WO2014196278A1 - Foamed multilayer polyethylene resin sheet, and glass-panel slip sheet - Google Patents

Foamed multilayer polyethylene resin sheet, and glass-panel slip sheet Download PDF

Info

Publication number
WO2014196278A1
WO2014196278A1 PCT/JP2014/061010 JP2014061010W WO2014196278A1 WO 2014196278 A1 WO2014196278 A1 WO 2014196278A1 JP 2014061010 W JP2014061010 W JP 2014061010W WO 2014196278 A1 WO2014196278 A1 WO 2014196278A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene resin
polyethylene
layer
resin
sheet
Prior art date
Application number
PCT/JP2014/061010
Other languages
French (fr)
Japanese (ja)
Inventor
森田 和彦
角田 博俊
隆一 谷口
兼一 後藤
Original Assignee
株式会社ジェイエスピー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイエスピー filed Critical 株式会社ジェイエスピー
Priority to KR1020157034592A priority Critical patent/KR102136443B1/en
Priority to CN201480032545.9A priority patent/CN105263702B/en
Publication of WO2014196278A1 publication Critical patent/WO2014196278A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/21Anti-static
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2213/00Safety means
    • B65D2213/02Means for preventing buil-up of electrostatic charges
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2447/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Derivatives of such polymers

Definitions

  • the present invention relates to a polyethylene-based resin multilayer foamed sheet and its use as an interleaf for glass plates.
  • polyethylene-based resin foam sheets have been used as materials for cushioning materials and packaging materials.
  • a polyethylene-based resin foam sheet having antistatic properties has been used as a suitable material as a packaging material because it is difficult to damage dust and is flexible because it is difficult to dust.
  • polyethylene-based resin foam sheets having antistatic properties have been used in the packaging field of electronic devices and their materials, such as being used for slip sheets such as glass plates for liquid crystal panels.
  • liquid crystal panel glass plate If the liquid crystal panel glass plate is contaminated by the migration of organic substances contained in the foamed sheet, it will lead to failure and deterioration of production yield when an electronic circuit is formed on the glass plate. It is required to reduce the migration of substances and the like.
  • Japanese Patent Application Laid-Open No. 2005-194433 discloses a polyethylene resin foam sheet in which a polymer type antistatic agent is blended as an antistatic agent.
  • Japanese Patent Application Laid-Open No. 2004-181933 discloses a polyethylene resin multilayer foam sheet in which a polymer type antistatic agent is blended in a surface layer laminated on a foam layer. The foamed sheet using these polymer-type antistatic agents has a greatly reduced amount of migration of organic substances and the like to the package as compared with a foamed sheet using a conventional surfactant.
  • the polyethylene-based resin foam sheet using the polymer type antistatic agent as described above has a good antistatic property and a low degree of contamination due to migration, so that it can be used as a suitable packaging material for an electronic device or its material. Used as paper.
  • the low molecular weight component contained in the polymer type antistatic agent itself may migrate to the package, and the polyethylene constituting the foam sheet It has been found that low molecular weight components contained in the base resin itself may migrate.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a polyethylene-based resin multilayer foamed sheet having an antistatic performance and a very small amount of low molecular weight components transferred to a package. It is what.
  • a foamed layer forming molten resin obtained by kneading a polyethylene resin (A), a polymer antistatic agent and a physical foaming agent, and a polyethylene resin (B) are kneaded.
  • Both the polyethylene resin (A) and the polyethylene resin (B) are polyethylene resins having an n-heptane extraction amount at 50 ° C.
  • the blending amount of the polymer antistatic agent in the foamed layer is 3 to 15% by weight with respect to 100% by weight in total of the polyethylene resin (A) and the polymer antistatic agent,
  • a polyethylene-based resin multilayer foamed sheet characterized in that the thickness of the surface layer is 2 to 10 ⁇ m is provided.
  • the present invention provides the polyethylene-based resin multilayer foam sheet according to the first aspect, characterized in that the surface resistivity of the multilayer foam sheet on the surface layer side is less than 1 ⁇ 10 14 ⁇ . To do.
  • the present invention provides the polyethylene-based resin multilayer foam sheet according to the first or second aspect, wherein the apparent density of the multilayer foam sheet is 15 to 300 kg / m 3 .
  • the present invention provides a glass sheet interleaf made of the polyethylene resin multilayer foamed sheet of any of the first to third aspects.
  • the polyethylene-based resin multilayer foamed sheet of the present invention (hereinafter also simply referred to as a foamed sheet or a multilayer foamed sheet) is laminated on at least one surface of a polyethylene-based resin foamed layer (hereinafter also simply referred to as a foamed layer). And a polyethylene-based resin surface layer (hereinafter also simply referred to as a surface layer).
  • a polyethylene resin (A) constituting the foam layer and the polyethylene resin (B) constituting the surface layer a polyethylene resin having a heptane extraction amount at 50 ° C. of 0.5% by weight or less is used.
  • the polymer type antistatic agent is present in the foamed layer in an amount of 3 to 15% by weight based on 100% by weight of the total of the polyethylene resin (A) and the polymer type antistatic agent.
  • the thickness of the surface layer is 2 to 10 ⁇ m.
  • the foamed sheet of the present invention has a multilayer structure in which a surface layer is laminated on at least one surface of a foamed layer, and is formed with a foamed layer comprising a polyethylene resin (A), a polymer antistatic agent, and a physical foaming agent. It is obtained by coextrusion of the first melt for forming and the second melt for forming the surface layer composed of the polyethylene resin (B).
  • the first melt is heated, kneaded by supplying an additive such as a polyethylene-based resin (A), a polymer-type antistatic agent, and a cell regulator added as necessary to an extruder.
  • the second melt is obtained by heating, kneading and melting the polyethylene resin (B).
  • the foam sheet is obtained by introducing the first and second melts into a coextrusion die, merging and laminating, and coextrusion.
  • the surface layer may be laminated
  • Each of the polyethylene resin (A) and the polyethylene resin (B) has a heptane extraction amount at 50 ° C. of 0.5% by weight or less.
  • the content of the polymer antistatic agent in the foamed layer is 3 to 15% by weight based on the total of 100% by weight of the polyethylene resin (A) and the polymer antistatic agent,
  • the thickness is 2 to 10 ⁇ m.
  • the organic substance such as a low molecular weight component usually inevitably contained in the molecular type antistatic agent is prevented from bleeding out to the surface of the foam sheet, thereby suppressing the organic substance from being transferred to the package.
  • the amount of the polymer antistatic agent relative to the polyethylene resin (A) does not substantially change before and after the coextrusion. Therefore, in the first melt for forming the foam layer, the polymer antistatic agent is When blended in an amount of 3 to 15% by weight based on 100% by weight of the total amount of the polyethylene resin (A) and the polymer antistatic agent, the polymer antistatic agent is added to the polyethylene foam in the formed foamed layer. 3 to 15% by weight is present with respect to 100% by weight of the total of the resin (A) and the polymer antistatic agent.
  • the polyethylene-based resin (B) used in the surface layer has an ethylene component unit content of 50 mol% or more in the resin.
  • Specific examples thereof include low-density polyethylene (PE-LD), linear Low density polyethylene (PE-LLD), high density polyethylene (PE-HD), ethylene-vinyl acetate copolymer (EVAC), ethylene-methyl methacrylate copolymer (EMMA), ethylene-ethyl acrylate copolymer (EEAK) and mixtures thereof.
  • low-density polyethylene, long chain density having a branched structure is a polyethylene resin of less than 910 kg / m 3 or more 930 kg / m 3
  • linear low density polyethylene, ethylene and number from 4 to 8 carbon atoms a polyethylene resin density copolymer is a substantially molecular chain is linear is less than 910 kg / m 3 or more 930 kg / m 3 and ⁇ - olefin
  • high density polyethylene has a density of 930 kg / m
  • these polyethylene resins are preferably used.
  • low density polyethylene is particularly preferable from the viewpoint of buffering properties.
  • the polyethylene resin (B) and further the polyethylene resin (A) require that the amount of heptane extracted at 50 ° C. is 0.5% by weight or less. Since both the polyethylene resin (A) and the polyethylene resin (B) have a heptane extraction amount of 0.5% by weight or less, they are covered with organic matter such as low molecular weight components contained in the polyethylene resin itself. It becomes a foamed sheet with a small amount of transfer to a product. In addition, since a part of the low molecular weight component derived from the polyethylene resin (A) is transferred to the resin melt of the polyethylene resin (B) constituting the surface layer during coextrusion, the low molecular weight component is packaged.
  • the amount of heptane extracted is preferably 0.4% by weight or less, more preferably 0.3% by weight or less, and particularly preferably 0.2% by weight or less.
  • Examples of the polyethylene resin having a heptane extraction amount of 0.5 wt% or less include those obtained by extracting and removing low molecular weight components from the polyethylene resin with a solvent such as heptane. Moreover, what is manufactured using the slurry method and the solution method among the said polyethylene-type resin is mentioned. Polyethylene resins produced by the slurry method or solution method have low molecular weight components removed in the solvent removal process at the time of production, and extraction and removal treatment with a solvent such as heptane is not necessary. preferable.
  • the amount of heptane extracted from the polyethylene resin is determined as follows. Crush the polyethylene resin pellets. About 2 g of the pulverized 200 mesh pass sample is weighed. This is put into a flask, 400 ml of normal heptane is added, and the mixture is heated to reflux at 50 ° C. for 48 hours. The resulting solution is filtered and the solvent is removed from the fractionated residue under heating vacuum. The difference between the weight of the obtained residue and the weight of the added polyethylene resin is determined. The amount of n-heptane extracted is weight% based on the amount of polyethylene resin charged with this difference.
  • the melt mass flow rate (MFR) measured based on the condition D of JIS K7210-1999 is 1 to 30 g / It is preferably 10 minutes.
  • the content is more preferably 1.5 to 20 g / 10 minutes, and further preferably 2 to 15 g / 10 minutes.
  • the surface layer may not contain a polymer antistatic agent.
  • a polymer antistatic agent may be blended in the surface layer. The amount is approximately 1% by weight or less in the surface layer. Thereby, the transfer of the organic substance from the polymer type antistatic agent to the package is suppressed to a low level.
  • Examples of the polyethylene resin (A) used for the foam layer include the same as the polyethylene resin (B). However, the polyethylene resin (A) and the polyethylene resin (B) may be different resins.
  • the polyethylene resin (A) among the above-mentioned polyethylene resins, those having a melt tension at 190 ° C. of 20 mN to 400 mN are preferable.
  • the melt tension at 190 ° C. is preferably 20 mN or more, more preferably 30 mN or more, and further preferably 40 mN or more.
  • the melt tension at 190 ° C. is preferably 400 mN or less, more preferably 300 mN or less, and further preferably 250 mN or less.
  • the melt tension can be measured by, for example, a capillograph 1D manufactured by Toyo Seiki Seisakusho Co., Ltd. Specifically, a cylinder with a cylinder diameter of 9.55 mm and a length of 350 mm and an orifice with a nozzle diameter of 2.095 mm and a length of 8.0 mm were used. Place in the cylinder and let stand for 4 minutes, then push the molten resin out of the orifice into a string with a piston speed of 10 mm / min, put this string on a 45 mm diameter tension detection pulley, and take it off in 4 minutes.
  • a capillograph 1D manufactured by Toyo Seiki Seisakusho Co., Ltd. Specifically, a cylinder with a cylinder diameter of 9.55 mm and a length of 350 mm and an orifice with a nozzle diameter of 2.095 mm and a length of 8.0 mm were used. Place in the cylinder and let stand for 4 minutes, then push the molten resin out of
  • the take-up speed While increasing the take-up speed at a constant speed so that the speed reaches from 0 m / min to 200 m / min, the maximum value of the tension immediately before the string-like object breaks when the string-like object is taken up by the take-off roller. obtain.
  • the reason why the time until the take-up speed reaches 0 m / min to 200 m / min is set to 4 minutes is to suppress the thermal deterioration of the resin and increase the reproducibility of the obtained value.
  • melt tension (cN).
  • the melt tension obtained by setting the take-up speed to a constant speed of 200 m / min is adopted.
  • the molten resin is extruded into a string from the orifice, and this string is put on a tension detection pulley, and a constant speed increase is made so that the speed reaches 0 m / min to 200 m / min in 4 minutes. Rotate the take-up roller while increasing the take-up speed, and wait until the rotation speed reaches 200 m / min.
  • the data acquisition of the melt tension is started, and the data acquisition is finished after 30 seconds.
  • the average value (Tave) of the tension maximum value (Tmax) and the tension minimum value (Tmin) obtained from the tension load curve obtained during this 30 seconds is taken as the melt tension in the method of the present invention.
  • the Tmax is a value obtained by dividing the total value of detected peak (peak) values in the tension load curve by the detected number
  • the Tmin is detected in the tension load curve. It is a value obtained by dividing the total value of the dip (valley) values by the detected number.
  • the polymer type antistatic agent is blended in the polyethylene resin (A) constituting the foam layer.
  • the blending amount is 3 to 15% by weight with respect to 100% by weight in total of the polyethylene resin (A) and the polymer antistatic agent. If the amount of the polymeric antistatic agent is too large, the low molecular weight component may pass through the surface layer and migrate to the package.
  • the blending amount of the polymer type antistatic agent is preferably as small as possible within the range where the antistatic performance is expressed. In the case where a polymer type antistatic agent is blended in the foamed layer, the same antistatic effect can be obtained even in a smaller blending amount than in the case of blending in the non-foamed layer.
  • the reason for this is that if a polymer type antistatic agent is blended in the foam layer, the polymer type antistatic agent is not only stretched when the foam is widened and taken out, but is also extruded from the die. Even when foaming, the polymer antistatic agent is stretched, and it is considered that the polymer antistatic agent forms a more complicated network structure in the polyethylene resin.
  • the upper limit of the amount of the polymeric antistatic agent is preferably 12% by weight, and more preferably 10% by weight.
  • the amount of the polymeric antistatic agent is too small, there is a possibility that sufficient antistatic performance cannot be obtained.
  • the lower limit of the amount of the polymeric antistatic agent is preferably 4% by weight.
  • the polymer antistatic agent examples include a hydrophilic polymer having a volume resistivity of 1 ⁇ 10 5 to 1 ⁇ 10 11 ⁇ ⁇ cm (hereinafter also simply referred to as a hydrophilic polymer), and a hydrophilic polymer.
  • examples include block polymers of block and hydrophobic polymer blocks, ionomers, and the like.
  • Examples of the hydrophilic polymer include polyether, cationic polymer, anionic polymer and the like.
  • Examples of the hydrophilic polymer block include the hydrophilic polymer block, and examples of the hydrophobic polymer block include polyolefin and polyamide.
  • Examples of the bond between the hydrophilic polymer block and the hydrophobic polymer block include an ester bond, an amide bond, and an ether bond.
  • the amount of the polymer type antistatic agent for obtaining a desired antistatic effect can be reduced, the amount of migration of the organic matter can be reduced, so that the surface resistivity is preferably 1 ⁇ 10 7 ⁇ or less.
  • the thickness of the surface layer is required to be 2 to 10 ⁇ m.
  • the thickness is smaller than 2 ⁇ m, the migration of the low molecular weight component derived from the polymer antistatic agent contained in the foam layer cannot be suppressed by the surface layer. If it is larger than 10 ⁇ m, the distance between the foam layer containing the antistatic agent and the surface of the surface layer becomes large, and it becomes difficult to neutralize the charge generated on the surface layer surface. It becomes difficult to do.
  • the thickness of the surface layer can be adjusted by adjusting the discharge amount and the take-up speed.
  • the thickness of the foamed sheet of the present invention is preferably 10 mm or less, more preferably 8 mm or less from the viewpoint of easy handling when packing an article to be packaged when the foamed sheet is used as a packaging material or an interleaf. 5 mm or less is further preferable, and 2 mm or less is particularly preferable. On the other hand, the thickness is preferably 0.05 mm or more, and more preferably 0.1 mm or more from the viewpoint of obtaining sufficient buffering properties when the multilayer foamed sheet is used particularly for applications requiring buffering properties.
  • the method for measuring the thickness of the surface layer and the thickness of the foamed sheet is as follows. First, a foam sheet is cut
  • the thickness [ ⁇ m] of the surface layer is determined by the surface layer discharge amount X [kg / hour] and the width W [m] of the foam sheet obtained when the foamed sheet is manufactured.
  • the density ⁇ [g / cm 3 ] of the polyethylene resin constituting the surface layer is used to Can be obtained.
  • Surface layer thickness [ ⁇ m] [1000 ⁇ X / (L ⁇ W ⁇ ⁇ )] (1)
  • the apparent density of the foamed sheet of the present invention is preferably 15 to 300 kg / m 3 .
  • the apparent density of the foamed sheet is in the above range, the balance between strength and buffering properties is excellent.
  • ⁇ seat Density From this point of view is more preferably 18 kg / m 3 or more, 20 kg / m 3 or more, and on the other hand, ⁇ seat density is more preferably less than 300 kg / m 3, more preferably 250 kg / m 3 or less, 200 kg / m 3 or less is particularly preferable.
  • the method for measuring the apparent density of the foam sheet is as follows. First, the thickness of the foam sheet is measured by the method described above. Next, in order to measure the basis weight, a test piece of (full width of foam sheet) ⁇ (length in extrusion direction 10 cm) ⁇ (thickness of multilayer foam sheet) is cut out from the foam sheet, and the mass [g] of the test piece is measured. To do.
  • the basis weight [g / m 2 ] can be obtained by dividing the mass by the area of the test piece [m 2 : full width of foam sheet (m) ⁇ 0.1 m].
  • the apparent density [kg / m 3 ] of the foam sheet can be obtained by dividing the calculated basis weight [g / m 2 ] by the thickness [mm] of the foam sheet and converting the unit.
  • the closed cell ratio is preferably 10% or more, more preferably 20% or more.
  • the closed cell ratio: S (%) of the polyethylene resin foam sheet is measured using an air comparison type hydrometer 930 type manufactured by Toshiba Beckman Co., Ltd. in accordance with Procedure C described in ASTM D2856-70.
  • the actual volume of the foamed sheet (the sum of the volume of the closed cells and the volume of the resin part): Vx (L) can be obtained by calculation according to the following equation (2).
  • Va, W, and ⁇ in the above equation (2) are as follows.
  • Va Apparent volume of foam sheet used for measurement (cm 3 )
  • W Mass of the foam sheet in the test piece (g)
  • Density of resin constituting the foam sheet (g / cm 3 )
  • the foamed sheet of the present invention has antistatic properties.
  • the half-life of the initial voltage on the surface layer side is preferably 60 seconds or less, more preferably 30 seconds or less. .
  • the half-life is a value measured according to A method (half-life measurement method) of JIS L1094-1988. Specifically, a test piece cut out from a foam sheet (length 40 mm ⁇ width 40 mm ⁇ thickness: thickness of foam sheet to be measured) was left in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50% for 36 hours. Adjust the condition.
  • the turntable rotation speed is 1300 rpm, and after applying for 30 seconds under the condition of (+) 10 kV or ( ⁇ ) 10 kV, the application is stopped and the application is stopped. From the time until the initial charging voltage is attenuated to 1/2, the half-life (second) is obtained.
  • the initial charging voltage is preferably within ⁇ 2.0 kV, more preferably within ⁇ 1.5 kV.
  • the surface resistivity on the surface layer side is preferably less than 1 ⁇ 10 14 ⁇ , and 1 ⁇ 10 8 to 1 More preferably, it is ⁇ 10 13 ( ⁇ ).
  • the surface resistivity of the foamed sheet is a value measured according to JIS K6271 (2001). That is, the state of the test piece is adjusted by leaving the test piece cut out from the foamed sheet (length 100 mm ⁇ width 100 mm ⁇ thickness: thickness of the foamed sheet) in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours. Next, under the condition of an applied voltage of 500 V, voltage application is started on the surface layer side of the test piece, and the surface resistivity after 1 minute is measured.
  • the laminated foam sheet of the present invention is produced by laminating a polyethylene resin surface layer on one or both sides of a polyethylene resin foam layer containing a polymer type antistatic agent by a coextrusion method. Specifically, a coextrusion die is attached to the outlet of the foam layer forming extruder, and a device in which the surface layer forming extruder is connected to the coextrusion die, in the coextrusion die, A foam sheet is produced by joining the first melt for forming the foam layer and the second melt for forming the surface layer and then performing extrusion foaming.
  • the polyethylene-based resin (A), a polymeric antistatic agent, and additives such as an air-conditioning agent blended as necessary are supplied to a foaming layer forming extruder, heated and kneaded, and then physically added.
  • a foaming agent is press-fitted into a first melt.
  • the polyethylene resin (B) is supplied to a surface layer forming extruder, heated and kneaded to obtain a second melt.
  • the first melt is cooled to the proper foaming temperature
  • the second melt is cooled as close as possible to the proper foaming temperature of the foam layer, and both are introduced into the coextrusion die.
  • the first melt and the second melt are merged, the second melt is laminated on at least one side of the first melt, and co-extrusion is performed to take out the first melt while foaming.
  • a foamed sheet is obtained by forming a surface layer on the surface.
  • a method of coextrusion into a sheet shape using a flat die for coextrusion, a coextrusion using an annular die for coextrusion to form a cylindrical foam for example, there is a method of cutting a tubular foamed body along a columnar widening device while opening the tubular foamed material to obtain a sheet-like foamed sheet.
  • a method using an annular die for coextrusion is a preferable method because generation of a wavy pattern called a corrugate can be suppressed and the heat shrinkage rate of the foamed sheet can be controlled within a preferable range.
  • dye, a cylindrical widening apparatus, the apparatus which opens a cylindrical foam, etc. can use the well-known thing conventionally used in the field
  • Examples of the physical foaming agent that is press-fitted into the extruder include aliphatic hydrocarbons having 2 to 7 carbon atoms, halogenated aliphatic hydrocarbons having 1 to 3 carbon atoms, aliphatic alcohols having 1 to 4 carbon atoms, or Those composed of one or more selected from aliphatic ethers having 2 to 8 carbon atoms, carbon dioxide and the like are preferably used.
  • the physical foaming agent is preferably 0.1 to 50 parts by weight, more preferably 100 parts by weight in total of the resin constituting the foamed layer such as the polyethylene resin (A) and the polymer antistatic agent. Is 0.5 to 30 parts by weight.
  • a bubble regulator is usually added to the first melt for forming the foam layer.
  • the bubble adjusting agent either an organic type or an inorganic type can be used.
  • the inorganic foam regulator include borate metal salts such as zinc borate, magnesium borate, borax, sodium chloride, aluminum hydroxide, talc, zeolite, silica, calcium carbonate, sodium bicarbonate, and the like.
  • the organic bubble regulator include sodium 2,2-methylenebis (4,6-tert-butylphenyl) phosphate, sodium benzoate, calcium benzoate, aluminum benzoate, and sodium stearate.
  • a combination of citric acid and sodium bicarbonate, a mono-alkali salt of citric acid and sodium bicarbonate, or the like can also be used as the bubble regulator. These bubble regulators can be used in combination of two or more.
  • a volatile plasticizer to the second melt for forming the surface layer.
  • the second melt and the first melt are coextruded by adding a volatile plasticizer, even if the extrusion temperature of the second melt is close to the proper foaming temperature of the foam layer, 2
  • the melt elongation of the melt can be remarkably improved, and the elongation of the second melt can follow the elongation of the first melt.
  • the volatile plasticizer volatilizes and disappears from the foam sheet after the foam sheet is manufactured.
  • the melt viscosity of the polyethylene resin can be lowered to form a resin melt suitable for coextrusion, and after extrusion foaming. Is preferred since it volatilizes from the surface layer, does not easily disappear from the surface layer and remains in the foamed sheet, and is very unlikely to cause migration.
  • Examples of the volatile plasticizer include saturated hydrocarbons having 2 to 7 carbon atoms, halogenated aliphatic hydrocarbons having 1 to 3 carbon atoms, aliphatic alcohols having 1 to 4 carbon atoms, or 2 to 8 carbon atoms. Those composed of one kind or two or more kinds selected from aliphatic ethers are preferably used.
  • Examples of the saturated hydrocarbon having 2 to 7 carbon atoms exemplified in the volatile plasticizer include ethane, propane, normal butane, isobutane, normal pentane, isopentane, isohexane, cyclohexane and heptane.
  • halogenated aliphatic hydrocarbon having 1 to 3 carbon atoms examples include methyl chloride, ethyl chloride, 1,1,1,2-tetrafluoroethane, and 1,1-difluoroethane.
  • Examples of the aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, sec-butyl alcohol, and tert-butyl alcohol.
  • Examples of the aliphatic ether having 2 to 8 carbon atoms include methyl ether, ethyl ether, propyl ether, isopropyl ether, methyl ethyl ether, methyl propyl ether, methyl isopropyl ether, methyl butyl ether, methyl isobutyl ether, and methyl amyl ether.
  • the boiling point of the volatile plasticizer is preferably 80 ° C. or less, more preferably 60 ° C. or less because it easily volatilizes from the surface layer. When the boiling point of the volatile plasticizer is within this range, the volatile plasticizer is volatilized naturally from the surface layer by the heat after co-extrusion and the subsequent gas permeation at room temperature.
  • the lower limit of the boiling point is approximately ⁇ 50 ° C.
  • the addition amount of the volatile plasticizer is preferably 0.1 to 100 parts by weight, more preferably 1 to 50 parts by weight with respect to 100 parts by weight of the polyethylene resin (B).
  • the polyethylene-based resin foam sheet of the present invention has antistatic properties, and the amount of organic matter transferred to the package is suppressed to a small level, it can be used for electronic devices such as slip sheets for glass panels for liquid crystal panels and the materials thereof. It can be suitably used as a packaging material.
  • the amount of heptane extracted from the polyethylene resin was determined by the method described above.
  • the heptane extraction amount of the mixed resin in Table 1 is the n-heptane extraction amount of the mixed resin kneaded at 200 ° C. with an extruder.
  • a tandem extruder in which a first extruder having a diameter of 90 mm and a second extruder having a diameter of 120 mm are connected in series is used as an extruder for forming a foam layer, and the diameter is used as an extruder for forming a surface layer.
  • a 50 mm third extruder was used, and an apparatus in which the outlet of the second extruder and the outlet of the third extruder were connected to an annular die for coextrusion was used.
  • the annular die for coextrusion has a structure in which a second melt for forming a surface layer, which will be described later, is merged and laminated on both surfaces of the first melt for forming a foam layer at the middle part of the die, and the diameter of the lip at the die exit is 94 mm. It is.
  • a die exit lip having a diameter of 70 mm was used.
  • Example 1 The polymer type antistatic agent shown in Table 1 is blended with the polyethylene resin (A) shown in Table 1 in the amount shown in Table 1, and talc (trade name “High Filler # 12” manufactured by Matsumura Sangyo Co., Ltd.) is added thereto.
  • the raw material blended by 1 part by weight was supplied to the raw material inlet of the first extruder, heated and kneaded to obtain a molten resin mixture adjusted to about 200 ° C.
  • Table 1 shows the molten resin mixture as a physical foaming agent.
  • a first melt for forming a polyethylene resin foam layer was obtained.
  • the polyethylene resin (B) shown in Table 1 is supplied to the raw material charging port of the third extruder, heated and melted to obtain a molten resin mixture adjusted to about 200 ° C., and a volatile plasticizer is added to the molten resin mixture.
  • a volatile plasticizer is added to the molten resin mixture.
  • the resin temperature is adjusted to the resin temperature shown in Table 1 to form a second polyethylene-based resin surface layer forming layer. A melt was obtained.
  • Each of the first and second melts is introduced into a co-extrusion annular die at a discharge amount shown in Table 1, the second melt is merged and laminated on both sides of the first melt, and is co-extruded from the annular die.
  • a cylindrical multilayer foam having surface layers laminated on the inner and outer surfaces of the foam layer was formed. While the extruded cylindrical laminated foam was widened with a cylindrical widening apparatus having a diameter of 350 mm, the take-up speed was adjusted to obtain the total basis weight shown in Table 3 to obtain a polyethylene-based resin multilayer foamed sheet.
  • Example 2 A polyethylene-based resin multilayer foamed sheet was obtained in the same manner as in Example 1 except that those shown in Table 1 were used as the polyethylene-based resin for forming the foam layer and the surface layer.
  • Example 3 A polyethylene-based resin multilayer foamed sheet was obtained in the same manner as in Example 1 except that those shown in Table 1 were used as the polyethylene-based resin for forming the foam layer and the surface layer.
  • Example 4 A polyethylene-based resin multilayer foamed sheet was obtained in the same manner as in Example 1 except that the discharge amount was changed as shown in Table 1 so that the thickness of the surface layer shown in Table 4 was obtained.
  • Example 5 Using a co-extrusion annular die with a lip diameter of 70 mm, using the raw materials shown in Table 1 as the polyethylene resin (A), press-fitting mixed butane as the foaming agent in the amount shown in Table 1, and adjusting the resin temperature shown in Table 1
  • the raw material shown in Table 1 is used as the polyethylene resin (B), mixed butane is injected as a volatile plasticizer in the amount shown in Table 1, the resin temperature shown in Table 1 is adjusted, and the foamed layer forming molten resin and surface
  • the molten resin for layer formation is coextruded at the discharge amount shown in Table 1 to form a cylindrical laminated foam, and the basis weight shown in Table 3 along the cylindrical cooling device having a diameter of 212 mm.
  • a polyethylene-based resin multilayer foamed sheet was obtained in the same manner as in Example 1 except that the take-up speed was adjusted so that
  • Comparative Example 1 A polyethylene-based resin single-layer foamed sheet consisting only of a foamed layer containing a polymer antistatic agent was obtained in the same manner as in Example 1 except that the surface layer was not laminated. Although the obtained single-layer foamed sheet was excellent in antistatic properties, it did not have a surface layer, so that the amount of the low molecular weight component derived from the polymeric antistatic agent transferred to the package was large.
  • Comparative Example 2 Example 1 except that the surface layer thickness was set to the thickness shown in Table 4, and the discharge amount and take-up speed of the foamed layer forming molten resin and the surface layer forming molten resin were adjusted to the total basis weight shown in Table 4. Similarly, a polyethylene resin multilayer foamed sheet was obtained. In the obtained multilayer foamed sheet, the thickness of the surface layer was too thin, so that the amount of the low molecular weight component derived from the polymer antistatic agent transferred to the package was large.
  • Comparative Example 3 A polyethylene resin multilayer foamed sheet was obtained in the same manner as in Example 1 except that the polymer type antistatic agent in the amount shown in Table 2 was blended. The obtained multilayer foamed sheet was inferior in antistatic property because the blending amount of the antistatic agent was too small.
  • Comparative Example 4 A polyethylene-based resin multilayer foamed sheet was obtained in the same manner as in Example 1 except that the polymer type antistatic agent was added to the foam layer forming resin in the amount shown in Table 2. Since the obtained multilayer foamed sheet contained too much antistatic agent, the amount of the low molecular weight component transferred to the package was large.
  • Comparative Example 5 As the polyethylene resin (A) and the polyethylene resin (B), a polyethylene resin multilayer foamed sheet was obtained in the same manner as in Example 1 except that the resin having a large amount of heptane extraction shown in Table 2 was used. The obtained multilayer foamed sheet had a large transfer amount of the low molecular weight component derived from the polyethylene resin to the package.
  • Comparative Example 6 As the polyethylene resin (A), a polyethylene resin multilayer foamed sheet was obtained in the same manner as in Example 1 except that the resin having a large amount of heptane extraction shown in Table 2 was used. The obtained multilayer foamed sheet had a large transfer amount of the low molecular weight component derived from the polyethylene resin to the package.
  • the foam layer uses a resin with a large amount of heptane extraction shown in Table 2 as the polyethylene resin (A), does not contain a polymer type antistatic agent, and the surface layer shows a polyethylene resin (B) in Table 2.
  • a polyethylene-based resin multilayer foamed sheet was obtained in the same manner as in Example 1 except that a resin and a polymer type antistatic agent of the type and blending amount shown in Table 2 were blended.
  • the obtained multilayer foamed sheet was excellent in antistatic properties, but had a large amount of low molecular weight components transferred to the package.
  • Comparative Example 8 Polyethylene resin multilayer as in Example 1, except that the foamed layer was not blended with a polymer antistatic agent and the surface layer was blended with a polymer antistatic agent of the type and blending amount shown in Table 2. A foam sheet was obtained. Although the obtained multilayer foamed sheet was excellent in antistatic properties, the amount of the low molecular weight component derived from the polymer antistatic agent transferred to the package was large.
  • Table 1 shows the manufacturing conditions of the examples
  • Table 2 shows the manufacturing conditions of the comparative examples
  • Table 3 shows the physical properties of the foam sheets obtained in the examples
  • Table 4 shows the physical properties of the foam sheets obtained in the comparative examples.
  • test piece (length 100 mm ⁇ width 100 mm ⁇ thickness: thickness of foam sheet) obtained by randomly cutting out three pieces from the foam sheet was used as a sample.
  • a surface resistance value 1 minute after application at an applied voltage of 500 V was adopted. The measurement was performed on both sides of the test piece (6 times in total), and the surface resistivity was obtained from the average value of the obtained measurement values.
  • “TR8601” manufactured by Takeda Riken Kogyo Co., Ltd. was used as a measuring apparatus.
  • the surface resistivity of the polymer antistatic agent is a value measured using a test piece obtained by heat-pressing the antistatic agent at 200 ° C. to 0.1 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Mechanical Engineering (AREA)
  • Buffer Packaging (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Provided is a foamed multilayer polyethylene resin sheet which is provided with a foamed layer, and a surface layer stacked upon at least one surface of the foamed layer, said foamed multilayer polyethylene resin sheet being obtained by co-extruding: a foamed-layer-forming first molten substance including a polyethylene resin (A), a polymeric anti-static agent, and a physical blowing agent; and a surface-layer-forming second molten substance including a polyethylene resin (B). The polyethylene resin (A) and the polyethylene resin (B) respectively have an n-heptane extraction amount at 50˚C of not more than 0.5 wt%. In the foamed layer, the polymeric anti-static agent accounts for 3-15 wt% of a total of 100 wt% of the polyethylene resin (A) and the polymeric anti-static agent. The thickness of the surface layer is 2-10 µm.

Description

ポリエチレン系樹脂多層発泡シート及びガラス板用間紙Polyethylene resin multilayer foam sheet and glass sheet
 本発明は、ポリエチレン系樹脂多層発泡シート及びそのガラス板用間紙としての使用に関する。 The present invention relates to a polyethylene-based resin multilayer foamed sheet and its use as an interleaf for glass plates.
 従来、緩衝材、包装材等の素材として、ポリエチレン系樹脂発泡シートが使用されてきた。特に、帯電防止性能を有するポリエチレン系樹脂発泡シートは、ほこりがつき難く柔軟性があることから、被包装物を傷つけにくく、包装材として好適な材料として利用されてきた。 Conventionally, polyethylene-based resin foam sheets have been used as materials for cushioning materials and packaging materials. In particular, a polyethylene-based resin foam sheet having antistatic properties has been used as a suitable material as a packaging material because it is difficult to damage dust and is flexible because it is difficult to dust.
 近年では、帯電防止性能を有するポリエチレン系樹脂発泡シートは、液晶パネル用ガラス板等の間紙に用いられるなど、エレクトロニクス機器やその素材の包装分野での用途が拡大している。 In recent years, polyethylene-based resin foam sheets having antistatic properties have been used in the packaging field of electronic devices and their materials, such as being used for slip sheets such as glass plates for liquid crystal panels.
 該液晶パネル用ガラス板は、発泡シートに含まれる有機物質等の移行により汚染されると、ガラス板上に電子回路を形成した際に、故障の原因や製造時の歩留まり悪化につながる為、有機物質等の移行を低減することが要求される。 If the liquid crystal panel glass plate is contaminated by the migration of organic substances contained in the foamed sheet, it will lead to failure and deterioration of production yield when an electronic circuit is formed on the glass plate. It is required to reduce the migration of substances and the like.
 発泡シートから被包装物へ移行する有機物質としては、前記帯電防止性能を付与するために配合される界面活性剤タイプの帯電防止剤が代表的なものとして挙げられる。その為、特開2005-194433には、帯電防止剤として高分子型帯電防止剤が配合されたポリエチレン系樹脂発泡シートが開示されている。また、特開2004-181933には、発泡層に積層された表面層に高分子型帯電防止剤が配合されたポリエチレン系樹脂多層発泡シートが開示されている。これらの高分子型帯電防止剤を用いた発泡シートは、従来の界面活性剤を用いた発泡シートに比較すると、被包装物への有機物質等の移行量が大きく低減されているものである。 A typical example of the organic substance that migrates from the foam sheet to the package is a surfactant type antistatic agent that is blended to impart the antistatic performance. Therefore, Japanese Patent Application Laid-Open No. 2005-194433 discloses a polyethylene resin foam sheet in which a polymer type antistatic agent is blended as an antistatic agent. Japanese Patent Application Laid-Open No. 2004-181933 discloses a polyethylene resin multilayer foam sheet in which a polymer type antistatic agent is blended in a surface layer laminated on a foam layer. The foamed sheet using these polymer-type antistatic agents has a greatly reduced amount of migration of organic substances and the like to the package as compared with a foamed sheet using a conventional surfactant.
 前記のような高分子型帯電防止剤を用いたポリエチレン系樹脂発泡シートは、その優れた帯電防止性及び移行による汚染の程度が低いことにより、エレクトロニクス機器やその素材用の好適な包装材や間紙として用いられている。 The polyethylene-based resin foam sheet using the polymer type antistatic agent as described above has a good antistatic property and a low degree of contamination due to migration, so that it can be used as a suitable packaging material for an electronic device or its material. Used as paper.
 しかし、上記の高分子型帯電防止剤を用いた発泡シートでも、高分子型帯電防止剤自体に含まれる低分子量成分が被包装物へ移行することがあり、さらに発泡シートを構成しているポリエチレン系樹脂自体に含まれる低分子量成分が移行してしまうことがあることが判明した。 However, even in the foam sheet using the above-described polymer type antistatic agent, the low molecular weight component contained in the polymer type antistatic agent itself may migrate to the package, and the polyethylene constituting the foam sheet It has been found that low molecular weight components contained in the base resin itself may migrate.
 本発明は、前記の問題点に鑑みなされたものであり、帯電防止性能を有しつつ、被包装物への低分子量成分の移行量が極めて少ないポリエチレン系樹脂多層発泡シートを提供することを目的とするものである。 The present invention has been made in view of the above problems, and an object thereof is to provide a polyethylene-based resin multilayer foamed sheet having an antistatic performance and a very small amount of low molecular weight components transferred to a package. It is what.
 本発明の第1の態様によればポリエチレン系樹脂(A)、高分子型帯電防止剤及び物理発泡剤を混練してなる発泡層形成用溶融樹脂と、ポリエチレン系樹脂(B)を混練してなる表面層形成用溶融樹脂とを共押出することにより得られた、発泡層の少なくとも片面に表面層が積層された多層発泡シートであって、
 ポリエチレン系樹脂(A)及びポリエチレン系樹脂(B)が共に、50℃でのn-ヘプタン抽出量が0.5重量%以下のポリエチレン系樹脂であり、
 該発泡層への高分子型帯電防止剤の配合量がポリエチレン系樹脂(A)と高分子型帯電防止剤との合計100重量%に対して3~15重量%であり、
 該表面層の厚みが2~10μmであることを特徴とするポリエチレン系樹脂多層発泡シートが提供される。
According to the first aspect of the present invention, a foamed layer forming molten resin obtained by kneading a polyethylene resin (A), a polymer antistatic agent and a physical foaming agent, and a polyethylene resin (B) are kneaded. A multilayer foamed sheet obtained by co-extrusion with a molten resin for forming a surface layer, wherein the surface layer is laminated on at least one side of the foamed layer,
Both the polyethylene resin (A) and the polyethylene resin (B) are polyethylene resins having an n-heptane extraction amount at 50 ° C. of 0.5% by weight or less,
The blending amount of the polymer antistatic agent in the foamed layer is 3 to 15% by weight with respect to 100% by weight in total of the polyethylene resin (A) and the polymer antistatic agent,
A polyethylene-based resin multilayer foamed sheet characterized in that the thickness of the surface layer is 2 to 10 μm is provided.
 第2の態様において、本発明は、前記多層発泡シートの表面層側の表面抵抗率が1×1014Ω未満であることを特徴とする前記第1の態様のポリエチレン系樹脂多層発泡シートを提供する。
 第3の態様において、本発明は、前記多層発泡シートの見掛け密度が15~300kg/mであることを特徴とする前記第1又は第2の態様のポリエチレン系樹脂多層発泡シートを提供する。
 第4の態様において、本発明は、前記第1~第3の態様のいずれかのポリエチレン系樹脂多層発泡シートからなるガラス板用間紙を提供する。
In a second aspect, the present invention provides the polyethylene-based resin multilayer foam sheet according to the first aspect, characterized in that the surface resistivity of the multilayer foam sheet on the surface layer side is less than 1 × 10 14 Ω. To do.
In a third aspect, the present invention provides the polyethylene-based resin multilayer foam sheet according to the first or second aspect, wherein the apparent density of the multilayer foam sheet is 15 to 300 kg / m 3 .
In a fourth aspect, the present invention provides a glass sheet interleaf made of the polyethylene resin multilayer foamed sheet of any of the first to third aspects.
 本発明のポリエチレン系樹脂多層発泡シート(以下、単に発泡シート、または多層発泡シートともいう。)は、ポリエチレン系樹脂発泡層(以下、単に発泡層ともいう。)と、発泡層の少なくとも片面に積層されたポリエチレン系樹脂表面層(以下、単に表面層ともいう。)とを有する。発泡層を構成するポリエチレン系樹脂(A)及び表面層を構成するポリエチレン系樹脂(B)として、50℃でのヘプタン抽出量が0.5重量%以下のポリエチレン系樹脂が用いられている。高分子型帯電防止剤が発泡層に、ポリエチレン系樹脂(A)と高分子型帯電防止剤との合計100重量%に対して3~15重量%存在している。表面層の厚みは2~10μmである。以上の構成により、発泡シートは、帯電防止性能を有しながらも、被包装物への低分子量成分などの有機物の移行量が極めて少ないものである。 The polyethylene-based resin multilayer foamed sheet of the present invention (hereinafter also simply referred to as a foamed sheet or a multilayer foamed sheet) is laminated on at least one surface of a polyethylene-based resin foamed layer (hereinafter also simply referred to as a foamed layer). And a polyethylene-based resin surface layer (hereinafter also simply referred to as a surface layer). As the polyethylene resin (A) constituting the foam layer and the polyethylene resin (B) constituting the surface layer, a polyethylene resin having a heptane extraction amount at 50 ° C. of 0.5% by weight or less is used. The polymer type antistatic agent is present in the foamed layer in an amount of 3 to 15% by weight based on 100% by weight of the total of the polyethylene resin (A) and the polymer type antistatic agent. The thickness of the surface layer is 2 to 10 μm. With the above configuration, the foamed sheet has an antistatic performance, but has a very small amount of organic substances such as low molecular weight components transferred to the package.
 本発明の発泡シートは、発泡層の少なくとも片面に表面層が積層された多層構造を有し、ポリエチレン系樹脂(A)、高分子型帯電防止剤、及び物理発泡剤から構成される発泡層形成用第1溶融物とポリエチレン系樹脂(B)から構成される表面層形成用第2溶融物とを共押出することにより得られる。好ましい態様においては、第1溶融物は、ポリエチレン系樹脂(A)、高分子型帯電防止剤、必要に応じて添加される気泡調整剤等の添加剤を押出機に供給して加熱、混練、溶融し、更に物理発泡剤を圧入、混練して得られ、第2溶融物は、ポリエチレン系樹脂(B)を加熱、混練、溶融して得られる。発泡シートは、第1及び第2溶融とを共押出ダイに導入して合流積層させ、共押出することにより得られる。なお、表面層は片面に積層されていてもよく、発泡層の両面に積層されていてもよい。 The foamed sheet of the present invention has a multilayer structure in which a surface layer is laminated on at least one surface of a foamed layer, and is formed with a foamed layer comprising a polyethylene resin (A), a polymer antistatic agent, and a physical foaming agent. It is obtained by coextrusion of the first melt for forming and the second melt for forming the surface layer composed of the polyethylene resin (B). In a preferred embodiment, the first melt is heated, kneaded by supplying an additive such as a polyethylene-based resin (A), a polymer-type antistatic agent, and a cell regulator added as necessary to an extruder. It is obtained by melting and further press-fitting and kneading a physical foaming agent, and the second melt is obtained by heating, kneading and melting the polyethylene resin (B). The foam sheet is obtained by introducing the first and second melts into a coextrusion die, merging and laminating, and coextrusion. In addition, the surface layer may be laminated | stacked on the single side | surface, and may be laminated | stacked on both surfaces of the foaming layer.
 ポリエチレン系樹脂(A)及びポリエチレン系樹脂(B)の各々は、50℃でのヘプタン抽出量が0.5重量%以下である。そして、発泡層中の高分子型帯電防止剤の含有量がポリエチレン系樹脂(A)と高分子型帯電防止剤との合計100重量%に対して3~15重量%であると共に、表面層の厚みが2~10μmである。これらの構成の組合せにより、本発明の発泡シートは、帯電防止性能の発現を可能にしつつ、その表面に存在する、ポリエチレン系樹脂に由来する低分子量成分などの有機物が低減されていると共に、高分子型帯電防止剤に通常不可避的に含まれる低分子量成分などの有機物が発泡シート表面へブリードアウトすることを抑制することで、前記有機物が被包装物へ移行することを抑えている。なお、高分子型帯電防止剤のポリエチレン系樹脂(A)に対する量は共押出の前後において実質的に変わらないため、発泡層形成用の第1溶融物中において、高分子型帯電防止剤が、ポリエチレン系樹脂(A)と高分子型帯電防止剤との合計100重量%に対して3~15重量%配合された場合、形成された発泡層中には高分子型帯電防止剤が、ポリエチレン系樹脂(A)と高分子型帯電防止剤との合計100重量%に対して3~15重量%存在する。 Each of the polyethylene resin (A) and the polyethylene resin (B) has a heptane extraction amount at 50 ° C. of 0.5% by weight or less. The content of the polymer antistatic agent in the foamed layer is 3 to 15% by weight based on the total of 100% by weight of the polyethylene resin (A) and the polymer antistatic agent, The thickness is 2 to 10 μm. With the combination of these configurations, the foamed sheet of the present invention enables the expression of antistatic performance, while reducing organic substances such as low molecular weight components derived from polyethylene-based resin present on the surface of the foamed sheet. The organic substance such as a low molecular weight component usually inevitably contained in the molecular type antistatic agent is prevented from bleeding out to the surface of the foam sheet, thereby suppressing the organic substance from being transferred to the package. Note that the amount of the polymer antistatic agent relative to the polyethylene resin (A) does not substantially change before and after the coextrusion. Therefore, in the first melt for forming the foam layer, the polymer antistatic agent is When blended in an amount of 3 to 15% by weight based on 100% by weight of the total amount of the polyethylene resin (A) and the polymer antistatic agent, the polymer antistatic agent is added to the polyethylene foam in the formed foamed layer. 3 to 15% by weight is present with respect to 100% by weight of the total of the resin (A) and the polymer antistatic agent.
 該表面層に用いられているポリエチレン系樹脂(B)は、樹脂中のエチレン成分単位の含有量が50モル%以上であり、その具体例としては低密度ポリエチレン(PE-LD)、直鎖状低密度ポリエチレン(PE-LLD)、高密度ポリエチレン(PE-HD)、エチレン-酢酸ビニル共重合体(EVAC)、エチレン-メタクリル酸メチル共重合体(EMMA)、エチレン-アクリル酸エチル共重合体(EEAK)や、これらの混合物等が挙げられる。なお、一般に、低密度ポリエチレンは、長鎖分岐構造を有する密度が910kg/m以上930kg/m未満のポリエチレン系樹脂であり、直鎖状低密度ポリエチレンは、エチレンと炭素数4~8のα-オレフィンとの共重合体であって実質的に分子鎖が線状である密度が910kg/m以上930kg/m未満のポリエチレン系樹脂であり、高密度ポリエチレンは、密度が930kg/m以上のポリエチレン系樹脂であり、これらのポリエチレン系樹脂が好ましく用いられる。これらの中でも、緩衝性の点から低密度ポリエチレンが特に好ましい。 The polyethylene-based resin (B) used in the surface layer has an ethylene component unit content of 50 mol% or more in the resin. Specific examples thereof include low-density polyethylene (PE-LD), linear Low density polyethylene (PE-LLD), high density polyethylene (PE-HD), ethylene-vinyl acetate copolymer (EVAC), ethylene-methyl methacrylate copolymer (EMMA), ethylene-ethyl acrylate copolymer ( EEAK) and mixtures thereof. In general, low-density polyethylene, long chain density having a branched structure is a polyethylene resin of less than 910 kg / m 3 or more 930 kg / m 3, linear low density polyethylene, ethylene and number from 4 to 8 carbon atoms a polyethylene resin density copolymer is a substantially molecular chain is linear is less than 910 kg / m 3 or more 930 kg / m 3 and α- olefin, high density polyethylene has a density of 930 kg / m There are three or more polyethylene resins, and these polyethylene resins are preferably used. Among these, low density polyethylene is particularly preferable from the viewpoint of buffering properties.
 前記ポリエチレン系樹脂(B)、更に前記ポリエチレン系樹脂(A)は、50℃でのヘプタン抽出量が0.5重量%以下であることを要する。ポリエチレン系樹脂(A)及びポリエチレン系樹脂(B)が共に、該ヘプタン抽出量が0.5重量%以下であることより、ポリエチレン系樹脂自体に含まれる低分子量成分などの有機物等の被被包装物への移行量が少ない発泡シートとなる。なお、ポリエチレン系樹脂(A)由来の低分子量成分の一部は、共押出中に表面層を構成するポリエチレン系樹脂(B)の樹脂溶融物に移行してしまうため、低分子量成分の被包装物への移行を抑制するためには、ポリエチレン系樹脂(B)としてヘプタン抽出量が少ないものを用いるだけではなく、ポリエチレン系樹脂(A)としてもヘプタン抽出量が少ないものを用いる必要がある。かかる観点から、該ヘプタン抽出量は0.4重量%以下が好ましく、0.3重量%以下が更に好ましく、0.2重量%以下が特に好ましい。 The polyethylene resin (B) and further the polyethylene resin (A) require that the amount of heptane extracted at 50 ° C. is 0.5% by weight or less. Since both the polyethylene resin (A) and the polyethylene resin (B) have a heptane extraction amount of 0.5% by weight or less, they are covered with organic matter such as low molecular weight components contained in the polyethylene resin itself. It becomes a foamed sheet with a small amount of transfer to a product. In addition, since a part of the low molecular weight component derived from the polyethylene resin (A) is transferred to the resin melt of the polyethylene resin (B) constituting the surface layer during coextrusion, the low molecular weight component is packaged. In order to suppress the transition to a product, it is necessary to use not only a polyethylene resin (B) having a small amount of heptane extract but also a polyethylene resin (A) having a small amount of heptane extract. From this viewpoint, the amount of heptane extracted is preferably 0.4% by weight or less, more preferably 0.3% by weight or less, and particularly preferably 0.2% by weight or less.
 前記ヘプタン抽出量が0.5重量%以下であるポリエチレン系樹脂としては、前記ポリエチレン系樹脂からヘプタン等の溶媒によって低分子量成分を抽出除去したものが挙げられる。また、前記ポリエチレン系樹脂のうち、スラリー法や溶液法を用いて製造されるものが挙げられる。スラリー法や溶液法により製造されるポリエチレン系樹脂は、製造時の脱溶媒工程において低分子量成分が除去されており、前記ヘプタン等の溶媒による抽出除去処理が不要なので、コストや廃液処理の観点から好ましい。なお、ヘプタン抽出量が0.5重量%超のポリエチレン系樹脂であっても、ヘプタン抽出量が0.5重量%以下のポリエチレン系樹脂と混合することにより、全体として0.5重量%以下にすることができる限りにおいてポリエチレン系樹脂(A)および(B)として使用することができる。 Examples of the polyethylene resin having a heptane extraction amount of 0.5 wt% or less include those obtained by extracting and removing low molecular weight components from the polyethylene resin with a solvent such as heptane. Moreover, what is manufactured using the slurry method and the solution method among the said polyethylene-type resin is mentioned. Polyethylene resins produced by the slurry method or solution method have low molecular weight components removed in the solvent removal process at the time of production, and extraction and removal treatment with a solvent such as heptane is not necessary. preferable. In addition, even if it is a polyethylene resin having a heptane extraction amount of more than 0.5% by weight, mixing with a polyethylene resin having a heptane extraction amount of 0.5% by weight or less reduces the total to 0.5% by weight or less. As long as it can be used, it can be used as the polyethylene resins (A) and (B).
 ポリエチレン系樹脂のヘプタン抽出量は次のように求められる。
 ポリエチレン系樹脂ペレットを粉砕する。得られた粉砕の200メッシュパスの試料約2gを秤量する。これをフラスコ内に投入し、ノルマルヘプタン400mlを加え、50℃にて48時間加熱還流する。得られた溶液を濾過し、分取された残留物から溶媒を加熱真空下にて除去する。得られた残留物の重量と投入したポリエチレン系樹脂の重量との差を求める。n-ヘプタン抽出量は、この差を投入したポリエチレン系樹脂の量を基準とした重量%である。
The amount of heptane extracted from the polyethylene resin is determined as follows.
Crush the polyethylene resin pellets. About 2 g of the pulverized 200 mesh pass sample is weighed. This is put into a flask, 400 ml of normal heptane is added, and the mixture is heated to reflux at 50 ° C. for 48 hours. The resulting solution is filtered and the solvent is removed from the fractionated residue under heating vacuum. The difference between the weight of the obtained residue and the weight of the added polyethylene resin is determined. The amount of n-heptane extracted is weight% based on the amount of polyethylene resin charged with this difference.
 ポリエチレン系樹脂(B)は、表面層が発泡層の表面に薄く均等に積層されることが望ましいため、JIS K7210‐1999の条件Dに基づき測定されるメルトマスフローレート(MFR)が1~30g/10分であることが好ましい。より均等に積層されるためには、1.5~20g/10分がより好ましく、2~15g/10分が更に好ましい。 Since it is desirable that the polyethylene resin (B) has a surface layer that is thinly and evenly laminated on the surface of the foam layer, the melt mass flow rate (MFR) measured based on the condition D of JIS K7210-1999 is 1 to 30 g / It is preferably 10 minutes. In order to laminate the layers more evenly, the content is more preferably 1.5 to 20 g / 10 minutes, and further preferably 2 to 15 g / 10 minutes.
 表面層には高分子型帯電防止剤が含まれていなくとも良い。但し、被包装物への低分子量成分等の有機物質の移行を抑制するという本発明の所期の目的を阻害しない範囲において、すなわち、表面層に用いられるポリエチレン系樹脂と高分子型帯電防止剤との混合物のn-ヘプタン抽出量が0.5重量%となる範囲において、表面層に高分子型帯電防止剤が配合されていても良い。その配合量は、表面層中に概ね1重量%以下である。これにより、被包装物への高分子型帯電防止剤からの有機物の移行が低く抑えられている。 The surface layer may not contain a polymer antistatic agent. However, in the range that does not hinder the intended purpose of the present invention to suppress the migration of organic substances such as low molecular weight components to the package, that is, the polyethylene resin and polymer antistatic agent used for the surface layer In the range where the amount of n-heptane extracted from the mixture becomes 0.5% by weight, a polymer antistatic agent may be blended in the surface layer. The amount is approximately 1% by weight or less in the surface layer. Thereby, the transfer of the organic substance from the polymer type antistatic agent to the package is suppressed to a low level.
 前記発泡層に用いられるポリエチレン系樹脂(A)としては、前記ポリエチレン系樹脂(B)と同様なものが挙げられる。但し、ポリエチレン系樹脂(A)とポリエチレン系樹脂(B)は異なる樹脂であっても良い。 Examples of the polyethylene resin (A) used for the foam layer include the same as the polyethylene resin (B). However, the polyethylene resin (A) and the polyethylene resin (B) may be different resins.
 さらに、ポリエチレン系樹脂(A)としては、前記したポリエチレン系樹脂の中でも、190℃における溶融張力が20mN~400mNのものが好ましい。低見掛け密度の発泡層を得るのが容易である点から、190℃における溶融張力は20mN以上であることが好ましく、より好ましくは30mN以上であり、さらに好ましくは40mN以上である。また連続気泡率の低い発泡層を得るのが容易である点から、190℃における溶融張力は、400mN以下であることが好ましく、より好ましくは300mN以下であり、さらに好ましくは250mN以下である。 Further, as the polyethylene resin (A), among the above-mentioned polyethylene resins, those having a melt tension at 190 ° C. of 20 mN to 400 mN are preferable. From the viewpoint that it is easy to obtain a foam layer having a low apparent density, the melt tension at 190 ° C. is preferably 20 mN or more, more preferably 30 mN or more, and further preferably 40 mN or more. Further, from the viewpoint of easily obtaining a foamed layer having a low open cell ratio, the melt tension at 190 ° C. is preferably 400 mN or less, more preferably 300 mN or less, and further preferably 250 mN or less.
 前記溶融張力は、例えば、株式会社東洋精機製作所製のキャピログラフ1Dによって測定することができる。具体的には、シリンダー径9.55mm、長さ350mmのシリンダーと、ノズル径2.095mm、長さ8.0mmのオリフィスを用い、シリンダー及びオリフィスの設定温度を190℃とし、試料の必要量を該シリンダー内に入れ、4分間放置してから、ピストン速度を10mm/分として溶融樹脂をオリフィスから紐状に押出して、この紐状物を直径45mmの張力検出用プーリーに掛け、4分で引き取り速度が0m/分から200m/分に達するように一定の増速で引取り速度を増加させながら引取りローラーで紐状物を引取って紐状物が破断した際の直前の張力の極大値を得る。ここで、引取り速度が0m/分から200m/分に達するまでの時間を4分とした理由は、樹脂の熱劣化を抑えるとともに得られる値の再現性を高めるためである。上記操作を異なる試料を使用し、計10回の測定を行い、10回で得られた極大値の最も大きな値から順に3つの値と、極大値の最も小さな値から順に3つの値を除き、残った中間の4つの極大値を相加平均して得られた値を溶融張力(cN)とする。 The melt tension can be measured by, for example, a capillograph 1D manufactured by Toyo Seiki Seisakusho Co., Ltd. Specifically, a cylinder with a cylinder diameter of 9.55 mm and a length of 350 mm and an orifice with a nozzle diameter of 2.095 mm and a length of 8.0 mm were used. Place in the cylinder and let stand for 4 minutes, then push the molten resin out of the orifice into a string with a piston speed of 10 mm / min, put this string on a 45 mm diameter tension detection pulley, and take it off in 4 minutes. While increasing the take-up speed at a constant speed so that the speed reaches from 0 m / min to 200 m / min, the maximum value of the tension immediately before the string-like object breaks when the string-like object is taken up by the take-off roller. obtain. Here, the reason why the time until the take-up speed reaches 0 m / min to 200 m / min is set to 4 minutes is to suppress the thermal deterioration of the resin and increase the reproducibility of the obtained value. Using a different sample for the above operation, measuring a total of 10 times, removing the three values in order from the largest value of the maximum value obtained in 10 times, and the three values in order from the smallest value of the maximum value, The value obtained by arithmetically averaging the remaining four local maximum values is the melt tension (cN).
 但し、上記した方法で溶融張力の測定を行い、引取り速度が200m/分に達しても紐状物が切れない場合には、引取り速度を200m/分の一定速度にして得られる溶融張力(cN)の値を採用する。詳しくは、上記測定と同様にして、溶融樹脂をオリフィスから紐状に押出して、この紐状物を張力検出用プーリーに掛け、4分間で0m/分から200m/分に達するように一定の増速で引取り速度を増加させながら引取りローラーを回転させ、回転速度が200m/分になるまで待つ。回転速度が200m/分に到達してから溶融張力のデータの取り込みを開始し、30秒後にデータの取り込みを終了する。この30秒の間に得られたテンション荷重曲線から得られたテンション最大値(Tmax)とテンション最小値(Tmin)の平均値(Tave)を本発明方法における溶融張力とする。
ここで、上記Tmaxとは、上記テンション荷重曲線において、検出されたピーク(山)値の合計値を検出された個数で除した値であり、上記Tminとは、上記テンション荷重曲線において、検出されたディップ(谷)値の合計値を検出された個数で除した値である。なお、当然のことながら上記測定において溶融樹脂をオリフィスから紐状に押出す際には該紐状物に、できるだけ気泡が入らないようにする。
However, when the melt tension is measured by the method described above and the string-like material does not break even when the take-up speed reaches 200 m / min, the melt tension obtained by setting the take-up speed to a constant speed of 200 m / min. The value of (cN) is adopted. Specifically, in the same manner as in the above measurement, the molten resin is extruded into a string from the orifice, and this string is put on a tension detection pulley, and a constant speed increase is made so that the speed reaches 0 m / min to 200 m / min in 4 minutes. Rotate the take-up roller while increasing the take-up speed, and wait until the rotation speed reaches 200 m / min. When the rotational speed reaches 200 m / min, the data acquisition of the melt tension is started, and the data acquisition is finished after 30 seconds. The average value (Tave) of the tension maximum value (Tmax) and the tension minimum value (Tmin) obtained from the tension load curve obtained during this 30 seconds is taken as the melt tension in the method of the present invention.
Here, the Tmax is a value obtained by dividing the total value of detected peak (peak) values in the tension load curve by the detected number, and the Tmin is detected in the tension load curve. It is a value obtained by dividing the total value of the dip (valley) values by the detected number. As a matter of course, when the molten resin is extruded into a string from the orifice in the above measurement, bubbles are prevented from entering the string as much as possible.
 前記発泡層を構成するポリエチレン系樹脂(A)には、高分子型帯電防止剤が配合される。その配合量は、ポリエチレン系樹脂(A)と高分子型帯電防止剤との合計100重量%に対して3~15重量%である。高分子型帯電防止剤の配合量が多すぎると、低分子量成分が表面層中を透過して被包装物に移行してしまう虞がある。高分子型帯電防止剤の配合量は帯電防止性能が発現される範囲において少ないほど好ましい。発泡層へ高分子型帯電防止剤を配合する場合には、非発泡層に配合する場合よりも、少ない配合量であっても同等の帯電防止効果を得ることができる。その原因としては、発泡層に高分子型帯電防止剤が配合されていると、発泡体が拡幅される際及び引取られる際に高分子型帯電防止剤が引き伸ばされるだけではなく、ダイから押出されて発泡する際にも高分子型帯電防止剤が引き伸ばされ、高分子帯電防止剤がポリエチレン系樹脂中でより複雑なネットワーク構造を形成することが考えられる。かかる観点から、高分子型帯電防止剤の配合量の上限は12重量%が好ましく、10重量%がより好ましい。一方、高分子型帯電防止剤の配合量が少なすぎると、十分な帯電防止性能が得られない虞がある。かかる観点から、高分子型帯電防止剤の配合量の下限は4重量%が好ましい。 The polymer type antistatic agent is blended in the polyethylene resin (A) constituting the foam layer. The blending amount is 3 to 15% by weight with respect to 100% by weight in total of the polyethylene resin (A) and the polymer antistatic agent. If the amount of the polymeric antistatic agent is too large, the low molecular weight component may pass through the surface layer and migrate to the package. The blending amount of the polymer type antistatic agent is preferably as small as possible within the range where the antistatic performance is expressed. In the case where a polymer type antistatic agent is blended in the foamed layer, the same antistatic effect can be obtained even in a smaller blending amount than in the case of blending in the non-foamed layer. The reason for this is that if a polymer type antistatic agent is blended in the foam layer, the polymer type antistatic agent is not only stretched when the foam is widened and taken out, but is also extruded from the die. Even when foaming, the polymer antistatic agent is stretched, and it is considered that the polymer antistatic agent forms a more complicated network structure in the polyethylene resin. From this viewpoint, the upper limit of the amount of the polymeric antistatic agent is preferably 12% by weight, and more preferably 10% by weight. On the other hand, if the amount of the polymeric antistatic agent is too small, there is a possibility that sufficient antistatic performance cannot be obtained. From this viewpoint, the lower limit of the amount of the polymeric antistatic agent is preferably 4% by weight.
 高分子型帯電防止剤としては、具体的には、体積抵抗率が1×10~1×1011Ω・cmの親水性ポリマー(以下、単に親水性ポリマーともいう。)や、親水性ポリマーブロックと疎水性ポリマーブロックとのブロックポリマー、アイオノマーなどが例示できる。親水性ポリマーとしては、ポリエーテル、カチオン性ポリマー、アニオン性ポリマーなどが例示できる。親水性ポリマーブロックとしては上記親水性ポリマーのブロックが例示でき、疎水性ポリマーブロックとしては、ポリオレフィンやポリアミドなどが例示できる。また、親水性ポリマーブロックと疎水性ポリマーブロックとの結合としては、エステル結合、アミド結合、エーテル結合などが例示できる。これらの中でも、優れた帯電防止効果を与えると共に、帯電防止剤を添加することによる物性低下を抑制する効果を得るために、ポリエーテルブロックを有し、疎水性ポリマーブロックとしてポリオレフィンブロックを有するブロック共重合体が好ましい。また、所望の帯電防止効果を得るための高分子型帯電防止剤の配合量が少なくてすむため、有機物の移行量を少なくできるので、表面抵抗率が1×10Ω以下のものが好ましい。 Specific examples of the polymer antistatic agent include a hydrophilic polymer having a volume resistivity of 1 × 10 5 to 1 × 10 11 Ω · cm (hereinafter also simply referred to as a hydrophilic polymer), and a hydrophilic polymer. Examples include block polymers of block and hydrophobic polymer blocks, ionomers, and the like. Examples of the hydrophilic polymer include polyether, cationic polymer, anionic polymer and the like. Examples of the hydrophilic polymer block include the hydrophilic polymer block, and examples of the hydrophobic polymer block include polyolefin and polyamide. Examples of the bond between the hydrophilic polymer block and the hydrophobic polymer block include an ester bond, an amide bond, and an ether bond. Among these, in order to provide an excellent antistatic effect and to suppress the deterioration of physical properties due to the addition of an antistatic agent, a block copolymer having a polyether block and having a polyolefin block as a hydrophobic polymer block. Polymers are preferred. Further, since the amount of the polymer type antistatic agent for obtaining a desired antistatic effect can be reduced, the amount of migration of the organic matter can be reduced, so that the surface resistivity is preferably 1 × 10 7 Ω or less.
 前記表面層の厚みは2~10μmであることを要する。該厚みが2μmより小さい場合には、発泡層に含有される高分子型帯電防止剤由来の低分子量成分の移行を表面層により抑制することが出来なくなる。10μmより大きい場合には、帯電防止剤を含有する発泡層と表面層の表面との距離が大きくなり、表面層表面に生じた電荷を中和することが難しくなる為十分な帯電防止性能を発現しにくくなる。該表面層の厚みの調整は、吐出量、引き取り速度を調整することにより行うことができる。 The thickness of the surface layer is required to be 2 to 10 μm. When the thickness is smaller than 2 μm, the migration of the low molecular weight component derived from the polymer antistatic agent contained in the foam layer cannot be suppressed by the surface layer. If it is larger than 10 μm, the distance between the foam layer containing the antistatic agent and the surface of the surface layer becomes large, and it becomes difficult to neutralize the charge generated on the surface layer surface. It becomes difficult to do. The thickness of the surface layer can be adjusted by adjusting the discharge amount and the take-up speed.
 本発明の発泡シートの厚みは、発泡シートを包装材や間紙として使用した際に、被包装物を梱包する際の取り扱いが容易である点から、10mm以下が好ましく、8mm以下がより好ましく、5mm以下が更に好ましく、2mm以下が特に好ましい。一方、特に緩衝性が要求される用途に多層発泡シートが使用される場合には十分な緩衝性を得るという観点から、厚みは0.05mm以上が好ましく、0.1mm以上がより好ましい。 The thickness of the foamed sheet of the present invention is preferably 10 mm or less, more preferably 8 mm or less from the viewpoint of easy handling when packing an article to be packaged when the foamed sheet is used as a packaging material or an interleaf. 5 mm or less is further preferable, and 2 mm or less is particularly preferable. On the other hand, the thickness is preferably 0.05 mm or more, and more preferably 0.1 mm or more from the viewpoint of obtaining sufficient buffering properties when the multilayer foamed sheet is used particularly for applications requiring buffering properties.
 前記表面層の厚み、発泡シートの厚みの測定方法は以下の通りである。
 まず、発泡シートを幅方向(押出方向に直行する方向)に沿って切断し、切断面を幅方向に10の等部分に分割する。切断面の10の部分の各々の幅方向中央部を測定箇所と定める。10の部分の各々を顕微鏡により撮影し、撮影した各々の画像上で、その測定箇所における表面層、発泡シートの厚みを測定する。得られた10個の測定した表面層厚値の算術平均値を表面層の厚みとし、10個の測定した発泡層厚値の算術平均値を発泡シートの厚みとする。なお、表面層の厚みを測定し易いように、発泡層か表面層のどちらか一方の層を着色することもできる。
 なお、表面層の厚み[μm]は、発泡シートを製造する際に、押出し発泡条件の内、表面層の吐出量X[kg/時]と、得られる発泡シートの幅W[m]、得られる発泡シートの単位時間あたりの長さL[m/時]が判る場合には、表面層を構成するポリエチレン系樹脂の密度ρ[g/cm]を用いて、以下の(1)式にて求めることができる。
 表面層の厚み[μm]=〔1000×X/(L×W×ρ)〕・・・(1)
The method for measuring the thickness of the surface layer and the thickness of the foamed sheet is as follows.
First, a foam sheet is cut | disconnected along the width direction (direction orthogonal to an extrusion direction), and a cut surface is divided | segmented into 10 equal parts in the width direction. The central portion in the width direction of each of the 10 portions of the cut surface is defined as the measurement location. Each of the ten portions is photographed with a microscope, and the thickness of the surface layer and the foamed sheet at the measurement location is measured on each photographed image. The arithmetic average value of the ten measured surface layer thickness values obtained is the thickness of the surface layer, and the arithmetic average value of the ten measured foam layer thickness values is the thickness of the foam sheet. Note that either the foam layer or the surface layer can be colored so that the thickness of the surface layer can be easily measured.
The thickness [μm] of the surface layer is determined by the surface layer discharge amount X [kg / hour] and the width W [m] of the foam sheet obtained when the foamed sheet is manufactured. When the length L [m / hour] per unit time of the foamed sheet to be obtained is known, the density ρ [g / cm 3 ] of the polyethylene resin constituting the surface layer is used to Can be obtained.
Surface layer thickness [μm] = [1000 × X / (L × W × ρ)] (1)
 本発明の発泡シートの見掛け密度は15~300kg/mであることが好ましい。該発泡シートの見掛け密度が上記範囲であると、強度と緩衝性とのバランスに優れたものとなる。かかる観点から該見掛け密度は18kg/m以上がより好ましく、20kg/m以上が更に好ましく、一方、該見掛け密度は、300kg/m未満がより好ましく、250kg/m以下が更に好ましく、200kg/m以下が特に好ましい。 The apparent density of the foamed sheet of the present invention is preferably 15 to 300 kg / m 3 . When the apparent density of the foamed sheet is in the above range, the balance between strength and buffering properties is excellent.該見seat Density From this point of view is more preferably 18 kg / m 3 or more, 20 kg / m 3 or more, and on the other hand,該見seat density is more preferably less than 300 kg / m 3, more preferably 250 kg / m 3 or less, 200 kg / m 3 or less is particularly preferable.
 本発明において、発泡シートの見掛け密度の測定方法は下記の通りである。まず前述した方法により、発泡シートの厚みを測定する。次に坪量を測定するために、発泡シートから(発泡シートの全幅)×(押出方向長さ10cm)×(多層発泡シートの厚み)の試験片を切り出し、試験片の質量[g]を測定する。試験片の面積[m:発泡シートの全幅(m)×0.1m]でその質量を除することで坪量[g/m]が得られる。さらに、求めた坪量[g/m]を発泡シートの厚み[mm]で除し、単位換算することにより、発泡シートの見掛け密度[kg/m]を求めることができる。 In the present invention, the method for measuring the apparent density of the foam sheet is as follows. First, the thickness of the foam sheet is measured by the method described above. Next, in order to measure the basis weight, a test piece of (full width of foam sheet) × (length in extrusion direction 10 cm) × (thickness of multilayer foam sheet) is cut out from the foam sheet, and the mass [g] of the test piece is measured. To do. The basis weight [g / m 2 ] can be obtained by dividing the mass by the area of the test piece [m 2 : full width of foam sheet (m) × 0.1 m]. Furthermore, the apparent density [kg / m 3 ] of the foam sheet can be obtained by dividing the calculated basis weight [g / m 2 ] by the thickness [mm] of the foam sheet and converting the unit.
 本発明の発泡シートにおいて、その独立気泡率は、好ましくは10%以上で、より好ましくは20%以上である。
 ポリエチレン系樹脂発泡シートの独立気泡率:S(%)は、ASTM D2856-70に記載されている手順Cに準拠し、東芝ベックマン株式会社製の空気比較式比重計930型を使用して測定される発泡シートの実容積(独立気泡の容積と樹脂部分の容積との和):Vx(L)から、下記(2)式により算出することにより求めることができる。
In the foam sheet of the present invention, the closed cell ratio is preferably 10% or more, more preferably 20% or more.
The closed cell ratio: S (%) of the polyethylene resin foam sheet is measured using an air comparison type hydrometer 930 type manufactured by Toshiba Beckman Co., Ltd. in accordance with Procedure C described in ASTM D2856-70. The actual volume of the foamed sheet (the sum of the volume of the closed cells and the volume of the resin part): Vx (L) can be obtained by calculation according to the following equation (2).
S(%)=(Vx-W/ρ)×100/(Va-W/ρ)・・・(2)
但し、上記(2)式中の、Va、W、ρは以下の通りである。
Va:測定に使用した発泡シートの見掛け容積(cm
W:試験片における発泡シートの質量(g)
ρ:発泡シートを構成する樹脂の密度(g/cm
S (%) = (Vx−W / ρ) × 100 / (Va−W / ρ) (2)
However, Va, W, and ρ in the above equation (2) are as follows.
Va: Apparent volume of foam sheet used for measurement (cm 3 )
W: Mass of the foam sheet in the test piece (g)
ρ: Density of resin constituting the foam sheet (g / cm 3 )
 本発明の発泡シートは帯電防止性を有する。具体的には、エレクトロニクス機器やその素材の包装材や間紙として使用するために、表面層側の初期帯電圧の半減期が60秒以下であることが好ましく、より好ましくは30秒以下である。前記半減期は、JIS L1094-1988のA法(半減期測定法)に準じて測定される値である。具体的には、発泡シートから切り出した試験片(縦40mm×横40mm×厚み:測定対象発泡シート厚み)を、温度23℃、相対湿度50%の雰囲気下に36時間放置することにより試験片の状態調節を行う。次に、JIS L1094(1988年)のA法に準じて、ターンテーブル回転速度1300rpmとし、(+)10kV又は(-)10kVの条件にて30秒間印加した後、印加を止め、印加を止めてから初期帯電圧が1/2に減衰するまでの時間:半減期(秒)を求める。また、前記初期帯電圧は±2.0kV以内であること好ましく、より好ましくは±1.5kV以内である。 The foamed sheet of the present invention has antistatic properties. Specifically, in order to be used as a packaging material or a slip sheet of an electronic device or its material, the half-life of the initial voltage on the surface layer side is preferably 60 seconds or less, more preferably 30 seconds or less. . The half-life is a value measured according to A method (half-life measurement method) of JIS L1094-1988. Specifically, a test piece cut out from a foam sheet (length 40 mm × width 40 mm × thickness: thickness of foam sheet to be measured) was left in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50% for 36 hours. Adjust the condition. Next, according to method A of JIS L1094 (1988), the turntable rotation speed is 1300 rpm, and after applying for 30 seconds under the condition of (+) 10 kV or (−) 10 kV, the application is stopped and the application is stopped. From the time until the initial charging voltage is attenuated to 1/2, the half-life (second) is obtained. The initial charging voltage is preferably within ± 2.0 kV, more preferably within ± 1.5 kV.
 また、本発明の発泡シートにおいては、さらに高度な帯電防止効果が要求される場合には、表面層側の表面抵抗率が1×1014Ω未満であることが好ましく、1×10~1×1013(Ω)であることがより好ましい。発泡シートの表面抵抗率は、JIS K6271(2001年)に準拠して測定される値である。すなわち、発泡シートから切り出した試験片(縦100mm×横100mm×厚み:発泡シートの厚み)を温度23℃、相対湿度50%の雰囲気下に24時間放置することにより試験片の状態調節を行い、次いで、印加電圧500Vの条件にて、試験片の表面層側に電圧印加を開始して1分経過後の表面抵抗率を測定する。 In the foam sheet of the present invention, when a higher antistatic effect is required, the surface resistivity on the surface layer side is preferably less than 1 × 10 14 Ω, and 1 × 10 8 to 1 More preferably, it is × 10 13 (Ω). The surface resistivity of the foamed sheet is a value measured according to JIS K6271 (2001). That is, the state of the test piece is adjusted by leaving the test piece cut out from the foamed sheet (length 100 mm × width 100 mm × thickness: thickness of the foamed sheet) in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours. Next, under the condition of an applied voltage of 500 V, voltage application is started on the surface layer side of the test piece, and the surface resistivity after 1 minute is measured.
 次に、本発明のポリエチレン系樹脂発泡シートの製造方法の好ましい例について説明する。
 本発明の積層発泡シートは、共押出法により、高分子型帯電防止剤を含むポリエチレン系樹脂発泡層の片面又は両面にポリエチレン系樹脂表面層が積層されることにより製造される。具体的には、発泡層形成用押出機の出口に共押出用ダイが取り付けられ、その共押出用ダイに表面層形成用押出機が連結された装置を用いて、共押出用ダイ内で、発泡層形成用の第1溶融物と表面層形成用の第2溶融物とを合流してから押出発泡することにより、発泡シートが製造される。
Next, the preferable example of the manufacturing method of the polyethylene-type resin foam sheet of this invention is demonstrated.
The laminated foam sheet of the present invention is produced by laminating a polyethylene resin surface layer on one or both sides of a polyethylene resin foam layer containing a polymer type antistatic agent by a coextrusion method. Specifically, a coextrusion die is attached to the outlet of the foam layer forming extruder, and a device in which the surface layer forming extruder is connected to the coextrusion die, in the coextrusion die, A foam sheet is produced by joining the first melt for forming the foam layer and the second melt for forming the surface layer and then performing extrusion foaming.
 まず、前記ポリエチレン系樹脂(A)、高分子型帯電防止剤、及び必要に応じて配合される気泡調整剤等の添加剤を発泡層形成用押出機に供給し、加熱、混練してから物理発泡剤を圧入して、第1溶融物とする。 First, the polyethylene-based resin (A), a polymeric antistatic agent, and additives such as an air-conditioning agent blended as necessary are supplied to a foaming layer forming extruder, heated and kneaded, and then physically added. A foaming agent is press-fitted into a first melt.
 一方、前記ポリエチレン系樹脂(B)を表面層形成用押出機に供給し、加熱、混練して第2溶融物とする。 On the other hand, the polyethylene resin (B) is supplied to a surface layer forming extruder, heated and kneaded to obtain a second melt.
 前記第1溶融物を発泡適正温度に冷却し、第2溶融物を発泡層の適正発泡温度にできる限り近づくように冷却し、両者を共押出ダイに導入し、共押出用ダイ内で、第1溶融物と第2溶融物とを合流させて、第1溶融物の少なくとも片側に第2溶融物を積層させ、共押出を行なって第1溶融物を発泡させながら引取って、発泡層の表面に表面層を形成することにより、発泡シートが得られる。 The first melt is cooled to the proper foaming temperature, the second melt is cooled as close as possible to the proper foaming temperature of the foam layer, and both are introduced into the coextrusion die. The first melt and the second melt are merged, the second melt is laminated on at least one side of the first melt, and co-extrusion is performed to take out the first melt while foaming. A foamed sheet is obtained by forming a surface layer on the surface.
 共押出法により発泡シートを形成する方法には、共押出用フラットダイを用いてシート状に共押出する方法と、共押出用環状ダイを用いて共押出して筒状発泡体を形成し、次いで筒状発泡体を円柱状拡幅装置に沿わせて拡幅しつつ引取りながら切り開いてシート状の発泡シートとする方法等がある。これらの中では、共押出用環状ダイを用いる方法が、コルゲートと呼ばれる波状模様の発生を抑えることや、発泡シートの加熱収縮率を好ましい範囲に制御することができるので、好ましい方法である。 In the method of forming a foam sheet by the coextrusion method, a method of coextrusion into a sheet shape using a flat die for coextrusion, a coextrusion using an annular die for coextrusion to form a cylindrical foam, and then For example, there is a method of cutting a tubular foamed body along a columnar widening device while opening the tubular foamed material to obtain a sheet-like foamed sheet. Among these, a method using an annular die for coextrusion is a preferable method because generation of a wavy pattern called a corrugate can be suppressed and the heat shrinkage rate of the foamed sheet can be controlled within a preferable range.
 なお、前記押出機、共押出環状ダイ、円柱状拡幅装置、筒状発泡体を切開く装置等は、従来押出発泡の分野で用いられてきた公知のものを用いることができる。 In addition, the said extruder, the coextrusion cyclic | annular die | dye, a cylindrical widening apparatus, the apparatus which opens a cylindrical foam, etc. can use the well-known thing conventionally used in the field | area of extrusion foaming.
 前記押出機に圧入する物理発泡剤としては、炭素数2以上7以下の脂肪族炭化水素、炭素数1以上3以下のハロゲン化脂肪族炭化水素、炭素数1以上4以下の脂肪族アルコール、又は炭素数2以上8以下の脂肪族エーテル、二酸化炭素等から選択される1種、又は2種以上で構成されるものが好ましく用いられる。 Examples of the physical foaming agent that is press-fitted into the extruder include aliphatic hydrocarbons having 2 to 7 carbon atoms, halogenated aliphatic hydrocarbons having 1 to 3 carbon atoms, aliphatic alcohols having 1 to 4 carbon atoms, or Those composed of one or more selected from aliphatic ethers having 2 to 8 carbon atoms, carbon dioxide and the like are preferably used.
 前記物理発泡剤は、ポリエチレン系樹脂(A)等の発泡層を構成する樹脂と高分子型帯電防止剤の合計100重量部に対して0.1~50重量部とすることが好ましく、より好ましくは0.5~30重量部である。 The physical foaming agent is preferably 0.1 to 50 parts by weight, more preferably 100 parts by weight in total of the resin constituting the foamed layer such as the polyethylene resin (A) and the polymer antistatic agent. Is 0.5 to 30 parts by weight.
 前記発泡層形成用第1溶融物には、通常、気泡調整剤が添加される。気泡調整剤としては有機系のもの、無機系のもののいずれも使用することができる。無機系気泡調整剤としては、ホウ酸亜鉛、ホウ酸マグネシウム、硼砂等のホウ酸金属塩、塩化ナトリウム、水酸化アルミニウム、タルク、ゼオライト、シリカ、炭酸カルシウム、重炭酸ナトリウム等が挙げられる。また有機系気泡調整剤としては、リン酸-2,2-メチレンビス(4,6-tert-ブチルフェニル)ナトリウム、安息香酸ナトリウム、安息香酸カルシウム、安息香酸アルミニウム、ステアリン酸ナトリウム等が挙げられる。
 またクエン酸と重炭酸ナトリウム、クエン酸のモノアルカリ塩と重炭酸ナトリウム等を組み合わせたもの等も気泡調整剤として用いることができる。これらの気泡調整剤は2種以上を混合して用いることができる。
A bubble regulator is usually added to the first melt for forming the foam layer. As the bubble adjusting agent, either an organic type or an inorganic type can be used. Examples of the inorganic foam regulator include borate metal salts such as zinc borate, magnesium borate, borax, sodium chloride, aluminum hydroxide, talc, zeolite, silica, calcium carbonate, sodium bicarbonate, and the like. Examples of the organic bubble regulator include sodium 2,2-methylenebis (4,6-tert-butylphenyl) phosphate, sodium benzoate, calcium benzoate, aluminum benzoate, and sodium stearate.
A combination of citric acid and sodium bicarbonate, a mono-alkali salt of citric acid and sodium bicarbonate, or the like can also be used as the bubble regulator. These bubble regulators can be used in combination of two or more.
 前記表面層形成用第2溶融物には、揮発性可塑剤を添加することが好ましい。揮発性可塑剤の添加により、前記第2溶融物と第1溶融物とを共押出する際に、第2溶融物の押出温度を発泡層の適正発泡温度に近づけても、該温度での第2溶融物の溶融伸びを著しく向上させ、第2溶融物の伸びを第1溶融物の伸びに追従させることができる。 It is preferable to add a volatile plasticizer to the second melt for forming the surface layer. When the second melt and the first melt are coextruded by adding a volatile plasticizer, even if the extrusion temperature of the second melt is close to the proper foaming temperature of the foam layer, 2 The melt elongation of the melt can be remarkably improved, and the elongation of the second melt can follow the elongation of the first melt.
 前記揮発性可塑剤は、発泡シート製造後に、発泡シートから揮発、消失してしまうものである。該揮発性可塑剤は、第2溶融物中に存在している状態ではポリエチレン系樹脂の溶融粘度を低下させて、共押出に適する樹脂溶融物を形成することが可能となるとともに、押出発泡後には表面層から揮散して、表面層から容易に消失して発泡シートに残留することがなく、移行の原因になる虞が極めて小さいので、好ましい。 The volatile plasticizer volatilizes and disappears from the foam sheet after the foam sheet is manufactured. When the volatile plasticizer is present in the second melt, the melt viscosity of the polyethylene resin can be lowered to form a resin melt suitable for coextrusion, and after extrusion foaming. Is preferred since it volatilizes from the surface layer, does not easily disappear from the surface layer and remains in the foamed sheet, and is very unlikely to cause migration.
 揮発性可塑剤としては、炭素数2以上7以下の飽和炭化水素、炭素数1以上3以下のハロゲン化脂肪族炭化水素、炭素数1以上4以下の脂肪族アルコール、又は炭素数2以上8以下の脂肪族エーテル等から選択される1種、又は2種以上で構成されるものが好ましく用いられる。
 揮発性可塑剤の例に挙げた炭素数2以上7以下の飽和炭化水素としては、例えば、エタン、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、イソヘキサン、シクロヘキサン、ヘプタンが挙げられる。
Examples of the volatile plasticizer include saturated hydrocarbons having 2 to 7 carbon atoms, halogenated aliphatic hydrocarbons having 1 to 3 carbon atoms, aliphatic alcohols having 1 to 4 carbon atoms, or 2 to 8 carbon atoms. Those composed of one kind or two or more kinds selected from aliphatic ethers are preferably used.
Examples of the saturated hydrocarbon having 2 to 7 carbon atoms exemplified in the volatile plasticizer include ethane, propane, normal butane, isobutane, normal pentane, isopentane, isohexane, cyclohexane and heptane.
 上記炭素数1以上3以下のハロゲン化脂肪族炭化水素としては、例えば、塩化メチル、塩化エチル、1,1,1,2-テトラフルオロエタン、1,1-ジフルオロエタンが挙げられる。 Examples of the halogenated aliphatic hydrocarbon having 1 to 3 carbon atoms include methyl chloride, ethyl chloride, 1,1,1,2-tetrafluoroethane, and 1,1-difluoroethane.
 上記炭素数1以上4以下の脂肪族アルコールとしては、例えば、メタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール、イソブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコールが挙げられる。 Examples of the aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, sec-butyl alcohol, and tert-butyl alcohol.
 上記炭素数2以上8以下の脂肪族エーテルとしては、例えば、メチルエーテル、エチルエーテル、プロピルエーテル、イソプロピルエーテル、メチルエチルエーテル、メチルプロピルエーテル、メチルイソプロピルエーテル、メチルブチルエーテル、メチルイソブチルエーテル、メチルアミルエーテル、メチルイソアミルエーテル、エチルプロピルエーテル、エチルイソプロピルエーテル、エチルブチルエーテル、エチルイソブチルエーテル、エチルアミルエーテル、エチルイソアミルエーテル、ビニルエーテル、アリルエーテル、メチルビニルエーテル、メチルアリルエーテル、エチルビニルエーテル、エチルアリルエーテルが挙げられる。 Examples of the aliphatic ether having 2 to 8 carbon atoms include methyl ether, ethyl ether, propyl ether, isopropyl ether, methyl ethyl ether, methyl propyl ether, methyl isopropyl ether, methyl butyl ether, methyl isobutyl ether, and methyl amyl ether. Methyl isoamyl ether, ethyl propyl ether, ethyl isopropyl ether, ethyl butyl ether, ethyl isobutyl ether, ethyl amyl ether, ethyl isoamyl ether, vinyl ether, allyl ether, methyl vinyl ether, methyl allyl ether, ethyl vinyl ether, ethyl allyl ether.
 揮発性可塑剤の沸点は、表面層から揮発し易いことから、好ましくは80℃以下であり、更に好ましくは60℃以下である。揮発性可塑剤の沸点がこの範囲であれば、共押出しした後の熱や、後の室温下でのガス透過により、揮発性可塑剤は表面層から自然に揮散して自然に除去される。該沸点の下限値は、概ね-50℃である。 The boiling point of the volatile plasticizer is preferably 80 ° C. or less, more preferably 60 ° C. or less because it easily volatilizes from the surface layer. When the boiling point of the volatile plasticizer is within this range, the volatile plasticizer is volatilized naturally from the surface layer by the heat after co-extrusion and the subsequent gas permeation at room temperature. The lower limit of the boiling point is approximately −50 ° C.
 前記揮発性可塑剤の添加量は、ポリエチレン系樹脂(B)100重量部に対して0.1~100重量部であることが好ましく、より好ましくは1~50重量部である。 The addition amount of the volatile plasticizer is preferably 0.1 to 100 parts by weight, more preferably 1 to 50 parts by weight with respect to 100 parts by weight of the polyethylene resin (B).
 本発明のポリエチレン系樹脂発泡シートは、帯電防止性を有すると共に、被包装物への有機物の移行量が小さく抑えられたものなので、液晶パネル用ガラス板等の間紙などエレクトロニクス機器やその素材の包装材として好適に使用できるものである。 Since the polyethylene-based resin foam sheet of the present invention has antistatic properties, and the amount of organic matter transferred to the package is suppressed to a small level, it can be used for electronic devices such as slip sheets for glass panels for liquid crystal panels and the materials thereof. It can be suitably used as a packaging material.
 以下、実施例、比較例により、本発明を具体的に説明する。
 実施例で使用したポリエチレン系樹脂、及び気泡調整剤、並びに評価方法を以下に記載する。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
The polyethylene resin used in the examples, the bubble regulator, and the evaluation method are described below.
(1)ポリエチレン系樹脂
(i)ダウ・ケミカル日本株式会社製「低密度ポリエチレン:商品名NUC8321」(略称LDPE1、密度922kg/m、MFR1.9g/10分、融点111℃、ヘプタン抽出量1.15重量%)
(ii)東ソー株式会社製「低密度ポリエチレン:商品名10S54A」(略称LDPE2、密度925kg/m、MFR1.8g/10分、融点111℃、ヘプタン抽出量0.15重量%)
(iii)東ソー株式会社製「高密度ポリエチレン:商品名ニポロンハード2500」(密度961kg/m、MFR8.0g/10分、融点134℃、ヘプタン抽出量0.2重量%)
(iv)上記LDPE1を50℃のn-ヘプタン中に48時間浸漬し、低分子量成分を抽出したもの(略称LDPE3、密度922kg/m、MFR1.7g/10分、融点111℃、ヘプタン抽出量0重量%)
(1) Polyethylene resin (i) “Low density polyethylene: trade name NUC8321” (abbreviation: LDPE1, density: 922 kg / m 3 , MFR: 1.9 g / 10 min, melting point: 111 ° C., heptane extraction amount: 1 .15% by weight)
(Ii) “Low density polyethylene: Trade name 10S54A” manufactured by Tosoh Corporation (abbreviation LDPE2, density 925 kg / m 3 , MFR 1.8 g / 10 min, melting point 111 ° C., heptane extract 0.15% by weight)
(Iii) “High Density Polyethylene: Trade Name Nipolon Hard 2500” manufactured by Tosoh Corporation (density 961 kg / m 3 , MFR 8.0 g / 10 min, melting point 134 ° C., heptane extract 0.2% by weight)
(Iv) The above LDPE1 was immersed in n-heptane at 50 ° C. for 48 hours to extract low molecular weight components (abbreviation LDPE3, density 922 kg / m 3 , MFR 1.7 g / 10 min, melting point 111 ° C., heptane extract amount 0% by weight)
 ポリエチレン系樹脂のヘプタン抽出量は前述の方法により求めた。なお、表1中の混合樹脂のヘプタン抽出量は、押出機にて200℃で混練した混合樹脂のn-ヘプタン抽出量である。 The amount of heptane extracted from the polyethylene resin was determined by the method described above. The heptane extraction amount of the mixed resin in Table 1 is the n-heptane extraction amount of the mixed resin kneaded at 200 ° C. with an extruder.
(2)高分子型帯電防止剤
(i)三洋化成工業(株)製「ポリエーテル-ポリオレフィンブロック共重合体:ペレクトロンHS(融点134℃、表面抵抗率2.0×10Ω)(略称PAA1)
(ii)高分子型帯電防止剤VL300
三洋化成工業(株)製「ポリエーテル-ポリオレフィンブロック共重合体:商品名:ぺレスタットVL300」(融点133℃、表面抵抗率1.2×10Ω)(略称PAA2)
(2) Polymer type antistatic agent (i) “Polyether-polyolefin block copolymer: Peletron HS (melting point: 134 ° C., surface resistivity: 2.0 × 10 6 Ω) manufactured by Sanyo Chemical Industries, Ltd. (abbreviated as PAA1) )
(Ii) Polymer type antistatic agent VL300
“Polyether-polyolefin block copolymer: trade name: Perestat VL300” manufactured by Sanyo Chemical Industries, Ltd. (melting point 133 ° C., surface resistivity 1.2 × 10 8 Ω) (abbreviation PAA2)
(3)気泡調整剤
 松村産業株式会社製「タルク:商品名ハイフィラー#12」
(3) Bubble regulator “Talc: Product name High Filler # 12” manufactured by Matsumura Sangyo Co., Ltd.
[装置]
 発泡層形成用の押出機として直径90mmの第一押出機と直径120mmの第二押出機2台の押出機が直列に接続されたタンデム押出機を使用し、表面層形成用の押出機として直径50mmの第三押出機を使用し、第二押出機の出口と第三押出機の出口が共押出用環状ダイに接続された装置を用いた。共押出用環状ダイは、ダイ中間部で後述の表面層形成用第2溶融物が発泡層形成用第1溶融物の両面に合流積層される構造を有し、ダイ出口のリップの直径は94mmである。なお、実施例5においては、ダイ出口のリップの直径が70mmのものを用いた。
[apparatus]
A tandem extruder in which a first extruder having a diameter of 90 mm and a second extruder having a diameter of 120 mm are connected in series is used as an extruder for forming a foam layer, and the diameter is used as an extruder for forming a surface layer. A 50 mm third extruder was used, and an apparatus in which the outlet of the second extruder and the outlet of the third extruder were connected to an annular die for coextrusion was used. The annular die for coextrusion has a structure in which a second melt for forming a surface layer, which will be described later, is merged and laminated on both surfaces of the first melt for forming a foam layer at the middle part of the die, and the diameter of the lip at the die exit is 94 mm. It is. In Example 5, a die exit lip having a diameter of 70 mm was used.
実施例1
 表1に示すポリエチレン系樹脂(A)に対し表1に示す高分子型帯電防止剤を表1に示す量を配合し、これにタルク(松村産業株式会社製 商品名「ハイフィラー#12」を1重量部配合した原料を、第一押出機の原料投入口に供給し、加熱混練し、約200℃に調整された溶融樹脂混合物とした。該溶融樹脂混合物に物理発泡剤として表1に示す量の混合ブタン(ノルマルブタン/イソブタン=70重量%/30重量%)を圧入し、次いで第一押出機の下流側に連結された第二押出機に供給して、表2に示す樹脂温度のポリエチレン系樹脂発泡層形成用第1溶融物を得た。
Example 1
The polymer type antistatic agent shown in Table 1 is blended with the polyethylene resin (A) shown in Table 1 in the amount shown in Table 1, and talc (trade name “High Filler # 12” manufactured by Matsumura Sangyo Co., Ltd.) is added thereto. The raw material blended by 1 part by weight was supplied to the raw material inlet of the first extruder, heated and kneaded to obtain a molten resin mixture adjusted to about 200 ° C. Table 1 shows the molten resin mixture as a physical foaming agent. An amount of mixed butane (normal butane / isobutane = 70% by weight / 30% by weight) was injected and then fed to a second extruder connected downstream of the first extruder to obtain the resin temperature shown in Table 2. A first melt for forming a polyethylene resin foam layer was obtained.
 同時に、表1に示すポリエチレン系樹脂(B)を第三押出機の原料投入口に供給し、加熱溶融して約200℃に調整された溶融樹脂混合物とし、該溶融樹脂混合物に揮発性可塑剤として表2に示す量の混合ブタン(ノルマルブタン/イソブタン=70重量%/30重量%)を圧入し、その後樹脂温度を表1に示す樹脂温度に調整してポリエチレン系樹脂表面層形成用第2溶融物を得た。 At the same time, the polyethylene resin (B) shown in Table 1 is supplied to the raw material charging port of the third extruder, heated and melted to obtain a molten resin mixture adjusted to about 200 ° C., and a volatile plasticizer is added to the molten resin mixture. As shown in Table 2, mixed butane (normal butane / isobutane = 70% by weight / 30% by weight) in the amount shown in Table 2 is injected, and then the resin temperature is adjusted to the resin temperature shown in Table 1 to form a second polyethylene-based resin surface layer forming layer. A melt was obtained.
 前記第1及び第2溶融物のそれぞれを表1に示す吐出量で共押出用環状ダイ中へ導入し、第2溶融物を第1溶融物の両面に合流積層させて環状ダイから共押出し、発泡層の内外面に表面層が積層された筒状多層発泡体を形成した。押出された筒状積層発泡体を直径350mmの筒状拡幅装置にて拡幅しながら表3に示した総坪量となるよう引き取り速度を調整しポリエチレン系樹脂多層発泡シートを得た。 Each of the first and second melts is introduced into a co-extrusion annular die at a discharge amount shown in Table 1, the second melt is merged and laminated on both sides of the first melt, and is co-extruded from the annular die. A cylindrical multilayer foam having surface layers laminated on the inner and outer surfaces of the foam layer was formed. While the extruded cylindrical laminated foam was widened with a cylindrical widening apparatus having a diameter of 350 mm, the take-up speed was adjusted to obtain the total basis weight shown in Table 3 to obtain a polyethylene-based resin multilayer foamed sheet.
実施例2
 発泡層形成用及び表面層形成用のポリエチレン系樹脂として表1に示すものを用いた以外には、実施例1と同様にしてポリエチレン系樹脂多層発泡シートを得た。
Example 2
A polyethylene-based resin multilayer foamed sheet was obtained in the same manner as in Example 1 except that those shown in Table 1 were used as the polyethylene-based resin for forming the foam layer and the surface layer.
実施例3
 発泡層形成用及び表面層形成用のポリエチレン系樹脂として、表1に示すものを用いた以外には、実施例1と同様にしてポリエチレン系樹脂多層発泡シートを得た。
Example 3
A polyethylene-based resin multilayer foamed sheet was obtained in the same manner as in Example 1 except that those shown in Table 1 were used as the polyethylene-based resin for forming the foam layer and the surface layer.
実施例4
 表4に示す表面層の厚みとなるように吐出量を表1に示す通りに変更した以外は実施例1と同様にしてポリエチレン系樹脂多層発泡シートを得た。
Example 4
A polyethylene-based resin multilayer foamed sheet was obtained in the same manner as in Example 1 except that the discharge amount was changed as shown in Table 1 so that the thickness of the surface layer shown in Table 4 was obtained.
実施例5
 リップ直径70mmの共押出用環状ダイを用い、ポリエチレン系樹脂(A)として表1に示す原料を用い、発泡剤として混合ブタンを表1に示す量圧入し、表1に示す樹脂温度に調整し、ポリエチレン系樹脂(B)として表1に示す原料を用い、揮発性可塑剤として混合ブタンを表1に示す量圧入し、表1に示す樹脂温度に調整し、発泡層形成用溶融樹脂と表面層形成用溶融樹脂を表1に示す吐出量で共押出して筒状積層発泡体を形成し、該筒状積層発泡体を直径212mmの筒状冷却装置に沿わせて表3に示した坪量となるよう引き取り速度を調整した以外、実施例1と同様にポリエチレン系樹脂多層発泡シートを得た。
Example 5
Using a co-extrusion annular die with a lip diameter of 70 mm, using the raw materials shown in Table 1 as the polyethylene resin (A), press-fitting mixed butane as the foaming agent in the amount shown in Table 1, and adjusting the resin temperature shown in Table 1 The raw material shown in Table 1 is used as the polyethylene resin (B), mixed butane is injected as a volatile plasticizer in the amount shown in Table 1, the resin temperature shown in Table 1 is adjusted, and the foamed layer forming molten resin and surface The molten resin for layer formation is coextruded at the discharge amount shown in Table 1 to form a cylindrical laminated foam, and the basis weight shown in Table 3 along the cylindrical cooling device having a diameter of 212 mm. A polyethylene-based resin multilayer foamed sheet was obtained in the same manner as in Example 1 except that the take-up speed was adjusted so that
比較例1
 表面層を積層しないこと以外、実施例1と同様にして、高分子型帯電防止剤を含む発泡層のみからなるポリエチレン系樹脂単層発泡シートを得た。
 得られた単層発泡シートは、帯電防止性に優れるものの、表面層を有さないため、被包装物への高分子型帯電防止剤由来の低分子量成分の移行量が大きいものであった。
Comparative Example 1
A polyethylene-based resin single-layer foamed sheet consisting only of a foamed layer containing a polymer antistatic agent was obtained in the same manner as in Example 1 except that the surface layer was not laminated.
Although the obtained single-layer foamed sheet was excellent in antistatic properties, it did not have a surface layer, so that the amount of the low molecular weight component derived from the polymeric antistatic agent transferred to the package was large.
比較例2
 表面層厚みを表4に示す厚みとし、表4に示す総坪量となるように発泡層形成用溶融樹脂及び表面層形成用溶融樹脂の吐出量と引き取り速度を調整した以外は実施例1と同様にしてポリエチレン系樹脂多層発泡シートを得た。
 得られた多層発泡シートは、表面層の厚みが薄すぎるため、被包装物への高分子型帯電防止剤由来の低分子量成分の移行量が大きいものであった。
Comparative Example 2
Example 1 except that the surface layer thickness was set to the thickness shown in Table 4, and the discharge amount and take-up speed of the foamed layer forming molten resin and the surface layer forming molten resin were adjusted to the total basis weight shown in Table 4. Similarly, a polyethylene resin multilayer foamed sheet was obtained.
In the obtained multilayer foamed sheet, the thickness of the surface layer was too thin, so that the amount of the low molecular weight component derived from the polymer antistatic agent transferred to the package was large.
比較例3
 表2に示す量の高分子型帯電防止剤を配合した以外は実施例1と同様にしてポリエチレン系樹脂多層発泡シートを得た。
 得られた多層発泡シートは、帯電防止剤の配合量が少なすぎるため、帯電防止性に劣るものであった。
Comparative Example 3
A polyethylene resin multilayer foamed sheet was obtained in the same manner as in Example 1 except that the polymer type antistatic agent in the amount shown in Table 2 was blended.
The obtained multilayer foamed sheet was inferior in antistatic property because the blending amount of the antistatic agent was too small.
比較例4
 発泡層形成用樹脂に高分子型帯電防止剤を表2に示す量配合した以外は実施例1と同様にしてポリエチレン系樹脂多層発泡シートを得た。
 得られた多層発泡シートは、帯電防止剤の配合量が多すぎるため、被包装物への低分子量成分の移行量が大きいものであった。
Comparative Example 4
A polyethylene-based resin multilayer foamed sheet was obtained in the same manner as in Example 1 except that the polymer type antistatic agent was added to the foam layer forming resin in the amount shown in Table 2.
Since the obtained multilayer foamed sheet contained too much antistatic agent, the amount of the low molecular weight component transferred to the package was large.
比較例5
 ポリエチレン系樹脂(A)及びポリエチレン系樹脂(B)として、表2に示すヘプタン抽出量の多い樹脂を用いた以外は実施例1と同様にしてポリエチレン系樹脂多層発泡シートを得た。
 得られた多層発泡シートは、被包装物へのポリエチレン系樹脂由来の低分子量成分の移行量が大きいものであった。
Comparative Example 5
As the polyethylene resin (A) and the polyethylene resin (B), a polyethylene resin multilayer foamed sheet was obtained in the same manner as in Example 1 except that the resin having a large amount of heptane extraction shown in Table 2 was used.
The obtained multilayer foamed sheet had a large transfer amount of the low molecular weight component derived from the polyethylene resin to the package.
比較例6
 ポリエチレン系樹脂(A)として、表2に示すヘプタン抽出量の多い樹脂を用いた以外は実施例1と同様にしてポリエチレン系樹脂多層発泡シートを得た。
 得られた多層発泡シートは、被包装物へのポリエチレン系樹脂由来の低分子量成分の移行量が大きいものであった。
Comparative Example 6
As the polyethylene resin (A), a polyethylene resin multilayer foamed sheet was obtained in the same manner as in Example 1 except that the resin having a large amount of heptane extraction shown in Table 2 was used.
The obtained multilayer foamed sheet had a large transfer amount of the low molecular weight component derived from the polyethylene resin to the package.
比較例7
 発泡層にポリエチレン系樹脂(A)として表2に示すヘプタン抽出量の多い樹脂を用いると共に、高分子型帯電防止剤を配合せず、且つ表面層にポリエチレン系樹脂(B)として表2に示す樹脂を用いると共に表2に示す種類、配合量の高分子型帯電防止剤を配合した以外は実施例1と同様にしてポリエチレン系樹脂多層発泡シートを得た。
 得られた多層発泡シートは帯電防止性に優れるものの、被包装物への低分子量成分の移行量が大きいものであった。
Comparative Example 7
The foam layer uses a resin with a large amount of heptane extraction shown in Table 2 as the polyethylene resin (A), does not contain a polymer type antistatic agent, and the surface layer shows a polyethylene resin (B) in Table 2. A polyethylene-based resin multilayer foamed sheet was obtained in the same manner as in Example 1 except that a resin and a polymer type antistatic agent of the type and blending amount shown in Table 2 were blended.
The obtained multilayer foamed sheet was excellent in antistatic properties, but had a large amount of low molecular weight components transferred to the package.
比較例8
 発泡層には高分子型帯電防止剤を配合せず、且つ表面層に表2に示す種類、配合量の高分子型帯電防止剤を配合した以外は実施例1と同様にしてポリエチレン系樹脂多層発泡シートを得た。
 得られた多層発泡シートは帯電防止性に優れるものの、被包装物への高分子型帯電防止剤由来の低分子量成分の移行量が大きいものであった。
Comparative Example 8
Polyethylene resin multilayer as in Example 1, except that the foamed layer was not blended with a polymer antistatic agent and the surface layer was blended with a polymer antistatic agent of the type and blending amount shown in Table 2. A foam sheet was obtained.
Although the obtained multilayer foamed sheet was excellent in antistatic properties, the amount of the low molecular weight component derived from the polymer antistatic agent transferred to the package was large.
 実施例の製造条件を表1に、比較例の製造条件を表2に示す。また、実施例で得られた発泡シートの物性を表3に、比較例で得られた発泡シートの物性を表4に示す。 Table 1 shows the manufacturing conditions of the examples, and Table 2 shows the manufacturing conditions of the comparative examples. Table 3 shows the physical properties of the foam sheets obtained in the examples, and Table 4 shows the physical properties of the foam sheets obtained in the comparative examples.
Figure JPOXMLDOC01-appb-T000001
  
Figure JPOXMLDOC01-appb-T000001
  
Figure JPOXMLDOC01-appb-T000002
   
 
Figure JPOXMLDOC01-appb-T000002
   
 
Figure JPOXMLDOC01-appb-T000003
   
Figure JPOXMLDOC01-appb-T000003
   
Figure JPOXMLDOC01-appb-T000004
  
Figure JPOXMLDOC01-appb-T000004
  
 表3、表4中の各種物性測定、評価は次のように行った。
(1)見掛け密度、坪量、全体厚み、表面層の厚みは前記のように測定した。
Various physical property measurements and evaluations in Tables 3 and 4 were performed as follows.
(1) Apparent density, basis weight, overall thickness, and thickness of the surface layer were measured as described above.
(3)初期帯電圧及び半減期
 初期帯電圧の測定は、発泡シートより45mm×45mmのサイズ(厚みは発泡シートの厚み)に無作為に5枚切り出し、これらを試験片として、23℃、50%RH環境下にて24時間状態調節した後、スタティックオネストメーター(シシド静電気株式会社製 TIPE S-5109)を使用して23℃、50%RH環境下にてJIS L1094(1988年)A法に従って、ターンテーブル回転速度1300rpmとし、試験片の表面に(-)10kVの電圧を30秒間印加し、印加を停止した際の初期帯電圧を測定した。続いて、初期帯電圧の1/2となるまでの時間(半減期)を測定した。これらの測定を各試験片の両面に対して行ない(計10回)、各測定値を平均して初期帯電圧及び半減期とした。
(3) Initial charging voltage and half-life The initial charging voltage was measured by randomly cutting 5 sheets of a 45 mm × 45 mm size (thickness is the thickness of the foamed sheet) from the foamed sheet. After conditioning for 24 hours in a% RH environment, using a static Honest Meter (TIPE S-5109, manufactured by Sisid Electric Co., Ltd.) according to JIS L1094 (1988) A method at 23 ° C. and 50% RH. The turntable rotation speed was 1300 rpm, a voltage of (−) 10 kV was applied to the surface of the test piece for 30 seconds, and the initial voltage when the application was stopped was measured. Subsequently, the time (half-life) until it became 1/2 of the initial charging voltage was measured. These measurements were performed on both sides of each test piece (10 times in total), and each measured value was averaged to obtain an initial charging voltage and a half-life.
(4)表面抵抗率
 発泡シートから無作為に3片切り出した試験片(縦100mm×横100mm×厚み:発泡シート厚み)をサンプルとした。JIS K6271(2001年)に準じて印加電圧500Vで印加してから1分後の表面抵抗値を採用した。なお、測定は試験片の両面に対して行ない(計6回)、得られた測定値の平均値から表面抵抗率を求めた。測定装置はタケダ理研工業株式会社製「TR8601」を用いた。また、高分子型帯電防止剤の表面抵抗率は、帯電防止剤を200℃にて0.1mmにヒートプレスしたものを試験片として用いて測定された値である。
(4) Surface resistivity A test piece (length 100 mm × width 100 mm × thickness: thickness of foam sheet) obtained by randomly cutting out three pieces from the foam sheet was used as a sample. In accordance with JIS K6271 (2001), a surface resistance value 1 minute after application at an applied voltage of 500 V was adopted. The measurement was performed on both sides of the test piece (6 times in total), and the surface resistivity was obtained from the average value of the obtained measurement values. As a measuring apparatus, “TR8601” manufactured by Takeda Riken Kogyo Co., Ltd. was used. The surface resistivity of the polymer antistatic agent is a value measured using a test piece obtained by heat-pressing the antistatic agent at 200 ° C. to 0.1 mm.
(5)移行性評価
 あらかじめ、松浪ガラス工業株式会社製プレクリンスライドガラスの接触角をJIS-R3257-1999に記載の静滴法に基づき、協和界面科学株式会社製接触角計DM500Rを用いて評価した。該スライドガラスに評価を行うサンプル(実施例・比較例で得られた発泡シート)を3.8g/cmの圧力で密着させつつ60℃下で24時間静置した。その後、サンプルをガラスから除去し、サンプルが接触していた面について再度接触角を同様に測定した。試験前後の接触角の差が10°以下であるものを○(良)、10°を超えるものを×(不良)として評価した。
(5) Migration evaluation In advance, the contact angle of Preclin slide glass manufactured by Matsunami Glass Industry Co., Ltd. was evaluated using a contact angle meter DM500R manufactured by Kyowa Interface Science Co., Ltd. based on the sessile drop method described in JIS-R3257-1999. did. The sample to be evaluated on the slide glass (foamed sheet obtained in Examples / Comparative Examples) was allowed to stand at 60 ° C. for 24 hours while closely contacting with a pressure of 3.8 g / cm 2 . Thereafter, the sample was removed from the glass, and the contact angle was again measured in the same manner for the surface on which the sample was in contact. A case where the difference between the contact angles before and after the test was 10 ° or less was evaluated as ○ (good), and a case where the contact angle exceeded 10 ° was evaluated as x (defective).

Claims (4)

  1.  発泡層と発泡層の少なくとも片面に積層された表面層とを有し、発泡層形成用第1溶融物と表面層形成用第2溶融物とを共押出することにより得られたポリエチレン系樹脂多層発泡シートであって、ここで
     前記第1溶融物はポリエチレン系樹脂(A)、高分子型帯電防止剤及び物理発泡剤から構成され、
     前記第2溶融物はポリエチレン系樹脂(B)から構成され、
     ポリエチレン系樹脂(A)及びポリエチレン系樹脂(B)の各々は、50℃でのn‐ヘプタン抽出量が0.5重量%以下であり、
     該発泡層中に該高分子型帯電防止剤は、ポリエチレン系樹脂(A)と高分子型帯電防止剤との合計100重量%に対して3~15重量%存在し、
     該表面層の厚みが2~10μmである、
     ポリエチレン系樹脂多層発泡シート。
    A polyethylene-based resin multilayer having a foam layer and a surface layer laminated on at least one side of the foam layer, and obtained by coextrusion of the first melt for forming the foam layer and the second melt for forming the surface layer A foam sheet, wherein the first melt is composed of a polyethylene resin (A), a polymer antistatic agent and a physical foaming agent,
    The second melt is composed of a polyethylene resin (B),
    Each of the polyethylene resin (A) and the polyethylene resin (B) has an n-heptane extraction amount at 50 ° C. of 0.5% by weight or less,
    The polymer antistatic agent is present in the foamed layer in an amount of 3 to 15% by weight based on 100% by weight of the total of the polyethylene resin (A) and the polymer antistatic agent.
    The surface layer has a thickness of 2 to 10 μm.
    Polyethylene resin multilayer foam sheet.
  2.  前記表面層の表面抵抗率が1×1014Ω未満である、請求項1のポリエチレン系樹脂多層発泡シート。 The polyethylene-based resin multilayer foamed sheet according to claim 1, wherein the surface layer has a surface resistivity of less than 1 × 10 14 Ω.
  3.  前記ポリエチレン系多層発泡シートの見掛け密度が15~300kg/mである、請求項1又は2のポリエチレン系樹脂多層発泡シート。 The polyethylene resin multilayer foamed sheet according to claim 1 or 2, wherein the apparent density of the polyethylene multilayer foamed sheet is 15 to 300 kg / m 3 .
  4.  請求項1~3のいずれかに記載のポリエチレン系樹脂多層発泡シートからなるガラス板用間紙。
      
    A glass sheet interleaf comprising the polyethylene resin multilayer foamed sheet according to any one of claims 1 to 3.
PCT/JP2014/061010 2013-06-07 2014-04-18 Foamed multilayer polyethylene resin sheet, and glass-panel slip sheet WO2014196278A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157034592A KR102136443B1 (en) 2013-06-07 2014-04-18 Foamed multilayer polyethylene resin sheet, and interleaf for glass plates
CN201480032545.9A CN105263702B (en) 2013-06-07 2014-04-18 Polythylene resin multilayer foamed sheet and glass plate lining paper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-121289 2013-06-07
JP2013121289A JP6266901B2 (en) 2013-06-07 2013-06-07 Polyethylene resin multilayer foam sheet

Publications (1)

Publication Number Publication Date
WO2014196278A1 true WO2014196278A1 (en) 2014-12-11

Family

ID=52007932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061010 WO2014196278A1 (en) 2013-06-07 2014-04-18 Foamed multilayer polyethylene resin sheet, and glass-panel slip sheet

Country Status (4)

Country Link
JP (1) JP6266901B2 (en)
KR (1) KR102136443B1 (en)
CN (1) CN105263702B (en)
WO (1) WO2014196278A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160110115A (en) * 2015-03-13 2016-09-21 세키스이가세이힝코교가부시키가이샤 Polyethylene based resin foamed sheet

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6302731B2 (en) * 2014-03-31 2018-03-28 株式会社ジェイエスピー Polyethylene resin foam sheet
JP6832260B2 (en) * 2017-08-31 2021-02-24 株式会社ジェイエスピー Interleaving paper
JP7255664B2 (en) * 2017-12-20 2023-04-11 日本ポリエチレン株式会社 Foam appearance performance evaluation method and manufacturing control method for foam laminate
JP6905946B2 (en) * 2018-01-25 2021-07-21 積水化成品工業株式会社 Sheet material and manufacturing method of sheet material
CN108760834B (en) * 2018-06-05 2020-12-25 中国科学技术大学 Method for detecting volatile plasticizer through semiconductor sensor
JP6655155B2 (en) * 2018-11-12 2020-02-26 積水化成品工業株式会社 Polyethylene resin foam sheet
JP7090534B2 (en) * 2018-12-05 2022-06-24 株式会社ジェイエスピー Polystyrene resin multilayer foam sheet and paper using it
JP7122273B2 (en) * 2019-02-27 2022-08-19 株式会社ジェイエスピー multilayer foam sheet
JP7178941B2 (en) * 2019-03-28 2022-11-28 株式会社ジェイエスピー Polyethylene resin multilayer foam sheet
JP7271407B2 (en) * 2019-11-28 2023-05-11 株式会社ジェイエスピー Polyolefin resin multi-layer foamed sheet and interleaving paper for glass plate
EP4163103A1 (en) * 2020-06-05 2023-04-12 JSP Corporation Polyethylene-based resin multilayer foam sheet, interleaf for glass sheets, and method for manufacturing polyethylene-based resin multilayer foam sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214625A (en) * 2009-03-13 2010-09-30 Sekisui Plastics Co Ltd Conductive foamed sheet and conductive foamed resin container
JP2010221703A (en) * 2009-02-25 2010-10-07 Asahi Kasei Chemicals Corp Polyethylene lamination film
JP2011006567A (en) * 2009-06-25 2011-01-13 Jsp Corp Polyolefin-based resin-foamed sheet
JP2011011478A (en) * 2009-07-02 2011-01-20 Asahi Kasei Chemicals Corp Polyethylene based resin sheet
JP2013086471A (en) * 2011-10-21 2013-05-13 Sekisui Plastics Co Ltd Cushion material
JP2013209577A (en) * 2012-03-30 2013-10-10 Sekisui Plastics Co Ltd Polyethylene resin foam sheet and laminated foam sheet
JP2013208864A (en) * 2012-03-30 2013-10-10 Sekisui Plastics Co Ltd Cushion material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919371B2 (en) * 2005-04-22 2012-04-18 株式会社ジェイエスピー Co-extrusion laminated foam and molded product thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221703A (en) * 2009-02-25 2010-10-07 Asahi Kasei Chemicals Corp Polyethylene lamination film
JP2010214625A (en) * 2009-03-13 2010-09-30 Sekisui Plastics Co Ltd Conductive foamed sheet and conductive foamed resin container
JP2011006567A (en) * 2009-06-25 2011-01-13 Jsp Corp Polyolefin-based resin-foamed sheet
JP2011011478A (en) * 2009-07-02 2011-01-20 Asahi Kasei Chemicals Corp Polyethylene based resin sheet
JP2013086471A (en) * 2011-10-21 2013-05-13 Sekisui Plastics Co Ltd Cushion material
JP2013209577A (en) * 2012-03-30 2013-10-10 Sekisui Plastics Co Ltd Polyethylene resin foam sheet and laminated foam sheet
JP2013208864A (en) * 2012-03-30 2013-10-10 Sekisui Plastics Co Ltd Cushion material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160110115A (en) * 2015-03-13 2016-09-21 세키스이가세이힝코교가부시키가이샤 Polyethylene based resin foamed sheet
KR102477346B1 (en) 2015-03-13 2022-12-13 세키스이가세이힝코교가부시키가이샤 Polyethylene based resin foamed sheet

Also Published As

Publication number Publication date
KR20160014641A (en) 2016-02-11
CN105263702B (en) 2017-05-31
JP6266901B2 (en) 2018-01-24
JP2014237770A (en) 2014-12-18
CN105263702A (en) 2016-01-20
KR102136443B1 (en) 2020-07-21

Similar Documents

Publication Publication Date Title
JP6266901B2 (en) Polyethylene resin multilayer foam sheet
TWI494218B (en) Multi-layered polyethylene resin foamed sheet
JP5557309B2 (en) Polyolefin resin foam sheet
US9701098B2 (en) Polyethylene-based resin foam sheet
KR101521410B1 (en) Polyethylene resin extrusion-foamed sheet, and interleaving paper for glass plates
JP6832260B2 (en) Interleaving paper
KR102056950B1 (en) Multi-layer polyolefin resin foam sheet
JP6302731B2 (en) Polyethylene resin foam sheet
JP2020090026A (en) Polystyrene resin multilayer foam sheet and interleaving paper using the same
CN111516341B (en) Method for producing laminated foam sheet and extrusion laminated foam sheet
EP3756879B1 (en) Antistatic laminated foam sheet and process for producing same
JP7122273B2 (en) multilayer foam sheet
JP7256434B2 (en) Polyethylene-based resin multilayer foamed sheet and method for producing the same
WO2022044772A1 (en) Polyethylene resin multilayer foam sheet, interleaving paper for glass plates, and method for manufacturing polyethylene resin multilayer foam sheet
JP7227851B2 (en) Polyethylene-based resin laminated extruded foam sheet
KR20230021019A (en) Manufacturing method of polyethylene-based resin multilayer foam sheet, slip sheet for glass plate, and polyethylene-based resin multilayer foam sheet
JP2024000635A (en) Polyethylene-based resin multilayer foam sheet and method for manufacturing the same
JP2022001411A (en) Polyethylene-based resin multilayer extrusion expanded sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480032545.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157034592

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807395

Country of ref document: EP

Kind code of ref document: A1