WO2018012248A1 - Solar cell and solar cell manufacturing method - Google Patents

Solar cell and solar cell manufacturing method Download PDF

Info

Publication number
WO2018012248A1
WO2018012248A1 PCT/JP2017/023163 JP2017023163W WO2018012248A1 WO 2018012248 A1 WO2018012248 A1 WO 2018012248A1 JP 2017023163 W JP2017023163 W JP 2017023163W WO 2018012248 A1 WO2018012248 A1 WO 2018012248A1
Authority
WO
WIPO (PCT)
Prior art keywords
firing
solar cell
bus bar
electrode
bar electrode
Prior art date
Application number
PCT/JP2017/023163
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 上迫
傑也 新井
ミエ子 菅原
小林 賢一
秀利 小宮
正五 松井
周平 横山
潤 錦織
Original Assignee
アートビーム株式会社
農工大ティー・エル・オー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アートビーム株式会社, 農工大ティー・エル・オー株式会社 filed Critical アートビーム株式会社
Priority to KR1020187037405A priority Critical patent/KR102230367B1/en
Priority to CN201780035719.0A priority patent/CN109314149A/en
Publication of WO2018012248A1 publication Critical patent/WO2018012248A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/14Compositions for glass with special properties for electro-conductive glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention a region that generates a high electron concentration when light or the like is irradiated on a substrate is formed, an insulating film that transmits light or the like is formed on the region, and electrons are extracted from the region on the insulating film.
  • the present invention relates to a solar cell having a bus bar electrode that forms a finger electrode that forms an outlet and further electrically connects a plurality of finger electrodes to extract electrons to the outside, and a method for manufacturing the solar cell.
  • the structure of a solar cell is an N-type / P-type silicon substrate 43 that converts solar energy into electrical energy, 43 prevents the reflection of the surface of the silicon nitride film 45, which is an insulating thin film, the finger electrode 42 that extracts the electrons generated in the silicon substrate 43, the bus bar electrode 41 that collects the electrons extracted by the finger electrode 42, and the bus bar electrode 41 It consists of each element of the lead electrode 47 for taking out the electrons to the outside.
  • silver and lead (lead glass) are used for the bus bar electrode 41 and the finger electrode 42, and the amount of silver used is eliminated or reduced, and further, the amount of lead (lead glass) used is not reduced. It has been desired to eliminate the cost and to make it pollution-free.
  • silver and lead (lead glass as a binder) are used for the finger electrode 42 and the like, and the amount of silver used is eliminated or reduced, and There was a problem of reducing or eliminating the amount of lead (lead glass) used, reducing the manufacturing cost of the solar cell, and making it pollution-free.
  • the finger electrode 42 containing silver and lead glass in FIG. 9B is fired to form an electrically conductive passage through the silicon nitride film 45 (referred to as “firing”), and electrons are transferred from the N / P diffusion layer 44.
  • firing an electrically conductive passage through the silicon nitride film 45
  • electrons were transferred from the N / P diffusion layer 44.
  • the bus bar electrode 41 was collected by the bus bar electrode 41 and taken out to the outside. There existed the subject of raising the efficiency of taking out these electrons, and improving the efficiency of a solar cell further.
  • the present inventors experimentally created a bus bar electrode using 100% NTA glass, which will be described later, in the paste, and have the same or superior characteristics as when the bus bar electrode was created using the above-described conventional silver paste. It was discovered that solar cells could be created (see Japanese Patent Application No. 2015-180720, etc.).
  • a region that generates a high electron concentration when light or the like is irradiated on the substrate is formed, and an insulating film that transmits light or the like is formed on the region, and an extraction port that extracts electrons from the region on the insulating film is formed.
  • bus bar electrode which is formed by using the NTA glass 100% to 0% or more as a bus bar electrode for electrically connecting a plurality of finger electrodes and taking out electrons to the outside After firing and firing, in addition to the formation of electrically conductive paths by firing from the conventional finger electrode to the high electron concentration region of the lower layer (referred to as lower layer firing), in addition, Formation of an electrically conductive passage exposed through the bus bar electrode (a strip lead wire is soldered to the electrically conductive passage) (hereinafter referred to as upper layer fire) (hereinafter referred to as upper layer fire) It found that ring hereinafter) are possible (Fig. 6 to be described later, see, FIG. 8).
  • the present invention forms a bus bar electrode that is a component of a solar cell in order to eliminate or reduce the amount of silver used and to reduce or eliminate the amount of lead (lead glass) used.
  • Paste is made with vanadate glass (hereinafter referred to as conductive NTA glass, "NTA” is registered trademark 5009023)) and fired to eliminate or reduce the use of silver and lead (lead glass)
  • NTA vanadate glass
  • the present invention creates a region that generates a high electron concentration when light or the like is irradiated on a substrate, and forms an insulating film that transmits light or the like on the region, and electrons from the region are formed on the insulating film.
  • Finger electrode containing silver and lead on an insulating film in a solar cell in which a finger electrode is formed to form a take-out port and a bus bar electrode is formed by electrically connecting a plurality of finger electrodes to take out electrons to the outside
  • a bus bar electrode is formed thereon and then fired in a lump, and the region and the finger penetrate through the insulating film, which is a film under the finger electrode, by the action of silver and lead contained in the finger electrode during the lump firing.
  • An electrically conductive path is formed between the electrodes (referred to as lower-layer firing), and the fingers are further affected by the action of silver and lead contained in the finger electrodes during firing. And so as to form an electrically conductive path is exposed on the bus bar electrode through the bus bar electrode is a layer above the electrode (referred upper firing).
  • the lower firing is the firing in the solid phase
  • the upper firing is the firing in the liquid phase
  • the length of the latter electrically conductive passage is compared to the length of the former electrically conductive passage. I try to make it much longer.
  • an electrically conductive passage is formed in the conductive layer when a conductive layer is formed on the bus bar electrode. I am doing so.
  • a strip-shaped lead wire is soldered to the exposed electrically conductive path or conductive layer.
  • the conductive bus bar electrode is made from 100% to 0% or more by weight and the rest is made of silver.
  • the conductive glass is vanadate glass containing at least vanadium or vanadium and barium.
  • the time for the process of firing the conductive glass is set to be within 1 minute at the longest and 1 second or longer.
  • the temperature is set within the range between them.
  • the conductive glass is Pb free.
  • the present invention further includes a bus bar electrode on the upper layer from the finger electrode.
  • the formation of the electrically conductive passage exposed through the upper surface makes it possible to increase the efficiency of taking out electrons from the high electron concentration region to the outside, and NTA glass on the bus bar electrode It was possible to eliminate or reduce the amount of silver used and to reduce or eliminate the amount of lead (lead glass) used.
  • FIG. 1 shows a block diagram of one embodiment of the present invention.
  • FIG. 1 (a) shows a plan view before firing
  • FIG. 1 (b) shows a sectional view before firing
  • FIG. 1 (c) shows a sectional view after firing.
  • the silicon substrate 1 is a known semiconductor silicon substrate.
  • An unillustrated high electron concentration region (diffusion doping layer) is formed in a portion of the silicon substrate 11 in contact with the nitride film 3, and the photoelectron concentration region is formed on the silicon substrate 1 with a desired p-type / n-type.
  • This is a known region (layer) formed by diffusion doping or the like.
  • FIG. 1B when sunlight is incident from above, electrons are generated (power generation) in the silicon substrate 1 and accumulated. It is an area. Here, the accumulated electrons are taken out upward by an electron outlet (finger electrode (silver) 4 in FIG. 1C).
  • the aluminum electrode (back electrode) 2 is a well-known electrode formed on the lower surface of the silicon substrate 1 and is here a paste-like material before firing (illustrated in FIG. Conductive aluminum electrode 2).
  • the nitride film (silicon nitride film) 3 is a known film that transmits (transmits) sunlight and electrically insulates the bus bar electrode 5 from the high electron concentration region, and is, for example, a SiNx film.
  • the nitride film 3 is a film (layer) that forms an electrically conductive passage through the nitride film in the solid phase by lower layer firing during batch firing described later.
  • the finger electrode 4 is an opening (finger electrode) for taking out electrons accumulated in the high electron concentration region through a hole formed in the nitride film 3, and before firing, a paste is formed on the nitride film 3 as shown in the figure. It is in a state of being printed and heat-dried (about 100 °) (when it is fired at once, it becomes as shown in FIG. 1 (c)).
  • the bus bar electrode 5 is an electrode for electrically connecting a plurality of electron outlets (a plurality of finger electrodes 4).
  • NTA glass paste is printed as the bus bar electrode 5 (for example, silk printing). ) And dried by heating to eliminate or reduce the amount of Ag used.
  • the bus bar electrode 5 becomes a conductive electrode.
  • the paste-like aluminum electrode 2, finger electrode 4, and bus bar electrode 5 are sequentially printed and heated and dried to produce the structure shown in the drawing. Then, as shown in (c) of FIG. 1, the aluminum electrode 2, the finger electrode 4, and the bus bar electrode 5 are completed.
  • the finger electrode 4 is after batch firing, and when the bus bar electrode 5 according to the present invention is fired with 100% to 0% or more of NTA glass, the finger electrode 4 is described later.
  • the upper firing 42 in the liquid phase to be formed forms (fires) a portion that is the same as the height of the upper surface of the bus bar electrode 5 or a portion that protrudes through the upper surface of the bus bar electrode 5. It becomes possible to directly flow into the lead wire (not shown) to be soldered onto the bus bar electrode 5 (to directly take out electrons). That is, the high electron concentration region, the finger electrode 4, the bus bar electrode 5, the lead wire 6 path 1 and the high electron concentration region, the finger electrode 4, the lead wire 6 route 2 in the high electron concentration region.
  • Electrons (current) can be taken out via the lead wire 6, and as a result, the resistance value between the high electron concentration region and the lead wire 6 can be made extremely small, reducing the loss. As a result, the efficiency of the solar cell can be improved.
  • an electrically conductive path is formed between the finger electrode 4, the high electron concentration region, and the finger electrode 4 by the lower layer firing 41 in the solid phase, and penetrates the finger electrode 4 and the bus bar electrode 5 or the bus bar electrode 5.
  • an electrically conductive passage is formed by the upper layer firing 42 in the liquid phase.
  • the thickness of the nitride film 3 was 60 nm and the printed thickness of the bus bar electrode 5 was 20 ⁇ m.
  • the nitride film 3 is due to the lower firing 41 in the solid phase
  • the bus bar electrode 5 made of NTA glass is the upper layer firing 42 in the liquid phase
  • the middle upper layer firing 42 was confirmed by experiments. That is, the length of the electrically conductive passage of the upper layer firing 42 in the liquid phase can be formed at a high speed of several tens to thousands times as compared with the lower layer firing 41 in the solid phase. It became clear by experiment.
  • the lower firing 41 is in contact with a portion having a high electron concentration by breaking through the lower nitride film 4 and about 60 nm by the mixture of lead (lead glass) and silver contained in the finger electrode 4.
  • the silver portion extends from the high electron concentration portion to the slightly lower electron concentration portion, so that the conversion efficiency of the solar cell is lowered. It is necessary to determine the lower layer firing (batch firing temperature and time (1 minute or less, preferably 1 second or more)) 41.
  • the upper layer firing 42 occurs simultaneously in parallel when the lower layer firing 41 occurs.
  • the upper layer firing 42 like the lower layer firing 41, breaks through the upper bus bar electrode 5, about 20 ⁇ m, onto the bus bar electrode 5 by mixing lead (lead glass) and silver contained in the finger electrode 4. An exposed portion of silver (Ag) is formed.
  • the upper layer firing 42 is excessive (the temperature for batch firing is too high)
  • the NTA glass in the bus bar electrode 5 is re-solidified and deteriorated so as to cover the exposed Ag portion (a figure to be described later). 8 and the description thereof)
  • it is necessary to determine an appropriate upper layer firing (batch firing temperature and time (1 minute or less, preferably 1 second or more)) by experiments.
  • FIG. 2 is an explanatory diagram of the main part of the present invention. 2A is the same as FIG. 1C after batch firing, and FIG. 2B is an enlarged view of the main part of FIG. 2A.
  • the upper layer firing 42 of the finger electrode 4 penetrates or almost penetrates the bus bar electrode 5, and here, an electrically conductive path (silver path) in the bus bar electrode 5. Is formed.
  • both the lower layer firing 41 and the upper layer firing 42 of the finger electrode 4 cause firing of the region 11 having a high N-type concentration, the finger electrode 4, the bus bar electrode 5 and the path 1 of the lead wire 6,
  • a high N-type region 11 -F finger electrode 4 -lead wire 6 path 2 is formed and can be taken out from the lead wire 6 via both paths 1 and 2, and the N-type concentration is high.
  • the resistance value between the region 11 and the lead wire 6 was made extremely small, and the efficiency of the solar cell could be improved (described later with reference to FIGS. 4 and 7).
  • the bus bar electrode 5 made of NTA glass is, for example, in one experimental result, if the batch firing temperature is performed at a low temperature, for example, 700 ° C., firing is not sufficient, and the bus bar electrode 5 It will come off as one.
  • batch firing is performed at a high temperature, for example, 820 ° C., the nitride film 3 immediately below the bus bar electrode 5 is damaged (hydrogen in the nitride film forms bubbles and damages the nitride film through the film)
  • the lead wire 6 is soldered, the nitride film 3 is peeled off from the silicon substrate 1.
  • the NTA glass constituting the bus bar electrode 5 is melted and re-solidified in the upper layer firing 42 so as to cover the electrically conductive path exposed on the bus bar electrode 5 and deteriorate. A situation has occurred (see FIG. 8).
  • FIG. 3 shows an example of a manufacturing process of a solar cell using the NTA glass of the present invention.
  • S1 prepares a silicon substrate (PN junction formation substrate). This is because, for example, nitriding is performed as an antireflection film (a film through which sunlight is passed and the surface reflection is reduced as much as possible) formed on the surface of the silicon substrate 1 by performing diffusion doping on the surface.
  • a silicon substrate 1 on which a film (silicon nitride film) 3 is formed is prepared.
  • S2 prints aluminum paste on the back of the silicon substrate.
  • the paste is dried by an electric furnace.
  • an aluminum paste is printed on the entire back surface of the silicon substrate 1 shown in FIGS. 1 and 2 and dried by heating in an electric furnace.
  • S4 prints a silver (lead) paste for finger electrodes on the surface of the silicon substrate.
  • a pattern of finger electrodes 4 to be formed is screen-printed on the nitride film 3.
  • the printing material for example, a paste in which lead glass is mixed as a frit in silver is used.
  • S5 dries the silver (lead) paste in an electric furnace.
  • S6 prints bus bar electrodes with silver / NTA glass paste on the surface of the silicon substrate. This screen-prints the pattern of the bus bar electrode 5 to be formed on the finger electrode dried in S4. .
  • the printing material for example, NTA glass (100% to 0% or more, remaining silver) is used as a frit.
  • the aluminum electrode 2 is formed on the back surface of the silicon substrate 1 on which the high electron concentration region 11 and the nitride film 3 are formed, and the finger electrode 4 and the bus bar electrode 5 paste are sequentially printed and heated and dried on the surface of the silicon substrate 1. This completes the preparation for batch firing.
  • S8 is a far-infrared firing furnace for firing all pastes of aluminum electrodes, finger electrodes, and bus bar electrodes.
  • an aluminum electrode 3 is formed,
  • the bus bar electrode 5 which is the upper layer film by the action of lead (lead glass) and silver in the finger electrode 4 is in the liquid phase, and electrons are transferred from the finger electrode 4 to the bus bar electrode 5 by the upper layer firing 42.
  • Path 2 finger electrode 4, path 2 of lead wire 6) to the part protruding upward (lead wire 6 is soldered) or path 1 (finger electrode 4, Forming the bus bar electrode 5 and the path 1) of the lead wire 6; This was confirmed by experiments.
  • S9 is soldered. This is performed by soldering the above-described lead wire 6 in FIG. 2A (soldering or ultrasonic soldering).
  • S10 measures the performance of the solar cell.
  • FIG. 4 shows a measurement example of the present invention.
  • the resistance value between two adjacent contact bars from above the bus bar electrode 5 (finger electrode 4) in the state before soldering the lead wire 6 produced in steps S1 to S8 in FIG. A measurement example is shown.
  • FIG. 4A shows a plan view
  • FIG. 4B shows a measurement position example (number)
  • FIG. 4C shows a measurement value example.
  • FIG. 4A schematically shows the configuration of the finger electrode 4 and the bus bar electrode 5.
  • the bus bar electrode 5 is formed in a band shape in a perpendicular direction so as to be electrically connected to the plurality of finger electrodes 4 having a thin band shape.
  • (B) in FIG. 4 is the number of the place where the resistance value between the two contact bars is measured.
  • (1) (2) (3) (4) (5) (6) is the portion of the finger electrode 4 exposed on the bus bar electrode 5 (the portion of the electrically conductive path formed by the upper layer firing 42). The position number.
  • (8) is the number of the illustrated position on the bus bar electrode 5 in the middle, not directly above the finger electrode 4.
  • (C) in FIG. 4 shows an example of measured values at the position in (b) in FIG.
  • the resistance values of (1), (2), (3), (4), (5), and (6) in the figure were all as small as 0.20 ⁇ . This is measured as a small resistance value because the finger electrode 4 is exposed on the bus bar electrode 5 by the upper layer firing 42 and the two contact bars are brought into direct contact with the exposed portion.
  • the resistance values of (7) and (8) were both 0.30 ⁇ and a slightly large resistance value. This is because even if the finger electrode 4 is exposed on the bus bar electrode 5 by the upper layer firing 42, the two contact bars are brought into direct contact with the illustrated position apart from the exposed portion, so that the resistance is slightly large. Measured as a value.
  • the resistance value of the finger electrode 4 was 0.20 ⁇ , which was almost the same as those of (1) to (6).
  • the finger electrode 4 is exposed on the bus bar electrode 5 by the upper layer firing 42 according to the present invention, and the resistance value can be made extremely small.
  • FIG 5 and 6 show cross-sectional observation examples of the bus bar electrode of the present invention.
  • the sample conditions used are as shown below.
  • FIG. 5A shows a partial plan view when manufacturing up to the bus bar electrode 5 of the solar cell (S1 to S8 in FIG. 3). .
  • the horizontal band is the bus bar electrode 5, and the vertical line is the finger electrode 4.
  • the center of the strip-shaped lateral bus bar electrode 5 was cut in the lateral direction.
  • FIG. 6 shows a photograph of this cut surface.
  • FIG. 5 shows a cross-sectional enlarged image diagram. This shows an enlarged image of the cut surface when cut along the dotted cut surface in FIG.
  • a finger electrode 4 is formed on the silicon substrate 1 in a direction perpendicular to the paper surface, and a bus bar electrode 5 is formed on the finger electrode 4 in the lateral direction of the paper surface.
  • FIG. 6 shows an electron micrograph (Ag distribution slightly inclined in the cross section).
  • This is a photograph showing an SEM image of the Ag distribution in the cross-sectional view of FIG.
  • the part of the finger electrode 4 is easily understood by a white outline.
  • the portion indicated by the arrow (white) that “the silver of the finger electrode 4 has penetrated the nitride film 3” shown in the figure is high because the finger electrode 4 has penetrated the nitride film 3 by lower firing.
  • FIG. 6 shows an electron micrograph (cross section). This is a photograph showing the SEM image of the cross-sectional view of FIG.
  • the part of the finger electrode 4 is easily understood by a white outline.
  • the portion indicated by the arrow (black) that “the silver of the finger electrode 4 penetrates the nitride film 3” shown in the figure is high because the finger electrode 4 penetrates the nitride film 3 by the lower firing.
  • FIG. 7 shows a characteristic example of a solar cell using the bus bar electrode of the present invention. This shows an example of measuring the IV characteristics of the following various samples described on the right side.
  • NTA50-781-8 (Sample1) ⁇ NTA50-781-8 (Sample2) ⁇ NTA50-781-8 (Sample3) ⁇ NTA50-781-8 (Sample4) ⁇ NTA50-781-8 (Sample5) ⁇ NTA50-781-8 (Sample 6) ⁇ Ref820-4 (Sample1) ⁇ Ref820-4 (Sample2) ⁇ Ref820-4 (Sample3)
  • NTA50 is a bus bar electrode material
  • NTA glass 50% wt
  • the rest is silver
  • the next “781” is fired at 781 ° C.
  • the next “8” is a firing time of 8 seconds Represents the fact (far infrared heating).
  • Ref 820” represents 820 ° C.
  • the next “4” represents 4 seconds (far infrared heating).
  • FIG. 7 shows the IV characteristics measured and plotted for the samples prepared above.
  • I is slightly larger than the bus bar electrode 4 not including NTA glass as shown in the figure, and the resistance value is improved (decreased) by the paths 1 and 2 described above.
  • the efficiency of extracting electrons from the high electron concentration region can be improved.
  • FIG. 8 is an explanatory diagram of the upper layer firing of the present invention.
  • FIG. 8A shows an example of an upper layer firing (appropriate) micrograph
  • FIG. 8B shows an example of an upper layer firing (excessive) micrograph.
  • two thin lines in the horizontal direction are the finger electrodes 4, and one wide strip in the vertical direction is the bus bar electrode 5.
  • FIG. 1 is a configuration diagram of one embodiment of the present invention. It is principal part explanatory drawing of this invention. It is an example of a manufacturing process of a solar cell using the NTA glass of the present invention. It is a measurement example of the present invention. It is a cross-sectional observation example (the 1) of the bus-bar electrode of this invention. It is a cross-sectional observation example (the 2) of the bus-bar electrode of this invention. It is an example of the characteristic of the solar cell using the bus-bar electrode of this invention. It is explanatory drawing of the upper layer filing of this invention. It is explanatory drawing of a prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

[Purpose] The present invention relates to a solar cell and a solar cell manufacturing method, and has the purpose of increasing the efficiency of the solar cell by increasing an electron extraction efficiency by eliminating or reducing the amount of silver that is used and reducing or eliminating the amount of lead that is used, and by performing an upper layer firing in addition to a lower layer firing. [Configuration] A finger electrode including silver and lead is formed on an insulating film and is fired after a bus bar electrode has additionally been formed thereon; the action of the silver and lead included in the finger electrode at the time of firing forms an electrically conductive passageway (lower layer firing) penetrating through the insulating film, which is the film below the finger electrode, between a region and the finger electrode; and further an electrically conductive passageway penetrating through the bus bar electrode, which is a layer above the finger electrode, and exposed on the bus bar electrode is formed (upper layer firing) by the action of the silver and lead included in the finger electrode at the time of firing.

Description

太陽電池および太陽電池の製造方法Solar cell and method for manufacturing solar cell
 本発明は、基板上に光などを照射したときに高電子濃度を生成する領域を作成すると共に領域の上に光などを透過する絶縁膜を形成し、絶縁膜の上に領域から電子を取り出す取出口を形成するフィンガー電極を形成し、更に複数のフィンガー電極を電気的に接続して電子を外部に取り出すバスバー電極を有する太陽電池および太陽電池の製造方法に関するものである。 In the present invention, a region that generates a high electron concentration when light or the like is irradiated on a substrate is formed, an insulating film that transmits light or the like is formed on the region, and electrons are extracted from the region on the insulating film. The present invention relates to a solar cell having a bus bar electrode that forms a finger electrode that forms an outlet and further electrically connects a plurality of finger electrodes to extract electrons to the outside, and a method for manufacturing the solar cell.
 従来、再生可能エネルギー利用の一つである太陽電池は、20世紀の主役である半導体技術をベースにその開発が行われている。人類の生存を左右する地球レベルの重要な開発である。その開発の課題は太陽光を電気エネルギーに変換する効率ばかりではなく製造コストの低減および無公害という課題にも向き合いながら進められている。これらを実現する取り組みは、特に、電極に使用されている銀(Ag)や鉛(Pb)の使用量を低減ないし無くすことが重要視されている。 Conventionally, solar cells, which are one of the renewable energy uses, have been developed based on semiconductor technology, the leading role of the 20th century. It is an important development at the global level that affects the survival of humankind. The challenge of the development is progressing while facing not only the efficiency of converting sunlight into electric energy but also the problem of reduction in manufacturing costs and pollution-free. In efforts to realize these, it is particularly important to reduce or eliminate the amount of silver (Ag) or lead (Pb) used in electrodes.
 一般に、太陽電池の構造は、図9の(a)の平面図および(b)の断面図に示すように、太陽光エネルギーを電気エネルギーに変換するN型/P型のシリコン基板43、シリコン基板43の表面の反射を防止および絶縁体薄膜である窒化シリコン膜45、シリコン基板43中に発生した電子を取り出すフィンガー電極42、フィンガー電極42で取り出した電子を集めるバスバー電極41、バスバー電極41に集めた電子を外部に取り出す引出リード電極47の各要素より構成されている。 In general, as shown in the plan view of FIG. 9A and the cross-sectional view of FIG. 9B, the structure of a solar cell is an N-type / P-type silicon substrate 43 that converts solar energy into electrical energy, 43 prevents the reflection of the surface of the silicon nitride film 45, which is an insulating thin film, the finger electrode 42 that extracts the electrons generated in the silicon substrate 43, the bus bar electrode 41 that collects the electrons extracted by the finger electrode 42, and the bus bar electrode 41 It consists of each element of the lead electrode 47 for taking out the electrons to the outside.
 このうち、バスバー電極41およびフィンガー電極42に銀および鉛(鉛ガラス)が使用されており、これの銀の使用量を無くし、あるいは低減し、更に、鉛(鉛ガラス)の使用量を低減ないし無くし、低コストかつ無公害にすることが望まれていた。 Of these, silver and lead (lead glass) are used for the bus bar electrode 41 and the finger electrode 42, and the amount of silver used is eliminated or reduced, and further, the amount of lead (lead glass) used is not reduced. It has been desired to eliminate the cost and to make it pollution-free.
 上述した従来の図9の太陽電池の構成要素のうち、フィンガー電極42などに銀および鉛(バインダーとしての鉛ガラス)が使用されており、これの銀の使用量を無くし、ないし低減し、および鉛(鉛ガラス)の使用量を低減ないし無くし、太陽電池の製造コストの低減かつ無公害にするという課題があった。 Among the components of the conventional solar cell of FIG. 9 described above, silver and lead (lead glass as a binder) are used for the finger electrode 42 and the like, and the amount of silver used is eliminated or reduced, and There was a problem of reducing or eliminating the amount of lead (lead glass) used, reducing the manufacturing cost of the solar cell, and making it pollution-free.
 また、図9の(b)の銀、鉛ガラスを含むフィンガー電極42を焼成して窒化シリコン膜45を貫通した電気導電性通路を形成(ファイアリングという)してN/P拡散層44から電子を取り出し、これをバスバー電極41で集めて外部に取り出すようにしていた。これらの電子の取出しの効率を高め、太陽電池の効率を更に向上させるという課題があった。 Also, the finger electrode 42 containing silver and lead glass in FIG. 9B is fired to form an electrically conductive passage through the silicon nitride film 45 (referred to as “firing”), and electrons are transferred from the N / P diffusion layer 44. Was collected by the bus bar electrode 41 and taken out to the outside. There existed the subject of raising the efficiency of taking out these electrons, and improving the efficiency of a solar cell further.
 本発明者らは、ペーストに後述するNTAガラス100%を用いてバスバー電極を実験的に作成したところ上述した従来の銀ペーストを用いてバスバー電極を作成したときと変わらないあるいは優れた特性を有する太陽電池の作成が可能であることを発見した(特願2015-180720号等参照)。 The present inventors experimentally created a bus bar electrode using 100% NTA glass, which will be described later, in the paste, and have the same or superior characteristics as when the bus bar electrode was created using the above-described conventional silver paste. It was discovered that solar cells could be created (see Japanese Patent Application No. 2015-180720, etc.).
 更に、基板上に光などを照射したときに高電子濃度を生成する領域を作成すると共に領域の上に光などを透過する絶縁膜を形成し、絶縁膜の上に領域から電子を取り出す取出口を形成するフィンガー電極を形成し、更に複数のフィンガー電極を電気的に接続して電子を外部に取り出すバスバー電極として、上記NTAガラス100%ないし0%以上を用いて作成し、これらをまとめて一括焼成してファイアリングしたところ、従来のフィンガー電極から下の層の高電子濃度領域へのファイアリングによる電気導電性通路の形成(下層ファイアリングという)に加え、更に、フィンガー電極から上の層のバスバー電極を貫通して露出した電気導電性通路(該電気導電性通路には帯状の引出リード線を半田付けする)の形成(以下上層ファイアリングという)が可能であることを発見した(後述する図6、図8など参照)。 In addition, a region that generates a high electron concentration when light or the like is irradiated on the substrate is formed, and an insulating film that transmits light or the like is formed on the region, and an extraction port that extracts electrons from the region on the insulating film is formed. As a bus bar electrode, which is formed by using the NTA glass 100% to 0% or more as a bus bar electrode for electrically connecting a plurality of finger electrodes and taking out electrons to the outside After firing and firing, in addition to the formation of electrically conductive paths by firing from the conventional finger electrode to the high electron concentration region of the lower layer (referred to as lower layer firing), in addition, Formation of an electrically conductive passage exposed through the bus bar electrode (a strip lead wire is soldered to the electrically conductive passage) (hereinafter referred to as upper layer fire) It found that ring hereinafter) are possible (Fig. 6 to be described later, see, FIG. 8).
 本発明は、これら発見に基づき、銀の使用量を無くし、ないし低減し、および鉛(鉛ガラス)の使用量を低減ないし無くすために、太陽電池の構成要素であるバスバー電極を形成するのに、ペーストをバナジン酸塩ガラス(以下、導電性のNTAガラスという、”NTA”は登録商標5009023号))で作成して焼成し、銀および鉛(鉛ガラス)の使用量を無くし、ないし低減すると共に、更に、上記下層ファイアリングに加えて上層ファイアリングを行うことで電子引出効率を高くして太陽電池の効率を向上させることを可能とした。 Based on these findings, the present invention forms a bus bar electrode that is a component of a solar cell in order to eliminate or reduce the amount of silver used and to reduce or eliminate the amount of lead (lead glass) used. , Paste is made with vanadate glass (hereinafter referred to as conductive NTA glass, "NTA" is registered trademark 5009023)) and fired to eliminate or reduce the use of silver and lead (lead glass) At the same time, it is possible to improve the efficiency of the solar cell by increasing the electron extraction efficiency by performing the upper layer firing in addition to the lower layer firing.
 そのために、本発明は、基板上に光などを照射したときに高電子濃度を生成する領域を作成すると共に領域の上に光などを透過する絶縁膜を形成、絶縁膜の上に領域から電子を取り出す取出口を形成するフィンガー電極を形成、および複数のフィンガー電極を電気的に接続して電子を外部に取り出すバスバー電極を形成した太陽電池において、絶縁膜の上に銀および鉛を含むフィンガー電極を形成し、更にその上にバスバー電極を形成した後に一括焼成し、一括焼成時のフィンガー電極に含まれる銀および鉛の作用によりフィンガー電極の下の膜である絶縁膜を貫通して領域とフィンガー電極との間に電気導電性通路を形成(下層ファイアリングという)し、かつ更に、焼成時にフィンガー電極に含まれる銀および鉛の作用によりフィンガー電極の上の層であるバスバー電極を貫通してバスバー電極の上に露出した電気導電性通路を形成(上層ファイアリングという)するようにしている。 Therefore, the present invention creates a region that generates a high electron concentration when light or the like is irradiated on a substrate, and forms an insulating film that transmits light or the like on the region, and electrons from the region are formed on the insulating film. Finger electrode containing silver and lead on an insulating film in a solar cell in which a finger electrode is formed to form a take-out port and a bus bar electrode is formed by electrically connecting a plurality of finger electrodes to take out electrons to the outside In addition, a bus bar electrode is formed thereon and then fired in a lump, and the region and the finger penetrate through the insulating film, which is a film under the finger electrode, by the action of silver and lead contained in the finger electrode during the lump firing. An electrically conductive path is formed between the electrodes (referred to as lower-layer firing), and the fingers are further affected by the action of silver and lead contained in the finger electrodes during firing. And so as to form an electrically conductive path is exposed on the bus bar electrode through the bus bar electrode is a layer above the electrode (referred upper firing).
 この際、下層ファイアリングを固相中のファイアリングとし、上層ファイアリングを液相中のファイアリングとし、後者の電気導電性通路の長さを前者の電気伝導性通路の長さに比して大幅に長くするようにしている。 In this case, the lower firing is the firing in the solid phase, the upper firing is the firing in the liquid phase, and the length of the latter electrically conductive passage is compared to the length of the former electrically conductive passage. I try to make it much longer.
 また、バスバー電極を貫通してバスバー電極の上に露出した電気導電性通路の形成に加えて、バスバー電極の上に導電層が形成されている場合には導電層に電気導電性通路を形成するようにしている。 Further, in addition to forming an electrically conductive passage that penetrates the bus bar electrode and is exposed on the bus bar electrode, an electrically conductive passage is formed in the conductive layer when a conductive layer is formed on the bus bar electrode. I am doing so.
 また、露出した電気導電性通路あるいは導電層に帯状のリード線を半田付けするようにしている。 Also, a strip-shaped lead wire is soldered to the exposed electrically conductive path or conductive layer.
 また、導電性のバスバー電極として、導電性ガラスを重量比100%から0%以上とし残りを銀とするようにしている。 Also, as the conductive bus bar electrode, the conductive glass is made from 100% to 0% or more by weight and the rest is made of silver.
 また、導電性ガラスは、少なくともバナジウムあるいはバナジウムとバリウムを含むバナシン酸ガラスとするようにしている。 The conductive glass is vanadate glass containing at least vanadium or vanadium and barium.
 また、導電性ガラスを焼成する工程の時間は、長くても1分以内、1秒以上とするようにしている。 Also, the time for the process of firing the conductive glass is set to be within 1 minute at the longest and 1 second or longer.
 また、導電性ガラスを焼成する工程の温度は、温度が低すぎると下層ファイアリングが行われず、温度が高すぎると焼成して冷却した後にバスバー電極中の導電性ガラスで電気導電性通路が覆われて上層ファイアリングが劣化するので、これらの間の範囲内の温度とするようにしている。 If the temperature is too low, the lower layer firing is not performed. If the temperature is too high, the conductive glass in the bus bar electrode covers the electrically conductive path after firing and cooling. Since the upper layer firing deteriorates, the temperature is set within the range between them.
 また、導電性ガラスは、Pbフリーとするようにしている。 Also, the conductive glass is Pb free.
 本発明は、上述したように、フィンガー電極から下の層の高電子濃度領域へのファイアリングによる電気導電性通路の形成(下層ファイアリング)に加え、更に、フィンガー電極から上の層のバスバー電極を貫通して露出した電気導電性通路の形成(上層ファイアリング)を行ったことにより、高電子濃度領域からの電子の外部への取出し効率を高めることが可能となると共に、バスバー電極にNTAガラスを用いて銀の使用量を無くし、ないし低減し、および鉛(鉛ガラス)の使用量を低減ないし無くすことを可能とした。 In addition to the formation of an electrically conductive path (lower layer firing) by firing from the finger electrode to the high electron concentration region of the lower layer as described above, the present invention further includes a bus bar electrode on the upper layer from the finger electrode. The formation of the electrically conductive passage exposed through the upper surface (upper layer firing) makes it possible to increase the efficiency of taking out electrons from the high electron concentration region to the outside, and NTA glass on the bus bar electrode It was possible to eliminate or reduce the amount of silver used and to reduce or eliminate the amount of lead (lead glass) used.
 図1は、本発明の1実施例構成図を示す。 FIG. 1 shows a block diagram of one embodiment of the present invention.
 図1の(a)は焼成前の平面図を示し、図1の(b)は焼成前の断面図を示し、図1の(c)は焼成後の断面図を示す。  1 (a) shows a plan view before firing, FIG. 1 (b) shows a sectional view before firing, and FIG. 1 (c) shows a sectional view after firing.
 図1の(a)、(b)の焼成前の平面図および断面図において、シリコン基板1は、公知の半導体のシリコン基板である。このシリコン基板11の窒化膜3に接する部分には図示外の高電子濃度領域(拡散ドーピング層)が形成されており、該光電子濃度領域はシリコン基板1の上に所望のp型/n型の層を拡散ドーピングなどで形成した公知の領域(層)であって、図1の(b)では上方向から太陽光が入射するとシリコン基板1で電子を発生(発電)し、その電子を蓄積する領域である。ここでは、蓄積した電子は電子取出口(図1の(c)のフィンガー電極(銀)4)によって上方向に取り出されるものである。 1A and 1B, the silicon substrate 1 is a known semiconductor silicon substrate. An unillustrated high electron concentration region (diffusion doping layer) is formed in a portion of the silicon substrate 11 in contact with the nitride film 3, and the photoelectron concentration region is formed on the silicon substrate 1 with a desired p-type / n-type. This is a known region (layer) formed by diffusion doping or the like. In FIG. 1B, when sunlight is incident from above, electrons are generated (power generation) in the silicon substrate 1 and accumulated. It is an area. Here, the accumulated electrons are taken out upward by an electron outlet (finger electrode (silver) 4 in FIG. 1C).
 アルミ電極(裏面電極)2は、シリコン基板1の下面に形成した公知の電極となるものであって、ここでは図示の焼成前ではペースト状のものである(一括焼成により図1の(c)の導電性のアルミ電極2となる)。 The aluminum electrode (back electrode) 2 is a well-known electrode formed on the lower surface of the silicon substrate 1 and is here a paste-like material before firing (illustrated in FIG. Conductive aluminum electrode 2).
 窒化膜(窒化シリコン膜)3は、太陽光を通過(透過)させ、かつバスバー電極5と高電子濃度領域とを電気的に絶縁する公知の膜であって、例えばSiNxの膜である。この窒化膜3は、後述する一括焼成時の下層ファイアリングにより固相中で該窒化膜を貫通した電気導電性通路を形成する膜(層)である。 The nitride film (silicon nitride film) 3 is a known film that transmits (transmits) sunlight and electrically insulates the bus bar electrode 5 from the high electron concentration region, and is, for example, a SiNx film. The nitride film 3 is a film (layer) that forms an electrically conductive passage through the nitride film in the solid phase by lower layer firing during batch firing described later.
 フィンガー電極4は、高電子濃度領域中に蓄積した電子を窒化膜3に形成した穴を介して取り出す口(フィンガー電極)であって、焼成前では図示のように窒化膜3の上にペーストが印刷され、加熱乾燥(100°程度)された状態のものである(一括焼成すると図1の(c)のようになる))。 The finger electrode 4 is an opening (finger electrode) for taking out electrons accumulated in the high electron concentration region through a hole formed in the nitride film 3, and before firing, a paste is formed on the nitride film 3 as shown in the figure. It is in a state of being printed and heat-dried (about 100 °) (when it is fired at once, it becomes as shown in FIG. 1 (c)).
 バスバー電極5は、複数の電子取出口(複数のフィンガー電極4)を電気的に接続する電極であって、図示の焼成前の状態では、NTAガラスのペーストをバスバー電極5として印刷(例えばシルク印刷)して加熱乾燥し、Agの使用量を無くす、ないし削減した電極である。一括焼成することにより、バスバー電極5として導電性の電極となる。 The bus bar electrode 5 is an electrode for electrically connecting a plurality of electron outlets (a plurality of finger electrodes 4). In the state before firing, NTA glass paste is printed as the bus bar electrode 5 (for example, silk printing). ) And dried by heating to eliminate or reduce the amount of Ag used. By conducting simultaneous firing, the bus bar electrode 5 becomes a conductive electrode.
 以上の図1の(a)および(b)に示すように、ペースト状のアルミ電極2、フィンガー電極4、バスバー電極5を順番に印刷・加熱乾燥することを繰り返して図示の構造を作製する。そして、図1の(c)のように一括焼成し、アルミ電極2、フィンガー電極4、バスバー電極5を完成させる。 As shown in FIGS. 1 (a) and 1 (b), the paste-like aluminum electrode 2, finger electrode 4, and bus bar electrode 5 are sequentially printed and heated and dried to produce the structure shown in the drawing. Then, as shown in (c) of FIG. 1, the aluminum electrode 2, the finger electrode 4, and the bus bar electrode 5 are completed.
 図1の(c)において、フィンガー電極4は、一括焼成後のものであって、本発明に係るバスバー電極5をNTAガラス100%ないし0%以上で焼成した場合には、フィンガー電極4が後述する液相中の上層ファイアリング42によりバスバー電極5の上面の高さと同じ部分あるいは突き抜けて上面に突出した部分を形成(焼成)し、高電子濃度領域中の電子を当該フィンガー電極4を介してバスバー電極5の上に半田付けする図示外のリード線に直接に流入させる(電子を直接に取り出させる)ことが可能となる。つまり、高電子濃度領域、フィンガー電極4、バスバー電極5、リード線6の経路1と、高電子濃度領域、フィンガー電極4、リード線6の経路2との2つの経路で高電子濃度領域中の電子(電流)をリード線6を介して外部に取り出すことができ、結果として、高電子濃度領域とリード線6との間の抵抗値を非常に小さくすることが可能となり、損失を低減して結果として太陽電池の効率を向上させることができる。この際、フィンガー電極4と高電子濃度領域とフィンガー電極4との間は固相中の下層ファイアリング41で電気導電性通路を形成し、フィンガー電極4とバスバー電極5あるいは該バスバー電極5を突き抜けて露出した部分を形成するのに液相中の上層ファイアリング42で電気導電性通路を形成したものである。 In FIG. 1 (c), the finger electrode 4 is after batch firing, and when the bus bar electrode 5 according to the present invention is fired with 100% to 0% or more of NTA glass, the finger electrode 4 is described later. The upper firing 42 in the liquid phase to be formed forms (fires) a portion that is the same as the height of the upper surface of the bus bar electrode 5 or a portion that protrudes through the upper surface of the bus bar electrode 5. It becomes possible to directly flow into the lead wire (not shown) to be soldered onto the bus bar electrode 5 (to directly take out electrons). That is, the high electron concentration region, the finger electrode 4, the bus bar electrode 5, the lead wire 6 path 1 and the high electron concentration region, the finger electrode 4, the lead wire 6 route 2 in the high electron concentration region. Electrons (current) can be taken out via the lead wire 6, and as a result, the resistance value between the high electron concentration region and the lead wire 6 can be made extremely small, reducing the loss. As a result, the efficiency of the solar cell can be improved. In this case, an electrically conductive path is formed between the finger electrode 4, the high electron concentration region, and the finger electrode 4 by the lower layer firing 41 in the solid phase, and penetrates the finger electrode 4 and the bus bar electrode 5 or the bus bar electrode 5. In order to form the exposed portion, an electrically conductive passage is formed by the upper layer firing 42 in the liquid phase.
 例えば1実験結果では窒化膜3の厚さが60nmであり、バスバー電極5の印刷の厚さが20μmであったので、一括焼成により、
  ・窒化膜3は固相中の下層ファイアリング41によるものであり、
  ・NTAガラスからなるバスバー電極5は液相中の上層ファイアリング42であり、両者の電気導電性通路の長さの比は、60nm:20μm=1:333となり、約330倍、高速に液相中の上層ファイアリング42が実験で確認できた。すなわち、固相中の下層ファイアリング41に比して液相中の上層ファイアリング42の電気導電性通路の長さは数十倍ないし千倍程度の高速に形成することが可能であることが実験により判明した。
For example, in one experimental result, the thickness of the nitride film 3 was 60 nm and the printed thickness of the bus bar electrode 5 was 20 μm.
The nitride film 3 is due to the lower firing 41 in the solid phase,
The bus bar electrode 5 made of NTA glass is the upper layer firing 42 in the liquid phase, and the ratio of the lengths of the electrically conductive paths of both is 60 nm: 20 μm = 1: 333, about 330 times, and the liquid phase is high-speed The middle upper layer firing 42 was confirmed by experiments. That is, the length of the electrically conductive passage of the upper layer firing 42 in the liquid phase can be formed at a high speed of several tens to thousands times as compared with the lower layer firing 41 in the solid phase. It became clear by experiment.
 尚、下層ファイアリング41は、フィンガー電極4に含まれる鉛(鉛ガラス)と銀の混在により下の層の窒化膜4、約60nmを突き破って電子濃度の高い部分に接触する。ここで、下層ファイアリング41が進み過ぎた場合には銀の部分が高い電子濃度の部分から少し下の電子濃度の低い部分に伸びるために、太陽電池の変換効率が低下するので、実験で適切な下層ファイアリング(一括焼成の温度、時間(1分以下、1秒以上が望ましい))41を決定する必要がある。 The lower firing 41 is in contact with a portion having a high electron concentration by breaking through the lower nitride film 4 and about 60 nm by the mixture of lead (lead glass) and silver contained in the finger electrode 4. Here, when the lower layer firing 41 advances too much, the silver portion extends from the high electron concentration portion to the slightly lower electron concentration portion, so that the conversion efficiency of the solar cell is lowered. It is necessary to determine the lower layer firing (batch firing temperature and time (1 minute or less, preferably 1 second or more)) 41.
 更に、上層ファイアリング42は、下層ファイアリング41が生じている時に同時並列に生じる。上層ファイアリング42は、下層ファイアリング41と同様に、フィンガー電極4に含まれる鉛(鉛ガラス)と銀の混在により上の層のバスバー電極5、約20μmを突き破って当該バスバー電極5の上に銀(Ag)の露出部分を形成する。ここで、上層ファイアリング42が過度(一括焼成の温度が高過ぎ)の場合にはバスバー電極5中のNTAガラスが露出したAg部分を覆うように再凝固して劣化させてしまい(後述する図8およびその説明参照)、太陽電池の変換効率が低下するので、実験で適切な上層ファイアリング(一括焼成の温度、時間(1分以下、1秒以上が望ましい))を決定する必要がある。 Furthermore, the upper layer firing 42 occurs simultaneously in parallel when the lower layer firing 41 occurs. The upper layer firing 42, like the lower layer firing 41, breaks through the upper bus bar electrode 5, about 20 μm, onto the bus bar electrode 5 by mixing lead (lead glass) and silver contained in the finger electrode 4. An exposed portion of silver (Ag) is formed. Here, when the upper layer firing 42 is excessive (the temperature for batch firing is too high), the NTA glass in the bus bar electrode 5 is re-solidified and deteriorated so as to cover the exposed Ag portion (a figure to be described later). 8 and the description thereof), since the conversion efficiency of the solar cell is lowered, it is necessary to determine an appropriate upper layer firing (batch firing temperature and time (1 minute or less, preferably 1 second or more)) by experiments.
 以上の図1の(c)の構造のもとで、上から下方向に太陽光を照射すると、太陽光はリード線(図示外)、バスバー電極5、フィンガー電極4の無い部分と窒化膜3を通過し、シリコン基板1に入射して電子を発生する。その後、高電子濃度領域に蓄積した電子は、フィンガー電極4、バスバー電極5、リード線6の経路1、およびフィンガー電極4、リード線6の経路2の両経路(並列の経路)を介して外部に取り出される。以下順次詳細に説明する。 Under the structure of FIG. 1C, when sunlight is irradiated from above to below, the sunlight is not in the lead wire (not shown), the bus bar electrode 5, the portion without the finger electrode 4, and the nitride film 3. And enters the silicon substrate 1 to generate electrons. Thereafter, the electrons accumulated in the high electron concentration region are externally transmitted through both the finger electrode 4, the bus bar electrode 5, the route 1 of the lead wire 6, and both the finger electrode 4 and the route 2 of the lead wire 6 (parallel route). To be taken out. Details will be sequentially described below.
 図2は、本発明の要部説明図を示す。図2の(a)は一括焼成後の図1の(c)と同一であり、図2の(b)は図2の(a)の要部の拡大図である。 FIG. 2 is an explanatory diagram of the main part of the present invention. 2A is the same as FIG. 1C after batch firing, and FIG. 2B is an enlarged view of the main part of FIG. 2A.
 図2の(b)において、一括焼成後には図示のように、フインガー電極4の下層ファイアリング41が窒化膜3を貫通して、ここでは、N型濃度の高い領域11に電気導電性経路(銀の経路)が形成されている。 In FIG. 2B, after batch firing, the lower firing 41 of the finger electrode 4 penetrates the nitride film 3 as shown in the figure, and here, an electrically conductive path ( A silver path) is formed.
 一方、同時の一括焼成後には図示のように、フィンガー電極4の上層ファイアリング42がバスバー電極5を貫通あるいはほぼ貫通して、ここでは、バスバー電極5中に電気導電性通路(銀の経路)が形成されている。 On the other hand, after simultaneous simultaneous firing, as shown in the drawing, the upper layer firing 42 of the finger electrode 4 penetrates or almost penetrates the bus bar electrode 5, and here, an electrically conductive path (silver path) in the bus bar electrode 5. Is formed.
 したがって、一括焼成後には、フィンガー電極4の下層ファイアリング41および上層ファイアリング42の両者のファイアリングにより、N型濃度の高い領域11-フィンガー電極4-バスバー電極5-リード線6の経路1、およびN型濃度の高い領域11-Fフィンガー電極4-リード線6の経路2が形成され、両経路1,2を経由してリード線6から外部に取り出すことが可能となり、N型濃度の高い領域11とリード線6との間の抵抗値を極めて小さくし、太陽電池の効率を向上させることができた(図4、図7を用いて後述)。 Therefore, after batch firing, both the lower layer firing 41 and the upper layer firing 42 of the finger electrode 4 cause firing of the region 11 having a high N-type concentration, the finger electrode 4, the bus bar electrode 5 and the path 1 of the lead wire 6, In addition, a high N-type region 11 -F finger electrode 4 -lead wire 6 path 2 is formed and can be taken out from the lead wire 6 via both paths 1 and 2, and the N-type concentration is high. The resistance value between the region 11 and the lead wire 6 was made extremely small, and the efficiency of the solar cell could be improved (described later with reference to FIGS. 4 and 7).
 ここで、NTAガラスのバスバー電極5は、例えば1実験結果では一括焼成温度を低い温度の例えば700℃で行うと焼成が十分でなくリード線6を半田付けした後の引張試験でバスバー電極5と一体となってはがれてしまう。高い温度の例えば820℃で一括焼成を行うと、バスバー電極5の直下の窒化膜3に損傷を与え(窒化膜中の水素が気泡になって膜中を通過して窒化膜に損傷を与え)、リード線6を半田付けした際、シリコン基板1から窒化膜3ごと剥離してしまう。また、高い温度で一括焼成を行うと、上層ファイアリング42において、バスバー電極5を構成するNTAガラスが溶解して再凝固する際にバスバー電極5の上に露出した電気導電性経路を覆って劣化させてしまう事態が発生した(図8参照)。 Here, the bus bar electrode 5 made of NTA glass is, for example, in one experimental result, if the batch firing temperature is performed at a low temperature, for example, 700 ° C., firing is not sufficient, and the bus bar electrode 5 It will come off as one. When batch firing is performed at a high temperature, for example, 820 ° C., the nitride film 3 immediately below the bus bar electrode 5 is damaged (hydrogen in the nitride film forms bubbles and damages the nitride film through the film) When the lead wire 6 is soldered, the nitride film 3 is peeled off from the silicon substrate 1. Further, when the simultaneous firing is performed at a high temperature, the NTA glass constituting the bus bar electrode 5 is melted and re-solidified in the upper layer firing 42 so as to cover the electrically conductive path exposed on the bus bar electrode 5 and deteriorate. A situation has occurred (see FIG. 8).
 以上のように、フィンガー電極4の下層ファイアリング41および上層ファイアリング42には適切な温度範囲がそれぞれ存在し、各材料に応じた実験で求めた最適な温度範囲内の温度で一括焼成を行うことが必要である。 As described above, appropriate temperature ranges exist for the lower firing 41 and the upper firing 42 of the finger electrode 4, respectively, and batch firing is performed at a temperature within the optimum temperature range obtained by an experiment according to each material. It is necessary.
 図3は、本発明のNTAガラスを用いた太陽電池の製造工程例を示す。 FIG. 3 shows an example of a manufacturing process of a solar cell using the NTA glass of the present invention.
 図3において、S1は、シリコン基板(PN接合形成基板)を準備する。これは、シリコン基板1の表面に拡散ドーピングを行った高電子濃度領域を形成、およびその上に反射防止膜(太陽光を通過させ、かつ表面反射を可及的に低減した膜)として例えば窒化膜(窒化シリコン膜)3を形成したシリコン基板1を準備する。 3, S1 prepares a silicon substrate (PN junction formation substrate). This is because, for example, nitriding is performed as an antireflection film (a film through which sunlight is passed and the surface reflection is reduced as much as possible) formed on the surface of the silicon substrate 1 by performing diffusion doping on the surface. A silicon substrate 1 on which a film (silicon nitride film) 3 is formed is prepared.
 S2は、シリコン基板の裏面にアルミペーストを印刷する。 S2 prints aluminum paste on the back of the silicon substrate.
 S3は、電気炉によりペーストを乾燥する。これらS1からS3は、既述した図1および図2のシリコン基板1の裏面にアルミペーストを一面に印刷し、電気炉で加熱乾燥する。 In S3, the paste is dried by an electric furnace. In these S1 to S3, an aluminum paste is printed on the entire back surface of the silicon substrate 1 shown in FIGS. 1 and 2 and dried by heating in an electric furnace.
 S4は、シリコン基板の表面にフィンガー電極用の銀(鉛)ペーストを印刷する。これは、窒化膜3の上に、形成するフィンガー電極4のパターンをスクリーン印刷する。印刷材料は、例えば銀にフリットとして鉛ガラスを混入したペーストを用いる。 S4 prints a silver (lead) paste for finger electrodes on the surface of the silicon substrate. In this process, a pattern of finger electrodes 4 to be formed is screen-printed on the nitride film 3. As the printing material, for example, a paste in which lead glass is mixed as a frit in silver is used.
 S5は、電気炉で銀(鉛)ペーストを乾燥する。 S5 dries the silver (lead) paste in an electric furnace.
 S6は、シリコン基板の表面に銀/NTAガラスペーストでバスバー電極を印刷する。これは、S4で乾燥したフィンガー電極の上から、形成するバスバー電極5のパターンをスクリーン印刷する。。印刷材料は、例えばフリットとしてNTAガラス(100%から0%以上、残り銀)のものを用いる。 S6 prints bus bar electrodes with silver / NTA glass paste on the surface of the silicon substrate. This screen-prints the pattern of the bus bar electrode 5 to be formed on the finger electrode dried in S4. . As the printing material, for example, NTA glass (100% to 0% or more, remaining silver) is used as a frit.
 S7は、電気炉で銀/NTAガラスペーストを乾燥する。 S7 dries the silver / NTA glass paste in an electric furnace.
 以上により、高電子濃度領域11、窒化膜3の形成されたシリコン基板1の裏面にアルミ電極2、およびシリコン基板1の表面にフィンガー電極4、バスバー電極5のペーストを順次印刷・加熱乾燥することを繰り返し、一括焼成する準備が完了したこととなる。 Thus, the aluminum electrode 2 is formed on the back surface of the silicon substrate 1 on which the high electron concentration region 11 and the nitride film 3 are formed, and the finger electrode 4 and the bus bar electrode 5 paste are sequentially printed and heated and dried on the surface of the silicon substrate 1. This completes the preparation for batch firing.
 S8は、遠赤外線焼成炉で、アルミ電極、フィンガー電極、バスバー電極の各ペーストを一括焼成する。この一括焼成により、アルミ電極3が形成され、更に、
 (1)フィンガー電極4中の鉛(鉛ガラス)、銀の作用により下層の膜である窒化膜3が固相中で下層ファイアリング41により電子を高濃度電子領域からフィンガー電極4に取り出す経路を形成し、かつ
 (2)フィンガー電極4中の鉛(鉛ガラス)、銀の作用により上層の膜であるバスバー電極5が液相中で上層ファイアリング42により電子をフィンガー電極4からバスバー電極5の上に突出した部分(リード線6が半田付けされる)への経路2(フィンガー電極4、リード線6の経路2)あるいはバスバー電極5の上部の近傍の部分への経路1(フィンガー電極4、バスバー電極5、リード線6の経路1)を形成する、
ことが実験により確かめられた。
S8 is a far-infrared firing furnace for firing all pastes of aluminum electrodes, finger electrodes, and bus bar electrodes. By this batch firing, an aluminum electrode 3 is formed,
(1) Lead (lead glass) in the finger electrode 4 and the lower layer of the nitride film 3 due to the action of silver in the solid phase, a path for taking out electrons from the high-concentration electron region to the finger electrode 4 by the lower layer firing 41 (2) The bus bar electrode 5 which is the upper layer film by the action of lead (lead glass) and silver in the finger electrode 4 is in the liquid phase, and electrons are transferred from the finger electrode 4 to the bus bar electrode 5 by the upper layer firing 42. Path 2 (finger electrode 4, path 2 of lead wire 6) to the part protruding upward (lead wire 6 is soldered) or path 1 (finger electrode 4, Forming the bus bar electrode 5 and the path 1) of the lead wire 6;
This was confirmed by experiments.
 これら下層ファイアリング41および上層ファイアリング42により高電子濃度領域から電子をリード線6に効率良好に取り出すことが可能となった(後述する図4、図7参照)。 These lower layer firing 41 and upper layer firing 42 enable efficient extraction of electrons from the high electron concentration region to the lead wire 6 (see FIGS. 4 and 7 described later).
 S9は、半田付けする。これは、既述した図2の(a)のリード線6を半田付けする(半田付け、あるいは超音波ハンダ付けする)。 S9 is soldered. This is performed by soldering the above-described lead wire 6 in FIG. 2A (soldering or ultrasonic soldering).
 S10は、太陽電池の性能測定する。 S10 measures the performance of the solar cell.
 図4は、本発明の測定例を示す。この測定例は、図4の工程S1からS8で作製したリード線6を半田付けする前の状態におけるバスバー電極5(フィンガー電極4)の上から2本の隣接した接触棒の間の抵抗値の測定例を示す。 FIG. 4 shows a measurement example of the present invention. In this measurement example, the resistance value between two adjacent contact bars from above the bus bar electrode 5 (finger electrode 4) in the state before soldering the lead wire 6 produced in steps S1 to S8 in FIG. A measurement example is shown.
 図4の(a)は平面図を示し、図4の(b)は測定位置例(番号)を示し、図4の(c)は測定値例を示す。 4A shows a plan view, FIG. 4B shows a measurement position example (number), and FIG. 4C shows a measurement value example.
 図4の(a)は、フィンガー電極4、およびバスバー電極5の構成を模式的に表したものである。バスバー電極5は、細い帯状の複数のフィンガー電極4の上に電気的接続するように直角方向に帯状に形成されたものである。 FIG. 4A schematically shows the configuration of the finger electrode 4 and the bus bar electrode 5. The bus bar electrode 5 is formed in a band shape in a perpendicular direction so as to be electrically connected to the plurality of finger electrodes 4 having a thin band shape.
 図4の(b)は、2本の接触棒の間の抵抗値を測定する場所の番号である。 (B) in FIG. 4 is the number of the place where the resistance value between the two contact bars is measured.
 (1)(2)(3)(4)(5)(6)は、バスバー電極5の上にフィンガー電極4が露出した部分(上層ファイアリング42で形成された電気導電性経路の部分)の位置の番号である。 (1) (2) (3) (4) (5) (6) is the portion of the finger electrode 4 exposed on the bus bar electrode 5 (the portion of the electrically conductive path formed by the upper layer firing 42). The position number.
 (7)(8)は、フィンガー電極4の真上でなく中間で、バスバー電極5の上の図示の位置の番号である。 (7) (8) is the number of the illustrated position on the bus bar electrode 5 in the middle, not directly above the finger electrode 4.
 図4の(c)は、図4の(b)の位置の測定値例を示す。図中の(1)(2)、(3)(4)、(5)(6)の抵抗値はいずれも0.20Ωと小さい抵抗値であった。これは、フィンガー電極4が上層ファイアリング42によりバスバー電極5の上に露出しておりこの露出した部分に直接に2本の接触棒を接触させたために小さな抵抗値として測定されたものである。 (C) in FIG. 4 shows an example of measured values at the position in (b) in FIG. The resistance values of (1), (2), (3), (4), (5), and (6) in the figure were all as small as 0.20Ω. This is measured as a small resistance value because the finger electrode 4 is exposed on the bus bar electrode 5 by the upper layer firing 42 and the two contact bars are brought into direct contact with the exposed portion.
 一方、(7)(8)の抵抗値はいずれも0.30Ωと少し大きい抵抗値であった。これは、フィンガー電極4が上層ファイアリング42によりバスバー電極5の上に露出していても、この露出した部分から離れた図示の位置に直接に2本の接触棒を接触させたために若干大きな抵抗値として測定されたものである。 On the other hand, the resistance values of (7) and (8) were both 0.30Ω and a slightly large resistance value. This is because even if the finger electrode 4 is exposed on the bus bar electrode 5 by the upper layer firing 42, the two contact bars are brought into direct contact with the illustrated position apart from the exposed portion, so that the resistance is slightly large. Measured as a value.
 また、フィンガー電極4の抵抗値は、0.20Ωと、(1)から(6)までのものとほぼ同一であった。 Further, the resistance value of the finger electrode 4 was 0.20Ω, which was almost the same as those of (1) to (6).
 以上のように、本発明に係る上層ファイアリング42によりバスバー電極5の上にフィンガー電極4を露出させて、抵抗値をきわめて小さくすることが可能となった。 As described above, the finger electrode 4 is exposed on the bus bar electrode 5 by the upper layer firing 42 according to the present invention, and the resistance value can be made extremely small.
 図5および図6は、本発明のバスバー電極の断面観察例を示す。使用したサンプル条件は、図示の下記である。 5 and 6 show cross-sectional observation examples of the bus bar electrode of the present invention. The sample conditions used are as shown below.
 ・バスバー電極の材料比率:NTAガラス:Ag=50:50
 ・焼成条件:781℃×8秒
 ・基板:多結晶シリコン基板
 図5の(a)は、太陽電池のバスバー電極5まで作製(図3のS1からS8)したときの部分的な平面図を示す。横の帯状のものがバスバー電極5であり、縦方向の線状のものがフィンガー電極4である。ここでは、点線で示すように、帯状の横方向のバスバー電極5の中央を横方向に切断した。そして、図6にこの切断面の写真を示す。
-Material ratio of bus bar electrode: NTA glass: Ag = 50: 50
Firing condition: 781 ° C. × 8 seconds Substrate: polycrystalline silicon substrate FIG. 5A shows a partial plan view when manufacturing up to the bus bar electrode 5 of the solar cell (S1 to S8 in FIG. 3). . The horizontal band is the bus bar electrode 5, and the vertical line is the finger electrode 4. Here, as indicated by the dotted line, the center of the strip-shaped lateral bus bar electrode 5 was cut in the lateral direction. FIG. 6 shows a photograph of this cut surface.
 図5の(b)は、断面拡大イメージ図を示す。これは、図5の(a)の点線の切断面で切断したときの、当該切断面を拡大したイメージ図を示す。シリコン基板1の上に紙面に直角方向にフィンガー電極4が形成され、その上に、紙面の横方向にバスバー電極5が形成されている。 (B) of FIG. 5 shows a cross-sectional enlarged image diagram. This shows an enlarged image of the cut surface when cut along the dotted cut surface in FIG. A finger electrode 4 is formed on the silicon substrate 1 in a direction perpendicular to the paper surface, and a bus bar electrode 5 is formed on the finger electrode 4 in the lateral direction of the paper surface.
 図6の(c)は、電子顕微鏡写真(断面で少し傾斜したAg分布)を示す。これは、既述した図5の(b)の断面図のAg分布のSEM画像を表す写真である。図中でフィンガー電極4の部分は、白色の輪郭線で判り易く表す。白色の輪郭線のうち、図示の「窒化膜3をフィンガー電極4の銀が突き抜けている」と矢印(白)で示した部分が、フィンガー電極4が下層ファイアリングで窒化膜3を突き抜けて高電子濃度領域に到達した部分(電気導電性経路、銀の経路)である。 (C) of FIG. 6 shows an electron micrograph (Ag distribution slightly inclined in the cross section). This is a photograph showing an SEM image of the Ag distribution in the cross-sectional view of FIG. In the figure, the part of the finger electrode 4 is easily understood by a white outline. Of the white outline, the portion indicated by the arrow (white) that “the silver of the finger electrode 4 has penetrated the nitride film 3” shown in the figure is high because the finger electrode 4 has penetrated the nitride film 3 by lower firing. This is the part (electrically conductive path, silver path) that has reached the electron concentration region.
 図6の(d)は、電子顕微鏡写真(断面)を示す。これは、既述した図5の(b)の断面図のSEM画像を表す写真である。図中でフィンガー電極4の部分は、白色の輪郭線で判り易く表す。白色の輪郭線のうち、図示の「窒化膜3をフィンガー電極4の銀が突き抜けている」と矢印(黒)で示した部分が、フィンガー電極4が下層ファイアリングで窒化膜3を突き抜けて高電子濃度領域に到達した部分(電気導電性経路、銀の経路)である。 (D) of FIG. 6 shows an electron micrograph (cross section). This is a photograph showing the SEM image of the cross-sectional view of FIG. In the figure, the part of the finger electrode 4 is easily understood by a white outline. Of the white outline, the portion indicated by the arrow (black) that “the silver of the finger electrode 4 penetrates the nitride film 3” shown in the figure is high because the finger electrode 4 penetrates the nitride film 3 by the lower firing. This is the part (electrically conductive path, silver path) that has reached the electron concentration region.
 以上のように、フィンガー電極4中の鉛(鉛ガラス)、銀の作用により、下層の窒化膜3を突き抜けた銀の経路が形成され、上層のバスバー電極5を突き抜けた銀の経路が形成されていることが判明した。 As described above, by the action of lead (lead glass) and silver in the finger electrode 4, a silver path that penetrates the lower nitride film 3 is formed, and a silver path that penetrates the upper bus bar electrode 5 is formed. Turned out to be.
 図7は、本発明のバスバー電極を用いた太陽電池の特性例を示す。これは、右側に記載した下記の各種サンプルのI-V特性を測定した例を示す。 FIG. 7 shows a characteristic example of a solar cell using the bus bar electrode of the present invention. This shows an example of measuring the IV characteristics of the following various samples described on the right side.
  ・NTA50-781-8(Sample1)
  ・NTA50-781-8(Sample2)
  ・NTA50-781-8(Sample3)
  ・NTA50-781-8(Sample4)
  ・NTA50-781-8(Sample5)
  ・NTA50-781-8(Sample6)
  ・Ref820-4(Sample1)
  ・Ref820-4(Sample2)
  ・Ref820-4(Sample3)
 ここで、「NTA50」はバスバー電極の材料として、NTAガラスを50%wt、残りを銀としたもの、次の「781」は781℃で焼成、次の「8」は焼成時間が8秒である旨を表す(遠赤外線加熱)。また、「Ref820」は820℃、次の「4」は4秒である旨を表す(遠赤外線加熱)。
・ NTA50-781-8 (Sample1)
・ NTA50-781-8 (Sample2)
・ NTA50-781-8 (Sample3)
・ NTA50-781-8 (Sample4)
・ NTA50-781-8 (Sample5)
・ NTA50-781-8 (Sample 6)
・ Ref820-4 (Sample1)
・ Ref820-4 (Sample2)
・ Ref820-4 (Sample3)
Here, “NTA50” is a bus bar electrode material, NTA glass is 50% wt, the rest is silver, the next “781” is fired at 781 ° C., the next “8” is a firing time of 8 seconds Represents the fact (far infrared heating). “Ref 820” represents 820 ° C., and the next “4” represents 4 seconds (far infrared heating).
 以上の作製したサンプルについてI-V特性を測定し、プロットしたものが図7に示すものである。NTA50%のバスバー電極4を用いた太陽電池では、NTAガラスを含まないバスバー電極4よりも図示のようにIが若干大きくなっており、既述した経路1、経路2による抵抗値の改善(低下)により、結果として、高電子濃度領域からの電子の取出し効率を向上させることができることが判明した。 FIG. 7 shows the IV characteristics measured and plotted for the samples prepared above. In the solar cell using the bus bar electrode 4 of NTA 50%, I is slightly larger than the bus bar electrode 4 not including NTA glass as shown in the figure, and the resistance value is improved (decreased) by the paths 1 and 2 described above. As a result, it was found that the efficiency of extracting electrons from the high electron concentration region can be improved.
 図8は、本発明の上層ファイアリングの説明図を示す。 FIG. 8 is an explanatory diagram of the upper layer firing of the present invention.
 図8の(a)は上層ファイアリング(適切)の顕微鏡写真の例を示し、図8の(b)は上層ファイアリング(過度)の顕微鏡写真の例を示す。ここで、横方向の細い2本のラインはフィンガー電極4であり、縦方向の1本の幅広い帯状のものはバスバー電極5である。 8A shows an example of an upper layer firing (appropriate) micrograph, and FIG. 8B shows an example of an upper layer firing (excessive) micrograph. Here, two thin lines in the horizontal direction are the finger electrodes 4, and one wide strip in the vertical direction is the bus bar electrode 5.
 図8の(a)において、既述した一括焼成後にはバスバー電極5の上に、フィンガー電極4のAgが既述した上層ファイアリング42により一部が露出していることが判明する。 8A, after the batch firing described above, it is found that a part of Ag is exposed on the bus bar electrode 5 due to the above-described upper layer firing 42 of the finger electrode 4.
 一方、図8の(b)の過度(例えば高すぎる温度で一括焼成)した場合にはNTAガラスが溶解して再凝固時に結晶が成長して大きくなっていると共に、せっかくバスバー電極5の上に上層ファイアリング42で露出したAgの部分に覆われて露出しなくなり抵抗値が大きくなってしまうという現象が観察できた。 On the other hand, in the case of excessive (for example, simultaneous firing at a too high temperature) in FIG. 8B, the NTA glass is melted and crystals grow and become large at the time of re-solidification, and on the bus bar electrode 5 with great effort. It was possible to observe a phenomenon that the Ag value exposed by the upper layer firing 42 was covered and no longer exposed and the resistance value increased.
 したがって、一括焼成の温度は、図8の(a)の適切な温度範囲で行う必要があり、図8の(b)のように過度(高い温度)で行うとその抵抗値が大きくなって性能劣化をきたすことが判明したので、一括焼成は適切な温度範囲で行う必要がある(材料毎に実験で最適な特に温度範囲(更に、焼成時間例えば1秒以上で1分以内が望ましい適切な時間)を確認して決定する必要がある)。 Therefore, it is necessary to perform the batch firing temperature within an appropriate temperature range shown in FIG. 8A, and if it is performed excessively (at a high temperature) as shown in FIG. Since it has been found that deterioration occurs, it is necessary to carry out batch firing in an appropriate temperature range (in particular, an optimum temperature range for each material in an experiment (in addition, an appropriate time in which the firing time is preferably 1 second or longer and preferably within 1 minute). ) Need to confirm and decide).
本発明の1実施例構成図である。1 is a configuration diagram of one embodiment of the present invention. 本発明の要部説明図である。It is principal part explanatory drawing of this invention. 本発明のNTAガラスを用いた太陽電池の製造工程例である。It is an example of a manufacturing process of a solar cell using the NTA glass of the present invention. 本発明の測定例である。It is a measurement example of the present invention. 本発明のバスバー電極の断面観察例(その1)である。It is a cross-sectional observation example (the 1) of the bus-bar electrode of this invention. 本発明のバスバー電極の断面観察例(その2)である。It is a cross-sectional observation example (the 2) of the bus-bar electrode of this invention. 本発明のバスバー電極を用いた太陽電池の特性例である。It is an example of the characteristic of the solar cell using the bus-bar electrode of this invention. 本発明の上層ファイリングの説明図である。It is explanatory drawing of the upper layer filing of this invention. 従来技術の説明図である。It is explanatory drawing of a prior art.
1:シリコン基板
2:アルミ電極
3:窒化膜(絶縁膜)
4:フィンガー電極
41:下層ファイアリング
42:上層ファイアリング
5:バスバー電極
6:リード線
11:N型濃度の高い領域
12:P型(ホール)
1: Silicon substrate 2: Aluminum electrode 3: Nitride film (insulating film)
4: Finger electrode 41: Lower layer firing 42: Upper layer firing 5: Bus bar electrode 6: Lead wire 11: High N-type region 12: P type (hole)

Claims (17)

  1.  基板上に光などを照射したときに高電子濃度を生成する領域を作成すると共に該領域の上に光などを透過する絶縁膜を形成、該絶縁膜の上に前記領域から電子を取り出す取出口を形成するフィンガー電極を形成、および該複数のフィンガー電極を電気的に接続して前記電子を外部に取り出すバスバー電極を形成した太陽電池において、
     前記絶縁膜の上に銀および鉛を含むフィンガー電極を形成し、更にその上に前記バスバー電極を形成した後に焼成し、
     該焼成時の前記フィンガー電極に含まれる銀および鉛の作用により該フィンガー電極の下の膜である前記絶縁膜を貫通して前記領域と該フィンガー電極との間に電気導電性通路を形成(下層ファイアリングという)し、かつ更に、該焼成時に前記フィンガー電極に含まれる銀および鉛の作用により該フィンガー電極の上の層である前記バスバー電極を貫通して該バスバー電極の上に露出した電気導電性通路を形成(上層ファイアリングという)したことを特徴とする太陽電池。
    A region that generates a high electron concentration when light or the like is irradiated on the substrate, and an insulating film that transmits light or the like is formed on the region, and an extraction port that extracts electrons from the region on the insulating film In a solar cell in which a finger electrode is formed, and a bus bar electrode is formed by electrically connecting the plurality of finger electrodes and extracting the electrons to the outside.
    A finger electrode containing silver and lead is formed on the insulating film, and further, the bus bar electrode is formed thereon and then fired.
    An electrically conductive path is formed between the region and the finger electrode through the insulating film, which is a film under the finger electrode, by the action of silver and lead contained in the finger electrode during the firing (lower layer) Electric conduction exposed through the bus bar electrode, which is a layer above the finger electrode, by the action of silver and lead contained in the finger electrode during firing. A solar cell characterized by forming a sex passage (referred to as upper layer firing).
  2.  前記下層ファイアリングを固相中のファイアリングとし、前記上層ファイアリングを液相中のファイアリングとし、後者の電気導電性通路の長さを前者の電気伝導性通路の長さに比して大幅に長くしたことを特徴とする請求項1記載の太陽電池。 The lower firing is the firing in the solid phase, the upper firing is the firing in the liquid phase, and the length of the latter electrically conductive passage is significantly larger than the length of the former electrically conducting passage. 2. The solar cell according to claim 1, wherein the solar cell is long.
  3.  前記バスバー電極を貫通して該バスバー電極の上に露出した電気導電性通路の形成に加えて、該バスバー電極の上に導電層が形成されている場合には該導電層に電気導電性通路を形成したことを特徴とする請求項1から請求項2のいずれかに記載の太陽電池。 In addition to forming an electrically conductive path that penetrates the bus bar electrode and is exposed on the bus bar electrode, an electrically conductive path is formed in the conductive layer when a conductive layer is formed on the bus bar electrode. The solar cell according to claim 1, wherein the solar cell is formed.
  4.  前記露出した電気導電性通路あるいは前記導電層に帯状のリード線を半田付けしたことを特徴とする請求項1から請求項3のいずれかに記載の太陽電池。 4. The solar cell according to claim 1, wherein a strip-shaped lead wire is soldered to the exposed electrically conductive path or the conductive layer. 5.
  5.  前記導電性のバスバー電極として、導電性ガラスを重量比100%から0%以上とし残りを銀としたことを特徴とする請求項1から請求項4のいずれかに記載の太陽電池。 The solar cell according to any one of claims 1 to 4, wherein as the conductive bus bar electrode, a conductive glass is used in a weight ratio of 100% to 0% or more and the rest is silver.
  6.  前記導電性ガラスは、少なくともバナジウムあるいはバナジウムとバリウムを含むバナシン酸ガラスとしたことを特徴とする請求項5に記載の太陽電池。 6. The solar cell according to claim 5, wherein the conductive glass is vanadate glass containing at least vanadium or vanadium and barium.
  7.  前記導電性ガラスを焼成する工程の時間は、長くても1分以内、1秒以上であることを特徴とする請求項5から請求項6のいずれかに記載の太陽電池。 The solar cell according to any one of claims 5 to 6, wherein the time of the step of firing the conductive glass is 1 minute or less within 1 minute at the longest.
  8.  前記導電性ガラスを焼成する工程の温度は、温度が低すぎると前記下層ファイアリングが行われず、温度が高すぎると焼成して冷却した後に前記バスバー電極中の前記導電性ガラスで前記電気導電性通路が覆われて前記上層ファイアリングが劣化するので、これらの間の範囲内の温度としたことを特徴とする請求項5から請求項7のいずれかに記載の太陽電池。 When the temperature of the step of firing the conductive glass is too low, the lower layer firing is not performed, and when the temperature is too high, after firing and cooling, the conductive glass in the bus bar electrode is used as the electrically conductive material. The solar cell according to any one of claims 5 to 7, wherein the temperature is set in a range between them because a passage is covered and the upper layer firing deteriorates.
  9.  前記導電性ガラスは、Pbフリーであることを特徴とする請求項5から請求項8のいずれかに記載の太陽電池。 The solar cell according to any one of claims 5 to 8, wherein the conductive glass is Pb-free.
  10.  基板上に光などを照射したときに高電子濃度を生成する領域を作成すると共に該領域の上に光などを透過する絶縁膜を形成、該絶縁膜の上に前記領域から電子を取り出す取出口を形成するフィンガー電極を形成、および該複数のフィンガー電極を電気的に接続して前記電子を外部に取り出すバスバー電極を形成した太陽電池の製造方法において、
     前記絶縁膜の上に銀および鉛を含むフィンガー電極を形成し、更にその上に前記バスバー電極を形成した後に焼成するステップを有し、
     該焼成時の前記フィンガー電極に含まれる銀および鉛の作用により該フィンガー電極の下の膜である前記絶縁膜を貫通して前記領域と該フィンガー電極との間に電気導電性通路を形成(下層ファイアリングという)し、かつ更に、該焼成時に前記フィンガー電極に含まれる銀および鉛の作用により該フィンガー電極の上の層である前記バスバー電極を貫通して該バスバー電極の上に露出した電気導電性通路を形成(上層ファイアリングという)したことを特徴とする太陽電池の製造方法。
    A region that generates a high electron concentration when light or the like is irradiated on the substrate, and an insulating film that transmits light or the like is formed on the region, and an extraction port that extracts electrons from the region on the insulating film In the method of manufacturing a solar cell in which a finger electrode is formed, and a bus bar electrode is formed by electrically connecting the plurality of finger electrodes and extracting the electrons to the outside.
    Forming a finger electrode containing silver and lead on the insulating film, and further firing the bus bar electrode after forming the finger electrode thereon;
    An electrically conductive path is formed between the region and the finger electrode through the insulating film, which is a film under the finger electrode, by the action of silver and lead contained in the finger electrode during the firing (lower layer) Electric conduction exposed through the bus bar electrode, which is a layer above the finger electrode, by the action of silver and lead contained in the finger electrode during firing. A method for producing a solar cell, characterized in that a sex passage is formed (referred to as upper layer firing).
  11.  前記下層ファイアリングを固相中のファイアリングとし、前記上層ファイアリングを液相中のファイアリングとし、後者の電気導電性通路の長さを前者の電気伝導性通路の長さに比して大幅に長くしたことを特徴とする請求項10記載の太陽電池の製造方法。 The lower firing is the firing in the solid phase, the upper firing is the firing in the liquid phase, and the length of the latter electrically conductive passage is significantly larger than the length of the former electrically conducting passage. The method for manufacturing a solar cell according to claim 10, wherein the method is longer.
  12.  前記バスバー電極を貫通して該バスバー電極の上に露出した電気導電性通路の形成に加えて、該バスバー電極の上に導電層が形成されている場合には該導電層に電気導電性通路を形成したことを特徴とする請求項10あるいは請求項11記載の太陽電池の製造方法。 In addition to forming an electrically conductive path that penetrates the bus bar electrode and is exposed on the bus bar electrode, an electrically conductive path is formed in the conductive layer when a conductive layer is formed on the bus bar electrode. 12. The method for manufacturing a solar cell according to claim 10, wherein the solar cell is formed.
  13.  前記露出した電気導電性通路あるいは前記導電層に帯状のリード線を半田付けしたことを特徴とする請求項10から請求項12のいずれかに記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to any one of claims 10 to 12, wherein a strip-shaped lead wire is soldered to the exposed electrically conductive path or the conductive layer.
  14.  上記導電性のバスバー電極として、導電性ガラスを重量比100%から0%以上とし残りを銀としたことを特徴とする請求項10から請求項13のいずれかに記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to any one of claims 10 to 13, wherein the conductive bus bar electrode is made of conductive glass in a weight ratio of 100% to 0% or more and the remainder is silver.
  15.  前記導電性ガラスは、少なくともバナジウムあるいはバナジウムとバリウムを含むバナシン酸ガラスとしたことを特徴とする請求項14に記載の太陽電池の製造方法。 The method for producing a solar cell according to claim 14, wherein the conductive glass is vanadate glass containing at least vanadium or vanadium and barium.
  16.  前記導電性ガラスを焼成する工程の時間は、長くても1分以内、1秒以上であることを特徴とする請求項10から請求項15のいずれかに記載の太陽電池の製造方法。 The method for producing a solar cell according to any one of claims 10 to 15, wherein the time for firing the conductive glass is 1 minute or less within 1 minute at the longest.
  17.  前記導電性ガラスを焼成する工程の温度は、温度が低すぎると前記下層ファイアリングが行われず、温度が高すぎると焼成して冷却した後に前記バスバー電極中の前記導電性ガラスで前記電気導電性通路が覆われて前記上層ファイアリングが劣化するので、これらの間の範囲内の温度としたことを特徴とする請求項10から請求項16のいずれかに記載の太陽電池の製造方法。 When the temperature of the step of firing the conductive glass is too low, the lower layer firing is not performed, and when the temperature is too high, after firing and cooling, the conductive glass in the bus bar electrode is used as the electrically conductive material. The method for manufacturing a solar cell according to any one of claims 10 to 16, wherein a temperature in a range between the passages is covered and the upper layer firing is deteriorated.
PCT/JP2017/023163 2016-07-14 2017-06-23 Solar cell and solar cell manufacturing method WO2018012248A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187037405A KR102230367B1 (en) 2016-07-14 2017-06-23 Solar cell and manufacturing method of solar cell
CN201780035719.0A CN109314149A (en) 2016-07-14 2017-06-23 The manufacturing method of solar cell and solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016139009A JP6810986B2 (en) 2016-07-14 2016-07-14 Solar cells and methods of manufacturing solar cells
JP2016-139009 2016-07-14

Publications (1)

Publication Number Publication Date
WO2018012248A1 true WO2018012248A1 (en) 2018-01-18

Family

ID=60952435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023163 WO2018012248A1 (en) 2016-07-14 2017-06-23 Solar cell and solar cell manufacturing method

Country Status (5)

Country Link
JP (1) JP6810986B2 (en)
KR (1) KR102230367B1 (en)
CN (1) CN109314149A (en)
TW (1) TWI637528B (en)
WO (1) WO2018012248A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004290A1 (en) * 2018-06-26 2020-01-02 アートビーム有限会社 Solar cell and method for manufacturing solar cell
TWI702413B (en) * 2019-03-21 2020-08-21 元太科技工業股份有限公司 Proximity sensor and operation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI699899B (en) * 2018-06-26 2020-07-21 日商亞特比目有限公司 Solar cell and method for manufacturing solar cell
JP2021022735A (en) * 2020-09-21 2021-02-18 アートビーム株式会社 Solar battery and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144057A (en) * 2010-01-13 2011-07-28 Tokyo Electronics Chemicals Corp Electroconductive glass paste composition
JP2012182457A (en) * 2011-03-02 2012-09-20 Korea Electronics Telecommun Conductive composition, silicon solar cell containing conductive composition, and method for manufacturing the same
JP2012527780A (en) * 2009-05-20 2012-11-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for forming grid electrodes on the front surface of a silicon wafer
JP2015506108A (en) * 2011-12-13 2015-02-26 ダウ コーニング コーポレーションDow Corning Corporation Photovoltaic battery and method for forming the same
JP2015523707A (en) * 2012-04-18 2015-08-13 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー Printing method for solar cell contacts

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885781B2 (en) * 2007-03-30 2012-02-29 日立粉末冶金株式会社 Conductive paste
WO2013106225A1 (en) * 2012-01-12 2013-07-18 Applied Materials, Inc. Methods of manufacturing solar cell devices
KR101275583B1 (en) * 2012-09-11 2013-06-17 엘지전자 주식회사 Solar cell
KR20140056524A (en) * 2012-10-29 2014-05-12 엘지전자 주식회사 Solar cell
EP2853567A1 (en) * 2013-09-27 2015-04-01 Heraeus Precious Metals GmbH & Co. KG Solar cells produced from high ohmic wafers and paste comprising Ag metal-oxide additive
JP2016072518A (en) * 2014-09-30 2016-05-09 パナソニックIpマネジメント株式会社 Solar battery module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527780A (en) * 2009-05-20 2012-11-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for forming grid electrodes on the front surface of a silicon wafer
JP2011144057A (en) * 2010-01-13 2011-07-28 Tokyo Electronics Chemicals Corp Electroconductive glass paste composition
JP2012182457A (en) * 2011-03-02 2012-09-20 Korea Electronics Telecommun Conductive composition, silicon solar cell containing conductive composition, and method for manufacturing the same
JP2015506108A (en) * 2011-12-13 2015-02-26 ダウ コーニング コーポレーションDow Corning Corporation Photovoltaic battery and method for forming the same
JP2015523707A (en) * 2012-04-18 2015-08-13 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー Printing method for solar cell contacts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004290A1 (en) * 2018-06-26 2020-01-02 アートビーム有限会社 Solar cell and method for manufacturing solar cell
JPWO2020004290A1 (en) * 2018-06-26 2021-07-01 アートビーム有限会社 Solar cells and solar cell manufacturing methods
TWI702413B (en) * 2019-03-21 2020-08-21 元太科技工業股份有限公司 Proximity sensor and operation method thereof
US11226400B2 (en) 2019-03-21 2022-01-18 E Ink Holdings Inc. Proximity sensor and operation method thereof

Also Published As

Publication number Publication date
JP6810986B2 (en) 2021-01-13
CN109314149A (en) 2019-02-05
JP2018010973A (en) 2018-01-18
KR102230367B1 (en) 2021-03-19
KR20190010644A (en) 2019-01-30
TWI637528B (en) 2018-10-01
TW201807835A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
WO2018012248A1 (en) Solar cell and solar cell manufacturing method
JP5541370B2 (en) SOLAR CELL MANUFACTURING METHOD, SOLAR CELL, AND SOLAR CELL MODULE
JP5626361B2 (en) SOLAR CELL, SOLAR CELL MODULE, AND SOLAR CELL MANUFACTURING METHOD
CN105474408B (en) Solar cell device and its manufacture method
US8748310B2 (en) Method for producing a metal contact structure of a photovoltaic solar cell
TWI725035B (en) Electric conductive paste, solar cell and method for manufacturing solar cell
US9171975B2 (en) Solar cell element and process for production thereof
KR20200138136A (en) Solar cell and process of manufacture of solar cell
CN107408587A (en) Solar battery apparatus and its manufacture method
CN109313957A (en) Conductive paste and solar battery
WO2010049229A2 (en) Method for producing a solar cell and solar cell
WO2017073299A1 (en) Ultrasonic soldering method and ultrasonic soldering device
JP2014220425A (en) Conductive paste, and method of manufacturing solar cell
JP7058390B2 (en) Solar cells and methods for manufacturing solar cells
TW201306283A (en) Back-contact solar cell and method for producing such a back-contact solar cell
JP2021022735A (en) Solar battery and manufacturing method thereof
KR101791480B1 (en) Solar cell and process of manufacture of solar cell
CN110634618B (en) Method for manufacturing solar cell electrode, conductive paste and method for manufacturing conductive paste
CN108575097B (en) Interdigitated back contact metal-insulator-semiconductor solar cells with printed oxide tunnel junctions
TWI626755B (en) Single-sided solar cell, method for manufacturing the same and solar cell module
CN205542803U (en) Solar battery structure
JP5105427B2 (en) A method for forming a fired electrode and a method for producing a photoelectric conversion element using the method.
JP2008159997A (en) Manufacturing method for solar cell element, and conductive paste
JP2020141141A (en) Solar battery and manufacturing method for solar battery
JP2013179371A (en) Method of manufacturing solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187037405

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827378

Country of ref document: EP

Kind code of ref document: A1