れてシール部の形成が可能であること、また全体として
は熱伝導が小さいことが重要である。このような所望さ
れる特性を勘案すると、熱可塑性樹脂等の熱融着性材料
よりなる一体成形品であるのが好ましい。縁部材(12
a、12b)は金属、ガラス、セラミック等のそれ自体
熱融着性を有しない、またはガスバリアー性を有しない
材料よりなるものも使用できるが、このときには、それ
らの表面に熱可塑性樹脂等の熱融着性およびガスバリア
ー性を有する材料を塗布する等の表面加工が必要とな
る。
The edge members (12a, 12b) may be made of a thermoplastic resin, various kinds of rubber, metal, glass, ceramics, etc., but the tubular portion thereof has a gas barrier property. ) End faces and edge members (1
It is important that both flange surfaces of 2b) can be fused with a gas barrier packaging material to form a seal portion, and that heat conduction is small as a whole. In consideration of such desired characteristics, an integrally molded product made of a heat-fusible material such as a thermoplastic resin is preferable. Edge member (12
As a, 12b), those made of a material such as metal, glass, or ceramic which does not have heat-melting property itself or gas barrier property can be used, but at this time, the surface thereof is made of thermoplastic resin or the like. Surface treatment such as coating with a material having heat fusion property and gas barrier property is required.

【0029】[ガスバリアー性包装材よりなる袋]本発
明の真空断熱パネルは、上記断熱芯材が、ガスバリアー
性包装材よりなる袋の中に真空排気された状態で封入さ
れている。この真空断熱パネルを製造する際には、通
常、ガスバリアー性包装材よりなり上記平板状の断熱芯
材を収納可能で真空排気用の開口部を有する袋が使用さ
れ、その具体例を斜視図として図4に示す。図4におい
て、(2)はガスバリアー性包装材よりなる袋、(2
1)は袋(2)の開口部、(22)および(23)は袋
(2)のシール部を表す。
[Bag Made of Gas Barrier Packing Material] In the vacuum heat insulating panel of the present invention, the heat insulating core material is enclosed in a bag made of a gas barrier packing material in a vacuumed state. When manufacturing this vacuum heat insulating panel, a bag that is made of a gas barrier packaging material and that can accommodate the flat insulating core material and has an opening for vacuum exhaust is usually used. As shown in FIG. In FIG. 4, (2) is a bag made of a gas barrier packaging material, and (2)
1) shows the opening of the bag (2), and (22) and (23) show the sealing part of the bag (2).

【0030】本発明で使用する上記の袋(2)は、断熱
芯材(3a)を使用する場合を例にとって説明すると、
断熱芯材(3a)を収納する容器であるとともに、内部
が真空排気された後は、これを構成しているガスバリア
ー性包装材のガス不透過性により、袋内部を真空もしく
は高度な減圧状態に維持する機能を果たすものである。
従って、袋(2)の開口部(21)には、断熱芯材(3
a)を収納し袋内部を真空排気した後に断熱芯材を密封
するためのシール部B(25)(後記図5参照)を形成
可能な部分を有する。
The bag (2) used in the present invention will be described by taking the case of using the heat insulating core (3a) as an example.
It is a container that houses the heat insulating core material (3a), and after the inside is evacuated, the inside of the bag is in a vacuum or highly depressurized state due to the gas impermeability of the gas barrier packaging material that constitutes the container. It serves the function of maintaining.
Therefore, the heat insulating core material (3
It has a portion capable of forming a seal portion B (25) (see FIG. 5 described later) for sealing the heat insulating core material after accommodating a) and evacuating the inside of the bag.

【0031】袋(2)を構成するガスバリアー性包装材
としては、袋内部を真空もしくは高度な減圧状態に維持
するため、アルミニウム等よりなる金属箔、プラスチッ
クよりなる基体フィルムにアルミニウム等の金属または
珪素酸化物等のセラミックを蒸着した蒸着フイルム、お
よびプラスチックよりなる単層フィルムもしくは多層フ
ィルムを、単独あるいはこれらを組合わせた積層フィル
ムが使用される。
As the gas barrier packaging material constituting the bag (2), a metal foil made of aluminum or the like, a base film made of plastic or a metal such as aluminum or the like is used to maintain the inside of the bag in a vacuum or highly depressurized state. A vapor-deposited film obtained by vapor-depositing ceramics such as silicon oxide, and a single-layer film or a multi-layer film made of plastic, either alone or in combination, are used.

【0032】これらのガスバリアー性包装材の中では、
ガスバリアー性に優れるほか可撓性にも優れ、断熱芯材
が袋内に真空排気された状態で封入される際に良好に密
着させることができる点から蒸着フイルム、またはプラ
スチックフィルムにアルミニウム箔をラミネートした積
層フィルムが最も好ましい。
Among these gas barrier packaging materials,
In addition to being excellent in gas barrier properties, it is also excellent in flexibility and can be adhered well when the heat insulating core material is enclosed in the bag in a state of being evacuated, and therefore aluminum foil is deposited on the vapor deposition film or plastic film. Most preferred are laminated laminated films.

【0033】蒸着フイルムの基体フィルムやアルミニウ
ム箔をラミネートする基体フィルムとしては、ポリエチ
レンテレフタレート、ポリブチレンテレフタレート等の
芳香族ポリエステル、ポリエチレン、ポリプロピレン等
のポリオレフィン、オレフィン共重合体、ナイロン6、
ナイロン66等のポリアミド、ポリビニルアルコール、
アクリロニトリル・ブタジエン・スチレン共重合体、ア
クリロニトリル・スチレン共重合体、ポリメチルメタク
リレート、アクリル酸エステルとメチルメタクリル酸エ
ステル共重合体等、好ましくは、ポリエチレンテレフタ
レート、ポリブチレンテレフタレートから製造されるフ
ィルムが挙げられる。基体フィルムの表面には、金属や
セラミック蒸着層の形成に先立ってコロナ処理、アンカ
ーコート処理等の表面処理を施すこともできる。
As the base film of the vapor deposition film or the base film to be laminated with the aluminum foil, aromatic polyester such as polyethylene terephthalate and polybutylene terephthalate, polyolefin such as polyethylene and polypropylene, olefin copolymer, nylon 6,
Polyamide such as nylon 66, polyvinyl alcohol,
Acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer, polymethylmethacrylate, acrylic acid ester and methylmethacrylic acid ester copolymer, etc., preferably polyethylene terephthalate, a film produced from polybutylene terephthalate. . The surface of the substrate film may be subjected to surface treatment such as corona treatment or anchor coat treatment prior to the formation of the metal or ceramic vapor deposition layer.

【0034】蒸着フイルムにおける蒸着層の厚さは、蒸
着する金属もしくはセラミックの種類によって異なる
が、通常10〜300nm、好ましくは20〜200n
mとされる。蒸着層の厚さが薄すぎると十分なガスバリ
アーが得られず、厚すぎると蒸着フイルムの柔軟性が損
なわれ、蒸着層にクラックが生ずるので好ましくない。
蒸着層を形成するセラミックとしては、通常熱伝導率の
小さい無機酸化物が使用され、珪素、マグネシウム、マ
ンガン、ニッケル、クロム、インジウム、錫等の酸化
物、特に珪素酸化物が好ましい。
The thickness of the vapor deposition layer in the vapor deposition film varies depending on the type of metal or ceramic to be vapor deposited, but is usually 10 to 300 nm, preferably 20 to 200 n.
m. If the thickness of the vapor deposition layer is too thin, a sufficient gas barrier cannot be obtained, and if it is too thick, the flexibility of the vapor deposition film is impaired and cracks occur in the vapor deposition layer, which is not preferable.
As the ceramic for forming the vapor-deposited layer, an inorganic oxide having a small thermal conductivity is usually used, and oxides of silicon, magnesium, manganese, nickel, chromium, indium, tin, etc., particularly silicon oxide is preferable.

【0035】プラスチックよりなる単層フィルム、多層
フィルムとしては、塩化ビニリデン系樹脂フィルム、塩
化ビニリデン樹脂コートフィルム、およびポリビニルア
ルコール系フィルム等が挙げられる。
Examples of the single layer film and the multilayer film made of plastic include vinylidene chloride resin film, vinylidene chloride resin coated film, polyvinyl alcohol film and the like.

【0036】使用する袋(2)には、上記の各種ガスバ
リアー性包装材の少なくとも片面に熱溶着層を設けた積
層フィルムを用いるのがよい。そして熱溶着層をガスバ
リアー性包装材の片面に設けたときには、熱溶着層が袋
の内側(断熱材と接する側)になるようにして使用す
る。熱溶着層を設けた積層フィルムをこのように用いる
と、熱溶着法(ヒートシール法)によって容易に袋を形
成することができ、またこの袋内に断熱芯材を封入し真
空排気した後の排気口等の密封も熱溶着法によって容易
に行うことができる。
As the bag (2) to be used, it is preferable to use a laminated film in which a heat-welding layer is provided on at least one surface of the above various gas barrier packaging materials. When the heat-welding layer is provided on one side of the gas barrier packaging material, the heat-welding layer is used inside the bag (on the side in contact with the heat insulating material). When the laminated film provided with the heat-welding layer is used in this way, a bag can be easily formed by the heat-sealing method (heat-sealing method), and a heat-insulating core material is sealed in the bag and then evacuated. The sealing of the exhaust port and the like can be easily performed by the heat welding method.

【0037】熱溶着層としては、加熱により溶着可能な
樹脂、具体的には100〜300℃程度の加熱により溶
融可能な樹脂が使用され、具体例としてはポリエチレ
ン、ポリプロピレン等のポリオレフィン樹脂、ナイロン
6、ナイロン66等のポリアミド樹脂、アクリロニトリ
ル・ブタジエン・スチレン共重合体、アクリロニトリル
・スチレン共重合体等のアクリロニトリル共重合体、ポ
リメチルメタクリレート、アクリル酸エステルとメチル
メタクリル酸エステル共重合体等が挙げられ、ポリオレ
フィン樹脂が好ましい。
As the heat-welding layer, a resin that can be welded by heating, specifically, a resin that can be melted by heating at about 100 to 300 ° C. is used. Specific examples are polyolefin resins such as polyethylene and polypropylene, and nylon 6 , Polyamide resin such as nylon 66, acrylonitrile-butadiene-styrene copolymer, acrylonitrile copolymer such as acrylonitrile-styrene copolymer, polymethylmethacrylate, acrylic acid ester and methylmethacrylic acid ester copolymer, and the like, Polyolefin resins are preferred.

【0038】[真空断熱パネル]本発明の真空断熱パネ
ルは、断熱基材に穿設された貫通孔に筒状の縁部材が嵌
着された特定構造の断熱芯材が用いられ、この断熱基材
に嵌着された縁部材の両端面にガスバリアー性包装材が
融着されたシール部によって貫通孔部が形成されてなる
点に構造上の大きな特徴を有する。
[Vacuum Heat Insulation Panel] The vacuum heat insulation panel of the present invention uses a heat insulation core material having a specific structure in which a tubular edge member is fitted in a through hole formed in a heat insulation base material. A significant structural feature is that the through-holes are formed by the seal portions in which the gas barrier packaging material is fused to both end surfaces of the edge member fitted to the material.

【0039】本発明の真空断熱パネルの上記特徴的構造
を、図5および図6により説明する。図5は、図3
(a)に示す断熱芯材(3a)が図4に示すガスバリア
ー性包装材よりなる袋(2)の中に真空排気された状態
で封入されてなる真空断熱パネルを示す平面略図であ
る。また、図6は、図5のX−X’断面略図である。
The above-mentioned characteristic structure of the vacuum heat insulating panel of the present invention will be described with reference to FIGS. FIG.
FIG. 5 is a schematic plan view showing a vacuum heat insulation panel in which the heat insulation core material (3a) shown in (a) is enclosed in a bag (2) made of the gas barrier packaging material shown in FIG. 6 is a schematic cross-sectional view taken along the line XX 'of FIG.

【0040】図5および図6において、(31a)は貫
通孔部を表し、この貫通孔部は断熱芯材(3a)の貫通
孔(13a)に対応して形成されている。A(24a)
は断熱基材(1a)に嵌着された縁部材(12a)の端
面にガスバリアー性包装材が融着されたシール部を表
し、(41a)はシール部A(24a)の内側のガスバ
リアー性包装材を表す。また、B(25)は袋(2)の
開口部を融着させて形成したシール部を表し、その他の
符号は図1〜図4におけると同じである。
In FIGS. 5 and 6, (31a) represents a through hole portion, which is formed corresponding to the through hole (13a) of the heat insulating core material (3a). A (24a)
Represents a seal portion in which a gas barrier packaging material is fused to the end surface of the edge member (12a) fitted to the heat insulating base material (1a), and (41a) represents the gas barrier inside the seal portion A (24a). Represents a sex packaging material. Further, B (25) represents a seal portion formed by fusing the opening of the bag (2), and other reference numerals are the same as those in FIGS. 1 to 4.

【0041】上記のシール部A(24a)は、縁部材
(12a)の長手部分と挨まって、真空断熱パネルの貫
通孔部(31a)の内周部を密閉する機能を果たすもの
である。従って、シール部A(24a)が形成されてい
ることにより、このシール部A(24a)の内側に残置
されているガスバリアー性包装材(41a)を切り取っ
たり、これにスリットを設けたりしても、真空断熱パネ
ル内は真空排気されたままに維持される。残置されてい
るガスバリアー性包装材(41a)の部分は配線、配
管、機器等を通すのに使用される。
The above-mentioned seal portion A (24a) functions to seal the inner peripheral portion of the through hole portion (31a) of the vacuum heat insulating panel by being dusted with the longitudinal portion of the edge member (12a). Therefore, since the seal portion A (24a) is formed, the gas barrier packaging material (41a) left inside the seal portion A (24a) is cut off or provided with a slit. However, the inside of the vacuum insulation panel is maintained to be evacuated. The remaining portion of the gas barrier packaging material (41a) is used for passing wiring, piping, equipment and the like.

【0042】ここに例示する貫通孔部(31a)におい
ては、シール部A(24a)が縁部材(12a)の厚さ
に対応する幅で環状に形成されているが、このシール部
A(24a)はこのような形状に限られるものではな
く、縁部材の端面に連続して形成されている限り、特に
限定はない。このシール部A(24a)の形状は、用い
た縁部材(12a)の端面形状に応じて四角形、六角形
等になる。
In the through hole portion (31a) illustrated here, the seal portion A (24a) is formed in an annular shape with a width corresponding to the thickness of the edge member (12a), and this seal portion A (24a). ) Is not limited to such a shape, and is not particularly limited as long as it is continuously formed on the end surface of the edge member. The shape of the seal portion A (24a) is a quadrangle, a hexagon or the like depending on the shape of the end surface of the edge member (12a) used.

【0043】上記の説明からも理解できるように、貫通
孔部(31a)とは、真空断熱パネルに貫通孔を形成可
能な部位を意味する。貫通孔部(31a)に貫通孔を形
成するには、シール部A(24a)の内側に残置されて
いるガスバリアー性包装材(41a)を切り取ったり、
ここにスリットを設ければよい。本発明の真空断熱パネ
ルには、シール部A(24a)の内側にガスバリアー性
包装材(41a)が残置されているものも含まれる。
As can be understood from the above description, the through hole portion (31a) means a portion where the through hole can be formed in the vacuum heat insulating panel. In order to form a through hole in the through hole portion (31a), the gas barrier packaging material (41a) left inside the seal portion A (24a) is cut off,
A slit may be provided here. The vacuum heat insulating panel of the present invention also includes one in which the gas barrier packaging material (41a) is left inside the seal portion A (24a).

【0044】本発明の真空断熱パネルにおいて、貫通孔
部の数、これを設ける位置は、得ようとする真空断熱パ
ネルの用途によって適宜決定され、またこの貫通孔部の
形状、寸法は、これらの用途、即ち貫通孔部を利用して
貫通させる配線、配管、機器等の断面形状、大きさに応
じて適宜決定することができる。貫通孔部の断面形状
は、通常円、四角形、六角形等の多角形とされ、その寸
法は、断熱芯材の厚さに関係なく必要に応じ適宜決定で
き、通常直径もしくは一辺の長さは1〜100mm程度
とされる。
In the vacuum heat insulating panel of the present invention, the number of through holes and the positions where they are provided are appropriately determined according to the intended use of the vacuum heat insulating panel, and the shape and size of the through holes are determined by these. It can be appropriately determined according to the purpose of use, that is, the cross-sectional shape and size of wiring, piping, equipment and the like to be penetrated by using the through-hole portion. The cross-sectional shape of the through-hole portion is usually a polygon such as a circle, a quadrangle, or a hexagon, and its size can be appropriately determined as necessary regardless of the thickness of the heat insulating core material, and the diameter or the length of one side is usually It is about 1 to 100 mm.

【0045】次ぎに、本発明に係る真空断熱パネルの製
造方法について説明する。本発明の製造方法において
は、(イ)断熱基材に貫通孔を穿設し、該貫通孔に筒状
の縁部材を嵌着した断熱芯材を作成し(以下、「第1工
程」とも云う)、(ロ)作成した断熱芯材を、ガスバリ
アー性包装材よりなる袋の開口部をより袋内に収納し
(以下、「第2工程」とも云う)、次いで、(ハ)袋の
開口部より袋内を真空排気して所望の真空度に維持しつ
つ、断熱芯材の縁部材の両端面にガスバリアー性包装材
を融着したシール部(A)、および袋の開口部のガスバ
リアー性包装材同士を融着したシール部(B)を形成さ
せる(以下、「第3工程」とも云う)ことが必要であ
る。
Next, a method for manufacturing the vacuum heat insulating panel according to the present invention will be described. In the manufacturing method of the present invention, (a) a through hole is formed in the heat insulating base material, and a heat insulating core material in which a tubular edge member is fitted in the through hole is prepared (hereinafter, also referred to as “first step”). (B) The prepared heat insulating core material is stored in the bag with the opening portion of the bag made of the gas barrier packaging material (hereinafter, also referred to as “second step”), and then (c) the bag While maintaining the desired degree of vacuum by evacuating the inside of the bag through the opening, the seal portion (A) in which the gas barrier packaging material is fused to both end surfaces of the edge member of the heat insulating core, and the opening of the bag It is necessary to form a seal part (B) in which the gas barrier packaging materials are fused to each other (hereinafter, also referred to as “third step”).

【0046】以下、本発明の製造方法を、その実施態様
例を示す前記の図1〜図6を参照しつつ詳細に説明する
が、その要旨を超えない限り、本発明はここに例示の方
法に限定されるものではない。本発明の製造方法におい
ては、断熱芯材としては図3(a)または図3(b)に
示すもの等が使用でき、また、この断熱芯材を収納する
ためのガスバリアー性包装材よりなる袋としては、図4
に示すものを使用できる。図3(a)または図3(b)
に示す断熱芯材の作成(第1工程)は、段落[001
1]〜段落[0014]に記載の方法に準じて行うこと
ができる。
Hereinafter, the manufacturing method of the present invention will be described in detail with reference to the above-mentioned FIGS. 1 to 6 showing an embodiment thereof. It is not limited to. In the manufacturing method of the present invention, the heat insulation core material shown in FIG. 3 (a) or FIG. 3 (b) can be used, and the heat insulation core material is composed of a gas barrier packaging material. As a bag,
The one shown in can be used. Figure 3 (a) or Figure 3 (b)
The heat-insulating core material shown in FIG.
1] to paragraph [0014].

【0047】本発明の製造方法では、断熱芯材としては
図3(a)に示すものを代表例として説明すると、先
ず、袋(2)の開口部(21)より断熱芯材(3a)を
袋(2)内に収納し(第2工程)、次ぎに、袋(2)の
開口部(21)より袋内を真空排気して所望の真空度に
維持しつつ、断熱芯材の縁部材の両端面にガスバリアー
性包装材同士を融着したシール部A(24a)、および
袋の開口部のガスバリアー性包装材同士を融着したシー
ル部B(25)を形成させる(第3工程)ことにより、
図5に示すような構造を有する目的とする真空断熱パネ
ルが得られる。
In the manufacturing method of the present invention, the heat insulating core material shown in FIG. 3 (a) will be explained as a representative example. First, the heat insulating core material (3a) is inserted through the opening (21) of the bag (2). It is housed in the bag (2) (second step), and then, the inside of the bag is evacuated from the opening (21) of the bag (2) to maintain a desired degree of vacuum, and at the same time, the edge member of the heat insulating core material. A seal portion A (24a) where the gas barrier packaging materials are fused to each other and a seal portion B (25) where the gas barrier packaging materials are fused to each other at the opening of the bag are formed on both end surfaces of the sheet (third step). )
The desired vacuum insulation panel having the structure as shown in FIG. 5 is obtained.

【0048】上記の第3工程において、シール部A(2
4a)、およびシール部B(25)を形成させる順序に
は特に制限はない。例えば、(i)シール部A(A(2
4a)を形成させた後に、シール部B(25)を形成さ
せる、(ii)シール部A(24a)とシール部B(2
5)を同時に形成させる、(iii)シール部B(2
5)を形成させた後に、シール部A(24a)を形成さ
せることができ、いずれの順序でも同様のものが得られ
る。
In the above third step, the seal portion A (2
4a) and the order of forming the seal portion B (25) are not particularly limited. For example, (i) the seal portion A (A (2
4a) is formed, and then the seal portion B (25) is formed. (Ii) The seal portion A (24a) and the seal portion B (2)
5) at the same time, (iii) seal portion B (2
After forming 5), the seal portion A (24a) can be formed, and the same thing can be obtained in any order.

【0049】第3工程におけるシール部A(24a)、
およびシール部B(25)の形成は、袋(2)の内部が
真空排気されるのに伴い袋(2)全体が断熱芯材(1)
に密着するとともに、断熱芯材の縁部材の両端面にも、
その上下のガスバリアー性包装材が密着するので、ここ
を適宜の手段で融着させればよい。
The seal portion A (24a) in the third step,
The seal portion B (25) is formed such that the inside of the bag (2) is evacuated and the entire bag (2) is heat-insulated core material (1).
To the edges of the heat insulation core material,
Since the upper and lower gas barrier packaging materials are in close contact with each other, they may be fused by an appropriate means.

【0050】なお、断熱芯材として、単に貫通孔のみを
有するものを使用した場合には、その厚みが比較的大き
く、特に直径の小さい貫通孔を設けたものを使用すると
きには、袋内を真空排気し所望の真空度に維持しても、
貫通孔の内周に沿ってガスバリアー性包装材同士を密着
させにくく、ここにシール部を形成させることが困難で
ある。しかしながら、本発明方法においては、前記縁部
材が嵌着された特定の断熱芯材を用い、縁部材の端面に
ガスバリアー性包装材を融着してシール部(A)を形成
させるので、このような問題はない。
When the heat insulating core material having only through holes is used, the thickness of the heat insulating core material is relatively large. Even if you evacuate and maintain the desired vacuum level,
It is difficult to bring the gas barrier packaging materials into close contact with each other along the inner circumference of the through hole, and it is difficult to form the seal portion here. However, in the method of the present invention, since the specific heat insulating core material to which the edge member is fitted is used and the gas barrier packaging material is fused to the end surface of the edge member to form the seal portion (A), There is no such problem.

【0051】上記各シール部(A(24a)、B(2
5))を形成させるための融着手段としては、従来より
知られている各種の方法が使用できる。例えば、加熱ブ
ロックを圧接する熱溶着法(ヒートシール法)、超音波
振動を印加した治具を圧接する方法、またガスバリアー
性包装材に導体が存在せず誘電発熱が可能な構成のもの
であれば高周波電場を印加した治具を圧接する方法、等
が採用できるが、一般的には熱溶着法が簡便であり好ま
しい。
Each of the seal portions (A (24a), B (2)
As the fusing means for forming 5)), various conventionally known methods can be used. For example, a heat-welding method (heat-sealing method) in which a heating block is pressed, a method in which a jig to which ultrasonic vibration is applied is pressed in, and a structure in which a conductor does not exist in the gas barrier packaging material and dielectric heat can be generated. If so, a method of pressing a jig to which a high-frequency electric field is applied can be adopted, but in general, a thermal welding method is simple and preferable.

【0052】上記のシール部A(24a)は、真空断熱
パネルの貫通孔部(31a)を密閉するために設けるも
のであり、このシール部の内側(41a)が配線、配
管、機器等を通すのに使用される。ここに例示する貫通
孔部(31a)においては、シール部A(24a)を環
状に形成させているが、貫通孔部(31a)の全周に連
続して形成させる限り、このシール部A(24a)はこ
のような形状に限られるものではない。
The above seal portion A (24a) is provided to seal the through hole portion (31a) of the vacuum heat insulating panel, and the inside (41a) of this seal portion allows wiring, piping, equipment, etc. to pass through. Used to. In the through hole portion (31a) illustrated here, the seal portion A (24a) is formed in an annular shape, but as long as it is formed continuously over the entire circumference of the through hole portion (31a), the seal portion A (24a) is formed. 24a) is not limited to such a shape.

【0053】本発明の方法により得られる真空断熱パネ
ルにおいて、貫通孔部(31a)とは、貫通孔を形成可
能な部位を意味することは前記の通りである。貫通孔部
(31a)に貫通孔を形成するには、前記第3工程の後
で、シール部A(24a)の内側に残置されているガス
バリアー性包装材(41a)を切り取ったり、ここにス
リットを設ければよい。従って、本発明の方法により得
られる真空断熱パネルには、シール部A(24a)の内
側にガスバリアー性包装材(41a)が残置されている
ものも含まれる。
As described above, in the vacuum heat insulating panel obtained by the method of the present invention, the through hole portion (31a) means a portion where the through hole can be formed. In order to form a through hole in the through hole part (31a), after the third step, the gas barrier packaging material (41a) left inside the seal part A (24a) is cut off, or A slit may be provided. Therefore, the vacuum heat insulating panel obtained by the method of the present invention also includes one in which the gas barrier packaging material (41a) is left inside the seal portion A (24a).

【0054】[0054]

【実施例】次に、本発明を、実施例により更に具体的に
説明するが、本発明は、その要旨を超えない限りこれら
の実施例の記載に限定されるものではない。なお、以下
の記載において、特に記載のない限り「%」は重量基準
を意味する。
EXAMPLES Next, the present invention will be described more specifically by way of examples, but the present invention is not limited to the description of these examples unless it exceeds the gist. In the following description, “%” means weight basis unless otherwise specified.

【0055】製造例 [珪酸カルシウム成形体の製造]生石灰(CaO:9
6.2重量%)49.6重量部に温脱塩水496重量部
を加えて消和し、沈降容積が46mlの石灰乳を調製し
た。なお、沈降容積は、直径13mm、容積50mlの
円筒状容器に石灰乳50mlを静かに注入し、20分間
静置した後に測定した消石灰粒子沈降層の容積である。
Production Example [Production of Calcium Silicate Compact] Quick lime (CaO: 9)
49.6 parts by weight of warm demineralized water was added to 49.6 parts by weight (6.2% by weight) for slaked water to prepare lime milk having a sedimentation volume of 46 ml. The settling volume is the volume of the slaked lime particle settling layer measured after gently pouring 50 ml of lime milk into a cylindrical container having a diameter of 13 mm and a volume of 50 ml and allowing it to stand for 20 minutes.

【0056】上記石灰乳に平均粒径10μmの珪石(S
iO2:96.4重量%)50.4重量部を添加し(C
aO/SiO2の仕込みモル比は1.05)、さらに固
形分に対する総水量が35重量倍になるように脱塩水を
追加した懸濁液を得た。この懸濁液を容積10リッター
のオートクレーブに移し、ゲージ圧15kg/cm2
温度200℃の条件下で3時間攪拌しつつ反応させ、ゾ
ーノトライトを主成分とする珪酸カルシウム水和物の水
性スラリーを得た。
The above lime milk was mixed with silica stone (S
iO 2: 96.4 wt%) 50.4 parts by weight was added (C
A molar ratio of aO / SiO 2 charged was 1.05), and demineralized water was added so that the total amount of water with respect to the solid content was 35 weight times to obtain a suspension. The suspension was transferred to an autoclave having a volume of 10 liters, and a gauge pressure of 15 kg / cm 2 ,
The mixture was reacted under stirring at a temperature of 200 ° C. for 3 hours to obtain an aqueous slurry of calcium silicate hydrate containing zonotolite as a main component.

【0057】次に、得られた水性スラリー100重量部
に対し、強化用ガラス繊維1重量部とパルプ1重量部を
添加、混合した後、これを脱水成形機に供給して加圧脱
水成形を行い、縦200mm、横200mm、厚さ約2
0mmの平板状の成形体とし、これを150℃で8時間
乾燥して目的とする珪酸カルシウム成形体を得た。得ら
れた成形体は、見掛け密度0.066g/cm3 、圧縮
強度2.8kg/cm2 であり、また、この成形体は針
状結晶の球状集合体から構成されており、球の内部には
針状結晶が存在するものと、針状結晶が存在しないもの
とがあった。
Next, to 100 parts by weight of the obtained aqueous slurry, 1 part by weight of reinforcing glass fiber and 1 part by weight of pulp were added and mixed, and this was supplied to a dehydration molding machine for pressure dehydration molding. 200mm in length, 200mm in width, thickness about 2
A 0 mm plate-shaped molded body was dried at 150 ° C. for 8 hours to obtain the desired calcium silicate molded body. The obtained molded body had an apparent density of 0.066 g / cm 3 and a compressive strength of 2.8 kg / cm 2 , and this molded body was composed of a spherical aggregate of needle-like crystals, and There were those in which needle-like crystals were present and those in which needle-like crystals were not present.

【0058】実施例1 製造例で得られた珪酸カルシウム成形体(縦200m
m、横200mm、厚さ約20mm)に直径20mmの
貫通孔を穿設した断熱基材(1a)、および外径20m
m、長さ20mm、肉厚5mmの6ナイロン製チューブ
よりなる縁部材(12a)を用い、縁部材(12a)を
断熱基材(1a)の貫通孔(11a)にその両端面が断
熱基材の両面と面一となるように嵌着させて、断熱芯材
(3a)を作成した。また、ガスバリアー性包装材より
なる袋(2)として、ポリエチレンテレフタレート(1
6μ)/Al箔(9μ)/ポリエチレンテレフタレート
(16μ)/6ナイロン(30μ)/の構成とされた積
層フィルムよりなり、6ナイロン層を袋の内側とし上記
を断熱芯材(1)を収納でき、開口部(21)を残し3
辺がシールされた図4に示す形状の袋を準備した。
Example 1 Calcium silicate compact (200 m in length) obtained in the production example
m, width 200 mm, thickness about 20 mm) with a heat insulating substrate (1a) having a through hole with a diameter of 20 mm, and an outer diameter of 20 m
An edge member (12a) made of a 6-nylon tube having a length of m, a length of 20 mm, and a wall thickness of 5 mm is used, and the edge member (12a) is a through hole (11a) of the heat insulating base material (1a). The heat insulating core material (3a) was prepared by fitting the two surfaces so as to be flush with both surfaces. Further, as a bag (2) made of a gas barrier packaging material, polyethylene terephthalate (1
6 μ) / Al foil (9 μ) / polyethylene terephthalate (16 μ) / 6 nylon (30 μ) / laminated film, with the 6 nylon layer inside the bag to accommodate the heat insulating core (1) , Leaving the opening (21) 3
A bag having the shape shown in FIG. 4 with sealed sides was prepared.

【0059】これらの断熱芯材(3a)および袋(2)
を用い、断熱芯材(3a)を袋(2)の真空排気用の開
口部(21)より内部に収納し、袋(2)内をゲージ圧
で0.02Torrとなるまで開口部(21)より真空
排気しつつ、縁部材(12a)の両端面にガスバリアー
性包装材を密着させ、この部分に熱溶着法により幅5m
m、内側直径10mmの連続したシール部A(24a)
を形成させた後、袋(2)の開口部(21)に熱溶着法
によりシール部B(25)を形成させることにより、図
5(図6)に示すタイプの、貫通孔部(31a)を有す
る真空断熱パネルを作成し、次いで、シール部A(24
a)の内側の包装材を切り取った。なお、得られた真空
断熱パネルの、パネルの主要部分(貫通孔の存在しない
部分)の厚み方向の熱伝導率は0.0095 Kcal
/m・hr・℃ であった。
These heat-insulating core materials (3a) and bags (2)
The heat-insulating core material (3a) is housed inside the bag (2) through the opening (21) for vacuum evacuation, and the inside of the bag (2) is opened to a gauge pressure of 0.02 Torr. While further evacuating, the gas barrier packaging material is adhered to both end surfaces of the edge member (12a), and a width of 5 m is applied to this portion by a heat welding method.
m, inner continuous diameter 10 mm, seal part A (24a)
After forming the seal, the seal portion B (25) is formed in the opening portion (21) of the bag (2) by a heat welding method, so that the through hole portion (31a) of the type shown in FIG. 5 (FIG. 6) is formed. A vacuum heat insulation panel having a seal part A (24
The wrapping material inside a) was cut off. In the obtained vacuum heat insulating panel, the thermal conductivity in the thickness direction of the main part of the panel (the part where there is no through hole) is 0.0095 Kcal.
/ M · hr · ° C.

【0060】実施例2 実施例1に記載の例において、同例で用いた断熱基材
(珪酸カルシウム成形体)に代え、発泡ポリスチレン平
板(縦200mm、横200mm、厚さ約20mm)よ
りなる断熱芯材(3a)を用いたほかは同例におけると
同様にして、図5(図6)に示すタイプの、貫通孔部
(31a)を有する真空断熱パネルを作成し、次いで、
シール部A(24a)の内側の包装材を切り取った。な
お、得られた真空断熱パネルの、パネルの主要部分(貫
通孔の存在しない部分)の厚み方向の熱伝導率は0.0
25 Kcal/m・hr・℃ であった。
Example 2 In the example described in Example 1, instead of the heat insulating substrate (calcium silicate molded body) used in the same example, heat insulation made of expanded polystyrene flat plate (length 200 mm, width 200 mm, thickness about 20 mm) A vacuum heat insulating panel having a through hole portion (31a) of the type shown in FIG. 5 (FIG. 6) was prepared in the same manner as in the example except that the core material (3a) was used.
The packaging material inside the seal portion A (24a) was cut off. In the obtained vacuum heat insulating panel, the thermal conductivity in the thickness direction of the main part of the panel (the part where the through hole does not exist) was 0.0.
It was 25 Kcal / m · hr · ° C.

【0061】[0061]

【発明の効果】本発明によれば、パネルの面内に配線、
配管、機器等を通せる貫通孔部を有する真空断熱パネ
ル、およびこの特定構造の真空断熱パネルの工業的有利
な製造方法が提供される。また、この真空断熱パネル
を、その貫通孔部を配線、配管、機器等の設置部位に合
致させて使用することにより、断熱壁面における断熱性
能の低下を大幅に抑制できると云う優れた効果を奏す
る。また、本発明の真空断熱パネルは、貫通孔部の形成
が、縁部材の両端面にガスバリアー性包装材を融着した
シール部によりなされているので、真空断熱パネルの厚
さに対する貫通孔部の内周径を小さくすることができ、
かつその製造も容易である。
According to the present invention, the wiring in the plane of the panel,
Provided are a vacuum heat insulating panel having a through hole through which pipes, equipment, etc. can be passed, and an industrially advantageous manufacturing method of the vacuum heat insulating panel having this specific structure. In addition, by using this vacuum insulation panel with its through-holes matching the installation sites of wiring, piping, equipment, etc., it is possible to significantly suppress the deterioration of the insulation performance of the heat insulation wall surface. . Further, in the vacuum heat insulating panel of the present invention, since the through hole portion is formed by the seal portion in which the gas barrier packaging material is fused to both end surfaces of the edge member, the through hole portion with respect to the thickness of the vacuum heat insulating panel is formed. It is possible to reduce the inner diameter of
And its manufacture is also easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で使用する断熱基材の1例を示す斜視図
である。
FIG. 1 is a perspective view showing an example of a heat insulating substrate used in the present invention.

【図2】本発明で使用する縁部材の1例を示す斜視図で
ある。
FIG. 2 is a perspective view showing an example of an edge member used in the present invention.

【図3】本発明で使用する断熱芯材の1例を示す断面略
図である。
FIG. 3 is a schematic sectional view showing an example of a heat insulating core material used in the present invention.

【図4】本発明で使用するガスバリアー性包装材よりな
る袋の1例を示す斜視図である。
FIG. 4 is a perspective view showing an example of a bag made of a gas barrier packaging material used in the present invention.

【図5】本発明の真空断熱パネルの1例を示す平面略図
である。
FIG. 5 is a schematic plan view showing an example of the vacuum heat insulating panel of the present invention.

【図6】図5に示す真空断熱パネルの、図5のX−X’
断面略図である。
6 is a view of the vacuum insulation panel shown in FIG. 5, taken along line XX ′ in FIG.
2 is a schematic sectional view.

【符号の説明】[Explanation of symbols]

1a、1b:断熱基材 11a、11b:断熱基材に設けた貫通孔 111b:フランジ嵌合部 12a、12b:縁部材 13a、13b:縁部材の中空部(断熱芯材の貫通孔) 102a、102b:縁部材の端面 103:縁部材(12b)のフランジ部 104b:縁部材(12b)の筒部 3a、3b:断熱芯材 2:ガスバリアー性包装材よりなる袋 21:袋2の開口部 22:袋2のシール部 23:袋2のシール部 24a:貫通孔部に形成させたシール部(A) 25:開口部に形成させたシール部(B) 31a:真空断熱パネルの貫通孔部 41a:シール部(A)内側のガスバリアー性包装材 1a, 1b: Thermal insulation base material 11a, 11b: Through hole provided in the thermal insulation base material 111b: Flange fitting part 12a, 12b: Edge member 13a, 13b: Hollow part of the edge member (through hole of thermal insulation core material) 102a, 102b: End surface of edge member 103: Flange portion of edge member (12b) 104b: Cylindrical portion of edge member (12b) 3a, 3b: Insulating core material 2: Bag made of gas barrier packaging material 21: Opening portion of bag 2 22: Sealing part of bag 2 23: Sealing part of bag 2 24a: Sealing part (A) formed in through hole part 25: Sealing part (B) formed in opening part 31a: Through hole part of vacuum heat insulation panel 41a: Gas barrier packaging material inside the seal part (A)

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 断熱芯材がガスバリアー性包装材よりな
る袋の中に真空排気された状態で封入されてなる真空断
熱パネルにおいて、上記断熱芯材は、断熱基材に穿設さ
れた貫通孔に筒状の縁部材が嵌着されてなり、該縁部材
の両端面にガスバリアー性包装材が融着されたシール部
により貫通孔部が形成されてなることを特徴とする真空
断熱パネル。
1. A vacuum heat insulation panel in which a heat insulation core material is enclosed in a bag made of a gas barrier packaging material in a vacuum-exhausted state, wherein the heat insulation core material is a through hole formed in a heat insulation base material. A vacuum heat insulation panel, characterized in that a cylindrical edge member is fitted in the hole, and a through hole portion is formed by a seal portion in which both ends of the edge member are fused with a gas barrier packaging material. .
【請求項2】 シール部の内側に、切り抜きまたはスリ
ットが形成されてなることを特徴とする請求項1記載の
真空断熱パネル。
2. The vacuum heat insulating panel according to claim 1, wherein a cutout or a slit is formed inside the seal portion.
【請求項3】 断熱基材が多孔質無機成形体であること
を特徴とする請求項1または請求項2記載の真空断熱パ
ネル。
3. The vacuum heat insulating panel according to claim 1 or 2, wherein the heat insulating base material is a porous inorganic molded body.
【請求項4】 断熱基材が連続気泡を有する発泡樹脂成
形体であることを特徴とする請求項1または請求項2記
載の真空断熱パネル。
4. The vacuum heat insulation panel according to claim 1, wherein the heat insulation base material is a foamed resin molding having open cells.
【請求項5】 多孔質無機成形体が珪酸カルシウムを5
0%以上含む組成物からなる成形体であることを特徴と
する請求項3記載の真空断熱パネル。
5. The porous inorganic molded body contains calcium silicate in an amount of 5
The vacuum heat insulation panel according to claim 3, which is a molded product made of a composition containing 0% or more.
【請求項6】 発泡樹脂成形体が発泡ポリウレタン成形
体であることを特徴とする請求項4記載の真空断熱パネ
ル。
6. The vacuum heat insulation panel according to claim 4, wherein the foamed resin molded body is a foamed polyurethane molded body.
【請求項7】 断熱芯材がガスバリアー性包装材よりな
る袋の中に真空排気された状態で封入されてなる真空断
熱パネルの製造方法において、断熱基材に貫通孔を穿設
し該貫通孔に筒状の縁部材を嵌着した断熱芯材を作成
し、該断熱芯材をガスバリアー性包装材よりなる袋の開
口部より袋内に収納し、袋の開口部より袋内を真空排気
して所望の真空度に維持しつつ、縁部材の両端面にガス
バリアー性包装材が融着したシール部(A)、および袋
の開口部のガスバリアー性包装材同士を融着したシール
部(B)を形成させることを特徴とする真空断熱パネル
の製造方法。
7. A method of manufacturing a vacuum heat insulating panel, wherein a heat insulating core material is enclosed in a bag made of a gas barrier packaging material in a state of being evacuated, and a through hole is formed in a heat insulating base material. A heat insulating core material in which a tubular edge member is fitted in the hole is created, and the heat insulating core material is stored in the bag through the opening of the bag made of the gas barrier packaging material, and the inside of the bag is vacuumed through the opening of the bag. While evacuating and maintaining a desired degree of vacuum, a seal portion (A) where the gas barrier packaging material is fused to both end surfaces of the edge member, and a seal where the gas barrier packaging materials at the opening of the bag are fused to each other. A method for manufacturing a vacuum heat insulating panel, which comprises forming a part (B).
【請求項8】 シール部(A)を形成させた後、該シー
ル部(A)の内側に切り抜きまたはスリットを形成させ
ることを特徴とする請求項7記載の真空断熱パネルの製
造方法。
8. The method for manufacturing a vacuum heat insulating panel according to claim 7, wherein after forming the seal portion (A), a cutout or a slit is formed inside the seal portion (A).
【請求項9】 断熱基材が多孔質無機成形体であること
を特徴とする請求項7または請求項8記載の真空断熱パ
ネルの製造方法。
9. The method for producing a vacuum heat insulating panel according to claim 7, wherein the heat insulating base material is a porous inorganic molded body.
【請求項10】断熱基材が連続気泡を有する発泡樹脂成
形体であることを特徴とする請求項7または請求項8記
載の真空断熱パネルの製造方法。
10. The method for producing a vacuum heat insulating panel according to claim 7, wherein the heat insulating base material is a foamed resin molded product having open cells.
【請求項11】多孔質無機成形体が珪酸カルシウムを5
0%以上含む組成物からなる成形体であることを特徴と
する請求項9記載の真空断熱パネルの製造方法。
11. A porous inorganic molded body containing calcium silicate 5
The method for producing a vacuum heat insulating panel according to claim 9, wherein the vacuum heat insulating panel is a molded body made of a composition containing 0% or more.
【請求項12】発泡樹脂成形体が発泡ポリウレタン成形
体であることを特徴とする請求項10記載の真空断熱パ
ネルの製造方法。
12. The method for manufacturing a vacuum heat insulation panel according to claim 10, wherein the foamed resin molded body is a foamed polyurethane molded body.
JP7121558A 1995-05-19 1995-05-19 Vacuum heat insulating panel and its manufacture Pending JPH08312880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7121558A JPH08312880A (en) 1995-05-19 1995-05-19 Vacuum heat insulating panel and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7121558A JPH08312880A (en) 1995-05-19 1995-05-19 Vacuum heat insulating panel and its manufacture

Publications (1)

Publication Number Publication Date
JPH08312880A true JPH08312880A (en) 1996-11-26

Family

ID=14814217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7121558A Pending JPH08312880A (en) 1995-05-19 1995-05-19 Vacuum heat insulating panel and its manufacture

Country Status (1)

Country Link
JP (1) JPH08312880A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147942A (en) * 2000-11-06 2002-05-22 Matsushita Refrig Co Ltd Refrigerator
JP2003172493A (en) * 2001-12-06 2003-06-20 Toppan Printing Co Ltd Vacuum heat insulating material
WO2004001149A3 (en) * 2002-06-24 2004-03-04 Sager Ag Vacuum insulation panel, method for the heat insulation of objects and auxiliary agent therefor
WO2004074752A1 (en) * 2003-02-19 2004-09-02 Matsushita Refrigeration Company Refrigerator
JP2007016927A (en) * 2005-07-08 2007-01-25 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and its manufacturing method
DE202006012469U1 (en) * 2006-08-12 2007-09-20 Porextherm-Dämmstoffe Gmbh Vacuum insulation panel with passage in the insulation support body
WO2008022706A1 (en) 2006-08-24 2008-02-28 Porextherm-Dämmstoffe Gmbh Vacuum insulation panel with a lead-through
EP1898014A2 (en) * 2006-09-01 2008-03-12 Porextherm-Dämmstoffe GmbH Vacuum insulation panel with duct in insulation material supporting shells
JP2008093933A (en) * 2006-10-11 2008-04-24 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
JP2009019695A (en) * 2007-07-12 2009-01-29 Panasonic Corp Heat insulating plate
JP2009138822A (en) * 2007-12-05 2009-06-25 Panasonic Corp Heat insulating plate and its manufacturing method
CN102102796A (en) * 2010-03-12 2011-06-22 福建赛特新材股份有限公司 Vacuum insulation panel and manufacturing method thereof
AT13193U1 (en) * 2012-06-18 2013-08-15 Gerald Dipl Ing Brencic Diffusion-open vacuum insulation panel
JP2013200014A (en) * 2012-03-26 2013-10-03 Mitsubishi Electric Corp Vacuum heat insulating material, heat insulating box body with the vacuum heat insulating material, and refrigerator with the heat insulating box body
DE102013002312A1 (en) * 2013-02-07 2014-08-07 Liebherr-Hausgeräte Lienz Gmbh Vakuumdämmkörper
WO2014121893A1 (en) * 2013-02-07 2014-08-14 Liebherr-Hausgeräte Lienz Gmbh Vacuum insulation body
CN104428575A (en) * 2012-07-03 2015-03-18 乐金华奥斯有限公司 Vacuum insulation panel with improved rupturing and preparation method thereof
WO2016084763A1 (en) * 2014-11-26 2016-06-02 旭硝子株式会社 Vacuum thermal insulating material and manufacturing method therefor
WO2016120009A1 (en) * 2015-01-29 2016-08-04 Liebherr-Hausgeräte Lienz Gmbh Vacuum-tight through-film bushing

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147942A (en) * 2000-11-06 2002-05-22 Matsushita Refrig Co Ltd Refrigerator
JP2003172493A (en) * 2001-12-06 2003-06-20 Toppan Printing Co Ltd Vacuum heat insulating material
WO2004001149A3 (en) * 2002-06-24 2004-03-04 Sager Ag Vacuum insulation panel, method for the heat insulation of objects and auxiliary agent therefor
WO2004074752A1 (en) * 2003-02-19 2004-09-02 Matsushita Refrigeration Company Refrigerator
JP4701882B2 (en) * 2005-07-08 2011-06-15 パナソニック株式会社 Vacuum insulation
JP2007016927A (en) * 2005-07-08 2007-01-25 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and its manufacturing method
DE202006012469U1 (en) * 2006-08-12 2007-09-20 Porextherm-Dämmstoffe Gmbh Vacuum insulation panel with passage in the insulation support body
EP1887154A2 (en) * 2006-08-12 2008-02-13 Porextherm-Dämmstoffe GmbH Vacuum insulation panel with a passage in the insulating spacing body
EP1887154A3 (en) * 2006-08-12 2012-05-16 Porextherm-Dämmstoffe GmbH Vacuum insulation panel with a passage in the insulating spacing body
WO2008022706A1 (en) 2006-08-24 2008-02-28 Porextherm-Dämmstoffe Gmbh Vacuum insulation panel with a lead-through
JP2010501793A (en) * 2006-08-24 2010-01-21 ポレックステルム・デムシュトッフェ ゲーエムベーハー Vacuum insulating panel and manufacturing method thereof
EP1898014A3 (en) * 2006-09-01 2011-04-27 Porextherm-Dämmstoffe GmbH Vacuum insulation panel with duct in insulation material supporting shells
EP1898014A2 (en) * 2006-09-01 2008-03-12 Porextherm-Dämmstoffe GmbH Vacuum insulation panel with duct in insulation material supporting shells
JP2008093933A (en) * 2006-10-11 2008-04-24 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
JP2009019695A (en) * 2007-07-12 2009-01-29 Panasonic Corp Heat insulating plate
JP2009138822A (en) * 2007-12-05 2009-06-25 Panasonic Corp Heat insulating plate and its manufacturing method
CN102102796A (en) * 2010-03-12 2011-06-22 福建赛特新材股份有限公司 Vacuum insulation panel and manufacturing method thereof
JP2013200014A (en) * 2012-03-26 2013-10-03 Mitsubishi Electric Corp Vacuum heat insulating material, heat insulating box body with the vacuum heat insulating material, and refrigerator with the heat insulating box body
AT13193U1 (en) * 2012-06-18 2013-08-15 Gerald Dipl Ing Brencic Diffusion-open vacuum insulation panel
CN104428575A (en) * 2012-07-03 2015-03-18 乐金华奥斯有限公司 Vacuum insulation panel with improved rupturing and preparation method thereof
WO2014121893A1 (en) * 2013-02-07 2014-08-14 Liebherr-Hausgeräte Lienz Gmbh Vacuum insulation body
WO2014121889A1 (en) * 2013-02-07 2014-08-14 Liebherr-Hausgeräte Lienz Gmbh Vacuum insulation body
DE102013002312A1 (en) * 2013-02-07 2014-08-07 Liebherr-Hausgeräte Lienz Gmbh Vakuumdämmkörper
CN104981670A (en) * 2013-02-07 2015-10-14 利勃海尔家用器具利恩茨股份有限公司 Vacuum insulation body
CN104995468A (en) * 2013-02-07 2015-10-21 利勃海尔家用器具利恩茨股份有限公司 Vacuum insulation body
CN104995468B (en) * 2013-02-07 2017-08-22 利勃海尔家用器具利恩茨股份有限公司 Vacuum insulation element
CN104981670B (en) * 2013-02-07 2018-03-27 利勃海尔家用器具利恩茨股份有限公司 Vacuum insulation element
US10088221B2 (en) 2013-02-07 2018-10-02 Liebherr-Hausgeräte Lienz Gmbh Vacuum insulation body
WO2016084763A1 (en) * 2014-11-26 2016-06-02 旭硝子株式会社 Vacuum thermal insulating material and manufacturing method therefor
WO2016120009A1 (en) * 2015-01-29 2016-08-04 Liebherr-Hausgeräte Lienz Gmbh Vacuum-tight through-film bushing
US10670326B2 (en) 2015-01-29 2020-06-02 Liebherr-Hausgerate Lienz Gmbh Vacuum-tight through-film bushing

Similar Documents

Publication Publication Date Title
JPH08303686A (en) Vacuum heat insulating panel and manufacture of it
JPH08312880A (en) Vacuum heat insulating panel and its manufacture
US5866228A (en) Vacuum heat-insulator
US5084320A (en) Evacuated thermal insulation
US20040180176A1 (en) Vaccum insulation article
MXPA01003196A (en) Vacuum insulation panel and method of preparing the same.
JP3490426B1 (en) Vacuum heat insulating material, and refrigeration equipment, cooling / heating equipment using the same, and vacuum heat insulating material core material and manufacturing method thereof
KR101303378B1 (en) Expanded perlite insulation, vacuum insulation panel using it and its manufacturing method
EP0682206B1 (en) Vacuum heat-insulator
JP2015530340A (en) Manufacturing method and molding machine of low density inorganic powder heat insulating material using expanded perlite
JP2599515B2 (en) Insulating molded body, method for producing the same, container made of the molded body, and heat insulating material in refrigerator and freezer
JPH08291892A (en) Lamination layer type vacuum heat insulating panel
JPWO2016084763A1 (en) Vacuum insulation material and manufacturing method thereof
JP2645640B2 (en) Method for producing molded article having heat insulation
JPH01141733A (en) Heat-insulating molded form having coating
JP2001108187A (en) Vacuum heat insulating body, manufacturing method of vacuum heat insulating body and heat reserving vessel
JP2009168091A (en) Vacuum heat insulation material, and building using vacuum heat insulation material in wall
JP2000291881A (en) Decompressed heat insulating body and manufacture thereof
JP2008215492A (en) Vacuum heat insulation material
JPH0563715B2 (en)
JPH05118492A (en) Manufacture of heat insulating material
KR100359738B1 (en) Vacuum thermal insulator using inorganic core materials
JPH1044290A (en) Vacuum heat insulation material
JPH06159915A (en) Heat insulating door
JPH08312878A (en) Vacuum heat insulating material