JPWO2020004290A1 - Solar cells and solar cell manufacturing methods - Google Patents

Solar cells and solar cell manufacturing methods Download PDF

Info

Publication number
JPWO2020004290A1
JPWO2020004290A1 JP2020527491A JP2020527491A JPWO2020004290A1 JP WO2020004290 A1 JPWO2020004290 A1 JP WO2020004290A1 JP 2020527491 A JP2020527491 A JP 2020527491A JP 2020527491 A JP2020527491 A JP 2020527491A JP WO2020004290 A1 JPWO2020004290 A1 JP WO2020004290A1
Authority
JP
Japan
Prior art keywords
substrate
hole
solder
solar cell
aluminum electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020527491A
Other languages
Japanese (ja)
Inventor
傑也 新井
傑也 新井
ミエ子 菅原
ミエ子 菅原
小林 賢一
賢一 小林
秀利 小宮
秀利 小宮
正五 松井
正五 松井
潤 錦織
潤 錦織
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARTBEAM CO.,LTD.
Original Assignee
ARTBEAM CO.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARTBEAM CO.,LTD. filed Critical ARTBEAM CO.,LTD.
Publication of JPWO2020004290A1 publication Critical patent/JPWO2020004290A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor
    • H01L23/4924Bases or plates or solder therefor characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【目的】本発明は、太陽電池および太陽電池の製造方法に関し、基板(1)の裏面のアルミ電極(2)の穴の部分に直接に半田付けすると共にアルミ電極(2)の上に0.1mm以上はみだしてハンダ付けし、変換効率を高めると共に充分な固定強度を得ることを目的とする。【構成】基板(1)の裏面の全面にアルミ電極(2)を形成した後に電極の一部に穴を形成し、あるいは基板(1)の裏面の全面の一部分に穴を形成したアルミ電極(2)を形成し、穴の内部の基板(1)に半田付けすると共に、併せて該穴の縁からアルミ電極(2)の上側に0.1mm以上はみだして半田付けし、半田付けした穴の内部の基板(1)の部分および穴の縁から0.1mm以上はみ出したアルミ電極(2)の部分から電子をそれぞれ流入させ、太陽電池の変換効率を増大せるように構成する。[Purpose] The present invention relates to a solar cell and a method for manufacturing a solar cell, in which the substrate (1) is directly soldered to a hole of an aluminum electrode (2) on the back surface and 0. The purpose is to extend the protrusion by 1 mm or more and solder it to improve the conversion efficiency and obtain sufficient fixing strength. [Structure] An aluminum electrode (2) in which an aluminum electrode (2) is formed on the entire back surface of the substrate (1) and then a hole is formed in a part of the electrode, or a hole is formed in a part of the entire back surface of the substrate (1). 2) is formed and soldered to the substrate (1) inside the hole, and at the same time, 0.1 mm or more protrudes from the edge of the hole to the upper side of the aluminum electrode (2) and soldered to the soldered hole. Electrons are allowed to flow in from the portion of the inner substrate (1) and the portion of the aluminum electrode (2) protruding 0.1 mm or more from the edge of the hole, respectively, so as to increase the conversion efficiency of the solar cell.

Description

本発明は、基板上に光を照射したときに高電子濃度を生成する領域を形成すると共に領域の上に光を透過する絶縁膜を形成し、絶縁膜の上に領域から電子を取り出す取出口であるフィンガー電極を形成してフィンガー電極を介して電子を外部に取り出すと共に、基板の裏面のアルミ電極に形成した穴の部分にリード線を半田付けすると共に穴の縁からアルミ電極の上側に0.1mm以上はみだして半田付けし、変換効率を増大させると共に裏面のリード線の固定強度を向上させる太陽電池および太陽電池の製造棒法に関するものである。 The present invention forms a region that generates a high electron concentration when the substrate is irradiated with light, forms an insulating film that transmits light on the region, and takes out electrons from the region on the insulating film. A finger electrode is formed to take out electrons to the outside through the finger electrode, and a lead wire is soldered to the hole formed in the aluminum electrode on the back surface of the substrate, and 0 is formed on the upper side of the aluminum electrode from the edge of the hole. It relates to a solar cell and a manufacturing rod method for a solar cell, which is soldered so as to protrude by 1 mm or more to increase conversion efficiency and improve the fixing strength of the lead wire on the back surface.

従来、太陽電池セルの設計では、太陽電池セル内に生成した電子を効率よく接続された外部回路に流すということが肝要である。これを達成するためにセルから外部に連なる部分の抵抗成分を小さくすることと、生成した電子が消失しないようにすることと、表面および裏面の外部端子が強く固定されることとが特に重要である。 Conventionally, in the design of a solar cell, it is important to efficiently flow the electrons generated in the solar cell to an external circuit connected to the solar cell. In order to achieve this, it is especially important to reduce the resistance component of the part connected to the outside from the cell, prevent the generated electrons from disappearing, and firmly fix the external terminals on the front and back surfaces. is there.

例えば図6の従来技術に示すように、シリコン基板31の表面(上面)に窒化膜32を生成し、この上にフィンガー電極(銀)33のペースト(鉛ガラス入り)をスクリーン印刷し焼結し、図示のように窒化膜32に穴を開けて高電子濃度領域から電子を外部に取り出すフィンガー電極33を形成する。次に、フィンガー電極33と直交する方向にバスバー電極(銀)34をスクリーン印刷し焼結して生成する。このバスバー電極(銀)34の上に半田36でリボン(リード線)35を半田付けして強固にシリコン基板31に該リボン35を固定していた。 For example, as shown in the prior art of FIG. 6, a nitride film 32 is formed on the surface (upper surface) of the silicon substrate 31, and a paste (containing lead glass) of a finger electrode (silver) 33 is screen-printed and sintered on the nitride film 32. As shown in the figure, a hole is formed in the nitride film 32 to form a finger electrode 33 for extracting electrons from the high electron concentration region to the outside. Next, the bus bar electrode (silver) 34 is screen-printed and sintered in the direction orthogonal to the finger electrode 33. The ribbon (lead wire) 35 was soldered onto the bus bar electrode (silver) 34 with solder 36 to firmly fix the ribbon 35 to the silicon substrate 31.

また、シリコン基板31の裏面(下面)にアルミ電極37を形成してこれにリボン39を半田付けして固定していた。 Further, an aluminum electrode 37 was formed on the back surface (lower surface) of the silicon substrate 31, and the ribbon 39 was soldered and fixed to the aluminum electrode 37.

また、アルミ電極37を全面に形成していたのではリボン39の半田付け強度が弱い場合には、このアルミ電極37の一部に穴(表面のバスバー電極34に対応する部分に穴)を開けておき、ここに銀ペーストをスクリーン印刷して焼結して銀の部分371を形成し、これに半田38でリボン39を固定して必要な固定強度を得ていた。 Further, if the soldering strength of the ribbon 39 is weak because the aluminum electrode 37 is formed on the entire surface, a hole (a hole in a portion corresponding to the bus bar electrode 34 on the surface) is formed in a part of the aluminum electrode 37. The silver paste was screen-printed here and sintered to form the silver portion 371, and the ribbon 39 was fixed to the silver portion 371 with solder 38 to obtain the required fixing strength.

しかし、上述した従来のシリコン基板31の裏面にアルミ電極を全面に形成してその上にリボン39を半田付けしたのではリボン39をシリコン基板31に充分な強度で固定できない場合があるという問題があった。 However, if an aluminum electrode is formed on the entire surface of the back surface of the conventional silicon substrate 31 and the ribbon 39 is soldered onto the aluminum electrode, the ribbon 39 may not be fixed to the silicon substrate 31 with sufficient strength. there were.

また、これを避けるために、上述した図6に示すように、アルミ電極37の一部に穴を開けておき、ここに銀ペーストを塗布して焼結し、この上にリボン39を半田付けして充分な固定強度を得る必要が生じてしまうという問題もあった。 Further, in order to avoid this, as shown in FIG. 6 described above, a hole is made in a part of the aluminum electrode 37, silver paste is applied to the hole, sintered, and the ribbon 39 is soldered onto the hole. Therefore, there is also a problem that it becomes necessary to obtain sufficient fixing strength.

本発明者らは、基板の裏面のアルミ電極の穴の部分に直接に半田付けすると共に穴の縁からアルミ電極の上に若干はみ出して半田付けすることにより、リボンを充分な固定強度で基板に固定かつ高変換効率を得る構成および方法を実験により発見した。 The present inventors solder the ribbon directly to the hole portion of the aluminum electrode on the back surface of the substrate and solder the ribbon slightly protruding from the edge of the hole onto the aluminum electrode to the substrate with sufficient fixing strength. Experimentally discovered configurations and methods to obtain fixed and high conversion efficiency.

そのため、本発明は、基板上に光を照射したときに高電子濃度を生成する領域を形成すると共に領域の上に光を透過する絶縁膜を形成し、絶縁膜の上に領域から電子を取り出す取出口であるフィンガー電極を形成してフィンガー電極を介して記電子を外部に取り出すと共に、基板の裏面から電子を流入させて回路を形成する太陽電池において、基板の裏面の全面にアルミ電極を形成した後に電極の一部に穴を形成し、あるいは基板の裏面の全面の一部分に穴を形成したアルミ電極を形成し、穴の内部の基板に半田付けすると共に、併せて穴の縁からアルミ電極の上側に0.1mm以上はみだして半田付けし、半田付けした穴の内部の基板の部分および穴の縁から0.1mm以上はみ出したアルミ電極の部分から電子をそれぞれ流入させ、太陽電池の変換効率を増大せる太陽電池を実現した。 Therefore, the present invention forms a region that generates a high electron concentration when the substrate is irradiated with light, forms an insulating film that transmits light on the region, and extracts electrons from the region on the insulating film. In a solar cell in which a finger electrode, which is an outlet, is formed to take out electrons to the outside through the finger electrode, and electrons are allowed to flow in from the back surface of the substrate to form a circuit, an aluminum electrode is formed on the entire back surface of the substrate. After that, a hole is formed in a part of the electrode, or an aluminum electrode having a hole formed in a part of the entire back surface of the substrate is formed and soldered to the substrate inside the hole, and at the same time, the aluminum electrode is formed from the edge of the hole. Solder with 0.1 mm or more protruding above the soldered hole, and electrons flow in from the substrate part inside the soldered hole and the aluminum electrode part protruding 0.1 mm or more from the edge of the hole, respectively, and the conversion efficiency of the solar cell Realized a solar cell that can increase the number of electrodes.

この際、アルミ電極の穴を形成した部分は、表面の取出線に対応する部分とするようにしている。 At this time, the portion where the hole of the aluminum electrode is formed is made to correspond to the take-out line on the surface.

また、半田付けは、超音波半田付けするようにしている。 Moreover, the soldering is done by ultrasonic soldering.

また、半田付けは、半田のみ、あるいは半田と取り出し線、あるいはプリ半田付けした取り出した線を半田付けするようにしている。 Further, in the soldering, only the solder, the solder and the take-out wire, or the pre-soldered take-out wire is soldered.

また、半田付けは、半田付けされる部分の温度を半田が溶融する温度以下で室温以上に予備加熱した状態で、半田付けするようにしている。 Further, in the soldering, the temperature of the portion to be soldered is preheated to room temperature or higher at a temperature lower than the temperature at which the solder melts, and then soldering is performed.

また、半田は、錫に亜鉛、アルミ、シリコンの1つ以上を含むようにしている。 Further, the solder contains one or more of zinc, aluminum, and silicon in tin.

また、半田は、Pb,Ag,Cuを含まないようにしている。 Further, the solder does not contain Pb, Ag, and Cu.

また、穴の縁からアルミ電極の上側に0.1mm以上はみだして半田付けとして、アルミ電極の上側に0.1mm以上から3.0mm以下だけはみだして半田付けするようにしている。 Further, 0.1 mm or more protrudes from the edge of the hole to the upper side of the aluminum electrode for soldering, and 0.1 mm or more to 3.0 mm or less protrudes from the upper side of the aluminum electrode for soldering.

本発明は、上述したように、基板の裏面のアルミ電極の穴の部分に直接に半田付けすると共に穴の縁からアルミ電極の上に若干はみ出して半田付けし、取出線を充分な固定強度で基板に固定かつ高変換効率を得る構成および方法を実現した。 In the present invention, as described above, the soldering wire is directly soldered to the hole portion of the aluminum electrode on the back surface of the substrate, and the lead wire is soldered so as to slightly protrude from the edge of the hole onto the aluminum electrode to provide a sufficient fixing strength. We have realized a configuration and method that is fixed to the substrate and obtains high conversion efficiency.

これらにより、本発明は、基板の裏面のアルミ電極の穴の部分に直接にハンダ付けし、取出線の部分の抵抗値を小さくかつ充分な固定強度で基板に固定できる。 As a result, the present invention can be directly soldered to the hole portion of the aluminum electrode on the back surface of the substrate, and the resistance value of the take-out wire portion can be reduced and fixed to the substrate with sufficient fixing strength.

また、基板の穴の縁からアルミ電極の上に0.1mm以上はみだして半田付けし、該はみして半田付けしたアルミ電極とそれにつながったアルミ電極から電子を基板に供給して太陽電池の変換効率を向上させることが実験で確認できた(図4、図5参照)。 In addition, 0.1 mm or more protrudes from the edge of the hole in the substrate onto the aluminum electrode and soldered, and electrons are supplied to the substrate from the aluminum electrode soldered by the protrusion and the aluminum electrode connected to the aluminum electrode to supply electrons to the substrate. It was confirmed by experiments that the conversion efficiency was improved (see FIGS. 4 and 5).

図1は本発明の1実施例構成図を示す。 FIG. 1 shows a configuration diagram of one embodiment of the present invention.

図1の(a)は全体の側面図を示し、図1の(b)は図1の(a)の要部拡大図を示す。 FIG. 1A shows an overall side view, and FIG. 1B shows an enlarged view of a main part of FIG. 1A.

図1において、基板(シリコン基板)1は、太陽電池を形成しようとするシリコンの基板(単結晶、多結晶)である。 In FIG. 1, the substrate (silicon substrate) 1 is a silicon substrate (single crystal, polycrystal) on which a solar cell is to be formed.

基板裏面(Al)2は、基板1の裏面であって、裏面の全面にアルミ電極を形成した後に一部に穴を開けたり、あるいは穴のあるアルミ電極を基板1の裏面の全面に形成したりしたものである。 The back surface (Al) 2 of the substrate is the back surface of the substrate 1, and a hole is formed in a part after forming an aluminum electrode on the entire surface of the back surface, or an aluminum electrode having a hole is formed on the entire surface of the back surface of the substrate 1. It was a mess.

基板加熱ヒータ3は、基板1を予備加熱する加熱体であって、基板1に半田付けする際に、半田が溶融する温度以下、室温以上に加熱するものであって、自動温度調整機構付きのものである。 The substrate heating heater 3 is a heating body that preheats the substrate 1, and when soldering to the substrate 1, heats the substrate 1 to a temperature equal to or lower than the temperature at which the solder melts and above room temperature, and has an automatic temperature adjusting mechanism. It is a thing.

ABS半田11は、基板裏面(アルミ電極)2に半田付けする糸、リボン状などの半田を供給するに都合のよい形状を持つ長い半田材料である。半田材料は、錫(Sn)に、亜鉛(Zn)、アルミニウム(Al)、シリコン(Si)の1つ以上を含み、鉛(Pb)、銀(Ag)、銅(Cu)を含まない材料の合金(ABS半田11という)である。これら半田材料に依存するABS半田11の融点は、通常、150℃ないし350℃程度の範囲内にあり、材料の配合割合により決まるので、実験により溶融温度を算出し、この溶融温度に対して最適な予備加熱温度(ABS半田11が溶融しない室温以上の温度)を決定し、更に、コテ先22を加熱して超音波を印加したときに溶融して基板裏面2の穴の内部の基板1の上に半田付けするに適切な温度を実験で決定する。これらにより、後述する図9の(a),(b),(c)の写真の通りの超音波半田付けが可能となり、リボン22を半田付けしたときの引張強度が強く、かつ太陽電池の変換効率をより増大させることができた。尚、ABS半田11の半田材料の組成は、錫(Sn)が20ないし95wt%、亜鉛(Zn)が3ないし60wt%、アルミニウム(Al)、シリコン(Si)などの添加材は適量添加する。これら配合割合は、溶融温度、基板やリボンなどのABS半田付けする対象に応じて実験により最適な配合割合を決める。 The ABS solder 11 is a long solder material having a shape convenient for supplying solder such as threads and ribbons to be soldered to the back surface (aluminum electrode) 2 of the substrate. The solder material is a material in which tin (Sn) contains one or more of zinc (Zn), aluminum (Al), and silicon (Si), and does not contain lead (Pb), silver (Ag), or copper (Cu). It is an alloy (referred to as ABS solder 11). The melting point of ABS solder 11, which depends on these solder materials, is usually in the range of about 150 ° C. to 350 ° C. and is determined by the mixing ratio of the materials. Preheating temperature (temperature above room temperature where ABS solder 11 does not melt) is determined, and when the iron tip 22 is heated and ultrasonic waves are applied, it melts and the substrate 1 inside the hole on the back surface 2 of the substrate Experimentally determine the appropriate temperature for soldering on top. As a result, ultrasonic soldering as shown in the photographs (a), (b), and (c) of FIG. 9 described later becomes possible, the tensile strength when the ribbon 22 is soldered is strong, and the conversion of the solar cell is performed. The efficiency could be increased more. The composition of the solder material of the ABS solder 11 is such that tin (Sn) is 20 to 95 wt%, zinc (Zn) is 3 to 60 wt%, and an appropriate amount of additives such as aluminum (Al) and silicon (Si) is added. The optimum mixing ratio is determined by experiments according to the melting temperature and the object to be ABS soldered such as a substrate and a ribbon.

ABS半田材料供給機構12は、コテ先22の基板1に対する移動速度に対応して、ABS半田11を所定速度(所定半田量、後述する)で該コテ先12に供給する機構である。 The ABS solder material supply mechanism 12 is a mechanism for supplying the ABS solder 11 to the trowel tip 12 at a predetermined speed (predetermined amount of solder, which will be described later) corresponding to the moving speed of the trowel tip 22 with respect to the substrate 1.

リボン13は、基板裏面(アルミ電極)2の穴を開けた基板1の部分あるいはプリ半田した部分に半田付けし、基板1から外部に電流を取り出したりなどするものである。尚、図1の(a)のように、ABS半田11を供給したときは基板裏面2の穴の部分の基板1に予備半田付け(超音波半田付け)し、図1の(b)のように,ABS半田11と重ねてリボン13を供給したときは基板裏面2の穴の部分の基板1にリボン13が半田付け(超音波半田付け)する。予備半田付けした場合には、後の工程で、予備半田付けした部分にリボンを通常の半田付け(超音波なし半田付け)する。また、ABS半田11とリボン13とを重ねて供給する代わりに、リボン13に予めABS半田11を半田付けした半田付きリボンにしてもよい。この場合には、半田付きリボンは、穴の縁から基板裏面(アルミ電極)2の上に約0.1mm以上の半田がはみだすように半田を十分にリボン13に予め半田付けしておく必要がある。 The ribbon 13 is soldered to a portion of the substrate 1 or a pre-soldered portion in which a hole is formed in the back surface (aluminum electrode) 2 of the substrate, and a current is taken out from the substrate 1 to the outside. When the ABS solder 11 is supplied as shown in FIG. 1 (a), it is pre-soldered (ultrasonic soldered) to the substrate 1 in the hole portion of the back surface 2 of the substrate, and as shown in FIG. 1 (b). When the ribbon 13 is supplied so as to be overlapped with the ABS solder 11, the ribbon 13 is soldered (ultrasonic soldered) to the substrate 1 in the hole portion of the back surface 2 of the substrate. In the case of pre-soldering, the ribbon is usually soldered (soldering without ultrasonic waves) to the pre-soldered portion in a later step. Further, instead of supplying the ABS solder 11 and the ribbon 13 in an overlapping manner, a soldered ribbon in which the ABS solder 11 is soldered to the ribbon 13 in advance may be used. In this case, the soldered ribbon needs to be sufficiently soldered to the ribbon 13 in advance so that the solder of about 0.1 mm or more protrudes from the edge of the hole onto the back surface (aluminum electrode) 2 of the substrate. is there.

半田コテ21は、コテ先22を所定温度に加熱すると共に超音波を供給するものである。 The soldering iron 21 heats the iron tip 22 to a predetermined temperature and supplies ultrasonic waves.

コテ先22は、半田コテ21の先端に取り付け、半田付けしようとする部分(基板裏面2の穴の部分等)に対して、超音波を印加すると共に、溶解させたABS半田11を供給し、半田付けするものである。 The iron tip 22 is attached to the tip of the soldering iron 21, and ultrasonic waves are applied to the portion to be soldered (the portion of the hole on the back surface 2 of the substrate, etc.), and the melted ABS solder 11 is supplied. It is to be soldered.

半田コテ加熱電源23は、コテ先22が所定温度になるように電源を供給するものであって、コテ先22の部分の温度を検出して自動温度調整機構を有するものである。 The soldering iron heating power supply 23 supplies power so that the iron tip 22 reaches a predetermined temperature, and has an automatic temperature adjusting mechanism by detecting the temperature of the portion of the iron tip 22.

半田コテ超音波パワー発生機構24は、コテ先22から半田付けしようとする部分(基板裏面2の穴の部分等)に超音波を供給するものである。超音波のパワー(電源パワー)は、1から10W程度でよく、弱すぎると超音波半田付けが不良となり、強すぎると超音波により膜(アルミ電極膜など)を破壊したり、逆に半田付け不良となったりするので、実験により最適なパワーを決定する。通常は1ないし数Wで行う。 The soldering iron ultrasonic power generation mechanism 24 supplies ultrasonic waves from the iron tip 22 to a portion to be soldered (a portion of a hole in the back surface 2 of the substrate, etc.). The ultrasonic power (power supply power) may be about 1 to 10 W. If it is too weak, ultrasonic soldering will be poor, and if it is too strong, the film (aluminum electrode film, etc.) will be destroyed by ultrasonic waves, or conversely soldering. Since it may be defective, the optimum power is determined by experiment. Usually, it is performed at 1 to several W.

移動機構25は、半田コテ21を自動的に所定速度で移動、ここでは、右方向に所定速度で移動させる機構である。所定速度は、ABS半田11を自動供給するABS半田材料供給機構12と連動し、ABS半田11が基板裏面2の穴の縁から約0.1mm以上で、通常3mm以内までの基板裏面2のアルミ電極の上にはみだす程度にABS半田11が半田付けされるように調整(実験により調整、図4とその説明を参照)する。 The moving mechanism 25 is a mechanism that automatically moves the soldering iron 21 at a predetermined speed, and here, moves it to the right at a predetermined speed. The predetermined speed is interlocked with the ABS solder material supply mechanism 12 that automatically supplies the ABS solder 11, and the ABS solder 11 is about 0.1 mm or more from the edge of the hole on the back surface 2 of the substrate, and the aluminum on the back surface 2 of the substrate is usually up to 3 mm. Adjust so that the ABS solder 11 is soldered to the extent that it protrudes above the electrodes (adjusted by experiment, see FIG. 4 and its description).

次に、図1の構成の動作を説明する。
(1)予備加熱ヒータ3を有する図示外の台の上に基板(150mm程度の矩形の基板)1を裁置し、ABS半田11が溶融するよりも少し低い温度に調整する(実験で温度を決める)。
(2)半田コテ加熱電源23が電源を供給してコテ先22を所定温度に加熱すると共に、半田コテ超音波パワー発生機構24が超音波を発生させてコテ先22に超音波を供給する(加熱温度、超音波パワーはABS半田11の材料により異なるので、材料毎に実験により決める)。
(3)図1の(a)のように、コテ先22でABS半田11を溶解しつつ超音波を基板裏面(アルミ電極)2の穴の部分の基板1に供給しつつ(軽く押し当てた状態で)、移動機構25がコテ先22を図では右方向に移動させる。同時に、ABS半田材料供給機構12がABS半田11を所定速度で供給し、溶融したABS半田11が基板裏面2の穴の縁から基板裏面(アルミ電極)2の上を約0.1mm以上にはみだして半田付けされるように、移動させる(これらの関係となるように実験でコテ先22の移動速度、ABS半田11の供給量を決める。この際、更に加熱温度、超音波パワーも併せて調整する)。
(4)以上により、図1の(a)のように,ABS半田11のみを供給した場合には、基板裏面(アルミ電極)2の穴の部分の基板1と、穴の縁から基板裏面(アルミ電極)2の上に約0.1mm以上から3mm程度にはみだしてABS半田11を半田付けする(図4参照)。
(5)(4)の予備半田付けした場合には、後の工程で予備半田した部分に、リボンを半田付け(通常の半田付けで、超音波なし半田付け)し、外部への取出線とする。
(6)また、(4)と(5)の代わりに、図1の(b)のように、ABS半田11とリボン13とを合わせて供給した場合あるいは半田付きリボンを供給した場合には、基板裏面(アルミ電極)2の穴の部分の基板1と、穴の縁から基板裏面(アルミ電極)2の上に0.1mm以上から3mm程度にはみだしてABS半田11を半田付けする。
Next, the operation of the configuration of FIG. 1 will be described.
(1) A substrate (rectangular substrate of about 150 mm) 1 is placed on a table (not shown) having a preheating heater 3 and adjusted to a temperature slightly lower than that of the ABS solder 11 melting (experimentally adjusting the temperature). Decide).
(2) The soldering iron heating power supply 23 supplies power to heat the iron tip 22 to a predetermined temperature, and the soldering iron ultrasonic power generation mechanism 24 generates ultrasonic waves to supply ultrasonic waves to the iron tip 22 ((2). Since the heating temperature and ultrasonic power differ depending on the material of the ABS solder 11, it is determined by experiment for each material).
(3) As shown in (a) of FIG. 1, while melting the ABS solder 11 with the iron tip 22, ultrasonic waves are supplied to the substrate 1 in the hole portion of the back surface (aluminum electrode) 2 of the substrate (lightly pressed). (In the state), the moving mechanism 25 moves the iron tip 22 to the right in the figure. At the same time, the ABS solder material supply mechanism 12 supplies the ABS solder 11 at a predetermined speed, and the molten ABS solder 11 protrudes from the edge of the hole on the back surface 2 of the substrate to the top of the back surface (aluminum electrode) 2 of the substrate by about 0.1 mm or more. The moving speed of the iron tip 22 and the supply amount of the ABS solder 11 are determined in an experiment so as to be soldered. At this time, the heating temperature and the ultrasonic power are also adjusted. To do).
(4) From the above, when only the ABS solder 11 is supplied as shown in (a) of FIG. 1, the substrate 1 in the hole portion of the substrate back surface (aluminum electrode) 2 and the substrate back surface from the edge of the hole ( The ABS solder 11 is soldered onto the aluminum electrode) 2 so as to protrude from about 0.1 mm or more to about 3 mm (see FIG. 4).
(5) In the case of pre-soldering in (4), the ribbon is soldered to the pre-soldered part in a later process (normal soldering, soldering without ultrasonic waves), and the lead wire to the outside is used. To do.
(6) Further, instead of (4) and (5), as shown in (b) of FIG. 1, when the ABS solder 11 and the ribbon 13 are supplied together or when the soldered ribbon is supplied, the case where the soldered ribbon is supplied. The ABS solder 11 is soldered to the substrate 1 in the hole portion of the substrate back surface (aluminum electrode) 2 and the ABS solder 11 protruding from the edge of the hole onto the substrate back surface (aluminum electrode) 2 by about 0.1 mm or more to about 3 mm.

以上によって、基板裏面(アルミ電極)2の穴の部分の基板1に直接にABS半田11を予備半田付けしたり、リボン13をABS半田11で半田付けしたりすることにより、後述するように、太陽電池の効率を良好にすることが可能となると共に、ABS半田11で直接に裏面基板2の穴を介して基板1に半田付けして強固に該基板1にリボンを固定することが可能となる。 As described above, the ABS solder 11 is pre-soldered directly to the substrate 1 in the hole portion of the back surface (aluminum electrode) 2 of the substrate, or the ribbon 13 is soldered with the ABS solder 11 as described later. It is possible to improve the efficiency of the solar cell, and it is possible to solder the ABS solder 11 directly to the substrate 1 through the holes of the back surface substrate 2 to firmly fix the ribbon to the substrate 1. Become.

尚、実際に実施した1例では、基板加熱温度(予備加熱)を180℃を標準にして、少なくとも上限温度は200℃以下(ABS半田が溶融しない温度以下)です。これ以上にするとこの基板では損傷しました。この場合の半田コテ温度は400℃としています。高くでも500℃程度です。これは、コテ先の移動速度、半田材料供給速度で調整します。速度が速くなれば温度を上げます。超音波出力は、裏面に対しては6ワット以下、表面に対しては3ワット以下としています。以上の条件は、錫と亜鉛の合金を主材料としたもので融点が約217℃の半田材料の場合です。半田材料、基板の種類、コテ先の移動速度、半田供給量などに依存し、予備加熱温度、コテ先(半田コテ)温度、コテ先の移動速度、半田供給速度などを実験し、良好な超音波半田付けができるように最適な条件に調整する必要があります。 In one example actually carried out, the substrate heating temperature (preheating) is set to 180 ° C as a standard, and at least the upper limit temperature is 200 ° C or less (the temperature at which ABS solder does not melt). Beyond this, the board was damaged. In this case, the soldering iron temperature is 400 ° C. It is about 500 ° C at the highest. This is adjusted by the moving speed of the trowel tip and the solder material supply speed. The faster the speed, the higher the temperature. The ultrasonic output is 6 watts or less for the back surface and 3 watts or less for the front surface. The above conditions are for a solder material that uses an alloy of tin and zinc as the main material and has a melting point of about 217 ° C. Depending on the solder material, the type of substrate, the moving speed of the trowel tip, the amount of solder supplied, etc., we experimented with the preheating temperature, the trowel tip (solder iron) temperature, the moving speed of the trowel tip, the solder supply speed, etc. It is necessary to adjust to the optimum conditions so that ultrasonic soldering can be performed.

次に、図2のフローチャートの順番に従い、図1の構成の動作を詳細に説明する。 Next, the operation of the configuration of FIG. 1 will be described in detail according to the order of the flowchart of FIG.

図2は、本発明の動作説明フローチャート(全体)を示す。 FIG. 2 shows an operation explanatory flowchart (overall) of the present invention.

図2において、S1は、Si基板を用意する。 In FIG. 2, S1 prepares a Si substrate.

S2は、表面処理を行う。これは、S1で用意したシリコン基板(例えばN型)上に、窒化膜を形成、更に、フィンガー電極、バスバー電極などのパターンを形成する。これは、例えば従来の図6と同様に、シリコン基板31の表側に、窒化膜32を形成、フィンガー電極33、バスバー電極34などのパターンを形成する。 S2 performs surface treatment. This forms a nitride film on the silicon substrate (for example, N-type) prepared in S1 and further forms patterns such as finger electrodes and busbar electrodes. For example, as in FIG. 6, a nitride film 32 is formed on the front side of the silicon substrate 31, and patterns such as a finger electrode 33 and a bus bar electrode 34 are formed.

S3は、裏面処理を行う。これは、シリコン基板の裏面にアルミパターンを形成、例えばシリコン基板の裏側の全面に穴の開いたアルミ電極をアルミペーストでスクリーン印刷して形成する。そして、本発明はS5に進む。 S3 performs back surface treatment. This is formed by forming an aluminum pattern on the back surface of a silicon substrate, for example, screen-printing an aluminum electrode having a hole on the entire back surface of the silicon substrate with aluminum paste. Then, the present invention proceeds to S5.

S5は、焼結する。これは、S2の表面処理、S3の裏面処理で形成したパターンを一括して焼結する。 S5 is sintered. This collectively sinters the patterns formed by the front surface treatment of S2 and the back surface treatment of S3.

以上により、本発明では、S1からS3、S5で基板の表側にフィンガー電極、バスバー電極、裏側に穴の開いたアルミ電極を形成できたこととなる。 From the above, in the present invention, it is possible to form a finger electrode, a bus bar electrode, and an aluminum electrode having a hole on the back side of the substrate in S1, S3, and S5.

S6は、測定(1)を行う。これは、S7のABS半田付け前に、探針を用いてABS半田付けする前の太陽電池の電気的特性を測定する(図5の半田前のデータを参照)。 In S6, the measurement (1) is performed. This measures the electrical characteristics of the solar cell before ABS soldering using a probe before ABS soldering in S7 (see pre-soldering data in FIG. 5).

S7は、ABS半田付けを行う。これは、Si基板のアルミ電極の穴の開いた部分の基板1に直接にABS半田を半田付けすると共に、穴の縁からアルミ電極の上に約0.1mm以上はみだして半田付けする。尚、リボン13を一緒に半田付けしてもよい(図1の(b)参照)
S8は、測定(2)を行う。これは、S7のABS半田付け後に、太陽電池の電気的特性を測定する(図5の半田後のデータを参照)。
S7 performs ABS soldering. In this method, ABS solder is directly soldered to the substrate 1 in the portion of the Si substrate where the aluminum electrode has a hole, and at the same time, the ABS solder is soldered so as to protrude from the edge of the hole onto the aluminum electrode by about 0.1 mm or more. The ribbon 13 may be soldered together (see (b) in FIG. 1).
In S8, the measurement (2) is performed. This measures the electrical characteristics of the solar cell after ABS soldering in S7 (see post-soldering data in FIG. 5).

以上のように、Si基板の表面に窒化膜を形成、フィンガー電極、バスバー電極などのパターンを形成、Si基板の裏面に穴の開いたアルミ電極のパターンを形成した後、一括焼結してこれらパターンを形成することが可能となる。 As described above, a nitride film is formed on the surface of the Si substrate, patterns such as finger electrodes and busbar electrodes are formed, a pattern of aluminum electrodes with holes is formed on the back surface of the Si substrate, and then all of them are sintered at once. It becomes possible to form a pattern.

一方、従来は、S1からS3に続いて、S4で、さらに銀ペーストをSi基板上に塗布する。これは、S3の裏面処理で形成した穴の開いたアルミ電極の部分に、さらに銀ペーストをスクリーン印刷して当該アルミ電極の穴の内部のSi基板の上に銀パターンを形成する。そして、本発明と同様に、S5からS8を行うことにより、Si基板の表面に窒化膜を形成、フィンガー電極、バスバー電極などのパターンを形成、Si基板の裏面に穴の開いたアルミ電極のパターンの内部に銀パターンが形成され、これにリボンを半田付けして外部取出線とし、該外部取出線を銀パターンを介して基板に強く固定することを実現している。 On the other hand, conventionally, following S1 to S3, a silver paste is further applied on the Si substrate in S4. In this method, a silver paste is further screen-printed on the portion of the aluminum electrode having a hole formed by the back surface treatment of S3 to form a silver pattern on the Si substrate inside the hole of the aluminum electrode. Then, as in the present invention, by performing S5 to S8, a nitride film is formed on the surface of the Si substrate, patterns such as finger electrodes and bus bar electrodes are formed, and a pattern of aluminum electrodes having holes on the back surface of the Si substrate. A silver pattern is formed inside the silicon pattern, and a ribbon is soldered to the silver pattern to form an external take-out wire, and the external take-out wire is strongly fixed to the substrate via the silver pattern.

図3は、本発明の詳細動作説明フローチャートを示す。これは、図2のS7のABS半田付けの詳細フローチャートである。 FIG. 3 shows a detailed operation explanatory flowchart of the present invention. This is a detailed flowchart of ABS soldering in S7 of FIG.

図3において、S11は、基板を予備加熱する。これは、図1の基板1を図示外の台に裁置した状態で基板加熱ヒータ3で基板1を予備加熱し、ABS半田11が溶融する温度よりも若干低い温度に加熱する。 In FIG. 3, S11 preheats the substrate. In this method, the substrate 1 of FIG. 1 is preheated by the substrate heater 3 in a state where the substrate 1 is placed on a table (not shown), and the substrate 1 is heated to a temperature slightly lower than the temperature at which the ABS solder 11 is melted.

S12は、コテ先を加熱、超音波を印加する。これは、図1の半田コテ加熱電源23から電源を半田コテ21に供給し、コテ先22が所定温度になるように加熱すると共に、半田コテ超音波パワー発生機構24が所定出力の超音波をコテ先22に供給する。 In S12, the tip of the trowel is heated and ultrasonic waves are applied. In this method, power is supplied from the soldering iron heating power supply 23 of FIG. 1 to the soldering iron 21, the iron tip 22 is heated to a predetermined temperature, and the soldering iron ultrasonic power generation mechanism 24 generates ultrasonic waves having a predetermined output. It is supplied to the iron tip 22.

S13は、ABS半田を供給する。これは、図1のABS半田材料供給機構12が糸あるいはリボン状のABS半田11を所定速度でコテ先21と半田付けする部分との間に供給する。ABS半田11の供給量は、基板裏面2の穴の開いた部分と該穴の縁から基板裏面(アルミ電極)2の上に約0.1mm以上はみだす程度に供給する(図4参照、実験で供給量は決める)。尚、図1の(b)のように、リボン13を半田付けする場合には、ABS半田11に重ねてリボン13を供給すればよい。 S13 supplies ABS solder. The ABS solder material supply mechanism 12 of FIG. 1 supplies the thread or ribbon-shaped ABS solder 11 between the iron tip 21 and the portion to be soldered at a predetermined speed. The amount of ABS solder 11 supplied is such that about 0.1 mm or more protrudes from the holed portion of the back surface 2 of the substrate and the edge of the hole onto the back surface (aluminum electrode) 2 of the substrate (see FIG. 4, in the experiment). The amount of supply will be decided). When the ribbon 13 is soldered as shown in FIG. 1B, the ribbon 13 may be supplied on top of the ABS solder 11.

S14は、コテ先を移動する。これは、図1のコテ先22を移動機構25で移動、図1では右方向に移動する。 S14 moves the trowel tip. This moves the trowel tip 22 in FIG. 1 by the moving mechanism 25, and moves to the right in FIG.

以上により、ABS半田11が基板裏面2の穴の開いた部分と、該穴の縁から基板裏面2の上に約0.1mm以上はみ出すように、コテ先22を移動させ、超音波半田付けすることが可能となる。 As described above, the trowel tip 22 is moved and ultrasonically soldered so that the ABS solder 11 protrudes from the holed portion of the back surface 2 of the substrate and the edge of the hole onto the back surface 2 of the substrate by about 0.1 mm or more. It becomes possible.

図4は、本発明のサンプル写真例を示す。 FIG. 4 shows an example of a sample photograph of the present invention.

図4の(a)は接触幅約0.1mmのサンプル写真を示し、図4の(b)は接触幅約0.5mmのサンプル写真を示し、図4の(c)は接触幅約1.0mmのサンプル写真を示す。ここで、各写真中の横方向の帯状のものが、裏面基板2の帯状の穴の丁度真上に覆う(はみだし量約0.1mm、0.5mm、1.0mm)ように、ABS半田11を半田付けした写真例をそれぞれ示す。 FIG. 4A shows a sample photograph having a contact width of about 0.1 mm, FIG. 4B shows a sample photograph having a contact width of about 0.5 mm, and FIG. 4C shows a contact width of about 1. A sample photograph of 0 mm is shown. Here, the ABS solder 11 is provided so that the horizontal strips in each photograph cover just above the strip holes of the back surface substrate 2 (protrusion amounts of about 0.1 mm, 0.5 mm, 1.0 mm). An example of a photograph in which is soldered is shown.

図4の(a−1),(b−1),(c−1)は、図4の(a),(b),(c)の側面模式図をそれぞれ示す。接触幅は、穴の縁から基板裏面(Al)2の上へのはみ出し量であって、約0.1mm、0.5mm、1.0mmの例を示す。 (A-1), (b-1), and (c-1) of FIG. 4 show schematic side views of (a), (b), and (c) of FIG. 4, respectively. The contact width is the amount of protrusion from the edge of the hole onto the back surface (Al) 2 of the substrate, and shows examples of about 0.1 mm, 0.5 mm, and 1.0 mm.

以上のように、基板(Si)1上に形成した裏面基板(アルミ電極)2に帯状の穴を設け、該帯状の穴の部分にABS半田11を超音波半田付けしたり(図1の(a)参照)、あるいはABS半田11にリボン13を重ねて超音波半田付けしたり(図1の(b)参照))すると共に、ABS半田11の供給量あるいはコテ先22の移動量を調整して穴の縁から裏面基板(アルミ電極)2の上に約0.1mm、0.5mm、1.0mmはみだすように超音波半田付けする。 As described above, a strip-shaped hole is provided in the back surface substrate (aluminum electrode) 2 formed on the substrate (Si) 1, and the ABS solder 11 is ultrasonically soldered to the strip-shaped hole portion (FIG. 1 (FIG. 1). a)) or ultrasonic soldering by superimposing the ribbon 13 on the ABS solder 11 (see (b) in FIG. 1), and adjusting the supply amount of the ABS solder 11 or the movement amount of the iron tip 22. Ultrasonic soldering is performed so that approximately 0.1 mm, 0.5 mm, and 1.0 mm protrude from the edge of the hole onto the back surface substrate (aluminum electrode) 2.

図5は、本発明の測定例を示す。これは、既述した図4の(a),(b),(c)のABS半田付け前(半田前)と、半田付け後(半田後)との太陽電池の電気的特性の測定例を示す。各測定例は、10個の測定例の平均値を示す。また、測定は、図4の基板裏面(アルミ電極)2の帯状の穴の中央部分(半田前は穴の中央部分の基板1の部分、半田後は半田付けした穴の中央部分の該半田の部分)に接触端子を接触させて電気的特性を測定した。 FIG. 5 shows a measurement example of the present invention. This is an example of measuring the electrical characteristics of the solar cell before and after ABS soldering (before soldering) and after soldering (after soldering) in FIGS. 4 (a), (b), and (c) described above. Shown. Each measurement example shows the average value of 10 measurement examples. Further, the measurement was performed on the central portion of the strip-shaped hole on the back surface (aluminum electrode) 2 of the substrate in FIG. 4 (before soldering, the portion of the substrate 1 in the central portion of the hole, and after soldering, the central portion of the soldered hole. The electrical characteristics were measured by contacting the contact terminal with the part).

図5において、測定例の1回、2回、3回は、図4の(a)接触幅約0.1mm,(b)接触幅約0.5mm,(c)接触幅約1.0mmにそれぞれ対応する。ここで、Iscは太陽電池の短絡電流を示し、Vocは太陽電池の開放電圧を示し、EFFは太陽電池の最大効率を示し、FFは太陽電池の最大効率/(VocxIsc)を示す。「半田前」はABS半田を半田付けする前の値を示し、「半田後」はABS半田を半田付けした後の値を示し、「変化量」は半田前から半田後の変化量を示す。 In FIG. 5, the measurement example once, twice, and three times have (a) a contact width of about 0.1 mm, (b) a contact width of about 0.5 mm, and (c) a contact width of about 1.0 mm in FIG. Corresponds to each. Here, Isc indicates the short-circuit current of the solar cell, Voc indicates the open circuit voltage of the solar cell, EFF indicates the maximum efficiency of the solar cell, and FF indicates the maximum efficiency of the solar cell / (VocxIsc). "Before soldering" indicates the value before soldering the ABS solder, "after soldering" indicates the value after soldering the ABS solder, and "amount of change" indicates the amount of change from before soldering to after soldering.

ここで、最大効率(EFF)は、
・測定例の「1回」(接触幅約0.1mm)は変化量がー0.40
「2回」(接触幅約0.5mm)は変化量がー0.18
「3回」(接触幅約1.0mm)は変化量がー0.13
と接触幅が増大するに従い、「半田前」から「半田後」の最大効率の変化量が小さく、つまり、ABS半田11を、アルミ電極(基板裏面)2の穴の縁から当該アルミ電極2の上のはみ出し量が約0.1mm、0.5mm、1.0mmと増大するに伴い、最大効率の「半田前」から「半田後」の変化量が小さくなることが本実験で初めて判明した。
Here, the maximum efficiency (EFF) is
-The amount of change in "1 time" (contact width about 0.1 mm) in the measurement example is -0.40.
"Twice" (contact width about 0.5 mm) has a change amount of -0.18
"3 times" (contact width about 1.0 mm) has a change amount of -0.13
As the contact width increases, the amount of change in the maximum efficiency from "before soldering" to "after soldering" becomes smaller, that is, the ABS solder 11 is transferred from the edge of the hole of the aluminum electrode (back surface of the substrate) 2 to the aluminum electrode 2. For the first time in this experiment, it was found that as the amount of protrusion above increases to about 0.1 mm, 0.5 mm, and 1.0 mm, the amount of change from the maximum efficiency "before soldering" to "after soldering" decreases.

即ち、ABS半田11を、アルミ電極(基板裏面)2の穴の縁から当該アルミ電極2の上へのはみ出し量が約0.1mm、0.5mm、1.0mmと増大させることで、はみだしたABS半田11の部分(0.1mm、0.5mm、1,0mm)からアルミ電極を介して基板1に電子が放出される経路が付加(増大)され、この分だけ最大効率が改善されたものである。 That is, the ABS solder 11 protruded by increasing the amount of protrusion from the edge of the hole of the aluminum electrode (back surface of the substrate) 2 onto the aluminum electrode 2 to about 0.1 mm, 0.5 mm, and 1.0 mm. A path through which electrons are emitted from the ABS solder 11 portion (0.1 mm, 0.5 mm, 1.0 mm) to the substrate 1 via the aluminum electrode is added (increased), and the maximum efficiency is improved by this amount. Is.

本発明の1実施例構成図である。It is a block diagram of 1 Example of this invention. 本発明の動作説明フローチャート(全体)である。It is an operation explanation flowchart (overall) of this invention. 本発明の詳細動作説明フローチャートである。It is a detailed operation explanation flowchart of this invention. 本発明のサンプル写真例である。This is an example of a sample photograph of the present invention. 本発明の測定例である。This is a measurement example of the present invention. 従来技術の説明図である。It is explanatory drawing of the prior art.

1:基板(シリコン基板)
2:基板裏面(Al)
3:基板加熱ヒータ(予備加熱)
11:ABS半田
12:ABS半田材料供給機構
21:半田コテ
22:コテ先
23:半田コテ加熱電源
24:半田コテ超音波パワー発生機構
25:移動機構
1: Substrate (silicon substrate)
2: Back surface of the substrate (Al)
3: Substrate heater (preheating)
11: ABS solder 12: ABS solder material supply mechanism 21: soldering iron 22: iron tip 23: soldering iron heating power supply 24: soldering iron ultrasonic power generation mechanism 25: moving mechanism

Claims (9)

基板上に光を照射したときに高電子濃度を生成する領域を形成すると共に該領域の上に光を透過する絶縁膜を形成し、該絶縁膜の上に前記領域から電子を取り出す取出口であるフィンガー電極を形成して該フィンガー電極を介して前記電子を外部に取り出すと共に、前記基板の裏面から前記電子を流入させて回路を形成する太陽電池において、
前記基板の裏面の全面にアルミ電極を形成した後に該電極の一部に穴を形成し、あるいは前記基板の裏面の全面の一部分に穴を形成したアルミ電極を形成し、該穴の内部の前記基板に半田付けすると共に、併せて該穴の縁からアルミ電極の上側に0.1mm以上はみだして半田付けし、
前記半田付けした穴の内部の基板の部分および穴の縁から0.1mm以上はみ出したアルミ電極の部分から電子をそれぞれ流入させ、太陽電池の変換効率を増大せることを特徴とする太陽電池。
At the outlet where a region that generates a high electron concentration when light is irradiated on the substrate is formed, an insulating film that transmits light is formed on the region, and electrons are taken out from the region on the insulating film. In a solar cell in which a certain finger electrode is formed to take out the electrons to the outside through the finger electrode and the electrons are allowed to flow in from the back surface of the substrate to form a circuit.
After forming an aluminum electrode on the entire surface of the back surface of the substrate, a hole is formed in a part of the electrode, or an aluminum electrode having a hole formed in a part of the entire surface of the back surface of the substrate is formed, and the inside of the hole is described. Solder it to the substrate, and at the same time, solder it so that it protrudes 0.1 mm or more from the edge of the hole to the upper side of the aluminum electrode.
A solar cell characterized in that electrons are allowed to flow in from a portion of a substrate inside the soldered hole and a portion of an aluminum electrode protruding 0.1 mm or more from the edge of the hole to increase the conversion efficiency of the solar cell.
前記アルミ電極の穴を形成した部分は、表面の前記取出線に対応する部分としたことを特徴とする請求項1記載の太陽電池。 The solar cell according to claim 1, wherein the portion in which the hole of the aluminum electrode is formed is a portion corresponding to the take-out line on the surface. 前記半田付けは、超音波半田付けであることを特徴とする請求項1から請求項2のいずれかに記載の太陽電池。 The solar cell according to any one of claims 1 to 2, wherein the soldering is ultrasonic soldering. 前記半田付けは、半田のみ、あるいは半田と取り出し線、あるいはプリ半田付けした取り出した線を半田付けすることを特徴とする請求項1から請求項3のいずれかに記載の太陽電池。 The solar cell according to any one of claims 1 to 3, wherein the soldering is performed by soldering only solder, solder and a take-out wire, or pre-soldered take-out wire. 前記半田付けは、半田付けされる部分の温度を半田が溶融する温度以下で室温以上に予備加熱した状態で、半田付けすることを特徴とする請求項1から請求項4のいずれかに記載の太陽電池。 The method according to any one of claims 1 to 4, wherein the soldering is performed in a state where the temperature of the portion to be soldered is preheated to room temperature or higher below the temperature at which the solder melts. Solar cell. 前記半田は、錫に亜鉛、アルミ、シリコンの1つ以上を含むことを特徴とする請求項1から請求項5のいずれかに記載の太陽電池。 The solar cell according to any one of claims 1 to 5, wherein the solder contains one or more of zinc, aluminum, and silicon in tin. 請求項6の半田は、Pb,Ag,Cuを含まないことを特徴とする太陽電池。 A solar cell according to claim 6, wherein the solder does not contain Pb, Ag, and Cu. 前記穴の縁からアルミ電極の上側に0.1mm以上はみだして半田付けとして、アルミ電極の上側に0.1mm以上から3.0mm以下だけはみだして半田付けしたことを特徴とする請求項1から請求項7のいずれかに記載の太陽電池。 Claimed from claim 1, wherein 0.1 mm or more protrudes from the edge of the hole to the upper side of the aluminum electrode and soldered, and 0.1 mm or more to 3.0 mm or less protrudes from the upper side of the aluminum electrode and soldered. Item 4. The solar cell according to any one of Item 7. 基板上に光を照射したときに高電子濃度を生成する領域を形成すると共に該領域の上に光を透過する絶縁膜を形成し、該絶縁膜の上に前記領域から電子を取り出す取出口であるフィンガー電極を形成して該フィンガー電極を介して前記電子を外部に取り出すと共に、前記基板の裏面から前記電子を流入させて回路を形成する太陽電池の製造方法において、
前記基板の裏面の全面にアルミ電極を形成した後に該電極の一部に穴を形成し、あるいは前記基板の裏面の全面の一部分に穴を形成したアルミ電極を形成し、該穴の内部の前記基板に半田付けすると共に、併せて該穴の縁からアルミ電極の上側に0.1mm以上はみだして半田付けし、
前記半田付けした穴の内部の基板の部分および穴の縁から0.1mm以上はみ出したらアルミ電極の部分から電子をそれぞれ流入させ、太陽電池の変換効率を増大させることを特徴とする太陽電池の製造方法。
At the outlet where a region that generates a high electron concentration when light is irradiated on the substrate is formed, an insulating film that transmits light is formed on the region, and electrons are taken out from the region on the insulating film. In a method for manufacturing a solar cell in which a certain finger electrode is formed, the electrons are taken out through the finger electrode, and the electrons are allowed to flow in from the back surface of the substrate to form a circuit.
After forming an aluminum electrode on the entire surface of the back surface of the substrate, a hole is formed in a part of the electrode, or an aluminum electrode having a hole formed in a part of the entire surface of the back surface of the substrate is formed, and the inside of the hole is described. Solder it to the substrate, and at the same time, solder it so that it protrudes 0.1 mm or more from the edge of the hole to the upper side of the aluminum electrode.
Manufacture of a solar cell characterized by increasing the conversion efficiency of the solar cell by allowing electrons to flow in from the portion of the substrate inside the soldered hole and the portion of the aluminum electrode when the portion protrudes 0.1 mm or more from the edge of the hole. Method.
JP2020527491A 2018-06-26 2019-06-22 Solar cells and solar cell manufacturing methods Pending JPWO2020004290A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018120722 2018-06-26
JP2018120722 2018-06-26
PCT/JP2019/024850 WO2020004290A1 (en) 2018-06-26 2019-06-22 Solar cell and method for manufacturing solar cell

Publications (1)

Publication Number Publication Date
JPWO2020004290A1 true JPWO2020004290A1 (en) 2021-07-01

Family

ID=68986920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020527491A Pending JPWO2020004290A1 (en) 2018-06-26 2019-06-22 Solar cells and solar cell manufacturing methods

Country Status (5)

Country Link
JP (1) JPWO2020004290A1 (en)
KR (1) KR20210022108A (en)
CN (1) CN112352320A (en)
TW (1) TWI714127B (en)
WO (1) WO2020004290A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243790A (en) * 2004-02-25 2005-09-08 Kyocera Corp Solar battery device
JP2012019078A (en) * 2010-07-08 2012-01-26 Sony Chemical & Information Device Corp Solar cell module, method of manufacturing the same
WO2012165590A1 (en) * 2011-05-31 2012-12-06 京セラ株式会社 Solar cell and method for manufacturing same
WO2013015329A1 (en) * 2011-07-25 2013-01-31 日立化成工業株式会社 Wiring member, method for producing same, and method for producing wiring member connection body
US20130112233A1 (en) * 2011-10-31 2013-05-09 Kevin Michael Coakley Interdigitated foil interconnect for rear-contact solar cells
JP2015091601A (en) * 2008-07-18 2015-05-14 ショット・ゾラール・アーゲー Soldering support part for solar module and semiconductor device
WO2018012248A1 (en) * 2016-07-14 2018-01-18 アートビーム株式会社 Solar cell and solar cell manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5231515B2 (en) * 2010-12-17 2013-07-10 シャープ株式会社 Manufacturing method of solar cell
WO2013024829A1 (en) * 2011-08-12 2013-02-21 日立化成工業株式会社 Solder adhesive body, production method for solder adhesive body, element, solar cell, production method for element, and production method for solar cell
TWI492402B (en) * 2013-06-05 2015-07-11 Motech Ind Inc Solar cell and module comprising the same
CN110383500A (en) * 2017-02-28 2019-10-25 亚特比目有限会社 The manufacturing method of solar battery and solar battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243790A (en) * 2004-02-25 2005-09-08 Kyocera Corp Solar battery device
JP2015091601A (en) * 2008-07-18 2015-05-14 ショット・ゾラール・アーゲー Soldering support part for solar module and semiconductor device
JP2012019078A (en) * 2010-07-08 2012-01-26 Sony Chemical & Information Device Corp Solar cell module, method of manufacturing the same
WO2012165590A1 (en) * 2011-05-31 2012-12-06 京セラ株式会社 Solar cell and method for manufacturing same
WO2013015329A1 (en) * 2011-07-25 2013-01-31 日立化成工業株式会社 Wiring member, method for producing same, and method for producing wiring member connection body
US20130112233A1 (en) * 2011-10-31 2013-05-09 Kevin Michael Coakley Interdigitated foil interconnect for rear-contact solar cells
WO2018012248A1 (en) * 2016-07-14 2018-01-18 アートビーム株式会社 Solar cell and solar cell manufacturing method

Also Published As

Publication number Publication date
CN112352320A (en) 2021-02-09
TWI714127B (en) 2020-12-21
KR20210022108A (en) 2021-03-02
WO2020004290A1 (en) 2020-01-02
TW202011613A (en) 2020-03-16

Similar Documents

Publication Publication Date Title
RU2668087C2 (en) Planar heating element with ptc resistance structure
KR102002796B1 (en) Method of ultrasonic soldering and ultrasonic soldering device
JP2021010299A (en) Solar cell and manufacturing method thereof
CN207781646U (en) A kind of LED chip face-down bonding structure and LED lamp bead
KR20180072000A (en) Solar cell and process of manufacture of solar cell
CN104752554B (en) A kind of preparation method of back electrode of solar cell
JPWO2020004290A1 (en) Solar cells and solar cell manufacturing methods
TWI668878B (en) Solar cell and method for manufacturing solar cell
JPWO2020004291A1 (en) Solar cells and solar cell manufacturing methods
KR102227075B1 (en) Solar cell and manufacturing method of solar cell
KR102314772B1 (en) Solar cell and manufacturing method of solar cell
TWI720664B (en) Solar cell and method for manufacturing solar cell
CN109727832A (en) Protection element and its circuit protection device
JP2009527116A5 (en)
JPH1116563A (en) Organic electrolyte battery with terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220426