WO2018012273A1 - 波長変換部材の製造方法及び波長変換部材群 - Google Patents

波長変換部材の製造方法及び波長変換部材群 Download PDF

Info

Publication number
WO2018012273A1
WO2018012273A1 PCT/JP2017/023474 JP2017023474W WO2018012273A1 WO 2018012273 A1 WO2018012273 A1 WO 2018012273A1 JP 2017023474 W JP2017023474 W JP 2017023474W WO 2018012273 A1 WO2018012273 A1 WO 2018012273A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
conversion member
chromaticity
base material
plate
Prior art date
Application number
PCT/JP2017/023474
Other languages
English (en)
French (fr)
Inventor
寛之 清水
浅野 秀樹
隆 村田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2018012273A1 publication Critical patent/WO2018012273A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a method for manufacturing a wavelength conversion member and a wavelength conversion member group for converting the wavelength of light emitted from a light emitting diode (LED: Light Emitting Diode) or a laser diode (LD: Laser Diode) to another wavelength.
  • LED Light Emitting Diode
  • LD Laser Diode
  • next-generation light sources that replace fluorescent lamps and incandescent lamps.
  • a light-emitting device that combines an LED that emits blue light and a wavelength conversion member that absorbs part of the light from the LED and converts it into yellow light is disclosed.
  • This light emitting device emits white light that is a combined light of blue light emitted from the LED and yellow light emitted from the wavelength conversion member.
  • Patent Document 1 proposes a wavelength conversion member in which phosphor powder is dispersed in a glass matrix as an example of a wavelength conversion member.
  • a wavelength conversion member such as Patent Document 1 is manufactured by processing a glass base material in which phosphor powder is dispersed in a glass matrix into a predetermined thickness.
  • color variation chromaticity variation
  • An object of the present invention is to provide a method for manufacturing a wavelength conversion member and a wavelength conversion member group that make it possible to accurately obtain a wavelength conversion member having a desired chromaticity.
  • the method for producing a wavelength conversion member according to the present invention is a method for producing a wavelength conversion member containing phosphor particles, and a step of obtaining a correlation between chromaticity and thickness in a plate-like base material containing phosphor particles; Determining a target thickness corresponding to the target chromaticity of the obtained wavelength conversion member based on the correlation between the chromaticity and the thickness, and polishing the plate-like base material to the target thickness. It is a feature.
  • the plate-like base material is polished, and the chromaticity and thickness are measured by measuring the chromaticity and thickness of the polished plate-like base material. Seeking a relationship.
  • the plate-like base material is polished in a state where the chromaticity is higher than the target chromaticity, and the chromaticity and thickness of the polished plate-like base material are measured.
  • the correlation between the chromaticity and the thickness is obtained.
  • the plate-like base material is further polished to the target thickness.
  • the plate-like base material is polished by mirror polishing.
  • the plate-shaped base material includes a glass matrix and phosphor particles arranged in the glass matrix.
  • the plate-shaped base material has a first main surface and a second main surface facing each other, and the first main surface is The phosphor particles increase toward the second main surface.
  • the first main surface is polished after the second main surface is polished.
  • the first main surface and the second main surface are polished simultaneously.
  • a plurality of the plate-shaped base materials are cut out from the same base material.
  • a plurality of the plate-shaped base materials may be cut out from the base material of the same lot.
  • the chromaticity variation of the manufactured plurality of wavelength conversion members is within ⁇ 0.01.
  • the wavelength conversion member group according to the present invention is a wavelength conversion member group composed of a plurality of wavelength conversion members, and the chromaticity variation of the plurality of wavelength conversion members is within ⁇ 0.01.
  • the wavelength conversion member group according to the present invention is preferably composed of 10 or more wavelength conversion members.
  • the present invention it is possible to provide a method for manufacturing a wavelength conversion member that makes it possible to accurately obtain a wavelength conversion member having a desired chromaticity.
  • FIG. 1 is a schematic cross-sectional view showing a wavelength conversion member manufactured by a method for manufacturing a wavelength conversion member according to an embodiment of the present invention.
  • FIG. 2 is a graph showing an example of the correlation between chromaticity and thickness in the method for manufacturing a wavelength conversion member according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a plate-like base material used in the method for manufacturing a wavelength conversion member according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a modification of the plate-like base material used in the method for manufacturing a wavelength conversion member according to an embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a wavelength conversion member manufactured by a method for manufacturing a wavelength conversion member according to an embodiment of the present invention.
  • the wavelength conversion member 1 is made of phosphor glass including, for example, a glass matrix 2 and phosphor particles 3.
  • the phosphor particles 3 are arranged in the glass matrix 2. More specifically, the phosphor particles 3 are dispersed in the glass matrix 2.
  • the wavelength conversion member 1 has, for example, a rectangular plate shape.
  • the glass matrix 2 is not particularly limited as long as it can be used as a dispersion medium for the phosphor particles 3 such as inorganic phosphors.
  • borosilicate glass SiO 2 30 to 85%, Al 2 O 3 0 to 30%, B 2 O 3 0 to 50%, Li 2 O + Na 2 O + K 2 O 0 to 10% by mass%, and And MgO + CaO + SrO + BaO containing 0 to 50%.
  • the tin phosphate glass include those containing, in mol%, SnO 30 to 90% and P 2 O 5 1 to 70%.
  • the tellurite-based glass includes, in mol%, TeO 2 50% or more, ZnO 0 to 45%, RO (R is at least one selected from Ca, Sr and Ba) 0 to 50%, and La 2 O. 3 + Gd 2 O 3 + Y 2 O 3 containing 0 to 50%.
  • the softening point of the glass matrix 2 is preferably 250 ° C. to 1000 ° C., more preferably 300 ° C. to 950 ° C., and further preferably in the range of 500 ° C. to 900 ° C. If the softening point of the glass matrix 2 is too low, the mechanical strength and chemical durability of the wavelength conversion member 1 may decrease. Further, since the heat resistance of the glass matrix 2 itself is low, the glass matrix 2 itself may be softened and deformed by heat generated from the phosphor particles 3. On the other hand, if the softening point of the glass matrix 2 is too high, the phosphor particles 3 may be deteriorated and the light emission intensity of the wavelength conversion member 1 may be reduced when a firing step is included during production.
  • the softening point of the glass matrix 2 is preferably 500 ° C. or higher, 600 ° C. or higher, 700 ° C. or higher, particularly 800 ° C. or higher. It is preferable that it is 850 degreeC or more.
  • the glass constituting such a glass matrix 2 include borosilicate glass.
  • the softening point of the glass matrix 2 is preferably 550 ° C. or less, 530 ° C. or less, 500 ° C. or less, 480 ° C. or less, particularly 460 ° C. or less. Is preferred.
  • the glass constituting such a glass matrix 2 include tin phosphate glass, bismuthate glass, and tellurite glass.
  • the phosphor particles 3 are not particularly limited as long as they emit fluorescence when incident excitation light is incident.
  • Specific examples of the phosphor particles 3 include, for example, oxide phosphors, nitride phosphors, oxynitride phosphors, chloride phosphors, acid chloride phosphors, sulfide phosphors, oxysulfide phosphors, Examples thereof include one or more selected from a halide phosphor, a chalcogenide phosphor, an aluminate phosphor, a halophosphate phosphor, and a garnet compound phosphor.
  • blue light is used as the excitation light, for example, a phosphor that emits green light, yellow light, or red light as fluorescence can be used.
  • the average particle diameter of the phosphor particles 3 is preferably 1 ⁇ m to 50 ⁇ m, and more preferably 5 ⁇ m to 25 ⁇ m. If the average particle size of the phosphor particles 3 is too small, the emission intensity may be reduced. On the other hand, if the average particle diameter of the phosphor particles 3 is too large, the emission color may be non-uniform.
  • the content of the phosphor particles 3 in the wavelength conversion member 1 is preferably 1% by volume or more, 1.5% by volume or more, particularly preferably 2% by volume or more, preferably 70% by volume or less, 50% by volume. % Or less, and particularly preferably 30% by volume or less. If the content of the phosphor particles 3 is too small, it is necessary to increase the thickness of the wavelength conversion member 1 in order to obtain a desired luminescent color, and as a result, the internal scattering of the wavelength conversion member 1 increases, so that the light The extraction efficiency may be reduced. On the other hand, if the content of the phosphor particles 3 is too large, it is necessary to reduce the thickness of the wavelength conversion member 1 in order to obtain a desired emission color, so that the mechanical strength of the wavelength conversion member 1 may be reduced. .
  • the thickness of the wavelength conversion member 1 is preferably 0.01 mm or more, 0.03 mm or more, 0.05 mm or more, 0.075 mm or more, particularly preferably 0.1 mm or more, preferably 1 mm or less, 0.5 mm or less. 0.35 mm or less, 0.3 mm or less, and particularly preferably 0.25 mm or less. If the wavelength conversion member 1 is too thick, light scattering and absorption in the wavelength conversion member 1 become too large, and the fluorescence emission efficiency may be lowered. If the wavelength conversion member 1 is too thin, it may be difficult to obtain sufficient light emission intensity. Moreover, the mechanical strength of the wavelength conversion member 1 may become insufficient.
  • the wavelength conversion member 1 may be made of ceramics such as YAG ceramics, or may be made of phosphor particles dispersed in a resin other than those made of phosphor glass.
  • First step for example, a plate-like base material containing phosphor particles is polished, the chromaticity and thickness of the polished plate-like base material are measured, and based on the measured chromaticity and thickness of the plate-like base material Then, the correlation between the chromaticity and thickness of the plate-like base material is obtained. Specifically, by measuring the chromaticity at each thickness by changing the thickness of the plate-like base material by polishing, and plotting the chromaticity at each thickness, for example, the chromaticity as shown in the graph of FIG. Correlation with thickness can be obtained. Note that the number of plots for creating the graph may be two, but is preferably three or more from the viewpoint of obtaining the correlation between chromaticity and thickness with higher accuracy.
  • the chromaticity of the plate-like base material is determined by irradiating excitation light from the light source to be used from one side main surface of the plate-like base material and using the chromaticity meter to emit light emitted from the other side main surface of the plate-like base material. It can be obtained by measuring.
  • the polishing method for changing the thickness of the plate-shaped base material is not particularly limited, and can be performed by lapping or mirror polishing.
  • Lapping has the advantage that the polishing rate is faster than mirror polishing.
  • mirror polishing can improve the accuracy of the polished surface more than lapping.
  • a polishing method that provides a surface state (surface roughness) equivalent to the finished surface of the final product.
  • the correlation between the chromaticity and the thickness in the first step is such that the plate-like base material for obtaining the wavelength conversion member 1 is polished in a state where the chromaticity is higher than the target chromaticity, and the polished plate-like base material It is preferable to obtain the correlation between the thickness and the chromaticity by measuring the chromaticity and thickness. If it does in this way, the wavelength conversion member 1 which has target chromaticity can be obtained by further grind
  • Second step In the second step, based on the correlation between the chromaticity and thickness obtained in the first step, a target thickness corresponding to the target chromaticity of the obtained wavelength conversion member is determined, and the plate-like base material is moved to the target thickness. Grind. Thereby, the wavelength conversion member 1 is obtained.
  • the polishing method for polishing the plate-like base material to the target thickness is not particularly limited, and can be performed by lapping or mirror polishing. However, it is preferable to polish by lapping to a thickness slightly larger than the target thickness corresponding to the target chromaticity, and further polish to the target thickness corresponding to the target chromaticity by mirror polishing. In this case, the wavelength conversion member 1 can be obtained more easily, and the wavelength conversion member 1 can be obtained more accurately.
  • the target thickness corresponding to the target chromaticity of the obtained wavelength conversion member 1 is determined based on the correlation between the chromaticity and the thickness obtained in advance, and the target thickness is determined. Polish the plate-like base material. For this reason, in the manufacturing method of the present embodiment, it is difficult for color variations (chromaticity variations) of emission colors between lots to occur. Therefore, in the manufacturing method of this embodiment, the wavelength conversion member 1 having a desired chromaticity can be obtained with high accuracy.
  • wavelength conversion member 1 when a plurality of plate-like members are cut out from the same base material, and each of the plate-like base materials is polished to manufacture the wavelength conversion member 1, a plurality of manufactured (for example, arbitrary 10) wavelength conversion members (wavelength conversion members)
  • the chromaticity variation of the member group is preferably within ⁇ 0.01.
  • a plate-shaped base material 11 made of a phosphor glass including a glass matrix 12 and phosphor particles 13 arranged in the glass matrix 12.
  • the phosphor particles 13 are dispersed in the glass matrix 12.
  • the glass matrix 12 and the phosphor particles 13 may be the same as the glass matrix 2 and the phosphor particles 3 described in the column of the wavelength conversion member 1 described above.
  • the planar shape of the plate-like base material 11 is preferably rectangular, for example, like the wavelength conversion member 1.
  • the plate-like base material 11 made of phosphor glass can be produced using a slurry containing glass particles that become the glass matrix 12, phosphor particles 13, and organic components such as a binder resin and a solvent.
  • the slurry can be formed by applying a slurry on a resin film such as polyethylene terephthalate by a doctor blade method or the like, and heating and drying to produce a green sheet and firing the green sheet.
  • the slurry can be formed by applying the slurry on a substrate to form a film, and drying and baking the obtained film.
  • the plate-like base material 11 made of phosphor glass can also be produced by firing a green compact of a mixed powder containing glass particles serving as the glass matrix 12 and phosphor particles 13.
  • the firing temperature is preferably within the softening point of glass particles ⁇ 150 ° C., and more preferably within the softening point of glass particles ⁇ 100 ° C. If the firing temperature is too low, the glass particles may not soften and flow, and a dense sintered body may not be obtained. On the other hand, if the firing temperature is too high, the phosphor particles 13 are eluted in the glass and the emission intensity is lowered, or the phosphor components are diffused in the glass and the glass is colored to reduce the emission intensity. There is. Moreover, it is preferable to perform baking in a reduced pressure atmosphere.
  • the atmosphere during firing is preferably less than 1.013 ⁇ 10 5 Pa, more preferably 1000 Pa or less, and even more preferably 400 Pa or less.
  • the amount of bubbles remaining in the plate-like base material 11 can be reduced.
  • the scattering factor in the obtained wavelength conversion member can be reduced, and the luminous efficiency can be improved.
  • the plate-like base material 11 may be made of ceramics such as YAG ceramics or the like in which phosphor particles are dispersed in a resin other than those made of phosphor glass.
  • the phosphor particles 13 are uniformly dispersed in the glass matrix 12 from the first main surface 14 toward the second main surface 15. Yes.
  • the wavelength conversion member 1 having a desired chromaticity can be obtained with higher accuracy.
  • the phosphor particles 23 in the glass matrix 22 are directed from the first main surface 24 toward the second main surface 25 as in the plate-like base material 21 shown as a modification in FIG. You may distribute so that it may increase. Even in such a case, the correlation between the thickness and chromaticity when the first main surface 24 is polished and the correlation between the thickness and chromaticity when the second main surface 25 is polished are obtained. By setting the polishing amount with respect to the target chromaticity, the wavelength conversion member 1 can be obtained by polishing the plate-like base material 21 to the target thickness.
  • the chromaticity of the plate-like base material 21 it is preferable to select a surface to be polished according to the chromaticity of the plate-like base material 21. Specifically, when the chromaticity of the plate-like base material 21 is close to the target chromaticity, it is preferable to polish the first main surface 24 where the concentration of the phosphor particles 23 is low. In this way, since the chromaticity can be finely adjusted, the wavelength conversion member 1 having the target chromaticity can be obtained with higher accuracy. On the other hand, when the chromaticity of the plate-like base material 21 is away from the target chromaticity, it is preferable to polish the second main surface 25 having a high concentration of the phosphor particles 23.
  • polishing starts from the second main surface 25 where the concentration of the phosphor particles 23 is high, and when the chromaticity of the plate-like base material 21 approaches the target chromaticity, the concentration of the phosphor particles 23 is low.
  • the surface 24 may be polished.
  • the first main surface 24 and the second main surface 25 may be polished simultaneously. In this way, the wavelength conversion member 1 having the target chromaticity can be manufactured with higher accuracy and more efficiency.
  • the thickness of the plate-shaped base materials 11 and 21 is preferably 0.01 mm or more, 0.03 mm or more, 0.05 mm or more, 0.075 mm or more, particularly preferably 0.1 mm or more, preferably 1 mm or less, It is preferably 0.5 mm or less, 0.35 mm or less, 0.3 mm or less, and particularly preferably 0.25 mm or less.
  • the wavelength conversion member 1 can be obtained more easily.
  • YAG phosphor powder was mixed with glass powder (average particle diameter D 50 : 2 ⁇ m) having each composition shown in Table 1 to obtain a mixed powder.
  • the content of the YAG phosphor powder was 8.3% by volume in the mixed powder.
  • the mixed powder was pressure-molded with a mold to prepare a preform of 14 mm ⁇ 14 mm ⁇ 40 mm.
  • a preform was produced by firing the preform at the temperature shown in Table 1.
  • Ten plate-shaped base materials of 12 mm ⁇ 12 mm ⁇ 0.3 mm were cut out from the base material.
  • the chromaticity was determined as follows. A wavelength conversion member is installed under a light source with an excitation wavelength of 450 nm, and light emitted from the lower surface of the wavelength conversion member is taken into the integrating sphere, and then guided to a spectroscope calibrated by a standard light source, and the light energy distribution spectrum was measured. Next, the above spectrum was integrated from CIE 1931 2-deg, x (_), y (_), z (_), etc. color functions to obtain tristimulus values XYZ.
  • chromaticity x X / (X + Y + Z) was calculated. Based on the obtained correlation, the plate-like base material was polished to a thickness corresponding to the target chromaticity. As a result, ten wavelength conversion members having a thickness of about 0.2 mm were obtained. Chromaticity was measured for each obtained wavelength conversion member, and chromaticity variation was calculated. The results are shown in Table 1.

Abstract

所望とする色度の波長変換部材を精度良く得ることを可能とする、波長変換部材の製造方法を提供する。 蛍光体粒子3を含む波長変換部材1の製造方法であって、蛍光体粒子を含む板状母材における色度と厚みとの相関関係を求める工程と、色度と厚みとの相関関係をもとに、得られる波長変換部材1の目標色度に対応する目標厚みを定め、該目標厚みまで板状母材を研磨する工程と、を備えることを特徴としている。

Description

波長変換部材の製造方法及び波長変換部材群
 本発明は、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)等の発する光の波長を別の波長に変換する波長変換部材の製造方法及び波長変換部材群に関する。
 近年、蛍光ランプや白熱灯に変わる次世代の光源として、LEDやLDを用いた発光デバイス等に対する注目が高まってきている。そのような次世代光源の一例として、青色光を出射するLEDと、LEDからの光の一部を吸収して黄色光に変換する波長変換部材とを組み合わせた発光デバイスが開示されている。この発光デバイスは、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。特許文献1には、波長変換部材の一例として、ガラスマトリックス中に蛍光体粉末を分散させた波長変換部材が提案されている。
特開2003-258308号公報
 特許文献1のような波長変換部材は、例えばガラスマトリックス中に蛍光体粉末が分散されてなるガラス母材を、所定の厚みに加工することにより作製されている。しかしながら、このような方法で得られた波長変換部材においては、ロット間における発光色の色ばらつき(色度のばらつき)が生じることがあった。そのため、所望とする色度の波長変換部材を精度良く得ることができない場合があった。
 本発明の目的は、所望とする色度の波長変換部材を精度良く得ることを可能とする、波長変換部材の製造方法及び波長変換部材群を提供することにある。
 本発明に係る波長変換部材の製造方法は、蛍光体粒子を含む波長変換部材の製造方法であって、蛍光体粒子を含む板状母材における色度と厚みとの相関関係を求める工程と、前記色度と厚みとの相関関係をもとに、得られる波長変換部材の目標色度に対応する目標厚みを定め、該目標厚みまで前記板状母材を研磨する工程と、を備えることを特徴としている。
 本発明に係る波長変換部材の製造方法では、好ましくは、前記板状母材を研磨し、該研磨した板状母材の色度及び厚みを測定することにより、前記色度と厚みとの相関関係を求める。
 本発明に係る波長変換部材の製造方法では、好ましくは、前記目標色度より色度が高い状態で前記板状母材を研磨し、該研磨した板状母材の色度及び厚みを測定することにより、前記色度と厚みとの相関関係を求める。
 本発明に係る波長変換部材の製造方法では、好ましくは、前記色度と厚みとの相関関係を求めた後、前記目標厚みまで前記板状母材をさらに研磨する。
 本発明に係る波長変換部材の製造方法では、好ましくは、前記色度と厚みとの相関関係を求める工程において、鏡面研磨により前記板状母材を研磨する。
 本発明に係る波長変換部材の製造方法では、好ましくは、前記板状母材が、ガラスマトリックスと、前記ガラスマトリックス中に配された蛍光体粒子とを含む。
 本発明に係る波長変換部材の製造方法では、好ましくは、前記板状母材が互いに対向し合っている第1の主面及び第2の主面を有し、前記第1の主面から前記第2の主面に向かって前記蛍光体粒子が多くなっている。
 本発明に係る波長変換部材の製造方法では、好ましくは、前記第2の主面を研磨した後、前記第1の主面を研磨する。
 本発明に係る波長変換部材の製造方法では、好ましくは、前記第1の主面及び前記第2の主面を同時に研磨する。
 本発明に係る波長変換部材の製造方法では、好ましくは、同じ母材から複数枚の前記板状母材を切り出す。同じロットの母材から複数枚の前記板状母材を切り出してもよい。
 本発明に係る波長変換部材の製造方法では、好ましくは、製造された複数の波長変換部材の色度ばらつきが±0.01以内である。
 本発明に係る波長変換部材群は、複数の波長変換部材から構成される波長変換部材群であって、前記複数の波長変換部材の色度ばらつきが±0.01以内である。
 本発明に係る波長変換部材群は、好ましくは、10枚以上の波長変換部材から構成される。
 本発明によれば、所望とする色度の波長変換部材を精度良く得ることを可能とする、波長変換部材の製造方法を提供することができる。
図1は、本発明の一実施形態に係る波長変換部材の製造方法で製造される波長変換部材を示す模式的断面図である。 図2は、本発明の一実施形態に係る波長変換部材の製造方法において、色度と厚みとの相関関係の一例を示すグラフである。 図3は、本発明の一実施形態に係る波長変換部材の製造方法で用いられる板状母材を示す模式的断面図である。 図4は、本発明の一実施形態に係る波長変換部材の製造方法で用いられる板状母材の変形例を示す模式的断面図である。
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。
 (波長変換部材)
 図1は、本発明の一実施形態に係る波長変換部材の製造方法で製造される波長変換部材を示す模式的断面図である。図1に示すように、波長変換部材1は、例えばガラスマトリックス2と、蛍光体粒子3とを含む、蛍光体ガラスからなる。蛍光体粒子3は、ガラスマトリックス2中に配されている。より具体的に、蛍光体粒子3は、ガラスマトリックス2中に分散されている。波長変換部材1は例えば矩形の板状である。
 ガラスマトリックス2は、無機蛍光体等の蛍光体粒子3の分散媒として用いることができるものであれば特に限定されない。例えば、ホウ珪酸塩系ガラス、リン酸塩系ガラス、スズリン酸塩系ガラス、ビスマス酸塩系ガラス、テルライト系ガラスなどを用いることができる。ホウ珪酸塩系ガラスとしては、質量%で、SiO 30~85%、Al 0~30%、B 0~50%、LiO+NaO+KO 0~10%、及び、MgO+CaO+SrO+BaO 0~50%を含有するものが挙げられる。スズリン酸塩系ガラスとしては、モル%で、SnO 30~90%、P 1~70%を含有するものが挙げられる。テルライト系ガラスとしては、モル%で、TeO 50%以上、ZnO 0~45%、RO(Rは、Ca、Sr及びBaから選択される少なくとも1種)0~50%、及び、La+Gd+Y 0~50%を含有するものが挙げられる。
 ガラスマトリックス2の軟化点は、250℃~1000℃であることが好ましく、300℃~950℃であることがより好ましく、500℃~900℃の範囲内であることがさらに好ましい。ガラスマトリックス2の軟化点が低すぎると、波長変換部材1の機械的強度や化学的耐久性が低下する場合がある。また、ガラスマトリックス2自体の耐熱性が低いため、蛍光体粒子3から発生する熱により軟化変形するおそれがある。一方、ガラスマトリックス2の軟化点が高すぎると、製造時に焼成工程が含まれる場合、蛍光体粒子3が劣化して、波長変換部材1の発光強度が低下する場合がある。なお、波長変換部材1の化学的安定性及び機械的強度をより一層高める観点からは、ガラスマトリックス2の軟化点が、好ましくは500℃以上、600℃以上、700℃以上、800℃以上、特に850℃以上であることが好ましい。そのようなガラスマトリックス2を構成するガラスとしては、例えばホウ珪酸塩系ガラスが挙げられる。ただし、ガラスマトリックス2の軟化点が高くなると、焼成温度も高くなり、結果として製造コストが高くなる傾向がある。よって、波長変換部材1をより一層安価に製造する観点からは、ガラスマトリックス2の軟化点が、好ましくは550℃以下、530℃以下、500℃以下、480℃以下、特に460℃以下であることが好ましい。そのようなガラスマトリックス2を構成するガラスとしては、スズリン酸塩系ガラス、ビスマス酸塩系ガラス、テルライト系ガラスが挙げられる。
 蛍光体粒子3は、励起光の入射により蛍光を出射するものであれば、特に限定されるものではない。蛍光体粒子3の具体例としては、例えば、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体及びガーネット系化合物蛍光体から選ばれた1種以上等が挙げられる。励起光として青色光を用いる場合、例えば、緑色光、黄色光または赤色光を蛍光として出射する蛍光体を用いることができる。
 蛍光体粒子3の平均粒子径は、1μm~50μmであることが好ましく、5μm~25μmであることがより好ましい。蛍光体粒子3の平均粒子径が小さすぎると、発光強度が低下する場合がある。一方、蛍光体粒子3の平均粒子径が大きすぎると、発光色が不均一になる場合がある。
 波長変換部材1中での蛍光体粒子3の含有量は、好ましくは1体積%以上、1.5体積%以上、特に2体積%以上であることが好ましく、好ましくは70体積%以下、50体積%以下、特に30体積%以下であることが好ましい。蛍光体粒子3の含有量が少なすぎると、所望の発光色を得るために波長変換部材1の厚みを厚くする必要があり、その結果、波長変換部材1の内部散乱が増加することで、光取り出し効率が低下する場合がある。一方、蛍光体粒子3の含有量が多すぎると、所望の発光色を得るために波長変換部材1の厚みを薄くする必要があるため、波長変換部材1の機械的強度が低下する場合がある。
 波長変換部材1の厚みは、好ましくは0.01mm以上、0.03mm以上、0.05mm以上、0.075mm以上、特に0.1mm以上であることが好ましく、好ましくは1mm以下、0.5mm以下、0.35mm以下、0.3mm以下、特に0.25mm以下であることが好ましい。波長変換部材1の厚みが厚すぎると、波長変換部材1における光の散乱や吸収が大きくなりすぎ、蛍光の出射効率が低くなってしまう場合がある。波長変換部材1の厚みが薄すぎると、十分な発光強度が得られにくくなる場合がある。また、波長変換部材1の機械的強度が不十分になる場合がある。
 なお、波長変換部材1は蛍光体ガラスからなるもの以外にも、YAGセラミックス等のセラミックスからなるものや、樹脂中に蛍光体粒子が分散したものであってもよい。
 以下、波長変換部材1の製造方法の一例について説明する。
 (波長変換部材の製造方法)
 波長変換部材1の製造方法では、まず、蛍光体粒子を含む板状母材における色度と厚みとの相関関係を求める(第1工程)。次に、求めた色度と厚みとの相関関係をもとに、得られる波長変換部材の目標色度に対応する目標厚みを定め、該目標厚みまで板状母材を研磨し、それによって波長変換部材1を得る(第2工程)。
 以下、第1工程及び第2工程について、さらに詳細に説明する。
 第1工程;
 第1工程では、例えば蛍光体粒子を含む板状母材を研磨し、該研磨した板状母材の色度及び厚みを測定し、測定した板状母材の色度及び厚みをもとに、板状母材における色度と厚みとの相関関係を求める。具体的には、研磨により板状母材の厚みを変化させて各厚みにおける色度を測定し、各厚みにおける色度をプロットすることにより、例えば図2のグラフに示されるような色度と厚みとの相関関係を求めることができる。なお、グラフを作成するためのプロット数は2点でもよいが、色度と厚みとの相関関係をより一層精度良く得る観点から3点以上であることが好ましい。
 板状母材の色度は、使用する光源からの励起光を板状母材の一方側主面から照射し、板状母材の他方側主面から出射された光を、色度計で測定することにより得ることができる。
 板状母材の厚みを変化させる際の研磨方法としては、特に限定されず、ラップ研磨や、鏡面研磨により行うことができる。ラップ研磨は、鏡面研磨より研磨速度が速いという利点がある。一方、鏡面研磨は、ラップ研磨より研磨面精度を高めることが可能である。色度と厚みとの相関関係をより一層精度良く得る観点からは、最終製品の仕上げ面と同等の表面状態(表面粗さ)となる研磨方法を採用することが好ましい。例えば、最終製品の仕上げを鏡面研磨により行う場合は、板状母材の厚みを変化させる際の研磨方法も鏡面研磨を採用することが好ましい。
 また、第1工程における色度と厚みとの相関関係は、波長変換部材1を得るための板状母材を、目標色度より色度が高い状態で研磨し、該研磨した板状母材の色度及び厚みを測定することにより、厚みと色度との相関関係を得ることが好ましい。このようにすれば、後の第2工程で、同じ板状母材をさらに研磨することにより、目標色度を有する波長変換部材1を得ることができる。もっとも、波長変換部材1を得るための板状母材とは別の板状母材を用いることにより、色度と厚みとの相関関係を求めてもよい。この際、相関関係を求めるための板状母材と、波長変換部材1を得るための板状母材とは、同じ母材から切り出されたものであることが望ましい。
 第2工程;
 第2工程では、第1工程で求めた色度と厚みとの相関関係をもとに、得られる波長変換部材の目標色度に対応する目標厚みを定め、該目標厚みまで板状母材を研磨する。それによって、波長変換部材1を得る。
 目標厚みまで板状母材を研磨する際の研磨方法としても、特に限定されず、ラップ研磨や、鏡面研磨により行うことができる。もっとも、目標色度に対応する目標厚みよりも少し厚いところまでラップ研磨により研磨し、さらに鏡面研磨により目標色度に対応する目標厚みまで研磨することが好ましい。この場合、より一層容易に波長変換部材1を得ることができ、しかもより一層精度よく波長変換部材1を得ることができる。
 上記のように、本実施形態の製造方法では、予め求めた色度と厚みとの相関関係をもとに、得られる波長変換部材1の目標色度に対応する目標厚みを定め、該目標厚みまで板状母材を研磨する。そのため、本実施形態の製造方法では、ロット間における発光色の色ばらつき(色度のばらつき)が生じ難い。よって、本実施形態の製造方法では、所望とする色度の波長変換部材1を精度良く得ることができる。例えば、同じ母材から複数の板状部材を切り出し、各板状母材を研磨して波長変換部材1を製造した場合、製造された複数(例えば任意の10枚)の波長変換部材(波長変換部材群)の色度ばらつきが±0.01以内であることが好ましい。
 なお、板状母材としては、例えば、図3に示すように、ガラスマトリックス12と、該ガラスマトリックス12中に配された蛍光体粒子13とを含む、蛍光体ガラスからなる板状母材11を用いることができる。より具体的に、本実施形態の板状母材11では、蛍光体粒子13が、ガラスマトリックス12中に分散されている。なお、ガラスマトリックス12及び蛍光体粒子13は、上述の波長変換部材1の欄で説明したガラスマトリックス2及び蛍光体粒子3と、それぞれ同じものを使用することができる。板状母材11の平面形状は、波長変換部材1と同様、例えば矩形であることが好ましい。
 蛍光体ガラスからなる板状母材11は、ガラスマトリックス12となるガラス粒子と、蛍光体粒子13と、バインダー樹脂や溶剤等の有機成分とを含むスラリーを用いて作製することができる。例えば、上記スラリーを、ポリエチレンテレフタレート等の樹脂フィルム上にドクターブレード法等により塗布し、加熱乾燥することにより、グリーンシートを作製し、このグリーンシートを焼成することによって形成することができる。あるいは、上記スラリーを、基材上に塗布して膜を形成し、得られた膜を乾燥・焼成することによっても形成することができる。また、蛍光体ガラスからなる板状母材11は、ガラスマトリックス12となるガラス粒子と、蛍光体粒子13とを含有する混合粉末の圧粉体を焼成することによっても作製することができる。
 上記の各製造方法において、焼成温度は、ガラス粒子の軟化点±150℃以内であることが好ましく、ガラス粒子の軟化点±100℃以内であることがより好ましい。焼成温度が低すぎると、ガラス粒子が軟化流動せず、緻密な焼結体が得られない場合がある。一方、焼成温度が高すぎると、蛍光体粒子13がガラス中に溶出して発光強度が低下したり、蛍光体成分がガラス中に拡散してガラスが着色して発光強度が低下したりする場合がある。また、焼成は減圧雰囲気中で行うことが好ましい。具体的には、焼成中の雰囲気は1.013×10Pa未満であることが好ましく、1000Pa以下であることがより好ましく、400Pa以下であることがさらに好ましい。それにより、板状母材11中に残存する気泡の量を少なくすることができる。その結果、得られる波長変換部材における散乱因子を低減することができ、発光効率を向上させることができる。
 なお、板状母材11は蛍光体ガラスからなるもの以外にも、YAGセラミックス等のセラミックスからなるものや、樹脂中に蛍光体粒子が分散したものであってもよい。
 図3に示すように、本実施形態の板状母材11では、第1の主面14から第2の主面15に向かって、蛍光体粒子13がガラスマトリックス12中に均一に分散されている。このように、蛍光体粒子13がガラスマトリックス12中に均一に分散されている場合、所望の色度の波長変換部材1をより一層精度良く得ることができる。
 もっとも、本発明においては、図4に変形例で示す板状母材21のように、第1の主面24から第2の主面25に向かって、ガラスマトリックス22中の蛍光体粒子23が多くなるように分散されていてもよい。その場合においても、第1の主面24を研磨した際の厚みと色度の相関関係と、第2の主面25を研磨した際の厚みと色度の相関関係を求めて、各主面の目標色度に対する研磨量を設定することで、該目標厚みまで板状母材21を研磨することにより波長変換部材1を得ることができる。
 この場合、板状母材21の色度に応じて、研磨する面を選択することが好ましい。具体的には、板状母材21の色度と目標色度が近い場合は、蛍光体粒子23の濃度が低い第1の主面24を研磨することが好ましい。このようにすれば、色度の微調整が可能となるため、目標色度を有する波長変換部材1をより一層精度良く得ることが可能となる。一方、板状母材21の色度と目標色度が離れている場合は、蛍光体粒子23の濃度が高い第2の主面25を研磨することが好ましい。このようにすれば、目標色度を有する波長変換部材1を得るための研磨量を少なくすることができるため、製造効率が向上しやすくなる。例えば、まず蛍光体粒子23の濃度が高い第2の主面25から研磨し始め、板状母材21の色度と目標色度に近づいてきたら蛍光体粒子23の濃度が低い第1の主面24を研磨してもよい。あるいは、第1の主面24と第2の主面25を同時に研磨してもよい。このようにすれば、目標色度を有する波長変換部材1をより一層精度良くかつより一層効率良く製造することが可能となる。
 板状母材11,21の厚みとしては、好ましくは0.01mm以上、0.03mm以上、0.05mm以上、0.075mm以上、特に0.1mm以上であることが好ましく、好ましくは1mm以下、0.5mm以下、0.35mm以下、0.3mm以下、特に0.25mm以下であることが好ましい。板状母材11,21の厚みが上記範囲内にある場合、より一層容易に波長変換部材1を得ることができる。
 (実施例)
 表1に示す各組成を有するガラス粉末(平均粒子径D50:2μm)にYAG蛍光体粉末を混合して混合粉末を得た。YAG蛍光体粉末の含有量は混合粉末中に8.3体積%とした。混合粉末を金型で加圧成型して14mm×14mm×40mmの予備成型体を作製した。予備成型体を表1に記載の温度で焼成することにより母材を作製した。母材から12mm×12mm×0.3mmの10枚の板状母材を切り出した。
 各板状母材を両面研磨機を用いてラップ、ポリッシュ研磨することにより厚みを変化させながら、各厚みにおける色度を測定し、各々の測定値から板状母材における色度と厚みの相関関係を求めた。色度は次のように求めた。励起波長450nmの光源下に波長変換部材を設置し、波長変換部材の下面から発せられる光を積分球内部に取り込んだ後、標準光源によって校正された分光器へ導光し、光のエネルギー分布スペクトルを測定した。次に、CIE 1931 2-deg,x(_)、y(_)、z(_)等色関数から上記スペクトルを積分し、三刺激値XYZを求めた。この三刺激値XYZより、色度x=X/(X+Y+Z)を算出した。得られた相関関係をもとに、目標色度に対応する厚みまで板状母材を研磨した。これにより、約0.2mmの厚みを有する10枚の波長変換部材を得た。得られた各波長変換部材について色度を測定し、色度ばらつきを算出した。結果を表1に示す。
 (比較例)
 実施例と同様にして作製した10枚の板状母材を、色度と厚みの相関関係を求めずに、全て所定の厚み0.2mmとなるまで研磨したこと以外は、実施例と同様にして波長変換部材を作製した。得られた各波長変換部材について色度を測定し、色度ばらつきを算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例で得られた波長変換部材群の色度ばらつきは±0.004以内であり、比較例より絶対値が小さかった。
1…波長変換部材
11,21…板状母材
2,12,22…ガラスマトリックス
3,13,23……蛍光体粒子
14,24……第1の主面
15,25……第2の主面

Claims (13)

  1.  蛍光体粒子を含む波長変換部材の製造方法であって、
     蛍光体粒子を含む板状母材における色度と厚みとの相関関係を求める工程と、
     前記色度と厚みとの相関関係をもとに、得られる波長変換部材の目標色度に対応する目標厚みを定め、該目標厚みまで前記板状母材を研磨する工程と、
    を備える、波長変換部材の製造方法。
  2.  前記板状母材を研磨し、該研磨した板状母材の色度及び厚みを測定することにより、前記色度と厚みとの相関関係を求める、請求項1に記載の波長変換部材の製造方法。
  3.  前記目標色度より色度が高い状態で前記板状母材を研磨し、該研磨した板状母材の色度及び厚みを測定することにより、前記色度と厚みとの相関関係を求める、請求項2に記載の波長変換部材の製造方法。
  4.  前記色度と厚みとの相関関係を求めた後、前記目標厚みまで前記板状母材をさらに研磨する、請求項3に記載の波長変換部材の製造方法。
  5.  前記色度と厚みとの相関関係を求める工程において、鏡面研磨により前記板状母材を研磨する、請求項1~4のいずれか1項に記載の波長変換部材の製造方法。
  6.  前記板状母材が、ガラスマトリックスと、前記ガラスマトリックス中に配された蛍光体粒子とを含む、請求項1~5のいずれか1項に記載の波長変換部材の製造方法。
  7.  前記板状母材が互いに対向し合っている第1の主面及び第2の主面を有し、前記第1の主面から前記第2の主面に向かって前記蛍光体粒子が多くなっている、請求項6に記載の波長変換部材の製造方法。
  8.  前記第2の主面を研磨した後、前記第1の主面を研磨する、請求項7に記載の波長変換部材の製造方法。
  9.  前記第1の主面及び前記第2の主面を同時に研磨する、請求項7に記載の波長変換部材の製造方法。
  10.  同じ母材から複数枚の前記板状母材を切り出す、請求項1~9のいずれか1項に記載の波長変換部材の製造方法。
  11.  製造された複数の波長変換部材の色度ばらつきが±0.01以内である、請求項1~10のいずれか1項に記載の波長変換部材の製造方法。
  12.  複数の波長変換部材から構成される波長変換部材群であって、前記複数の波長変換部材の色度ばらつきが±0.01以内である、波長変換部材群。
  13.  10枚以上の波長変換部材から構成される、請求項12に記載の波長変換部材群。
PCT/JP2017/023474 2016-07-14 2017-06-27 波長変換部材の製造方法及び波長変換部材群 WO2018012273A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016139284A JP2018010188A (ja) 2016-07-14 2016-07-14 波長変換部材の製造方法及び波長変換部材群
JP2016-139284 2016-07-14

Publications (1)

Publication Number Publication Date
WO2018012273A1 true WO2018012273A1 (ja) 2018-01-18

Family

ID=60952473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023474 WO2018012273A1 (ja) 2016-07-14 2017-06-27 波長変換部材の製造方法及び波長変換部材群

Country Status (2)

Country Link
JP (1) JP2018010188A (ja)
WO (1) WO2018012273A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151168A1 (ja) * 2018-02-05 2019-08-08 日本電気硝子株式会社 蛍光体ガラス薄板及びその個片の製造方法並びに蛍光体ガラス薄板及びその個片
JP2019135205A (ja) * 2018-02-05 2019-08-15 日本電気硝子株式会社 蛍光体ガラス薄板及びその個片の製造方法並びに蛍光体ガラス薄板及びその個片
CN112166354A (zh) * 2018-05-31 2021-01-01 夏普株式会社 波长转换元件以及光源装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177158A (ja) * 1999-12-16 2001-06-29 Matsushita Electronics Industry Corp 半導体発光装置及びその製造方法
JP2002151743A (ja) * 2000-11-15 2002-05-24 Sanyo Electric Co Ltd 発光装置とその製造方法
JP2002344029A (ja) * 2001-05-17 2002-11-29 Rohm Co Ltd 発光ダイオードの色調調整方法
JP2004186488A (ja) * 2002-12-04 2004-07-02 Nichia Chem Ind Ltd 発光装置、発光装置の製造方法および発光装置の色度調整方法
JP2010027704A (ja) * 2008-07-16 2010-02-04 Stanley Electric Co Ltd 蛍光体セラミック板を用いた発光装置の製造方法
JP2011091068A (ja) * 2009-10-20 2011-05-06 Sony Corp 発光色変換部材及びその製造方法、並びに発光素子
JP2013135139A (ja) * 2011-12-27 2013-07-08 Disco Abrasive Syst Ltd バイト切削方法
JP2014022704A (ja) * 2012-07-24 2014-02-03 Toray Ind Inc 蛍光体含有樹脂シートと発光装置及びその製造方法
JP2014096491A (ja) * 2012-11-09 2014-05-22 Nitto Denko Corp 蛍光体層被覆半導体素子、その製造方法、半導体装置およびその製造方法
WO2015128750A1 (en) * 2014-02-27 2015-09-03 Koninklijke Philips N.V. Method of forming a wavelength converted light emitting device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177158A (ja) * 1999-12-16 2001-06-29 Matsushita Electronics Industry Corp 半導体発光装置及びその製造方法
JP2002151743A (ja) * 2000-11-15 2002-05-24 Sanyo Electric Co Ltd 発光装置とその製造方法
JP2002344029A (ja) * 2001-05-17 2002-11-29 Rohm Co Ltd 発光ダイオードの色調調整方法
JP2004186488A (ja) * 2002-12-04 2004-07-02 Nichia Chem Ind Ltd 発光装置、発光装置の製造方法および発光装置の色度調整方法
JP2010027704A (ja) * 2008-07-16 2010-02-04 Stanley Electric Co Ltd 蛍光体セラミック板を用いた発光装置の製造方法
JP2011091068A (ja) * 2009-10-20 2011-05-06 Sony Corp 発光色変換部材及びその製造方法、並びに発光素子
JP2013135139A (ja) * 2011-12-27 2013-07-08 Disco Abrasive Syst Ltd バイト切削方法
JP2014022704A (ja) * 2012-07-24 2014-02-03 Toray Ind Inc 蛍光体含有樹脂シートと発光装置及びその製造方法
JP2014096491A (ja) * 2012-11-09 2014-05-22 Nitto Denko Corp 蛍光体層被覆半導体素子、その製造方法、半導体装置およびその製造方法
WO2015128750A1 (en) * 2014-02-27 2015-09-03 Koninklijke Philips N.V. Method of forming a wavelength converted light emitting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151168A1 (ja) * 2018-02-05 2019-08-08 日本電気硝子株式会社 蛍光体ガラス薄板及びその個片の製造方法並びに蛍光体ガラス薄板及びその個片
JP2019135205A (ja) * 2018-02-05 2019-08-15 日本電気硝子株式会社 蛍光体ガラス薄板及びその個片の製造方法並びに蛍光体ガラス薄板及びその個片
US11433500B2 (en) 2018-02-05 2022-09-06 Nippon Electric Glass Co., Ltd. Manufacturing method for phosphor glass thin plate and piece thereof, and phosphor glass thin plate and piece thereof
CN112166354A (zh) * 2018-05-31 2021-01-01 夏普株式会社 波长转换元件以及光源装置

Also Published As

Publication number Publication date
JP2018010188A (ja) 2018-01-18

Similar Documents

Publication Publication Date Title
TWI715784B (zh) 波長轉換構件及使用其而成之發光裝置
CN109564308B (zh) 波长变换部件及其制造方法
JP7212319B2 (ja) 波長変換部材及び発光装置
WO2018012273A1 (ja) 波長変換部材の製造方法及び波長変換部材群
JP2018077324A (ja) 波長変換部材及び発光装置
JP2019019011A (ja) 波長変換材料に用いられるガラス、波長変換材料、波長変換部材及び発光デバイス
TWI823604B (zh) 用於波長轉換材料之玻璃、波長轉換材料、波長轉換構件及發光裝置
CN109642967B (zh) 波长变换部件及其制造方法
CN109564309B (zh) 波长变换部件及其制造方法
KR102621944B1 (ko) 파장 변환 부재 및 발광 장치
WO2022107794A1 (ja) 波長変換部材及びその製造方法
JP2022068845A (ja) 波長変換部材の製造方法
WO2020137780A1 (ja) 波長変換部材及び発光装置
TW202046521A (zh) 波長轉換構件及其製造方法、以及發光裝置
TW202106644A (zh) 波長轉換構件及發光裝置
TW202033745A (zh) 波長轉換構件及發光裝置
JP2019019012A (ja) 波長変換材料に用いられるガラス、波長変換材料、波長変換部材及び発光デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827403

Country of ref document: EP

Kind code of ref document: A1