TWI714127B - Solar cell and method for manufacturing solar cell - Google Patents

Solar cell and method for manufacturing solar cell Download PDF

Info

Publication number
TWI714127B
TWI714127B TW108120702A TW108120702A TWI714127B TW I714127 B TWI714127 B TW I714127B TW 108120702 A TW108120702 A TW 108120702A TW 108120702 A TW108120702 A TW 108120702A TW I714127 B TWI714127 B TW I714127B
Authority
TW
Taiwan
Prior art keywords
substrate
solar cell
hole
solder
aluminum electrode
Prior art date
Application number
TW108120702A
Other languages
Chinese (zh)
Other versions
TW202011613A (en
Inventor
新井傑也
菅原美愛子
小林賢一
小宮秀利
松井正五
錦織潤
Original Assignee
日商亞特比目有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商亞特比目有限公司 filed Critical 日商亞特比目有限公司
Publication of TW202011613A publication Critical patent/TW202011613A/en
Application granted granted Critical
Publication of TWI714127B publication Critical patent/TWI714127B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor
    • H01L23/4924Bases or plates or solder therefor characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a solar cell and a method for manufacturing solar cell, with an objective of improving conversion efficiency and obtaining sufficient fixing strength, by directly soldering to a hole portion of an aluminum electrode on the back surface of a substrate and protruding over the aluminum electrode by 0.1mm or more.
A hole is formed in a part of an aluminum electrode after the aluminum electrode is formed on the entire back surface of the substrate, or an aluminum electrode in which a hole is formed in a portion of the entire back surface of the substrate is formed, and then soldering is performed on the substrate inside the hole, with the solder protruding from the edge of the hole in the upper side of the aluminum electrode by 0.1mm or more, so that electrons are allowed to flow from the portion of the substrate inside the soldered hole and the portion of the aluminum electrode that protrudes by 0.1 mm or more from the edge of the hole to increase the conversion efficiency oft he solar cell.

Description

太陽能電池及太陽能電池的製造方法 Solar cell and solar cell manufacturing method

本發明係有關於太陽能電池及太陽能電池的製造方法,該太陽能電池係形成當光照射到基板上時用以產生高電子濃度的區域,並且在區域上形成會透光的絕緣膜,在絕緣膜上形成指狀電極,該指狀電極為用於從區域取出電子的取出口,該太陽能電池係透過指狀電極將電子取出到外部,並且將引線焊接到基板背面之鋁電極中形成的孔之部分中,並且以從孔的邊緣突出於鋁電極的上側0.1mm以上之方式來進行焊接,以增加轉換效率並提高背面之引線的固定強度。 The present invention relates to a solar cell and a method for manufacturing a solar cell. The solar cell forms a region for generating high electron concentration when light is irradiated on a substrate, and an insulating film that transmits light is formed on the region. A finger electrode is formed on the upper surface. The finger electrode is an outlet for extracting electrons from the area. The solar cell takes out the electrons to the outside through the finger electrode, and welds the lead wire to the hole formed in the aluminum electrode on the back of the substrate. In the part, welding is performed in a way that protrudes from the edge of the hole to the upper side of the aluminum electrode by more than 0.1mm to increase the conversion efficiency and improve the fixing strength of the lead on the back.

以往,在太陽能電池(solar cell)的設計中,重點係使太陽能電池單元中產生的電子有效地流動到所連接的外部電路。為了實現這一點,特別重要的是要減小從電池連接到外部的部分的電阻成分、防止所產生的電子的損耗、及強力地固定正面及背面之外部端子。 In the past, in the design of solar cells, the focus was on making the electrons generated in the solar cells flow efficiently to the connected external circuit. In order to achieve this, it is particularly important to reduce the resistance component of the part connected to the outside from the battery, prevent the loss of generated electrons, and firmly fix the external terminals on the front and back sides.

例如,如第6圖之習知技術所示,在矽基板31的正面(上表面)上形成有氮化膜32,且在其上將指狀電極(銀)33之糊膏(含有含鉛玻璃)進行網版印刷(Screen printing)並予以燒結,並如圖所示在氮化膜32中鑿 孔以形成用於從高電子濃度區域往外部取出電子的指狀電極33。其次,在與指狀電極33正交之方向上進行網版印刷並燒結而產生匯流條電極(銀)34。用焊料36在該匯流條電極(銀)34上焊接焊帶(引線)35而將該焊帶35牢固地固定於矽基板31。 For example, as shown in the conventional technique in FIG. 6, a nitride film 32 is formed on the front surface (upper surface) of the silicon substrate 31, and a paste (containing lead-containing) of the finger electrode (silver) 33 is formed thereon The glass) is screen printed and sintered, and as shown in the figure, holes are drilled in the nitride film 32 to form finger electrodes 33 for taking out electrons from the high electron concentration region to the outside. Next, screen printing and sintering are performed in a direction orthogonal to the finger electrodes 33 to produce bus bar electrodes (silver) 34. A solder ribbon (lead) 35 is soldered to the bus bar electrode (silver) 34 with solder 36 to firmly fix the solder ribbon 35 to the silicon substrate 31.

另外,在矽基板31的背面(下表面)形成鋁電極37,且將焊帶39焊接並固定於其上。 In addition, an aluminum electrode 37 is formed on the back surface (lower surface) of the silicon substrate 31, and a soldering tape 39 is welded and fixed thereto.

另外,如果鋁電極37形成在整個背面上並且焊帶39的焊接強度為較弱之情況下,先在此鋁電極37的一部分(與正面上的匯流條電極34對應之部分)鑿孔,並於此將銀糊膏進行網版印刷並予以燒結以形成銀的部分371,以焊料38將焊帶39固定於該銀的部分371以獲得必要的固定強度。 In addition, if the aluminum electrode 37 is formed on the entire back surface and the welding strength of the welding ribbon 39 is weak, first drill a hole in a part of the aluminum electrode 37 (the part corresponding to the bus bar electrode 34 on the front surface), and Here, the silver paste is screen-printed and sintered to form the silver portion 371, and the solder tape 39 is fixed to the silver portion 371 with the solder 38 to obtain the necessary fixing strength.

然而,在上述以往的在矽基板31的整個背面上形成鋁電極並在其上焊接焊帶39的話,會出現焊帶39無法以足夠的強度固定到矽基板31的問題。 However, if the aluminum electrode is formed on the entire back surface of the silicon substrate 31 and the solder tape 39 is soldered thereon, the solder tape 39 cannot be fixed to the silicon substrate 31 with sufficient strength.

另外,存在有下述問題:為了防止此種情況發生,如上述第6圖所示,必須先在鋁電極37的一部分鑿孔且於此塗上銀糊膏並燒結,再將焊帶39焊接在其上以獲得足夠的固定強度。 In addition, there is the following problem: In order to prevent this from happening, as shown in Figure 6 above, it is necessary to drill a hole in a part of the aluminum electrode 37, apply a silver paste and sinter there, and then solder the ribbon 39 On it to obtain sufficient fixing strength.

本發明者們藉由實驗發現,直接焊接到基板背面之鋁電極 之孔的一部分上並且以從孔的邊緣稍微突出至鋁電極之上的方式來進行焊接,而將焊帶(ribbon,也稱為「焊線」)以足夠的固定強度固定到基板,且獲得高轉換效率之構造與方法。 The inventors found through experiments that the soldering is performed directly on a part of the hole of the aluminum electrode on the back of the substrate and the welding is performed in a way that slightly protrudes from the edge of the hole to the aluminum electrode, and the ribbon (also called ribbon) It is a structure and method for fixing to the substrate with sufficient fixing strength and obtaining high conversion efficiency.

因此,本發明之太陽能電池,係形成當光照射到基板上時會產生高電子濃度的區域,並且在區域上形成光可透過的絕緣膜,在絕緣膜上形成指狀電極,該指狀電極為用於從區域取出電子的取出口,該太陽能電池係透過指狀電極將該電子取出到外部,並且使電子從該基板的背面流入以形成電路,其中,在基板的整個背面上形成鋁電極之後在電極的一部分形成孔、或者形成在基板的整個背面的一部分已形成有孔之鋁電極,在孔之內部的基板上進行焊接,並且以從孔的邊緣突出於鋁電極的上側0.1mm以上的方式進行焊接,使電子分別從焊接過的孔之內部的基板之部分及從孔的邊緣突出0.1mm以上的鋁電極之部分流入來增加太陽能電池的轉換效率。 Therefore, the solar cell of the present invention forms a region where high electron concentration is generated when light is irradiated on the substrate, and a light-permeable insulating film is formed on the region, and a finger electrode is formed on the insulating film. The finger electrode As an outlet for taking out electrons from the area, the solar cell takes out the electrons to the outside through the finger electrode, and allows the electrons to flow from the back of the substrate to form a circuit, wherein an aluminum electrode is formed on the entire back of the substrate After that, a hole is formed in a part of the electrode, or an aluminum electrode with a hole formed on a part of the entire back of the substrate, solder is performed on the substrate inside the hole, and protrudes from the edge of the hole to the upper side of the aluminum electrode by 0.1mm or more Welding is carried out in a way that allows electrons to flow in from the part of the substrate inside the welded hole and the part of the aluminum electrode protruding more than 0.1mm from the edge of the hole to increase the conversion efficiency of the solar cell.

此時,鋁電極的形成有孔之部分,係與正面的取出線(焊帶、引線)對應的部分。 At this time, the portion of the aluminum electrode where the hole is formed is the portion corresponding to the lead-out line (strip, lead) on the front side.

此外,焊接係超音波焊接。 In addition, welding is ultrasonic welding.

此外,焊接係僅對焊料進行焊接、或對焊料與取出線進行焊接、或對已做過預焊接的取出線進行焊接。 In addition, the soldering system only solders the solder, solders the solder and the take-out line, or solders the pre-soldered take-out line.

此外,焊接係在將要被焊接之部分的溫度預熱到焊料會熔化的溫度以下且為室溫以上之狀態下進行焊接。 In addition, soldering is performed in a state where the temperature of the part to be soldered is preheated below the temperature at which the solder will melt and above room temperature.

另外,焊料係在錫中含有鋅、鋁、矽之一種以上。 In addition, the solder contains at least one of zinc, aluminum, and silicon in tin.

另外,焊料係不含Pb、Ag、Cu。 In addition, the solder system does not contain Pb, Ag, and Cu.

另外,構成為:從孔的邊緣突出於鋁電極之上側0.1mm以上而進行焊接者,係突出於鋁電極的上側達0.1mm以上且為3.0mm以下而進行焊接者。 In addition, it is configured to protrude from the edge of the hole by 0.1 mm or more above the aluminum electrode to perform welding, and to protrude from the upper side of the aluminum electrode by 0.1 mm or more and 3.0 mm or less to perform welding.

如以上所述,本發明實現了直接焊接到基板背面之鋁電極之孔的一部分,並且以從孔的邊緣稍微突出至鋁電極之上之方式來進行焊接,而將取出線以足夠的固定強度固定到基板,且獲得高轉換效率之構造與方法。 As described above, the present invention realizes the welding directly to a part of the hole of the aluminum electrode on the back of the substrate, and the welding is performed in a way that slightly protrudes from the edge of the hole to the aluminum electrode, and the lead-out line is fixed with sufficient strength The structure and method for fixing to the substrate and obtaining high conversion efficiency.

藉此,本發明直接焊接到基板背面之鋁電極之孔的一部分,降低取出線之部分的電阻值且以足夠的固定強度固定到基板上。 Thereby, the present invention is directly welded to a part of the hole of the aluminum electrode on the back of the substrate, reduces the resistance value of the part of the lead-out line, and is fixed to the substrate with sufficient fixing strength.

另外,透過實驗已證實,以從基板之孔的邊緣突出於鋁電極之上0.1mm以上之方式進行焊接時,可從該突出而已焊接之鋁電極及與此連接之鋁電極將電子供應到基板而提高太陽能電池之轉換效率(參考第4圖、第5圖)。 In addition, it has been confirmed through experiments that when welding is performed by protruding from the edge of the hole of the substrate above the aluminum electrode by more than 0.1mm, electrons can be supplied to the substrate from the protruding aluminum electrode and the aluminum electrode connected to it. And improve the conversion efficiency of solar cells (refer to Figure 4, Figure 5).

1:基板(矽基板) 1: Substrate (silicon substrate)

2:基板背面(鋁電極) 2: The back of the substrate (aluminum electrode)

3:基板加熱器 3: substrate heater

11:ABS焊料 11: ABS solder

12:ABS焊接材料供應機構 12: ABS welding material supply organization

13:焊帶 13: Welding ribbon

21:烙鐵 21: Soldering iron

22:烙鐵頭 22: Soldering iron tip

23:烙鐵加熱電源 23: Soldering iron heating power supply

24:烙鐵超音波功率產生機構 24: Soldering iron ultrasonic power generation mechanism

25:移動機構 25: mobile agency

31:矽基板 31: Silicon substrate

32:氮化膜 32: Nitride film

33:指狀電極 33: Finger electrode

34:匯流條電極(銀) 34: Bus bar electrode (silver)

35:焊帶(引線) 35: Ribbon (lead)

36:焊料 36: Solder

37:鋁電極 37: Aluminum electrode

38:焊料 38: Solder

39:焊帶(引線) 39: Ribbon (lead)

371:銀的部分 371: silver part

第1圖為本發明之第1實施例構造圖。 Figure 1 is a structural diagram of the first embodiment of the present invention.

第2圖為本發明之動作說明流程圖(整體)。 Figure 2 is a flow chart (overall) explaining the operation of the present invention.

第3圖為本發明之詳細動作說明流程圖。 Figure 3 is a flow chart illustrating the detailed operation of the present invention.

第4圖為本發明之樣本照片例。 Figure 4 is an example of a sample photo of the present invention.

第5圖為本發明之測量例。 Figure 5 is a measurement example of the present invention.

第6圖為習知技術之說明圖,係太陽能電池之正面/背面之重要部分示意例。 Figure 6 is an explanatory diagram of the conventional technology, which is a schematic example of the important parts of the front/back of the solar cell.

[實施例1] [Example 1]

第1圖為本發明之第1實施例構造圖。 Figure 1 is a structural diagram of the first embodiment of the present invention.

第1圖之(a)為表示整體之側視圖;第1圖之(b)為表示第1圖之(a)部分之主要部分放大圖。 Fig. 1(a) is a side view showing the whole; Fig. 1(b) is an enlarged view showing the main part of Fig. 1(a).

第1圖之基板(矽基板),係欲形成太陽能電池之矽基板(單結晶,多結晶)。 The substrate (silicon substrate) in Figure 1 is a silicon substrate (single crystal, polycrystalline) to form a solar cell.

基板背面(A1)2係基板1的背面,係在整個背面上形成鋁電極後於一部分鑿孔,或者在基板1的整個背面上形成具有孔的鋁電極者。 The back surface of the substrate (A1) 2 is the back surface of the substrate 1, which is formed by forming an aluminum electrode on the entire back surface and then drilling a part of it, or forming an aluminum electrode with holes on the entire back surface of the substrate 1.

基板加熱器3係用於預熱基板1的加熱器,且在焊接到基板1時,預熱到焊料會熔化的溫度以下且為室溫以上之溫度,並且為具有自動溫度調整機構者。 The substrate heater 3 is a heater for preheating the substrate 1, and when soldering to the substrate 1, it is preheated to a temperature below the melting temperature of the solder and above room temperature, and has an automatic temperature adjustment mechanism.

ABS焊料11係一長條狀焊接材料,其具有如條狀或帶狀之便於供應焊料之形狀,以便焊接到基板背面(鋁電極)2。焊接材料為於錫(Sn)中含有鋅(Zn)、鋁(Al)、矽(Si)之一種以上,且不含鉛(Pb)、銀(Ag)、銅(Cu)之材料的合金(稱之為ABS焊料11)。取決於此等焊接材料的ABS焊料11的熔點通常在約150℃至350℃的範圍內,因為係由材料的調配比來決定,所以藉由實驗計算出熔化溫度,並決定熔化溫度的最佳預熱溫度(ABS焊料11不會融化之室溫以上之溫度),再者,藉由實驗決定當加熱烙鐵頭22並施加超音波時會熔化並焊接在基板背面2中的孔內部的基板1上的適當之溫度。藉此,可進行如後述之第9圖之(a)、(b)、(c)的照片所示之超音波焊接,可提升焊接焊帶13時之拉伸強度,並且可以進一步提高太陽能電池的轉換效率。又,ABS焊料11的焊接材料的組成係適量地添加了20至95wt%的錫(Sn)、3至60wt%的鋅(Zn)、鋁(Al)、矽(Si)等添加材料。關於此等混合比,係藉由實驗並根據熔化溫度、基板或焊帶等之ABS焊接對象來確定最佳之混合比。 The ABS solder 11 is a long strip of solder material, which has a shape such as a strip or a strip to facilitate the supply of solder so as to be soldered to the back of the substrate (aluminum electrode) 2. The soldering material is an alloy of materials containing zinc (Zn), aluminum (Al), and silicon (Si) in tin (Sn), and does not contain lead (Pb), silver (Ag), and copper (Cu) ( Call it ABS solder 11). The melting point of ABS solder 11, which depends on these soldering materials, is usually in the range of about 150°C to 350°C. Because it is determined by the blending ratio of the materials, the melting temperature is calculated through experiments and the best melting temperature is determined. Preheating temperature (the temperature above room temperature at which the ABS solder 11 will not melt). Furthermore, it is determined through experiments that when the soldering iron tip 22 is heated and ultrasonic waves are applied, it will melt and solder the substrate 1 inside the hole in the substrate back 2 Appropriate temperature above. As a result, ultrasonic welding can be performed as shown in the photos of (a), (b), (c) in Fig. 9 described later, the tensile strength of the solder ribbon 13 can be improved, and the solar cell can be further improved The conversion efficiency. In addition, the composition of the soldering material of the ABS solder 11 is appropriately added with 20 to 95 wt% of tin (Sn), 3 to 60 wt% of zinc (Zn), aluminum (Al), silicon (Si), and other additives. Regarding these mixing ratios, the optimum mixing ratio is determined by experiment and according to the melting temperature, substrate or ribbon, and other ABS welding objects.

ABS焊接材料供應機構12係用於根據烙鐵頭22相對於基板1的移動速度而以既定速度(既定量的焊料,將在後面描述)將ABS焊料11供應到該烙鐵頭22的機構。 The ABS soldering material supply mechanism 12 is a mechanism for supplying the ABS solder 11 to the soldering iron tip 22 at a predetermined speed (a predetermined amount of solder, which will be described later) according to the moving speed of the soldering iron tip 22 relative to the substrate 1.

焊帶13係焊接到基板背面(鋁電極)2之有鑿孔之基板1的部分或已做過預焊接之部分,而從基板1往外部取出電流等。又,如第1圖之(a)所示,當供應ABS焊料11時,預焊(超音波焊接)到基板背面2的孔之部分之基板1,如第1(b)圖所示,當與ABS焊料11疊合來供應焊帶13時,將焊帶13焊接(超音波焊接)在基板背面2的孔之部分之基板1。在已做過預焊接的情況下,係在後段的步驟中將焊帶以一般的焊接(無超音波焊接)焊接到預焊接之部分。另外,也可以使用帶有焊料之焊帶來取代使ABS焊料與焊帶13重疊而供應之情形,其中該帶有焊料之焊帶係預先將ABS焊料11焊接到焊帶13上而形成者。於此種情況下,帶有焊料的焊帶需要使焊料充足地預先焊接到焊帶13,使得約0.1mm以上的焊料從孔的邊緣突出到基板背面2(鋁電極)上。 The solder ribbon 13 is welded to the perforated part of the substrate 1 on the back of the substrate (aluminum electrode) 2 or the part that has been pre-soldered, and the current is taken out from the substrate 1 to the outside. Also, as shown in Figure 1(a), when the ABS solder 11 is supplied, the substrate 1 is pre-soldered (ultrasonic soldered) to the hole on the back side 2 of the substrate. As shown in Figure 1(b), when When superimposing the ABS solder 11 to supply the solder ribbon 13, the solder ribbon 13 is soldered (ultrasonic welding) to the substrate 1 in the hole portion of the back 2 of the substrate. In the case of pre-welding, the welding ribbon is welded to the pre-welded part by normal welding (non-ultrasonic welding) in the subsequent steps. In addition, a soldering tape with solder may be used instead of overlapping the ABS solder with the soldering tape 13 to be supplied, wherein the soldering tape with solder is formed by welding the ABS solder 11 to the soldering tape 13 in advance. In this case, the solder ribbon with solder needs to be sufficiently soldered to the solder ribbon 13 in advance so that the solder of about 0.1 mm or more protrudes from the edge of the hole onto the back surface 2 (aluminum electrode) of the substrate.

烙鐵21係將烙鐵頭22加熱到既定溫度並且供應超音波者。 The soldering iron 21 heats the soldering iron tip 22 to a predetermined temperature and supplies ultrasonic waves.

烙鐵頭22係安裝到烙鐵21之前端,將超音波施加到要焊接 的部件(基板背面2的孔之部分等),並且供應已熔化的ABS焊料11並進行焊接者。 The soldering iron tip 22 is attached to the front end of the soldering iron 21, applies ultrasonic waves to the parts to be soldered (the part of the hole on the back side 2 of the substrate, etc.), and supplies molten ABS solder 11 and performs soldering.

烙鐵加熱電源23係供應電源使得烙鐵頭22達到既定溫度,並且檢測烙鐵頭22之部分的溫度且具有自動溫度調整機構。 The soldering iron heating power supply 23 supplies power to make the soldering iron tip 22 reach a predetermined temperature, detects the temperature of a part of the soldering iron tip 22, and has an automatic temperature adjustment mechanism.

烙鐵超音波功率產生機構24係將超音波從烙鐵頭22供應給要焊接的部分(基板背面2的孔之部分等)者。超音波功率(電源功率)可約為1至10W,若功率太弱則會發生超音波焊接不良,若功率太強則膜(鋁電極膜等)會被超音波破壞,反而可能會發生焊接不良,因此,透過實驗來確定最佳功率。通常係使用1至數瓦來進行。 The soldering iron ultrasonic power generation mechanism 24 supplies ultrasonic waves from the soldering iron tip 22 to the part to be soldered (the part of the hole on the back 2 of the substrate, etc.). Ultrasonic power (power supply) can be about 1 to 10W. If the power is too weak, ultrasonic welding will fail. If the power is too strong, the film (aluminum electrode film, etc.) will be damaged by ultrasound, which may cause poor welding. Therefore, through experiments to determine the best power. It is usually done using 1 to several watts.

移動機構25係使烙鐵21以既定速度自動地移動的機構,於此種情況下,係以既定速度往右方移動的機構。既定速度係與用以自動供應ABS焊料11之ABS焊接材料供應機構12連動而調整(透過實驗調整,參考第4圖與其說明)成:以使ABS焊料11從基板背面2的孔的邊緣突出於基板背面2之鋁電極上約0.1mm以上且通常在3mm以內之方式對ABS焊料11進行焊接。 The moving mechanism 25 is a mechanism that automatically moves the soldering iron 21 at a predetermined speed, and in this case, is a mechanism that moves to the right at a predetermined speed. The predetermined speed is adjusted in conjunction with the ABS solder material supply mechanism 12 for automatically supplying ABS solder 11 (adjusted through experiments, refer to Figure 4 and its description) so that the ABS solder 11 protrudes from the edge of the hole on the back 2 of the substrate The ABS solder 11 is soldered on the aluminum electrode on the back side 2 of the substrate in a manner of about 0.1 mm or more and usually within 3 mm.

其次,說明第1圖之構造的動作。 Next, the operation of the structure shown in Figure 1 will be described.

(1):將基板(約150mm的矩形基板)1放置在具有預備加熱器3的工作台(未圖示)上,將溫度調整到略低於ABS焊料11的熔化溫度的溫度(溫度係通過實驗確定)。 (1): Place the substrate (about 150mm rectangular substrate) 1 on a workbench (not shown) with a preliminary heater 3, and adjust the temperature to a temperature slightly lower than the melting temperature of the ABS solder 11 (the temperature is passed Experimentally determined).

(2):由烙鐵加熱電源23供給電源而將烙鐵頭22加熱到既定溫度,並且由烙鐵超音波功率產生機構24產生超音波並將超音波供應給烙鐵頭22(加熱溫度、超音波功率係根據ABS焊料11的材料而有所不同,所以每 種材料都透過實驗來決定)。 (2): The soldering iron heating power supply 23 supplies power to heat the soldering iron tip 22 to a predetermined temperature, and the soldering iron ultrasonic power generation mechanism 24 generates ultrasonic waves and supplies the ultrasonic waves to the soldering iron tip 22 (heating temperature, ultrasonic power system) It depends on the material of ABS solder 11, so each material is determined through experimentation).

(3):如第1圖(a)所示,一面利用烙鐵頭22熔化ABS焊料11,一面將超音波供應(於輕壓之狀態下)給基板背面(鋁電極)2的孔之部分的基板1,並且藉由移動機構25使烙鐵頭22往圖中之右方移動。同時,由ABS焊接材料供應機構12以既定速度供應ABS焊料11,並使其移動以便使已融化之ABS焊料11以從基板背面2的孔之邊緣突出於基板背面(鋁電極)2上約0.1mm以上之方式進行焊接(透過實驗決定烙鐵頭22的移動速度、ABS焊料11的供應量以滿足此等關係。此時,也要進一步一起調整加熱溫度、超音波功率)。 (3): As shown in Figure 1(a), while using the soldering iron tip 22 to melt the ABS solder 11, ultrasonic waves are supplied (under light pressure) to the hole part of the back of the substrate (aluminum electrode) 2 The substrate 1, and the soldering iron tip 22 is moved to the right in the figure by the moving mechanism 25. At the same time, the ABS solder material supply mechanism 12 supplies the ABS solder 11 at a predetermined speed and moves it so that the melted ABS solder 11 protrudes from the edge of the hole in the substrate back 2 to the substrate back (aluminum electrode) 2 by about 0.1 Soldering is performed in a way above mm (determine the moving speed of the soldering iron tip 22 and the supply amount of the ABS solder 11 through experiments to meet these relationships. At this time, the heating temperature and ultrasonic power must be further adjusted together).

(4):如以上所述,如第1圖(a)所示,當僅供應ABS焊料11時,ABS焊料11焊接到基板背面(鋁電極)2的孔之部分的基板1上,並且以從孔的邊緣突出約0.1mm以上至3mm左右之方式焊接到基板背面(鋁電極)2上(參考第4圖)。 (4): As described above, as shown in Figure 1(a), when only the ABS solder 11 is supplied, the ABS solder 11 is soldered to the substrate 1 in the hole portion of the substrate back (aluminum electrode) 2 and Solder to the back of the substrate (aluminum electrode) 2 by protruding from the edge of the hole about 0.1 mm or more to about 3 mm (refer to Figure 4).

(5):在(4)之有做預焊之情況時,係在後段步驟中將焊帶焊接(採用一般焊接的無超音波焊接)到預焊接的部份,並將其作為連接到外部的取出線。 (5): In the case of pre-welding in (4), the welding tape (non-ultrasonic welding with general welding) is welded to the pre-welded part in the later step, and it is connected to the outside Of the removal line.

(6):此外,取代(4)和(5),如第1圖(b)所示,當ABS焊料11與焊帶13一起供應之情況或者當供應帶有焊料的焊帶之情況時,將ABS焊料11焊接到基板背面(鋁電極)2有鑿孔之部分的基板1上並以從孔的邊緣突出於基板背面(鋁電極)2上約0.1mm以上至3mm左右之方式將ABS焊料11進行焊接。 (6): In addition, instead of (4) and (5), as shown in Figure 1(b), when the ABS solder 11 is supplied with the solder ribbon 13 or when the solder ribbon is supplied, Solder the ABS solder 11 to the substrate 1 on the back of the substrate (aluminum electrode) 2 with a perforated part, and apply the ABS solder in such a way that it protrudes from the edge of the hole on the back of the substrate (aluminum electrode) 2 by about 0.1 mm to about 3 mm. 11 Perform welding.

如以上所述,藉由將ABS焊料11直接預焊接到基板背面 (鋁電極)2的孔之部分的基板1或以ABS焊料11焊接焊帶13,如後所述,可以提高太陽能電池的效率,並且以ABS焊料11透過基板背面2的孔直接焊接到基板1,可以將焊帶牢固地固定到該基板1。 As mentioned above, by pre-soldering the ABS solder 11 directly to the substrate 1 in the hole portion of the substrate back (aluminum electrode) 2 or soldering the ribbon 13 with the ABS solder 11, the efficiency of the solar cell can be improved as described later. And the ABS solder 11 is directly soldered to the substrate 1 through the hole on the back 2 of the substrate, and the solder tape can be firmly fixed to the substrate 1.

又,在實際實施的一個例子中,將基板加熱溫度(預熱)標準化為180℃,至少上限溫度為200℃以下(ABS焊料不會熔化的溫度以下)。若超過此溫度之基板將被破壞,於此種情況下,烙鐵溫度為400℃。最多約500℃。此係以烙鐵頭的移動速度、焊接材料供應速度來調整。速度越快就越提高溫度。關於超音波輸出,背面為6瓦以下而正面為3瓦以下。上述之條件適用於熔點約為217℃且主要材料為錫與鋅合金的焊接材料。取決於焊接材料、基板之類型、烙鐵頭的移動速度、焊料供應量等,必須對預熱溫度、烙鐵頭(烙鐵)溫度、烙鐵頭移動速度、焊料供應速度等進行實驗,以調整到最合適的條件,以便可以進行良好的超音波焊接。 Also, in an example of actual implementation, the substrate heating temperature (preheating) is standardized to 180°C, and at least the upper limit temperature is 200°C or less (the temperature at which the ABS solder does not melt). If the temperature exceeds this temperature, the substrate will be destroyed. In this case, the soldering iron temperature is 400°C. Up to about 500°C. This is adjusted by the moving speed of the soldering iron tip and the supply speed of the soldering material. The faster the speed, the higher the temperature. Regarding ultrasonic output, the back is 6 watts or less and the front is 3 watts or less. The above conditions are suitable for soldering materials with a melting point of about 217°C and the main material is an alloy of tin and zinc. Depending on the soldering material, the type of the substrate, the moving speed of the soldering iron tip, the amount of solder supply, etc., the preheating temperature, the soldering iron tip (soldering iron) temperature, the moving speed of the soldering iron tip, and the solder supply speed must be tested to adjust to the most suitable Conditions so that good ultrasonic welding can be carried out.

其次,依據第2圖的流程圖的順序詳細說明第1圖的構造的動作。 Next, the operation of the structure in Fig. 1 will be described in detail in accordance with the sequence of the flowchart in Fig. 2.

第2圖為本發明之動作說明流程圖(整體)。 Figure 2 is a flow chart (overall) explaining the operation of the present invention.

於第2圖中,S1步驟係準備Si基板。 In Figure 2, step S1 prepares the Si substrate.

S2步驟係進行表面處理。此步驟係在S1步驟中所準備的矽基板(例如,N型)上形成氮化膜,此外,形成有指狀電極、匯流條電極等的圖案。此類似於例如以往的第6圖,於矽基板31之正面側形成氮化膜32,且形成有指狀電極33、匯流條電極34等的圖案。 The S2 step is for surface treatment. In this step, a nitride film is formed on the silicon substrate (for example, N-type) prepared in step S1, and patterns such as finger electrodes, bus bar electrodes, etc. are formed. This is similar to, for example, the conventional Fig. 6 where a nitride film 32 is formed on the front side of the silicon substrate 31, and patterns of finger electrodes 33, bus bar electrodes 34, etc. are formed.

S3步驟係執行背面處理。此步驟在矽基板的背面形成有鋁圖案,例如以網版印刷在矽基板之整個背面上用鋁糊膏形成有鑿孔的鋁電 極。並且,本發明進入到S5步驟。 Step S3 is to perform backside processing. In this step, an aluminum pattern is formed on the back surface of the silicon substrate, for example, a perforated aluminum electrode is formed by using aluminum paste on the entire back surface of the silicon substrate by screen printing. And, the present invention enters step S5.

S5步驟係燒結。此步驟係總括地燒結由S2步驟的表面處理、S3步驟的背面處理所形成的圖案。 The S5 step is sintering. This step is to sinter the pattern formed by the surface treatment in the S2 step and the back surface treatment in the S3 step.

如以上所述,本發明可以在S1至S3及S5步驟中,在基板的正面側上形成指狀電極、匯流條電極,而在背面側形成有鑿孔的鋁電極。 As described above, in the present invention, in steps S1 to S3 and S5, finger electrodes and bus bar electrodes are formed on the front side of the substrate, and perforated aluminum electrodes are formed on the back side.

S6步驟係進行測量(1)。此步驟可以在S7步驟之ABS焊接之前使用探針測量ABS焊接之前的太陽能電池的電氣特性(參考第5圖之焊接前的資料)。 Step S6 is to measure (1). In this step, the probe can be used to measure the electrical characteristics of the solar cell before the ABS welding in step S7 (refer to the data before welding in Figure 5).

S7步驟係進行ABS焊接。此步驟係將ABS焊料直接焊接到Si基板的鋁電極有鑿孔的部分的基板1上,並且以從孔的邊緣突出至鋁電極上約0.1mm以上之方式來進行焊接。又,也可以對焊帶13一起進行焊接(參考第1圖(b))。 Step S7 is to perform ABS welding. In this step, the ABS solder is directly soldered to the substrate 1 of the perforated portion of the aluminum electrode of the Si substrate, and the soldering is performed in a manner that protrudes from the edge of the hole to the aluminum electrode by about 0.1 mm or more. In addition, the welding ribbon 13 may be welded together (refer to Fig. 1(b)).

S8步驟係進行測量(2)。此步驟可以在S7步驟之ABS焊接之後測量太陽能電池的電氣特性(參考第5圖之焊接後的資料)。 Step S8 is to measure (2). In this step, the electrical characteristics of the solar cell can be measured after the ABS welding in step S7 (refer to the data after welding in Figure 5).

如以上所述,在Si基板的正面上形成有氮化膜,且形成有指狀電極、匯流條電極等的圖案,而在Si基板背面上形成有鑿孔的鋁電極之圖案後總括地燒結,即可以形成此等圖案。 As described above, a nitride film is formed on the front surface of the Si substrate, and patterns of finger electrodes, bus bar electrodes, etc. are formed, and a pattern of perforated aluminum electrodes is formed on the back surface of the Si substrate and then sintered collectively , That can form these patterns.

另一方面,以往,在S1至S3步驟之後,接著在S4步驟中進一步在Si基板上塗佈銀糊膏。此係在S3步驟之背面處理上形成有鑿孔的鋁電極的一部分中,進一步網版印刷銀糊膏且在該鋁電極的孔之內部的Si基板上形成有銀圖案。且,如同本發明,藉由進行S5到S8步驟,在Si基板的正面上形成有氮化膜,且形成有指狀電極、匯流條電極等的圖案, 而在Si基板背面上有鑿孔的鋁電極的圖案之內部形成有銀圖案,並將焊帶焊接到此處以製作外部取出線,即可實現將該外部取出線透過銀圖案牢固地固定到基板上。 On the other hand, conventionally, after steps S1 to S3, a silver paste was further applied to the Si substrate in step S4. This is a part of the aluminum electrode with perforations formed on the back surface treatment in step S3, and the silver paste is further screen-printed and a silver pattern is formed on the Si substrate inside the hole of the aluminum electrode. And, as in the present invention, by performing steps S5 to S8, a nitride film is formed on the front surface of the Si substrate, and patterns such as finger electrodes, bus bar electrodes, etc. are formed, and a hole is formed on the back surface of the Si substrate. A silver pattern is formed inside the pattern of the aluminum electrode, and the soldering tape is welded here to make an external take-out line, which can be implemented to firmly fix the external take-out line to the substrate through the silver pattern.

第3圖為本發明之詳細動作說明流程圖。此步驟係第7圖的S7步驟之ABS焊接的詳細流程圖。 Figure 3 is a flow chart illustrating the detailed operation of the present invention. This step is a detailed flowchart of ABS welding in step S7 in Figure 7.

在第3圖中,S11步驟係預熱基板。此步驟係在將第1圖的基板1放置在未圖示的工作台的狀態下,以基板加熱器3預熱基板1,且將溫度加熱到略低於ABS焊料11會熔化的溫度之溫度。 In Figure 3, step S11 is to preheat the substrate. This step is to preheat the substrate 1 with the substrate heater 3 with the substrate 1 shown in Figure 1 placed on a table not shown, and heat the substrate 1 to a temperature slightly lower than the temperature at which the ABS solder 11 will melt .

在S12步驟中,加熱烙鐵頭且施加超音波。此步驟係從第1圖的烙鐵加熱電源23供電給烙鐵21,將烙鐵頭22加熱到既定的溫度,並且讓烙鐵超音波功率產生機構24將既定輸出的超音波提供給烙鐵頭22。 In step S12, the soldering iron tip is heated and ultrasonic waves are applied. In this step, power is supplied from the soldering iron heating power supply 23 in FIG. 1 to the soldering iron 21 to heat the soldering iron tip 22 to a predetermined temperature, and the soldering iron ultrasonic power generating mechanism 24 provides the predetermined output ultrasonic waves to the soldering iron tip 22.

S13步驟係供應ABS焊料。此步驟係由第1圖的ABS焊接材料供應機構12以既定速度在烙鐵頭22及待焊接部分之間供應線狀或帶狀ABS焊料11。ABS焊料11的供應量,係以供應到基板背面2有鑿孔的部分並從該孔的邊緣突出於基板背面(鋁電極)2上約0.1mm以上的方式來進行供應(參考第4圖,供應量由實驗決定)。又,如第1圖(b)所示,當焊接焊帶13時,只要以與ABS焊料重疊之方式供給焊帶13即可。 Step S13 is to supply ABS solder. In this step, the ABS soldering material supply mechanism 12 in FIG. 1 supplies the wire or strip ABS solder 11 between the soldering iron tip 22 and the part to be soldered at a predetermined speed. The supply amount of ABS solder 11 is supplied to the perforated part of the substrate back 2 and protrudes from the edge of the hole to the substrate back (aluminum electrode) 2 by about 0.1 mm or more (refer to Figure 4, The supply is determined by experiment). Moreover, as shown in FIG. 1(b), when soldering the solder ribbon 13, it is only necessary to supply the solder ribbon 13 so as to overlap with the ABS solder.

S14步驟係移動烙鐵頭。此步驟係以移動機構25移動第1圖的烙鐵頭22,且在第1圖中係往右方移動。 Step S14 is to move the soldering iron tip. In this step, the moving mechanism 25 is used to move the soldering iron tip 22 in Figure 1, and in Figure 1, it is moved to the right.

如上所述,可以使ABS焊料11焊接到基板背面2有鑿孔的部分並且從該孔的邊緣突出約0.1mm以上的方式,使烙鐵頭22移動以進行超音波焊接。 As described above, the ABS solder 11 can be soldered to the perforated portion of the substrate back 2 and protrude from the edge of the hole by about 0.1 mm or more, and the soldering iron tip 22 can be moved to perform ultrasonic soldering.

第4圖為本發明之樣本照片例。 Figure 4 is an example of a sample photo of the present invention.

第4圖(a)表示接觸寬度約為0.1mm的樣本照片,第4圖(b)表示接觸寬度約為0.5mm的樣本照片,第4圖(c)表示接觸寬度約為1.0mm的樣本照片。於此,所顯示者分別是以使得各照片中的橫向的帶狀物可以正好覆蓋(突出量約0.1mm,0.5mm,1.0mm)在基板背面2的帶狀孔上之方式焊接ABS焊料11的照片例。 Figure 4(a) shows a sample photo with a contact width of approximately 0.1mm, Figure 4(b) shows a sample photo with a contact width of approximately 0.5mm, Figure 4(c) shows a sample photo with a contact width of approximately 1.0mm . Here, what is shown is to solder the ABS solder 11 in such a way that the horizontal ribbon in each photo can just cover (the protrusion is about 0.1mm, 0.5mm, 1.0mm) on the ribbon hole on the back 2 of the substrate. Examples of photos.

第4圖的(a-1)、(b-1)、(c-1)分別顯示出第4圖的(a)、(b)、(c)的側視示意圖。接觸寬度係從孔的邊緣到基板背面(Al)2上的突出量,並且顯示出約0.1mm,0.5mm和1.0mm的例子。 (A-1), (b-1), and (c-1) of Fig. 4 show schematic side views of (a), (b), and (c) in Fig. 4, respectively. The contact width is the amount of protrusion from the edge of the hole to the back surface (Al) 2 of the substrate, and examples of about 0.1 mm, 0.5 mm, and 1.0 mm are shown.

如上所述,在基板(Si)1上形成的基板背面(鋁電極)2中,設置帶狀的孔,將ABS焊料11以超音波焊接到該帶狀孔的部分(參考第1(a)圖),或者將焊帶13疊加在ABS焊料11上並進行超音波焊接(參考第1(b)圖),並且調整ABS焊料11的供應量或烙鐵頭22的移動量,以從孔的邊緣突出到基板背面(鋁電極)2上約0.1mm,0.5mm,1.0mm的方式,來進行超音波焊接。 As described above, in the back of the substrate (aluminum electrode) 2 formed on the substrate (Si) 1, a belt-shaped hole is provided, and the ABS solder 11 is ultrasonically welded to the part of the belt-shaped hole (refer to Section 1(a)) Figure), or superimpose the soldering tape 13 on the ABS solder 11 and perform ultrasonic welding (refer to Figure 1(b)), and adjust the supply amount of the ABS solder 11 or the movement amount of the soldering iron tip 22 to move from the edge of the hole Protruding to the back of the substrate (aluminum electrode) 2 by approximately 0.1 mm, 0.5 mm, 1.0 mm, ultrasonic welding is performed.

第5圖為本發明之測量例。此表格係表示上述之第4圖(a),第4圖(b)和第4圖(c)之ABS焊接之前(焊接前)及焊接之後(焊接後)的測量太陽能電池的電氣特性的例子。各測量例顯示十個測量例的平均值。此外,測量係讓接觸端子接觸到第4圖的基板背面(鋁電極)2的帶狀之孔的中心部分(焊接前為孔的中心部分的基板1的部分,焊接後為已焊接之孔的中央部分的該焊料的部分)來測量電氣特性。 Figure 5 is a measurement example of the present invention. This table is an example of measuring the electrical characteristics of solar cells before (before welding) and after welding (after welding) of ABS in Figure 4 (a), Figure 4 (b) and Figure 4 (c) above . Each measurement example displays the average value of ten measurement examples. In addition, the measurement system allows the contact terminal to contact the center part of the strip hole on the back of the substrate (aluminum electrode) 2 in Figure 4 (the part of the substrate 1 that is the center of the hole before soldering, and the soldered hole after soldering. The central part of the solder part) to measure the electrical characteristics.

在第5圖中,測量例之一次,兩次和三次,分別對應到第4 圖(a)之接觸寬度約為0.1mm、(b)接觸寬度約為0.5mm、(c)接觸寬度約為1.0mm。於此,Isc表示太陽能電池的短路電流,Voc表示太陽能電池的開路電壓,EFF表示太陽能電池的最大效率,FF表示太陽能電池的最大效率/(VocxIsc)。「焊接前」為表示焊接ABS焊料前的數值,「焊接後」為表示焊接ABS焊料後的數值,「變化量」為表示從焊接前至焊接後的變化量。 In Figure 5, one, two and three measurement examples correspond to Figure 4 (a), the contact width is about 0.1mm, (b) the contact width is about 0.5mm, and (c) the contact width is about 1.0mm. Here, Isc represents the short-circuit current of the solar cell, Voc represents the open circuit voltage of the solar cell, EFF represents the maximum efficiency of the solar cell, and FF represents the maximum efficiency of the solar cell/(VocxIsc). "Before welding" means the value before welding ABS solder, "after welding" means the value after welding ABS solder, and "change" means the amount of change from before welding to after welding.

於此,最大效率(EFF)為: Here, the maximum efficiency (EFF) is:

‧測量例的「一次」(接觸寬度約0.1mm)之變化量為-0.40; ‧The change amount of "one time" (contact width about 0.1mm) in the measurement example is -0.40;

‧測量例的「二次」(接觸寬度約0.5mm)之變化量為-0.18; ‧The change of "secondary" (contact width about 0.5mm) of the measurement example is -0.18;

‧測量例的「三次」(接觸寬度約1.0mm)之變化量為-0.13; ‧The change of "three times" (contact width about 1.0mm) in the measurement example is -0.13;

其乃隨著接觸寬度之增加而縮小了從「焊接前」到「焊接後」的最大效率之變化量,亦即,於本實驗中首次發現隨著ABS焊料11從鋁電極(基板背面)2的孔的邊緣突出到該鋁電極2上之突出量增加到約0.1mm,0.5mm,1.0mm,縮小了最大效率之從「焊接前」到「焊接後」的變化量。 As the contact width increases, the maximum efficiency change from "before soldering" to "after soldering" is reduced. That is, for the first time in this experiment, it is found that as the ABS solder 11 moves from the aluminum electrode (the back of the substrate) 2 The protruding amount of the edge of the hole protruding to the aluminum electrode 2 is increased to about 0.1mm, 0.5mm, 1.0mm, which reduces the maximum efficiency from "before welding" to "after welding".

亦即,藉由ABS焊料11從鋁電極(基板背面)2的孔的邊緣突出到該鋁電極2上之突出量增加到約0.1mm,0.5mm,1.0mm,添加(增加)讓電子從突出的ABS焊料11的一部分(0.1mm,0.5mm,1.0mm)透過鋁電極發射到基板1的路徑,對應於此部分而提高了最高效率。 That is, the protrusion amount from the edge of the hole of the aluminum electrode (the back of the substrate) 2 to the aluminum electrode 2 by the ABS solder 11 is increased to about 0.1mm, 0.5mm, 1.0mm, and the electrons are added (increased) to protrude from A part of the ABS solder 11 (0.1mm, 0.5mm, 1.0mm) is emitted through the aluminum electrode to the path of the substrate 1, corresponding to this part and the highest efficiency is improved.

1‧‧‧基板 1‧‧‧Substrate

2‧‧‧基板背面 2‧‧‧Back of substrate

3‧‧‧基板加熱器 3‧‧‧Substrate heater

11‧‧‧ABS焊料 11‧‧‧ABS solder

12‧‧‧ABS焊接材料供應機構 12‧‧‧ABS welding material supply organization

13‧‧‧焊帶 13‧‧‧Welding ribbon

21‧‧‧烙鐵 21‧‧‧Soldering Iron

22‧‧‧烙鐵頭 22‧‧‧Soldering iron tip

23‧‧‧烙鐵加熱電源 23‧‧‧Soldering iron heating power supply

24‧‧‧烙鐵超音波功率產生機構 24‧‧‧Soldering iron ultrasonic power generation mechanism

25‧‧‧移動機構 25‧‧‧Mobile mechanism

Claims (10)

一種太陽能電池,係形成當光照射到基板上時會產生高電子濃度的區域,並且在該區域上形成光可透過的絕緣膜,在該絕緣膜上形成指狀電極,該指狀電極為用於從前述區域取出電子的取出口,該太陽能電池係透過該指狀電極將前述電子取出到外部,並且使前述電子從前述基板的背面流入以形成電路,其中,在該基板的整個背面上形成鋁電極之後於該鋁電極的一部分形成孔、或形成在前述基板的整個背面的一部分已形成有孔之鋁電極,在該孔之內部的前述基板上進行超音波焊接,並且以從該孔的邊緣突出於鋁電極的上側達0.1mm以上且為3.0mm以下的方式進行超音波焊接,且使電子分別從前述超音波焊接過的孔之內部的基板之部分及從孔的邊緣突出達0.1mm以上且為3.0mm以下的鋁電極之部分流入來增加太陽能電池的轉換效率。 A solar cell that forms an area where high electron concentration occurs when light is irradiated on a substrate, and an insulating film that transmits light is formed on the area, and a finger electrode is formed on the insulating film. The finger electrode is used At the outlet for taking out electrons from the aforementioned area, the solar cell takes out the aforementioned electrons to the outside through the finger electrode, and allows the aforementioned electrons to flow from the back surface of the substrate to form a circuit, wherein the solar cell is formed on the entire back surface of the substrate After the aluminum electrode, a hole is formed in a part of the aluminum electrode, or an aluminum electrode with a hole formed on a part of the entire back surface of the substrate, ultrasonic welding is performed on the substrate inside the hole, and the Ultrasonic welding is carried out so that the edge protrudes from the upper side of the aluminum electrode by 0.1mm or more and 3.0mm or less, and the electrons are respectively protruded from the part of the substrate inside the ultrasonic soldered hole and 0.1mm from the edge of the hole The part of the aluminum electrode above and below 3.0mm flows in to increase the conversion efficiency of the solar cell. 如申請專利範圍第1項所述之太陽能電池,其中前述鋁電極的形成有孔之部分,係與正面的取出線對應的部分。 In the solar cell described in the first item of the scope of patent application, the portion of the aluminum electrode where the hole is formed is the portion corresponding to the lead-out line on the front side. 如申請專利範圍第1項所述之太陽能電池,其中前述超音波焊接係僅對焊料進行超音波焊接、或對焊料與取出線進行超音波焊接、或對已做過預焊接的取出線進行超音波焊接。 As for the solar cell described in item 1 of the scope of patent application, the aforementioned ultrasonic welding system only performs ultrasonic welding on solder, or performs ultrasonic welding on solder and take-out wire, or performs ultrasonic welding on take-out wire that has been pre-soldered. Sonic welding. 如申請專利範圍第2項所述之太陽能電池,其中前述超音波焊接係僅對焊料進行超音波焊接、或對焊料與取出線進行超音波焊接、或對已做過預焊接的取出線進行超音波焊接。 As for the solar cell described in item 2 of the scope of patent application, the aforementioned ultrasonic welding system only performs ultrasonic welding on the solder, or performs ultrasonic welding on the solder and the take-out wire, or performs supersonic welding on the take-out wire that has been pre-soldered. Sonic welding. 如申請專利範圍第1至4項中任一項所述之太陽能電池,其中前述超音波焊接係在將要被焊接之部分的溫度預熱到焊料會熔化的溫度以下且為室溫以上之狀態下進行超音波焊接。 The solar cell described in any one of items 1 to 4 in the scope of patent application, wherein the aforementioned ultrasonic welding is in a state where the temperature of the part to be soldered is preheated to below the temperature at which the solder will melt and above room temperature Perform ultrasonic welding. 如申請專利範圍第1至4項中任一項所述之太陽能電池,其中前述焊料係在錫中含有鋅、鋁、矽之一種以上。 The solar cell as described in any one of items 1 to 4 in the scope of the patent application, wherein the aforementioned solder contains more than one of zinc, aluminum, and silicon in tin. 如申請專利範圍第5項所述之太陽能電池,其中前述焊料係在錫中含有鋅、鋁、矽之一種以上。 The solar cell described in item 5 of the scope of patent application, wherein the aforementioned solder contains more than one of zinc, aluminum, and silicon in tin. 如申請專利範圍第6項所述之太陽能電池,其中前述焊料係不含Pb、Ag、Cu。 The solar cell described in item 6 of the scope of patent application, wherein the aforementioned solder system does not contain Pb, Ag, and Cu. 如申請專利範圍第7項所述之太陽能電池,其中前述焊料係不含Pb、Ag、Cu。 The solar cell described in item 7 of the scope of patent application, wherein the aforementioned solder system does not contain Pb, Ag, and Cu. 一種太陽能電池的製造方法,該太陽能電池係形成當光照射到基板上時會產生高電子濃度的區域,並且在該區域上形成光可透過的絕緣膜,在該絕緣膜上形成指狀電極,該指狀電極為用於從該區域取出電子的取出口,該太陽能電池係透過該指狀電極將前述電子取出到外部,並且使前述電子從前述基板的背面流入以形成電路,該製造方法係在前述基板的整個背面上形成鋁電極之後在該鋁電極的一部分形成孔、或形成在前述基板的整個背面的一部分已形成有孔之鋁電極,在該孔之內部的前述基板上進行超音波焊接,並且以從該孔的邊緣突出於鋁電極的上側達0.1mm以上且為3.0mm以下的方式進行超音波焊接,且 使電子分別從前述超音波焊接過的孔之內部的基板之部分及從孔的邊緣突出達0.1mm以上且為3.0mm以下的鋁電極之部分流入來增加太陽能電池的轉換效率。 A method for manufacturing a solar cell. The solar cell system forms an area where high electron concentration is generated when light is irradiated on a substrate, and an insulating film permeable to light is formed on the area, and finger electrodes are formed on the insulating film, The finger electrode is an outlet for taking out electrons from the area. The solar cell takes out the electrons to the outside through the finger electrode, and allows the electrons to flow from the back surface of the substrate to form a circuit. The manufacturing method is After the aluminum electrode is formed on the entire back surface of the substrate, a hole is formed in a part of the aluminum electrode, or an aluminum electrode with a hole formed on a part of the entire back surface of the substrate is formed, and ultrasonic waves are performed on the substrate inside the hole Welding, and ultrasonic welding is performed in such a way that it protrudes from the edge of the hole to the upper side of the aluminum electrode by 0.1 mm or more and 3.0 mm or less, and Electrons are allowed to flow in from the part of the substrate inside the hole that has been ultrasonically welded and the part of the aluminum electrode protruding from the edge of the hole by 0.1 mm or more and 3.0 mm or less to increase the conversion efficiency of the solar cell.
TW108120702A 2018-06-26 2019-06-14 Solar cell and method for manufacturing solar cell TWI714127B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-120722 2018-06-26
JP2018120722 2018-06-26

Publications (2)

Publication Number Publication Date
TW202011613A TW202011613A (en) 2020-03-16
TWI714127B true TWI714127B (en) 2020-12-21

Family

ID=68986920

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108120702A TWI714127B (en) 2018-06-26 2019-06-14 Solar cell and method for manufacturing solar cell

Country Status (5)

Country Link
JP (1) JPWO2020004290A1 (en)
KR (1) KR20210022108A (en)
CN (1) CN112352320A (en)
TW (1) TWI714127B (en)
WO (1) WO2020004290A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201013939A (en) * 2008-07-18 2010-04-01 Schott Solar Ag Soldering joint, semiconductor elment and method for connecting connector to semiconductor
US20130042912A1 (en) * 2011-08-12 2013-02-21 Hitachi Chemical Company, Ltd. Solder bonded body, method of producing solder bonded body, element, photovoltaic cell, method of producing element and method of producing photovoltaic cell
US20140124027A1 (en) * 2011-05-31 2014-05-08 Kyocera Corporation Solar cell and method of manufacturing a solar cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243790A (en) * 2004-02-25 2005-09-08 Kyocera Corp Solar battery device
JP5676944B2 (en) * 2010-07-08 2015-02-25 デクセリアルズ株式会社 Solar cell module and method for manufacturing solar cell module
JP5231515B2 (en) * 2010-12-17 2013-07-10 シャープ株式会社 Manufacturing method of solar cell
WO2013015329A1 (en) * 2011-07-25 2013-01-31 日立化成工業株式会社 Wiring member, method for producing same, and method for producing wiring member connection body
US10383207B2 (en) * 2011-10-31 2019-08-13 Cellink Corporation Interdigitated foil interconnect for rear-contact solar cells
TWI492402B (en) * 2013-06-05 2015-07-11 Motech Ind Inc Solar cell and module comprising the same
JP6810986B2 (en) * 2016-07-14 2021-01-13 アートビーム株式会社 Solar cells and methods of manufacturing solar cells
KR102299228B1 (en) * 2017-02-28 2021-09-07 아토비무 유겐가이샤 Solar cell and manufacturing method of solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201013939A (en) * 2008-07-18 2010-04-01 Schott Solar Ag Soldering joint, semiconductor elment and method for connecting connector to semiconductor
US20140124027A1 (en) * 2011-05-31 2014-05-08 Kyocera Corporation Solar cell and method of manufacturing a solar cell
US20130042912A1 (en) * 2011-08-12 2013-02-21 Hitachi Chemical Company, Ltd. Solder bonded body, method of producing solder bonded body, element, photovoltaic cell, method of producing element and method of producing photovoltaic cell

Also Published As

Publication number Publication date
JPWO2020004290A1 (en) 2021-07-01
TW202011613A (en) 2020-03-16
WO2020004290A1 (en) 2020-01-02
KR20210022108A (en) 2021-03-02
CN112352320A (en) 2021-02-09

Similar Documents

Publication Publication Date Title
US2381025A (en) Blocking-layer rectifier
KR102002796B1 (en) Method of ultrasonic soldering and ultrasonic soldering device
CN107534069A (en) Solar module and its manufacture method
JP2021010299A (en) Solar cell and manufacturing method thereof
KR20180072000A (en) Solar cell and process of manufacture of solar cell
TWI714127B (en) Solar cell and method for manufacturing solar cell
CN106356424B (en) The method of solar battery Si piece Al back electrode and the environmentally protective soldering of Cu contact conductor
TWI699899B (en) Solar cell and method for manufacturing solar cell
TWI668878B (en) Solar cell and method for manufacturing solar cell
CN104384647B (en) For the identical welding method of extra small Schottky diode and quartz substrate thin flm circuit
TWI720664B (en) Solar cell and method for manufacturing solar cell
KR102227075B1 (en) Solar cell and manufacturing method of solar cell
TWI678813B (en) Solar cell and method for manufacturing solar cell
JP4209549B2 (en) Alloy type temperature fuse
WO2018159306A1 (en) Solar cell and production method for solar cell
CN100409991C (en) Welding wire and lead frame spot welding method
JP4890568B2 (en) Electronic module manufacturing method and electronic module production line
JPH1116563A (en) Organic electrolyte battery with terminal
CN115889926A (en) Preparation method for solving transverse conduction short circuit of two electrodes of alloy NR product
CN110379868A (en) The manufacturing method of solar cell and solar cell

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees