WO2018159306A1 - Solar cell and production method for solar cell - Google Patents

Solar cell and production method for solar cell Download PDF

Info

Publication number
WO2018159306A1
WO2018159306A1 PCT/JP2018/005255 JP2018005255W WO2018159306A1 WO 2018159306 A1 WO2018159306 A1 WO 2018159306A1 JP 2018005255 W JP2018005255 W JP 2018005255W WO 2018159306 A1 WO2018159306 A1 WO 2018159306A1
Authority
WO
WIPO (PCT)
Prior art keywords
soldered
soldering
electrode
ribbon
solar cell
Prior art date
Application number
PCT/JP2018/005255
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 上迫
傑也 新井
ミエ子 菅原
小林 賢一
秀利 小宮
正五 松井
潤 錦織
Original Assignee
アートビーム有限会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018022908A external-priority patent/JP6932659B2/en
Application filed by アートビーム有限会社 filed Critical アートビーム有限会社
Priority to KR1020197025900A priority Critical patent/KR102299228B1/en
Priority to CN201880014238.6A priority patent/CN110383500A/en
Publication of WO2018159306A1 publication Critical patent/WO2018159306A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/06Soldering, e.g. brazing, or unsoldering making use of vibrations, e.g. supersonic vibrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • a region that generates a high electron concentration when light or the like is irradiated on a substrate is formed, an insulating film that transmits light or the like is formed on the region, and electrons are extracted from the region on the insulating film.
  • a finger electrode is formed to form an outlet, and a plurality of finger electrodes are electrically connected to extract electrons to the outside.
  • the conventional bus bar electrode is made of glass or no, soldered directly to the finger electrode, and on the back surface.
  • the present invention relates to a solar cell that is directly soldered from a substrate and a method for manufacturing the solar cell.
  • a nitride film 22 is formed on the surface (upper surface) of the silicon substrate 21, and a finger electrode (silver) 23 paste (with lead glass) is screen printed and sintered thereon.
  • a hole is formed in the nitride film 22 to form a finger electrode 23 for extracting electrons from the high electron concentration region to the outside.
  • a bus bar electrode (silver) 24 is screen-printed and sintered in a direction orthogonal to the finger electrodes 23 to be generated.
  • a ribbon (lead wire) 25 is soldered onto the bus bar electrode (silver) 24 with solder 26 to firmly fix the ribbon 25 to the silicon substrate 21.
  • an aluminum electrode 27 was formed on the back surface (lower surface) of the silicon substrate 21, and a ribbon was soldered to the aluminum electrode 27 to be fixed.
  • the aluminum electrode 27 is formed on the entire surface, if the soldering strength of the ribbon 29 is weak, a hole is formed in a part of the aluminum electrode 27 (a hole corresponding to the bus bar electrode 24 on the surface).
  • a silver paste 271 was screen-printed and sintered to form a silver portion 271, and a ribbon 29 was fixed thereto with solder 28 to obtain a required fixing strength.
  • the bus bar electrode (silver) 24 is formed on the surface of the above-described conventional silicon substrate 21 to collect electrons from a large number of finger electrodes 23, or the ribbon 25 is connected to the silicon substrate 21 via the bus bar electrode (silver) 24. Therefore, it is necessary to make the bus bar electrode 24 with silver or a paste containing a large amount of silver. There was a problem that the electrons collected by the bus bar electrode 24 leaked toward the silicon substrate 21.
  • the ribbon may not be fixed to the silicon substrate 21 with sufficient strength.
  • the inventors pay attention to the fact that the upper part of the finger electrode on the surface of the silicon substrate 1 is exposed on the insulating film, and a strip-shaped ribbon which is an external terminal directly on the exposed finger electrode.
  • the present invention has found a configuration and a method capable of reducing the resistance component and reducing the leakage of electrons by soldering the ribbon and firmly soldering the ribbon directly to the nitride film or via glass.
  • the present inventors make a hole in the aluminum electrode or a part of the aluminum electrode on the back surface of the silicon substrate, and directly solder the aluminum electrode or the hole part of the aluminum electrode to obtain a sufficient fixing strength. Discovered the configuration and method.
  • the present invention forms a region that generates a high electron concentration when light or the like is irradiated on a substrate, and forms an insulating film that transmits light or the like on the region, and electrons from the region on the insulating film.
  • the finger electrode that extracts electrons from a region formed on the insulating film has a constant width b in a direction orthogonal to the finger electrode. Solder the lead wire with solder over the part with the finger electrode and the part of the insulating film without the finger electrode, take out the electrons from the finger electrode to the outside and fix the lead line to the substrate I have to.
  • the width c of the finger electrode to be soldered is widened or previously formed with a constant width c. .
  • the distance a between the width c of the widened portion of the finger electrode and the width c of the adjacent widened portion is defined as a soldering iron.
  • the length is smaller than the previous length so that the soldering iron tip is in direct contact with the insulating film so that the insulating film is not deteriorated.
  • soldering is done by ultrasonic soldering.
  • the ultrasonic intensity used in the ultrasonic soldering is set so that the output is smaller than the lead wire can be soldered and the performance is deteriorated due to destruction of the insulating film.
  • pre-soldering without ultrasonic waves or preliminarily ultrasonic pre-soldering is performed on the part where the lead wire is soldered by soldering.
  • the lead wire is preliminarily soldered to the part to be soldered, the lead wire is soldered without ultrasonic waves.
  • the lead-out line to be soldered by soldering is preliminarily soldered.
  • solder contains at least one of tin, tin, zinc, copper and silver.
  • the present invention forms a region that generates a high electron concentration when light or the like is irradiated on a substrate, forms an insulating film that transmits light or the like on the region, and emits electrons from the region on the insulating film.
  • a finger electrode is formed as a take-out port to take out electrons through the finger electrode and electrons are introduced from the back surface of the substrate to form a circuit
  • an aluminum electrode is formed on the entire back surface of the substrate.
  • a hole is formed in the formed or part of the aluminum electrode, and a lead wire is soldered to a part of the entire surface of the formed aluminum electrode or a part where the hole is formed, and electrons are allowed to flow from the back surface of the substrate and the lead wire Is fixed to the substrate.
  • a part of the entire surface of the aluminum electrode or the part where the hole is formed is made to correspond to the lead-out line on the surface.
  • soldering is done by ultrasonic soldering.
  • pre-soldering without ultrasonic waves or preliminarily ultrasonic pre-soldering is performed on the part where the lead wire is soldered by soldering.
  • the lead wire is preliminarily soldered to the part to be soldered, the lead wire is soldered without ultrasonic waves.
  • the lead-out line to be soldered by soldering is preliminarily soldered.
  • the lead wire is soldered in a state where the temperature of the part to be soldered is not higher than the temperature at which the solder melts and is preheated to room temperature or higher.
  • solder contains at least one of tin, tin, zinc, copper and silver.
  • the present invention pays attention to the fact that the upper part of the finger electrode on the surface of the silicon substrate is exposed on the insulating film, and the band shape which is an external terminal directly on the exposed finger electrode.
  • the ribbon is soldered to reduce the resistance component and reduce the leakage of electrons, and the ribbon can be firmly soldered directly to the nitride film or via glass, so that the extraction line is highly efficient and strong.
  • the solar cell can be fixed.
  • the conventional silver bus bar electrode becomes unnecessary, and the amount of silver used can be reduced.
  • the conventional silver bus bar electrode forming process is not required, and the number of processes can be reduced.
  • the lead wire can be soldered directly to the finger electrode to reduce the resistance value and increase the electron extraction efficiency.
  • a hole is formed in the aluminum electrode on the back surface of the silicon substrate 1 or a part of the aluminum electrode, and soldering is performed directly on the aluminum electrode or the hole portion of the aluminum electrode, thereby Can be fixed with a small and sufficient fixing strength.
  • the lead-out line can be firmly fixed.
  • the lead-out wire is soldered directly to the aluminum electrode or the silicon substrate under the hole to reduce the resistance value, increase the inflow efficiency of electrons, and become a highly efficient solar cell.
  • FIG. 1 shows a configuration example of a main part of the present invention.
  • FIG. 1 shows an example of the main part configuration of the so-called ABS technique-0
  • (a-1) in FIG. 1 shows a detailed example of the main part configuration on the front and back surfaces.
  • (B) in FIG. 1 shows an example of the main part configuration of the so-called ABS technique-1
  • (b-1) in FIG. 1 shows a detailed example of the main part configuration on the front and back surfaces.
  • (C) in FIG. 1 shows an example of the main configuration of the so-called ABS technique-2
  • (c-1) in FIG. 1 shows a detailed example of the main configuration of the front and back surfaces.
  • a silicon substrate 1 is a silicon substrate (single crystal or polycrystalline) on which a solar cell is to be formed.
  • the nitride film (insulating film) 2 is formed on the silicon substrate 1 by, for example, creating a high-concentration electron region (region that generates a high-concentration electron region when irradiated with sunlight from above) (known), It is a transparent (transparent material that transmits sunlight, etc.) and is a thin transparent insulating film that is firmly formed on a high-concentration electron region (known).
  • the finger electrode 3 is formed by screen-printing a paste containing silver and lead glass on the nitride film 2, drying by solvent heating and sintering, and then forming a high-concentration electron region on the lower nitride film 2 by the firing phenomenon of lead glass. A path for electrical connection is formed, and electrons generated in the high-concentration electron region from the finger electrode 3 are taken out in the direction above the nitride film (insulating film) 2 (known).
  • the bus bar electrode 4 is a nitride film formed by applying glass of a certain width only in a direction orthogonal to the finger electrode 3 and only in a portion where the finger electrode 3 is not present, solvent drying by heating, and sintering. 2 firmly fixed.
  • the bus bar electrode 4 does not need to be electrically conductive, and may be firmly fixed to the nitride film 2 and capable of soldering the lead wire (described later).
  • non-conductive ABS paste glass paste of vanadium, barium, (tin or zinc or both (or oxides thereof) was used in this experiment.
  • the ribbon (lead wire) 5 is a lead wire that is soldered directly to the finger electrode 3, and takes out the electrons generated in the high-concentration electron region to the outside with the ribbon 5 soldered directly to the finger electrode 3. is there.
  • Solder (solder) 6 is solder for soldering the ribbon 5 to the finger electrode 3 and the bus bar electrode 4 (FIG. 1A) and the nitride film 2 (FIG. 1B, FIG. 1C). is there.
  • the aluminum electrode 7 is an aluminum electrode formed on the back surface of the silicon substrate 1.
  • the solder 8 corresponds to a portion in which the ribbon 5 on the front surface is soldered with the solder 6 on the aluminum electrode 7 formed on the entire back surface of the silicon substrate 1 in FIGS. 1 (a) and 1 (b).
  • the ribbon 9 is soldered to the back surface portion.
  • the solder 8 used in the present invention is tin, tin is added to zinc by several to several tens of percent, and copper, silver or the like is added to 0.1%. What added several% thru
  • the solder 8 is formed on the surface of the ribbon 5 on the portion of the hole on the aluminum electrode 7 in which a hole is formed on a part of the back surface of the silicon substrate 1 and the aluminum portion other than the hole.
  • the ribbon 9 is soldered to the part of the back surface corresponding to the part soldered with the solder 6.
  • the ribbon (lead wire) 9 is soldered to an aluminum electrode 7 formed on the back surface of the silicon substrate 1, and the holed portion of the aluminum electrode 7 is soldered to the silicon substrate 1 below to allow electrons to flow. Is.
  • ABS technique-0 in FIG. 1 (a-1) -Surface: On the surface (the upper surface of the silicon substrate 1 in FIG. 1 (a)), the bus bar electrode 4 shown in the figure is coated with ABS paste, dried by heating with a solvent, sintered, and the ABS (vanadate is the main component). Glass that can be soldered) is replaced with a conventional bus bar electrode (silver). In this state, electrons generated in the high-concentration electron region of the silicon substrate 1 are taken out to the outside by the ribbon 5 soldered directly by the solder 6 through the finger electrodes 3.
  • the silver bus bar electrode portion is omitted and electrons are directly flowed from the finger electrode 3 to the ribbon 5 and taken out to the outside. Therefore, it is possible to reduce the resistance by reducing the resistance and to eliminate the leakage of electrons from the conventional bus bar electrode.
  • the bus bar electrode (ABS paste) 4 on the surface is formed on the aluminum electrode 7 formed on the entire surface of the illustrated silicon substrate 1.
  • the ribbon 9 is soldered directly to the corresponding part.
  • Back surface On the back surface (the lower surface of the silicon substrate 1 in FIG. 1C), a hole is provided in the aluminum electrode 7 formed on the illustrated silicon substrate 1, and a portion other than the hole portion and the hole portion is provided.
  • the ribbon 9 is soldered to a portion of the back surface corresponding to the soldered portion of the ribbon 5 on the front surface. As a result, the ribbon 9 can be soldered directly to the silicon substrate 1 at the hole portion with the solder 8 and firmly fixed to the silicon substrate 1, and the resistance component can be reduced.
  • the ribbon 9 can be directly soldered to the silicon substrate 1 with the solder 8 through the hole of the aluminum electrode 7 and firmly fixed.
  • S1 prepares a substrate.
  • a P-type single crystal or polycrystalline silicon substrate 1 is prepared as the silicon substrate 1 on which the solar cell shown in FIG.
  • S2 forms a nitride film.
  • This forms a nitride film (insulating film) 2 on the surface of the silicon substrate 1 shown in FIG.
  • the film thickness of the nitride film 2 is preferably about 60-90 nm, for example.
  • an aluminum paste is applied to the back surface.
  • an aluminum paste is screen printed on the back surface of the silicon substrate 1 in FIG.
  • an aluminum paste is applied on the back surface with or without a space in a direction orthogonal to the pattern of the finger electrode 3 on the front surface, and a band-like pattern or a jumping pattern is formed on the back silicon substrate 1. It is applied with a strip-shaped aluminum paste (the part that is not applied becomes a hole part without the aluminum electrode 7).
  • S4 performs solvent blowing.
  • the aluminum paste applied in S3 is heated and dried (for example, heated and dried at 80 to 120 ° C. for 30 to 60 minutes) to eliminate the solvent.
  • S5 prints finger electrodes on the surface. This is screen-printed on the nitride film 2 of FIG. 1 using, for example, a paste containing silver and lead glass frit described on the right side.
  • S6 performs solvent blowing.
  • the paste applied in S5 is heat-dried (for example, heat-dried at 80 to 120 ° C. for 30 to 60 minutes) to eliminate the solvent.
  • S7 and S8 are performed.
  • S7 and S8 may be performed at the same time as the finger electrode printing and solvent removal in S5 and S6.
  • S7 prints the bus bar electrode. This screen-prints the bus bar electrode 4 of FIG. 1 with ABS paste.
  • S7 and S8 performs solvent blowing.
  • S7 and S8 are ABS pastes (vanadium, barium, glass paste of tin or zinc or both (or oxides thereof)), screen printing of busbar electrodes as shown in FIG. Do a skip.
  • S9 is sintered.
  • the sintering is desirably performed within a range of, for example, 750 to 820 ° C. and 1 second to 60 seconds, and is performed by irradiation with infrared rays.
  • S10 performs ultrasonic soldering on the surface.
  • the lead wire (ribbon 5) on the surface is soldered directly to the finger electrode 6.
  • soldering without ultrasonic waves may be used.
  • Ultrasonic soldering also soldering without ultrasonic waves
  • reserves the temperature of the part to be soldered preferably the part to be soldered below the temperature at which the solder melts (below the melting temperature or above room temperature).
  • S11 performs ultrasonic soldering on the back surface.
  • the lead-out line (ribbon 9) is soldered directly to the aluminum electrode 7 or directly to the silicon substrate 1 inside the hole of the aluminum electrode 7.
  • soldering without ultrasonic waves may be used.
  • the aluminum paste for forming the aluminum electrode 7 is applied on the back surface and the solvent is blown off, and the finger electrode 3 is formed on the surface.
  • the ribbon 5 is soldered directly to both the finger electrode 3 on the surface and the exposed nitride film 2 with the solder 6 (FIG. 1 (b), FIG. 1 (c)), Ribbon 5 is soldered directly to both bus bar electrodes 4 with solder 6 (FIG. 1A), and aluminum electrode 7 on the back surface and ribbon 5 are soldered directly with solder 8 (FIG. 1).
  • the ribbon 8 is soldered directly to the silicon substrate 1 through the hole of the aluminum electrode 7 with the solder 8, and the ribbon 8 is directly applied to the portion of the aluminum electrode 7 where there is no hole.
  • FIG. 4 shows an explanatory diagram of the present invention (surface-part 1).
  • FIG. 4A shows a pattern example of the finger electrode 3
  • FIG. 4B shows an enlarged view of FIG. 4A.
  • the pattern example of the finger electrode 3 is the width of the region (the same region as the bus bar region 41 shown in the figure) where the ribbon 5 having the width b is soldered in the direction orthogonal to the finger electrode 3 of FIG.
  • An expanded example is shown in c.
  • the distance a between the bus bar area 41 and the adjacent one is determined by the ultrasonic wave. It is necessary to make the length smaller than the length of the solder iron tip so that the solder iron tip directly touches the lower nitride film 2 and does not affect the nitride film 2 or the like. For example, when the length of the soldering iron tip is 2 mm, the distance a is about 1 mm. As a result of the experiment, it has been found that the nitride film 2 is not adversely affected.
  • FIG. 5 shows an explanatory diagram (surface-part 2) of the present invention. This is because (b) of FIG. The enlarged detail drawing of the surface of (c) is shown.
  • a nitride film (insulating film) 2 is formed on the surface of a silicon substrate 1, and a finger electrode 3 pattern is applied on the surface of the finger electrode 3 by applying a paste of silver and lead glass and sintered.
  • a finger electrode 3 is formed in which a hole is made in the nitride film 2 and the inside is made of silver).
  • the ribbon 5 is soldered directly to the finger electrode 3 protruding over the nitride film 2 with the solder 6, and at the same time, the solder 6 is soldered to the portion of the nitride film 2.
  • the contact area between the finger electrode 3 and the ribbon 6 is reduced.
  • the contact resistance can be reduced by increasing the distance, and the interval is made smaller than the length of the soldering iron tip so that the soldering iron tip does not directly contact the underlying nitride film 2 so that there is no adverse effect such as destruction of the nitride film 2. Devise (refer to the description of FIG. 4).
  • FIG. 6 is an explanatory view of the present invention (back surface—part 1).
  • FIG. 6A shows a configuration example of a conventional back surface.
  • an aluminum electrode having a hole formed in part is formed on the back surface of a silicon substrate, and a silver electrode is formed by applying and sintering a silver paste in the hole, and solder (lead solder) is formed on the silver electrode. ), The ribbon was soldered, and the ribbon was fixed to the silicon substrate with a force exceeding a specified level.
  • FIG. 6B shows an example of the direct solder according to the present invention.
  • the ribbon 9 can be ultrasonically soldered directly to the aluminum electrode 7 using an ultrasonic soldering iron using solder (tin, zinc) 8.
  • solder titanium
  • an aluminum electrode 7 having a hole in part is formed on the back surface of the silicon substrate 1, and a ribbon 9 is soldered to the hole part and other parts by soldering 8.
  • An example is shown (same as (c) of FIG. 1).
  • the ribbon 9 can be ultrasonically soldered directly to the silicon substrate 1 in the hole portion of the aluminum electrode 7 and the aluminum electrode 7 other than the hole by soldering using a solder (tin, zinc) 8. When preliminary soldering is performed, soldering without ultrasonic waves is possible.
  • FIG. 7 shows an explanatory diagram (part 1) of the present invention. This shows one example of ultrasonic solder conditions.
  • FIG. 8 shows an explanatory diagram (part 2) of the present invention. This shows a comparative example of the ABS technique-1 shown in FIG. 1B, the ABS technique-2 shown in FIG. 1C, and the conventional technique shown in FIG.
  • ABS technique-1 (FIG. 1 (b): The back surface is soldered with the ribbon 9 directly on the aluminum electrode 7. The front surface is soldered with the ribbon 5 directly on the finger electrode 3 and the ribbon 5 directly on the nitride film 2. As a result, the adhesive strength on the back surface is slightly inferior to that of the ABS technique-2, but it is sufficient for the standard, 2. Silver can be reduced, and 3. Good electrical characteristics.
  • ABS technique-2 ((c) in FIG. 1): The back surface is directly soldered to the silicon substrate 1 below the hole of the aluminum electrode 7 and the solder is directly soldered to the aluminum electrode 7 other than the hole.
  • the surface is the same as ABS Technique-1.
  • FIG. 12 Conventional technique (FIG. 12): The back side is silver-sintered on the aluminum electrode 7 and the ribbon 9 is lead-soldered, or silver is sintered in the hole portion of the aluminum electrode 7 and connected to the silicon substrate 1. Silver ribbon 9 is lead soldered. The surface is soldered with lead through the finger electrode 3 and silver bus bar electrode. As a result, 1. Requires surface silver busbar electrodes. 2. A silver electrode is required on the back side.
  • FIG. 9 shows an explanatory diagram (part 3) of the present invention.
  • ABS technique-0, ABS technique-1 and ABS technique-2 correspond to ABS technique-0, ABS technique-1 and ABS technique-2 in FIG. 1, respectively.
  • the crystal is a kind of polycrystalline or single crystal silicon substrate 1.
  • V (v) in the electrical characteristics is an open circuit voltage shown in FIG.
  • I (mA / cm 2) in the electrical characteristics is a short-circuit current in FIG.
  • FF in the electrical characteristics is an optimum operating point of FIG. 10 described later (that is, a point where maximum power can be obtained).
  • EFF in the electrical characteristics is the conversion efficiency represented by (Equation 1) below.
  • EFF Jsc ⁇ Voc ⁇ FF (Formula 1)
  • Ref is a standard value for comparison (standard value of the conventional example), here 100 (electrical characteristics), 1 (adhesion strength, silver), and 0 (number of manufacturing steps).
  • Short-circuit current I is in the range of 100.0 to 101.5 and has sufficient performance compared to Ref.
  • the adhesion of the ribbon to the silicon substrate 1 is 2 on the front surface, which is twice the standard value, and it has been found that the ribbon is extremely firmly fixed. It has been found that the soldering is twice as strong when it is soldered.
  • the amount of silver used on the surface of the present invention was reduced to less than half within the range of 0.1 to 0.5. Regarding the back side, the present invention was able to reduce the amount of silver used by 100%.
  • the number of manufacturing processes can be reduced by 2 each for ABS technique-1 and ABS technique-2 (Fig. 1 (b), Fig. 1 (c)) (no need to form a silver busbar electrode on the surface)
  • the number of man-hours and the formation of silver electrodes on the back surface are no longer necessary, and man-hours—one man-hour, can be reduced in two steps).
  • FIG. 10 shows an explanatory diagram (part 4) of the present invention. This is a diagram for easily explaining the electrical characteristics of the solar cell of FIG. 9 described above.
  • the horizontal axis represents the voltage taken out from the solar cell, and the vertical axis represents the current at that time.
  • Voc V in FIG. 9
  • the short-circuit current is called Jsc (I in FIG. 9).
  • the optimum operating point FF is a value at the illustrated position where the product in the voltage / current characteristic curve taken out from the solar cell is maximum.
  • the conversion efficiency is a value obtained by the formula of Jsc ⁇ Voc ⁇ FF.
  • FIG. 11 shows an explanatory diagram (No. 5) of the present invention.
  • FIG. 11 shows an example of a photograph of the front and back surfaces of a solar cell using ABS glass as the bus bar electrode of the ABS technique-0 of FIG. 1 (a).
  • FIG. 11 (a-1) shows an example of a photograph of a solar cell in which finger electrodes 3 are formed in the lateral direction of the surface and bus bar electrodes using ABS glass are formed thereon.
  • the ABS glass is formed only on the portion without the finger electrode 3, and the bus bar electrode portion formed of the finger electrode 3 and the ABS glass (which is non-conductive and can be subjected to ultrasonic soldering with the ribbon of the present invention).
  • the photograph of the state which soldered the ribbon is shown.
  • FIG. 11 shows an example of a photograph in which an aluminum electrode is formed on the entire rear surface of FIG. 11 (a-1).
  • FIG. 11 shows an example of a photograph of the front and back surfaces of the solar cell of the ABS technique-2 in (c) of FIG.
  • FIG. 11 (b-1) shows an example of a photograph in which the finger electrode 3 (see FIG. 4) is formed by extending the width of the soldering portion of the ribbon as the finger electrode 3 in the lateral direction of the surface. Show. Here, it can be seen that the width of the finger electrode 3 in the portion where the longitudinal ribbon is soldered is wide.
  • (B-2) of FIG. 11 shows an example in which an aluminum electrode 7 having a hole in the vertical direction is formed in the vertical direction of the back surface, in which a ribbon is soldered directly to the underlying silicon substrate 1.
  • FIG. 11 shows an example of a photograph after the ribbon is soldered from above (b-1) and (b-2) in FIG.
  • the left side of (b-3) in FIG. 11 shows an example of a photograph after soldering a ribbon in the vertical direction on the surface of FIG. 11 (b-1) where the width of the finger electrode is widened. .
  • the right side of (b-3) in FIG. 11 shows a state after soldering the ribbon in the vertical direction in a hole (long hole) where the aluminum does not exist in the vertical direction of the aluminum electrode on the back surface of (b-2) in FIG. An example of a photograph is shown.
  • an insulating film (nitride film) 21 is provided between a region where the aluminum electrode 23 is formed on the back surface of the silicon substrate 30 and the silicon substrate 30, and the aluminum electrode 23 is separated by the nitride film 21.
  • a so-called backside park structure is shown that forms and separates in parallel with the electrodes and reduces the recombination of the charges, resulting in improved solar cell efficiency. Details will be sequentially described below.
  • FIG. 13 shows a process flowchart of the backside park structure of the present invention.
  • an insulating film such as a nitride film is formed over the entire surface.
  • a nitride film 21 is formed on the entire back surface of the silicon substrate 30 as shown in FIG.
  • a hole is formed in the insulating film with a laser. This is because a nitride film 21 is formed on the entire back surface of the silicon substrate 30, the nitride film 21 formed on the entire back surface is sintered with aluminum, and an aluminum / silicon alloy layer ( A hole is made in the nitride film 21 with a laser only in a region where the P +) 24 is to be formed.
  • step S23 aluminum paste printing / solvent removal is performed on portions other than the above-described perforations. Then, when sintering (sintering of finger electrodes or the like) is performed in the subsequent surface process (not shown), the aluminum electrode 23 on the back surface is simultaneously sintered.
  • soldering is performed on the silicon, nitride film, and aluminum in the hole. This is, (A) As shown in FIG. 14A, which will be described later, a horizontally pre-soldered ribbon having a shape that closes a rectangular hole portion 22 provided in the illustrated horizontal direction (perpendicular to the finger electrodes on the surface) is used in the present invention. Soldering is directly performed on the silicon substrate 30 by soldering.
  • soldering of the present invention is performed on the aluminum electrode 23 together with the soldering of (A).
  • the ribbon is directly soldered to the silicon substrate 30 exposed in the horizontally long hole 22 shown in FIG. 14A, and the nitride film 21 and the aluminum electrode 23 on the left and right portions of the ribbon are also attached. It becomes possible to perform soldering directly.
  • the soldering is usually performed by ultrasonic soldering. When pre-soldering (preliminarily soldering the aluminum electrode 23, the nitride film 21, and the ribbon by ultrasonic soldering or soldering without ultrasonic waves), soldering without ultrasonic waves (normal) may be used.
  • FIG. 14 shows a soldering explanatory diagram for the park structure on the back surface of the solar cell of the present invention.
  • FIG. 14A shows the main part (see FIG. 15), and FIG. 14B shows a schematic cross-sectional view.
  • a hole 22 is a hole in which a silicon substrate 30 to which a ribbon (lead wire) (not shown) is soldered is exposed.
  • the nitride film 21 is a nitride film (insulating film) formed in the vertical direction on the back surface in the figure, and the aluminum electrode 23 formed on the back surface is separated (divided) into strips to form the aluminum electrode 23 on the entire surface. This is to reduce charge recombination that occurs in some cases and improve the efficiency of the solar cell (park structure).
  • the aluminum electrode 23 is an aluminum electrode formed between the vertical nitride films 21 and in contact with the silicon substrate 30.
  • a ribbon (not shown) is directly soldered to the silicon substrate 30 exposed in the hole 22, and the ribbon is further formed in the lateral direction of the drawing in the long direction of the hole 22. Solder directly to part 23.
  • the ribbon is extremely firmly fixed to the silicon substrate 30 where the hole 22 is exposed, and the ribbon is fixed and electrically connected to the aluminum electrode 23.
  • the ribbon is fixed to the portion of the nitride film 21, and the entire structure is firmly fixed.
  • the silicon substrate 30, the nitride film 21, and the aluminum electrode 23 can be fixed and electrically connected to the aluminum electrode 23.
  • the aluminum electrode 23 is separated into strips and brought into contact with the silicon substrate 30 to form the aluminum / silicon alloy layer 24, thereby reducing charge recombination and improving the efficiency of the solar cell. (Park structure).
  • Solder (1) indicates a state where a ribbon is soldered on the aluminum electrode 23.
  • the nitride film 21 and the aluminum electrode 23 are formed on the silicon substrate 30, and the solder (1) is soldered on the uppermost aluminum electrode 23.
  • silver 34 is formed on an aluminum electrode 33 and a ribbon is soldered thereon.
  • Solder (2) indicates a state in which a ribbon is soldered on the nitride film 21.
  • the nitride film 21 is formed on the silicon substrate 30, and the solder (2) is soldered on the uppermost nitride film 21.
  • silver is formed on a nitride film and a ribbon is soldered thereon, or a part of the nitride film is removed with a laser and then silver is formed and the ribbon is formed thereon.
  • soldered is soldered.
  • Solder (3) indicates a state where the solder is directly soldered on the silicon substrate 30. In this state, the solder (3) is soldered directly to the silicon substrate 30. This solder (3) was able to firmly fix the ribbon to the silicon substrate 30 (for example, a tensile strength of twice or more was obtained in the experiment). Conventionally, this solder (3) has not been performed.
  • the aluminum / silicon alloy layer (P +) 24 is formed by printing, solvent-blowing, and sintering aluminum paste so that the aluminum electrode 23 is in direct contact with the silicon substrate 30 in the hole portion without the nitride film 21.
  • a silicon alloy layer (P +) is formed. Since this aluminum-silicon alloy layer (+ P) 24 is separated (divided) into strips as shown in FIG. 14A by the nitride film 21, compared to the conventional case where it is formed on the entire back surface, It is possible to reduce charge recombination and improve the efficiency of the solar cell (park structure).
  • FIG. 15 shows an arrangement example for the park structure on the back surface of the solar battery cell of the present invention.
  • the hole 22 is provided with a total of nine horizontally long rectangular areas of 2.5 mm ⁇ 25 mm as shown in the figure, and three pre-soldered ribbons are soldered in the horizontal direction.
  • the tensile strength more than twice that of the conventional soldering of the ribbon shown in FIG. 17 described later was obtained.
  • the tensile strength was large due to the solder (3) of FIG. 14B described above, that is, the portion where the ribbon was directly soldered to the silicon substrate 30 exposed in the hole 22.
  • FIG. 16 shows an example of a photograph of a hole for the park structure on the back surface of the solar battery cell of the present invention. This is a photograph example of the solar battery cell in which the hole portion 22 of FIG. 16 described above is formed, and shows a photograph example of a hole portion of 2.5 mm ⁇ 25 mm in the horizontal direction.
  • FIG. 17 shows an example of a park structure on the back surface of a conventional solar battery cell. This is described for reference, and conventionally, a nitride film 31 is formed on the entire surface of the silicon substrate 30, and a hole is formed by a laser only in a portion where the aluminum electrode 33 is formed. Then, an aluminum electrode 33 is formed by printing and sintering an aluminum paste on the hole. The ribbon 35 is soldered after forming silver 34 on the nitride film 31 (formed by printing and sintering a silver paste).
  • FIG. 18 shows a detailed block diagram of the present invention.
  • FIGS. 18 (a) and 18 (b) schematically show the front and back surfaces of the substrate of the solar cell
  • FIGS. 18 (c) and 18 (d) show (a ⁇ ) in FIGS. 18 (a) and 18 (b).
  • Sectional drawing which looked at the horizontal direction part (part of the direction of the bus-bar electrode 32) of 1) from the right angle direction is shown typically.
  • the finger electrode 31 causes electrons in the high-concentration electron region formed on the silicon substrate 1 to be spread over the high-concentration electron region.
  • This is a known electrode in which silver is formed by opening a hole in the formed nitride film 2 by firing.
  • the bus bar electrode 32 is an electrode provided in a direction perpendicular to the upper side of the plurality of finger electrodes 31, and collects electrons taken out by the finger electrodes 31 and takes them out to the outside by a ribbon 5 (see FIG. 5) not shown. .
  • the aluminum electrode 33 is an aluminum electrode formed on the back surface of the silicon substrate 1.
  • the silver electrode 34 is formed by applying and sintering a silver paste so as to be in direct contact with the silicon substrate 1 in the hole portion of the aluminum electrode 33 formed on the silicon substrate 1, and firmly attached to the silicon substrate 1. Silver electrode.
  • ABS solder (electrode) 35 is obtained by soldering ABS solder (Sn + Zn solder) directly to the hole portion of the aluminum electrode 33, and pre-soldering the silicon substrate 1 directly (or with a lead wire). Solder together).
  • FIG. 18 (a) schematically shows the surface of the silicon substrate 1 of the solar cell of the present invention.
  • the linear portion intermittent in the horizontal direction is the bus bar electrode 32 and schematically shows an intermittent straight portion formed by applying, drying and sintering the paste.
  • the bus bar electrode 32 may be either conductive or non-conductive.
  • the bus bar electrode 32 is omitted from the portion of the finger electrode 31 formed in the direction perpendicular to the lower side of the bus bar electrode 32, and the bus bar electrode 32 is formed only in the portion without the finger electrode 31.
  • the lead wire is soldered from above the bus bar electrode 32 to a portion where the bus bar electrode 32 is present, and is directly soldered to the protruding finger electrode 31 where the bus bar electrode 32 is not present (ultrasonic soldering).
  • the lead wire may be simply soldered on the entire surface.
  • FIG. 18B schematically shows the back surface of the silicon substrate 1 of the solar cell of the present invention.
  • an aluminum electrode is formed on the entire back surface.
  • FIG. 18 schematically shows an improvement example of the conventional method.
  • a bus bar electrode 32 is formed on the surface of the silicon substrate 1 of the solar cell in a direction perpendicular to the finger electrodes 31 in the lateral direction as shown in the figure.
  • FIG. 18D schematically shows the ABS method of the present invention.
  • a bus bar electrode 32 is formed in a transverse direction as shown in the figure in a direction perpendicular to the finger electrodes 31.
  • the bus bar electrode 32 may be either an intermittent line or a linear line. In the case of an intermittent line, it may be either conductive or non-conductive, but it is necessary to apply, dry, and sinter using a paste that firmly adheres to the base (nitride film 2).
  • ABS solder (ultrasonic soldering) is directly performed on the hole formed in the aluminum electrode formed on the entire back surface of the silicon substrate 1 to obtain the ABS solder (electrode) 35 shown in the figure.
  • the ABS solder 35 may be preliminarily soldered with ABS solder in advance, or when soldering a lead wire, it is soldered directly to both the aluminum electrode 33 and the silicon substrate 1 in the holed portion of the aluminum electrode 33. It may be attached (ultrasonic soldering).
  • the bus bar electrode 32 is formed in an intermittent line on the surface of the silicon substrate 1, and the lead wire is directly applied to both the intermittent bus bar electrode 32 and the finger electrode 31 exposed in the portion without the bus bar electrode 32.
  • ABS soldering soldering using Sn + Zn solder
  • ABS soldering is directly applied to the aluminum electrode 33 and the silicon substrate 1 in the holed portion of the aluminum electrode 33.
  • soldering or soldering to the pre-soldered ABS solder 35, it is possible to strongly fix the lead wire to the back surface of the silicon substrate 1 and reduce the resistance value to increase the efficiency.
  • FIG. 19 shows an example of voltage-current characteristic measurement according to the present invention.
  • the horizontal axis indicates the output voltage of the solar cell
  • the vertical axis indicates the current
  • the solid line indicates a measurement example of the conventional method (method using the silver electrode 34) of FIG. 18C
  • the dotted line indicates the (
  • a measurement example of the ABS method of the present invention (d) (method using the ABS solder 35 without using the silver electrode 34) is shown.
  • the measurement example of the dotted-line ABS method of the present invention has a large overall value (V and I) from a small voltage portion to a large voltage portion, and the solar cell efficiency is about 0.2 to 1% higher. was gotten.
  • FIG. 20 shows an explanatory diagram of the tensile test of the present invention.
  • pre-soldering (pre-soldering area (2 mm ⁇ 25 mm)).
  • pre-soldering (ultrasonic soldering) is performed on the silicon substrate 40 using ABS solder (Sn + Zn solder).
  • the pre-soldering area was a horizontally long rectangle of 2 mm ⁇ 25 mm as shown in the figure.
  • FIG. 20 (b) shows an example of soldering a ribbon.
  • a ribbon a ribbon with a pudding solder in which ABS solder is formed in advance
  • a soldering iron is pressed thereon.
  • the ribbon is moved in the longitudinal direction, and soldering is performed on both of them (either ultrasonic soldering or soldering without ultrasonic waves may be used).
  • FIG. 20 shows an example of the pulling direction (180 degrees opposite to the ribbon direction).
  • the ribbon is pulled in the direction of peeling the ribbon which is 180 degrees opposite to the direction of soldering the ribbon, and the tensile strength at that time is measured.
  • FIG. 20 (d) shows an example of a tensile test apparatus.
  • the ribbon soldered to the right as shown, the ribbon is bent in the left direction opposite to the ribbon direction and pulled with a hook.
  • a tensile strength measuring instrument (not shown) is installed at the tip of the hook, and the tensile strength is gradually increased to measure the strength (tensile strength) when the lead wire is peeled off.
  • ABS solder is ultrasonically pre-soldered to the silicon substrate 40, a ribbon with ABS solder is soldered to this part (soldering with or without ultrasonic waves), and the lead wire is peeled 180 degrees in the reverse direction.
  • the tensile strength when the lead wire is peeled off in the direction the tensile strength when the lead wire is directly soldered to the silicon substrate 40 can be actually measured.
  • FIG. 21 shows an actual measurement example of the tensile test according to the present invention.
  • the horizontal axis in the figure represents the following types of silicon substrate 40, and the vertical axis represents the tensile strength (N / 0.5 cm2). Also, the conditions (1), (2), and (3) in the figure represent the following in FIG. Each graph was tested five by five and the average value was obtained and plotted.
  • Type Type (a): POLY-SI (A): Polycrystalline silicon substrate (A)
  • Conditions (1), (2), and (3) represent the followings shown in FIG.
  • the tensile strength is small, and in the conditions (1) and (2) “ABS solder (Sn + Zn)”, the tensile strength is high.
  • the tensile strength is about twice as high. Since the conventional allowable tensile strength is 2.0 on the scale on the left side of FIG. 21, the tensile strength of about twice the conditions (1) and (2) is obtained. This is because pre-soldering to the substrate is due to “with ultrasonic waves”. If pre-soldering without ultrasonic waves is used, it will be 2 or less, and it will not be useful.
  • the ribbon is soldered on the single crystal silicon substrate (A) 40 under the conditions (1), (2), and (3) as shown in FIG. Shows an example of tensile strength measurement when a tensile test is performed.
  • “conventional solder (Sn + Pb)” and “ABS solder (Sn + Zn)” have low tensile strength.
  • “ABS solder” in the condition (1) and “with ultrasonic waves” when soldering the ribbon to the substrate the tensile strength is about twice as high.
  • the ribbon is soldered on the polycrystalline silicon substrate (B) 40 under the conditions (1), (2), and (3) as shown in FIG. Shows an example of tensile strength measurement when a tensile test is performed.
  • Condition (3) “Conventional solder (Sn + Pb)” has a low tensile strength, “ABS solder (Sn + Zn)” has a little higher tensile strength.
  • “ABS solder” in condition (1) and ribbon In the case of “with ultrasonic waves” when soldering to the substrate, the tensile strength is about twice as high.
  • FIG. 22 shows a tensile test actual measurement example of the present invention (an explanatory diagram of FIG. 21). This shows a specific example of the conditions (1), (2), and (3) in FIG.

Abstract

[Problem] The present invention pertains to a solar cell and a solar cell production method and aims to: directly solder to an aluminum electrode on the rear surface of a silicon substrate or to a hole section in the aluminum electrode; and obtain sufficient fixing strength. [Solution] The present invention is configured so as to: form an aluminum electrode on the entire rear surface of a substrate or to form a hole in part of the aluminum electrode; solder an extraction line, using solder, on part of the entire surface of the formed aluminum electrode or in the section where the hole is formed; cause electrodes from the rear surface of the substrate to flow in; and to fix the extraction line to the substrate.

Description

太陽電池および太陽電池の製造方法Solar cell and method for manufacturing solar cell
 本発明は、基板上に光などを照射したときに高電子濃度を生成する領域を作成すると共に領域の上に光などを透過する絶縁膜を形成し、絶縁膜の上に領域から電子を取り出す取出口を形成するフィンガー電極を形成し、更に複数のフィンガー電極を電気的に接続して電子を外部に取り出す、従来のバスバー電極をガラスないし無しにし、フィンガー電極に直接にハンダ接続すると共に裏面の基板から直接にハンダ接続する太陽電池および太陽電池の製造方法に関するものである。 In the present invention, a region that generates a high electron concentration when light or the like is irradiated on a substrate is formed, an insulating film that transmits light or the like is formed on the region, and electrons are extracted from the region on the insulating film. A finger electrode is formed to form an outlet, and a plurality of finger electrodes are electrically connected to extract electrons to the outside. The conventional bus bar electrode is made of glass or no, soldered directly to the finger electrode, and on the back surface. The present invention relates to a solar cell that is directly soldered from a substrate and a method for manufacturing the solar cell.
 従来、太陽電池セルの設計では、太陽電池セル内に生成した電子を効率よく接続された外部回路に流すかということが肝要である。これを達成するためにセルから外部に連なる部分の抵抗成分を小さくすることと、生成した電子が消失しないようにすることと、表面および裏面の外部端子が強く固定されることとが特に重要である。 Conventionally, in the design of a solar battery cell, it is important to flow electrons generated in the solar battery cell to an external circuit connected efficiently. In order to achieve this, it is particularly important to reduce the resistance component of the part connected from the cell to the outside, to prevent the generated electrons from disappearing, and to firmly fix the external terminals on the front and back surfaces. is there.
 例えば図12の従来技術に示すように、シリコン基板21の表面(上面)に窒化膜22を生成し、この上にフィンガー電極(銀)23のペースト(鉛ガラス入り)をスクリーン印刷し焼結し、図示のように窒化膜22に穴を開けて高電子濃度領域から電子を外部に取り出すフィンガー電極23を形成する。次に、フィンガー電極23と直交する方向にバスバー電極(銀)24をスクリーン印刷し焼結して生成する。このバスバー電極(銀)24の上にハンダ26でリボン(リード線)25をハンダ付けして強固にシリコン基板21に該リボン25を固定していた。 For example, as shown in the prior art of FIG. 12, a nitride film 22 is formed on the surface (upper surface) of the silicon substrate 21, and a finger electrode (silver) 23 paste (with lead glass) is screen printed and sintered thereon. As shown in the drawing, a hole is formed in the nitride film 22 to form a finger electrode 23 for extracting electrons from the high electron concentration region to the outside. Next, a bus bar electrode (silver) 24 is screen-printed and sintered in a direction orthogonal to the finger electrodes 23 to be generated. A ribbon (lead wire) 25 is soldered onto the bus bar electrode (silver) 24 with solder 26 to firmly fix the ribbon 25 to the silicon substrate 21.
 また、シリコン基板21の裏面(下面)にアルミ電極27を形成してこれにリボンをハンダ付けして固定していた。 Also, an aluminum electrode 27 was formed on the back surface (lower surface) of the silicon substrate 21, and a ribbon was soldered to the aluminum electrode 27 to be fixed.
 また、アルミ電極27を全面に形成していたのではリボン29のハンダ付け強度が弱い場合には、このアルミ電極27の一部に穴(表面のバスバー電極24に対応する部分に穴)を開けておき、ここに銀ペーストをスクリーン印刷して焼結して銀の部分271を形成し、これにハンダ28でリボン29を固定して必要な固定強度を得ていた。 If the aluminum electrode 27 is formed on the entire surface, if the soldering strength of the ribbon 29 is weak, a hole is formed in a part of the aluminum electrode 27 (a hole corresponding to the bus bar electrode 24 on the surface). Here, a silver paste 271 was screen-printed and sintered to form a silver portion 271, and a ribbon 29 was fixed thereto with solder 28 to obtain a required fixing strength.
 しかし、上述した従来のシリコン基板21の表面にバスバー電極(銀)24を形成して多数のフィンガー電極23からの電子を集めたり、リボン25を該バスバー電極(銀)24を介してシリコン基板21に強固にハンダ付けする必要性があったために、該バスバー電極24が銀あるいは銀を多く含むペーストで作成する必要性があると共に、該ペーストに鉛ガラスが含まれていると焼結などにより該バスバー電極24で集めた電子がシリコン基板21に向けて漏洩してしまう事態が発生するという問題があった。 However, the bus bar electrode (silver) 24 is formed on the surface of the above-described conventional silicon substrate 21 to collect electrons from a large number of finger electrodes 23, or the ribbon 25 is connected to the silicon substrate 21 via the bus bar electrode (silver) 24. Therefore, it is necessary to make the bus bar electrode 24 with silver or a paste containing a large amount of silver. There was a problem that the electrons collected by the bus bar electrode 24 leaked toward the silicon substrate 21.
 また、シリコン基板21の裏面にアルミ電極を全面に形成してその上にリボンをハンダ付けしたのではリボンをシリコン基板21に充分な強度で固定できない場合があるという問題があった。 In addition, when an aluminum electrode is formed on the entire back surface of the silicon substrate 21 and the ribbon is soldered thereon, the ribbon may not be fixed to the silicon substrate 21 with sufficient strength.
 また、これを避けるために、既述した図12に示すように、アルミ電極27の一部に穴を開けておき、ここに銀ペーストを塗布して焼結し、この上にリボンをハンダ付けして充分な固定強度を得る必要が生じてしまうという問題もあった。 In order to avoid this, as shown in FIG. 12 described above, a hole is made in a part of the aluminum electrode 27, silver paste is applied and sintered, and a ribbon is soldered thereon. As a result, there is a problem that it is necessary to obtain a sufficient fixing strength.
 本発明者らは、シリコン基板1の表面のフィンガー電極の上部が絶縁膜の上に露出していることに着目し、この露出しているフィンガー電極の上部に直接に外部端子である帯状のリボンをハンダ付けして抵抗成分を少なくかつ電子の漏洩を少なくすると共に、リボンを窒化膜に直接あるいはガラスを介して強固にハンダ付けできる構成および方法を発見した。 The inventors pay attention to the fact that the upper part of the finger electrode on the surface of the silicon substrate 1 is exposed on the insulating film, and a strip-shaped ribbon which is an external terminal directly on the exposed finger electrode. The present invention has found a configuration and a method capable of reducing the resistance component and reducing the leakage of electrons by soldering the ribbon and firmly soldering the ribbon directly to the nitride film or via glass.
 また、本発明者らは、シリコン基板の裏面のアルミ電極あるいはアルミ電極の一部に穴を空け、該アルミ電極あるいは該アルミ電極の穴の部分に直接にハンダ付けして充分な固定強度を得る構成および方法を発見した。 In addition, the present inventors make a hole in the aluminum electrode or a part of the aluminum electrode on the back surface of the silicon substrate, and directly solder the aluminum electrode or the hole part of the aluminum electrode to obtain a sufficient fixing strength. Discovered the configuration and method.
 そのため、本発明は、基板上に光などを照射したときに高電子濃度を生成する領域を形成すると共に領域の上に光などを透過する絶縁膜を形成し、絶縁膜の上に領域から電子を取り出す取出口であるフィンガー電極を形成してフィンガー電極を介して電子を外部に取り出す太陽電池において、絶縁膜の上に形成された領域から電子を取り出すフィンガー電極と直交方向に一定の幅bで、フィンガー電極のある部分と、フィンガー電極の無い絶縁膜の部分とに渡ってハンダで取出線をハンダ付けし、フィンガー電極からの電子を取出線により外部に取り出すと共に取出線を基板に固定するようにしている。 Therefore, the present invention forms a region that generates a high electron concentration when light or the like is irradiated on a substrate, and forms an insulating film that transmits light or the like on the region, and electrons from the region on the insulating film. In a solar cell that forms a finger electrode that is an outlet for extracting electrons and extracts electrons to the outside through the finger electrodes, the finger electrode that extracts electrons from a region formed on the insulating film has a constant width b in a direction orthogonal to the finger electrode. Solder the lead wire with solder over the part with the finger electrode and the part of the insulating film without the finger electrode, take out the electrons from the finger electrode to the outside and fix the lead line to the substrate I have to.
 この際、フィンガー電極と直交方向に一定の幅bでハンダで取出線をハンダ付けする場合に、フィンガー電極のハンダ付けする部分の幅cを広くあるいは一定の幅cに予め形成するようにしている。 At this time, when the lead-out line is soldered with solder at a constant width b in the direction orthogonal to the finger electrodes, the width c of the finger electrode to be soldered is widened or previously formed with a constant width c. .
 また、フィンガー電極と直交方向に一定の幅bでハンダで取出線をハンダ付けする場合に、フィンガー電極の広げた部分の幅cと、隣接する広げた部分の幅cとの間隔aを,ハンダコテ先の長さよりも小さくし、ハンダコテ先が絶縁膜に直接に接し、絶縁膜を劣化させないようにしている。 Further, when the lead wire is soldered with a solder having a constant width b in a direction orthogonal to the finger electrode, the distance a between the width c of the widened portion of the finger electrode and the width c of the adjacent widened portion is defined as a soldering iron. The length is smaller than the previous length so that the soldering iron tip is in direct contact with the insulating film so that the insulating film is not deteriorated.
 また、ハンダ付けは、超音波ハンダ付けするようにしている。 Also, soldering is done by ultrasonic soldering.
 また、超音波ハンダ付けで使用する超音波強度は、取出線のハンダ付けができる以上、かつ絶縁膜が破壊されて性能劣化するよりも小さい出力であるようにしている。 Also, the ultrasonic intensity used in the ultrasonic soldering is set so that the output is smaller than the lead wire can be soldered and the performance is deteriorated due to destruction of the insulating film.
 また、ハンダ付けにより取出線がハンダ付けされる部分に、予め超音波なし予備ハンダあるいは必要に応じて超音波予備ハンダするようにしている。 Also, pre-soldering without ultrasonic waves or preliminarily ultrasonic pre-soldering is performed on the part where the lead wire is soldered by soldering.
 また、取出線がハンダ付けされる部分に予備ハンダした場合には、取出線を超音波なしでハンダ付けするようにしている。 Also, when the lead wire is preliminarily soldered to the part to be soldered, the lead wire is soldered without ultrasonic waves.
 また、ハンダ付けによりハンダ付けする取出線は、予め予備ハンダするようにしている。 Also, the lead-out line to be soldered by soldering is preliminarily soldered.
 また、ハンダは、錫あるいは錫に亜鉛、銅、銀の1つ以上を含むようにしている。 Also, the solder contains at least one of tin, tin, zinc, copper and silver.
 そのため、本発明は、基板上に光などを照射したときに高電子濃度を生成する領域を形成すると共に領域の上に光などを透過する絶縁膜を形成し、絶縁膜の上に領域から電子を取り出す取出口であるフィンガー電極を形成してフィンガー電極を介して電子を外部に取り出すと共に、基板の裏面から電子を流入させて回路を形成する太陽電池において、基板の裏面にアルミ電極を全面に形成あるいはアルミ電極の一部に穴を形成し、形成したアルミ電極の全面の一部あるいは穴を形成した部分に、ハンダで取出線をハンダ付けし、基板の裏面から電子を流入させると共に取出線を基板に固定するように構成する。 Therefore, the present invention forms a region that generates a high electron concentration when light or the like is irradiated on a substrate, forms an insulating film that transmits light or the like on the region, and emits electrons from the region on the insulating film. In a solar cell in which a finger electrode is formed as a take-out port to take out electrons through the finger electrode and electrons are introduced from the back surface of the substrate to form a circuit, an aluminum electrode is formed on the entire back surface of the substrate. A hole is formed in the formed or part of the aluminum electrode, and a lead wire is soldered to a part of the entire surface of the formed aluminum electrode or a part where the hole is formed, and electrons are allowed to flow from the back surface of the substrate and the lead wire Is fixed to the substrate.
 この際、アルミ電極の全面の一部あるいは穴を形成した部分は、表面の取出線に対応する部分とするようにしている。 At this time, a part of the entire surface of the aluminum electrode or the part where the hole is formed is made to correspond to the lead-out line on the surface.
 また、ハンダ付けは、超音波ハンダ付けするようにしている。 Also, soldering is done by ultrasonic soldering.
 また、ハンダ付けにより取出線がハンダ付けされる部分に、予め超音波なし予備ハンダあるいは必要に応じて超音波予備ハンダするようにしている。 Also, pre-soldering without ultrasonic waves or preliminarily ultrasonic pre-soldering is performed on the part where the lead wire is soldered by soldering.
 また、取出線がハンダ付けされる部分に予備ハンダした場合には、取出線を超音波なしでハンダ付けするようにしている。 Also, when the lead wire is preliminarily soldered to the part to be soldered, the lead wire is soldered without ultrasonic waves.
 また、ハンダ付けによりハンダ付けする取出線は、予め予備ハンダするようにしている。 Also, the lead-out line to be soldered by soldering is preliminarily soldered.
 また、取出線のハンダ付けは、ハンダ付けされる部分の温度をハンダが溶融する温度以下で室温以上に予備加熱した状態で、ハンダ付けするようにしている。 Also, the lead wire is soldered in a state where the temperature of the part to be soldered is not higher than the temperature at which the solder melts and is preheated to room temperature or higher.
 また、ハンダは、錫あるいは錫に亜鉛、銅、銀の1つ以上を含むようにしている。 Also, the solder contains at least one of tin, tin, zinc, copper and silver.
  本発明は、上述したように、シリコン基板の表面のフィンガー電極の上部が絶縁膜の上に露出していることに着目し、この露出しているフィンガー電極の上部に直接に外部端子である帯状のリボンをハンダ付けして抵抗成分を少なくかつ電子の漏洩が少なくすると共に、リボンを窒化膜に直接あるいはガラスを介して強固にハンダ付けできる構成とすることにより、高効率かつ取出線を強固に固定できる太陽電池となる。 As described above, the present invention pays attention to the fact that the upper part of the finger electrode on the surface of the silicon substrate is exposed on the insulating film, and the band shape which is an external terminal directly on the exposed finger electrode. The ribbon is soldered to reduce the resistance component and reduce the leakage of electrons, and the ribbon can be firmly soldered directly to the nitride film or via glass, so that the extraction line is highly efficient and strong. The solar cell can be fixed.
 また、従来の銀のバスバー電極が不要となり、銀使用量を削減できる。 Also, the conventional silver bus bar electrode becomes unnecessary, and the amount of silver used can be reduced.
 また、従来の銀のバスバー電極の形成工程が不要となり、工程数を削減できる。 Also, the conventional silver bus bar electrode forming process is not required, and the number of processes can be reduced.
 また、取出線(リボン)を直接にフィンガー電極にハンダ付けして抵抗値を小さくし、電子の取出効率を高めることができる。 Also, the lead wire (ribbon) can be soldered directly to the finger electrode to reduce the resistance value and increase the electron extraction efficiency.
 本発明は、上述したように、シリコン基板1の裏面のアルミ電極あるいはアルミ電極の一部に穴を空け、アルミ電極あるいはアルミ電極の穴の部分に直接にハンダ付けすることにより、取出線の部分の抵抗値を小さくかつ充分な固定強度で固定できる。 As described above, according to the present invention, a hole is formed in the aluminum electrode on the back surface of the silicon substrate 1 or a part of the aluminum electrode, and soldering is performed directly on the aluminum electrode or the hole portion of the aluminum electrode, thereby Can be fixed with a small and sufficient fixing strength.
 また、従来の裏面のアルミ電極に穴を空けて銀を形成してこれに取出線をハンダ付けした場合に比して、銀の使用量を削減および銀の塗布、焼結の工程を削減しても強固に取出線を固定できる。 Also, compared to the conventional case where a hole is made in the aluminum electrode on the back surface to form silver and the lead wire is soldered to this, the amount of silver used is reduced and the steps of applying and sintering silver are reduced. However, the lead-out line can be firmly fixed.
 また、取出線(リボン)を直接にアルミ電極あるいはその穴の下のシリコン基板にハンダ付けして抵抗値を小さくし、電子の流入効率を高め、高効率の太陽電池となる。 Also, the lead-out wire (ribbon) is soldered directly to the aluminum electrode or the silicon substrate under the hole to reduce the resistance value, increase the inflow efficiency of electrons, and become a highly efficient solar cell.
 図1は本発明の要部構成例を示す。 FIG. 1 shows a configuration example of a main part of the present invention.
 図1の(a)はいわゆるABS技法ー0の要部構成の1例を示し、図1の(a-1)はその表面、裏面の要部構成の詳細例を示す。 (A) in FIG. 1 shows an example of the main part configuration of the so-called ABS technique-0, and (a-1) in FIG. 1 shows a detailed example of the main part configuration on the front and back surfaces.
 図1の(b)はいわゆるABS技法ー1の要部構成の1例を示し、図1の(b-1)はその表面、裏面の要部構成の詳細例を示す。 (B) in FIG. 1 shows an example of the main part configuration of the so-called ABS technique-1, and (b-1) in FIG. 1 shows a detailed example of the main part configuration on the front and back surfaces.
 図1の(c)はいわゆるABS技法ー2の要部構成の1例を示し、図1の(c-1)はその表面、裏面の要部構成の詳細例を示す。 (C) in FIG. 1 shows an example of the main configuration of the so-called ABS technique-2, and (c-1) in FIG. 1 shows a detailed example of the main configuration of the front and back surfaces.
 図1において、シリコン基板1は、太陽電池を形成しようとするシリコンの基板(単結晶、多結晶)である。 In FIG. 1, a silicon substrate 1 is a silicon substrate (single crystal or polycrystalline) on which a solar cell is to be formed.
 窒化膜(絶縁膜)2は、シリコン基板1の上に例えば高濃度電子領域(上方から太陽光などを照射したときに高濃度の電子領域を生成する領域)(公知)を作成した上に、透明(太陽光などを透過する透明)の膜であって、高濃度電子領域の上に強固に形成される薄い透明な絶縁膜である(公知)。 The nitride film (insulating film) 2 is formed on the silicon substrate 1 by, for example, creating a high-concentration electron region (region that generates a high-concentration electron region when irradiated with sunlight from above) (known), It is a transparent (transparent material that transmits sunlight, etc.) and is a thin transparent insulating film that is firmly formed on a high-concentration electron region (known).
 フィンガー電極3は、窒化膜2の上に銀および鉛ガラスを含むペーストをスクリーン印刷し、溶剤加熱乾燥、焼結して下層の窒化膜2に鉛ガラスのファイヤリング現象により、高濃度電子領域と電気的に接続する経路を形成したものであって、当該フィンガー電極3から高濃度電子領域に発生した電子を窒化膜(絶縁膜)2の上の方向に取り出すものであ
る(公知)。
The finger electrode 3 is formed by screen-printing a paste containing silver and lead glass on the nitride film 2, drying by solvent heating and sintering, and then forming a high-concentration electron region on the lower nitride film 2 by the firing phenomenon of lead glass. A path for electrical connection is formed, and electrons generated in the high-concentration electron region from the finger electrode 3 are taken out in the direction above the nitride film (insulating film) 2 (known).
 バスバー電極4は、図1の(a)に示すように、フィンガー電極3と直交する方向、かつフィンガー電極3の無い部分にのみ一定幅のガラスを塗布、溶剤加熱乾燥、焼結して窒化膜2に強固に固定したものである。このバスバー電極4は、ここでは、導電性である必要はなく窒化膜2に強固に固定かつ取出線をハンダ付け可能であればよい(後述する)。例えば非導電性のABSペースト(バナジウム、バリウム、(錫または亜鉛または両者(またはこれらの酸化物))のガラスペースト)を本実験では用いた。 As shown in FIG. 1A, the bus bar electrode 4 is a nitride film formed by applying glass of a certain width only in a direction orthogonal to the finger electrode 3 and only in a portion where the finger electrode 3 is not present, solvent drying by heating, and sintering. 2 firmly fixed. Here, the bus bar electrode 4 does not need to be electrically conductive, and may be firmly fixed to the nitride film 2 and capable of soldering the lead wire (described later). For example, non-conductive ABS paste (glass paste of vanadium, barium, (tin or zinc or both (or oxides thereof)) was used in this experiment.
 リボン(リード線)5は、フィンガー電極3に直接にハンダ付けする取出線であって、高濃度電子領域に発生した電子をフィンガー電極3に直接にハンダ付けした当該リボン5で外部に取り出すものである。 The ribbon (lead wire) 5 is a lead wire that is soldered directly to the finger electrode 3, and takes out the electrons generated in the high-concentration electron region to the outside with the ribbon 5 soldered directly to the finger electrode 3. is there.
 ハンダ(半田)6は、リボン5をフィンガー電極3およびバスバー電極4(図1の(a))、窒化膜2(図1の(b),図1の(c))にハンダ付けするハンダである。 Solder (solder) 6 is solder for soldering the ribbon 5 to the finger electrode 3 and the bus bar electrode 4 (FIG. 1A) and the nitride film 2 (FIG. 1B, FIG. 1C). is there.
 アルミ電極7は、シリコン基板1の裏面に形成するアルミ電極である。 The aluminum electrode 7 is an aluminum electrode formed on the back surface of the silicon substrate 1.
 ハンダ8は、図1の(a)および図1の(b)ではシリコン基板1の裏面の全面に形成されたアルミ電極7の上に、表面のリボン5をハンダ6でハンダ付けした部分に対応する裏面の部分にリボン9をハンダ付けするものである。本発明で使用するハンダ8は、錫、あるいは錫に亜鉛を数%から数十%添加、銅や銀などを0.数%ないし十数%添加したものがよい。これ以上の割合や他の金属などを必要に応じて添加してもよい(以下同様)。 The solder 8 corresponds to a portion in which the ribbon 5 on the front surface is soldered with the solder 6 on the aluminum electrode 7 formed on the entire back surface of the silicon substrate 1 in FIGS. 1 (a) and 1 (b). The ribbon 9 is soldered to the back surface portion. The solder 8 used in the present invention is tin, tin is added to zinc by several to several tens of percent, and copper, silver or the like is added to 0.1%. What added several% thru | or dozens of% is good. More ratios or other metals may be added as necessary (the same applies hereinafter).
 また、ハンダ8は、図1の(c)ではシリコン基板1の裏面の一部に穴の形成されたアルミ電極7の上の当該穴の部分および当該穴以外のアルミ部分に、表面のリボン5をハンダ6でハンダ付けした部分に対応する裏面の部分にリボン9をハンダ付けするものである。 Further, in FIG. 1C, the solder 8 is formed on the surface of the ribbon 5 on the portion of the hole on the aluminum electrode 7 in which a hole is formed on a part of the back surface of the silicon substrate 1 and the aluminum portion other than the hole. The ribbon 9 is soldered to the part of the back surface corresponding to the part soldered with the solder 6.
 リボン(リード線)9は、ハンダ8でシリコン基板1の裏面に形成されたアルミ電極7、該アルミ電極7の穴の開いた部分はその下のシリコン基板1にハンダ付けし、電子を流入させるものである。 The ribbon (lead wire) 9 is soldered to an aluminum electrode 7 formed on the back surface of the silicon substrate 1, and the holed portion of the aluminum electrode 7 is soldered to the silicon substrate 1 below to allow electrons to flow. Is.
 以下各構成を図1の(a-1),(b-1)、(c-1)に従い詳細に説明する。 Hereinafter, each configuration will be described in detail according to (a-1), (b-1), and (c-1) in FIG.
 図1の(a-1)のABS技法ー0について:
  ・表面:表面(図1の(a)のシリコン基板1の上側の表面)では、図示のバスバー電極4はABSペーストを塗布、溶剤加熱乾燥、焼結し、当該ABS(バナジン酸塩を主成分としたガラスであって、ハンダ付け可能なガラス)を従来のバスバー電極(銀)に代えたものである。この状態では、シリコン基板1の高濃度電子領域に発生した電子は、フィンガー電極3を介して直接にハンダ6でハンダ付けされたリボン5によって外部に取り出される。このため、従来の光電子濃度領域ーフィンガー電極3-銀のバスバー電極ーリボン5という経路のうち、銀のバスバー電極の部分を省略して直接にフィンガー電極3からリボン5に電子を流して外部に取り出すことができ、抵抗を小さくして損失を低減、更に、従来のバスバー電極からの電子の漏洩を無くすことが可能となる。
Regarding ABS technique-0 in FIG. 1 (a-1):
-Surface: On the surface (the upper surface of the silicon substrate 1 in FIG. 1 (a)), the bus bar electrode 4 shown in the figure is coated with ABS paste, dried by heating with a solvent, sintered, and the ABS (vanadate is the main component). Glass that can be soldered) is replaced with a conventional bus bar electrode (silver). In this state, electrons generated in the high-concentration electron region of the silicon substrate 1 are taken out to the outside by the ribbon 5 soldered directly by the solder 6 through the finger electrodes 3. Therefore, in the conventional path of photoelectron concentration region-finger electrode 3-silver bus bar electrode-ribbon 5, the silver bus bar electrode portion is omitted and electrons are directly flowed from the finger electrode 3 to the ribbon 5 and taken out to the outside. Therefore, it is possible to reduce the resistance by reducing the resistance and to eliminate the leakage of electrons from the conventional bus bar electrode.
  ・裏面:裏面(図1の(a)のシリコン基板1の下側の面)では、図示のシリコン基板1の全面に形成したアルミ電極7の上に、表面のバスバー電極(ABSペースト)4に対応する部分にリボン9を直接にハンダ付けする。 Back surface: On the back surface (the lower surface of the silicon substrate 1 in FIG. 1A), the bus bar electrode (ABS paste) 4 on the surface is formed on the aluminum electrode 7 formed on the entire surface of the illustrated silicon substrate 1. The ribbon 9 is soldered directly to the corresponding part.
 以上の構成により、表面ではシリコン基板1の高濃度電子領域に発生した電子を、フィンガー電極3-リボン5を介して直接に外部に取り出すことが可能となると共に、リボン5はバスバー電極(非導電性であってもよく、例えばABSペースト)4に対応する部分でハンダ6で直接に強固にシリコン基板1にハンダ付けして固定することが可能となる。裏面では従来のアルミ電極7の上に銀ペーストを焼結してこれにリボンをハンダ付けしていた手間を省略し、アルミ電極7の上に本発明によりリボンを直接にハンダ付けして強固に固定することが可能となる。 With the above configuration, electrons generated in the high-concentration electron region of the silicon substrate 1 on the surface can be taken out directly via the finger electrode 3-ribbon 5, and the ribbon 5 can be connected to the bus bar electrode (non-conductive). For example, a portion corresponding to the ABS paste) 4 can be directly and firmly soldered and fixed to the silicon substrate 1 with the solder 6. On the back side, the trouble of sintering the silver paste on the conventional aluminum electrode 7 and soldering the ribbon to it is omitted, and the ribbon is directly soldered on the aluminum electrode 7 according to the present invention to be strong. It can be fixed.
 図1の(b-1)のABS技法ー1について:
  ・表面:表面(図1の(b)のシリコン基板1の上側の表面)では、図示のリボン5をハンダ6で直接にフィンガー電極3および窒化膜2の部分に一定幅bでハンダ付けしたものである(図4など参照)。この状態では、シリコン基板1の高濃度電子領域に発生した電子は、フィンガー電極3を介して直接にハンダ6でハンダ付けされたリボン5によって外部に取り出されると共に、リボン5を窒化膜2を介してシリコン基板1に強固に固定することが可能となる。このため、従来のバスバー電極がなく、光電子濃度領域ーフィンガー電極3-リボン5という経路で電子を外部に直接に取り出すと共に、リボン5を窒化膜2を介してシリコン基板1に強固に固定することが可能となる。
Regarding the ABS technique-1 in FIG. 1 (b-1):
Surface: On the surface (the upper surface of the silicon substrate 1 in FIG. 1B), the illustrated ribbon 5 is soldered directly to the finger electrode 3 and the nitride film 2 with solder 6 with a constant width b. (See FIG. 4 and the like). In this state, electrons generated in the high-concentration electron region of the silicon substrate 1 are taken out to the outside by the ribbon 5 soldered directly by the solder 6 through the finger electrode 3 and the ribbon 5 is passed through the nitride film 2. Thus, it can be firmly fixed to the silicon substrate 1. Therefore, there is no conventional bus bar electrode, and electrons can be directly taken out to the outside through a path of photoelectron concentration region-finger electrode 3 -ribbon 5 and the ribbon 5 can be firmly fixed to the silicon substrate 1 through the nitride film 2. It becomes possible.
  ・裏面:図1の(a-1)と同様である。 ・ Back: Same as (a-1) in FIG.
 以上の構成により、表面ではシリコン基板1の高濃度電子領域に発生した電子を、フィンガー電極3-リボン5を介して直接に外部に取り出すことが可能となると共に、リボン5を窒化膜2を介してシリコン基板1に強固に固定することが可能となる。裏面では図1の(a)と同様に、従来のアルミ電極7の上に銀ペーストを焼結してこれにリボンをハンダ付けしていた手間を省略し、アルミ電極7の上に本発明によりリボンを直接にハンダ付けして強固に固定することが可能となる。 With the above configuration, electrons generated in the high-concentration electron region of the silicon substrate 1 on the surface can be taken out directly via the finger electrode 3 -ribbon 5 and the ribbon 5 can be removed via the nitride film 2. Thus, it can be firmly fixed to the silicon substrate 1. On the back side, as in FIG. 1A, the trouble of sintering the silver paste on the conventional aluminum electrode 7 and soldering the ribbon to it is omitted. The ribbon can be directly soldered and firmly fixed.
 図1の(c-1)のABS技法ー2について:
  ・表面:図1の(b-1)と同様である。
Regarding ABS technique-2 in FIG. 1 (c-1):
Surface: same as (b-1) in FIG.
  ・裏面:裏面(図1の(c)のシリコン基板1の下側の面)では、図示のシリコン基板1に形成したアルミ電極7に穴を設け、この穴の部分および該穴の部分以外の部分であって、表面のリボン5をハンダ付けした部分に対応する当該裏面の部分にリボン9をハンダ付けする。これにより、リボン9が穴の部分でシリコン基板1に直接にハンダ8でハンダ付けされ強固にシリコン基板1に固定することが可能となると共に、抵抗成分を小さくすることが可能となる。 Back surface: On the back surface (the lower surface of the silicon substrate 1 in FIG. 1C), a hole is provided in the aluminum electrode 7 formed on the illustrated silicon substrate 1, and a portion other than the hole portion and the hole portion is provided. The ribbon 9 is soldered to a portion of the back surface corresponding to the soldered portion of the ribbon 5 on the front surface. As a result, the ribbon 9 can be soldered directly to the silicon substrate 1 at the hole portion with the solder 8 and firmly fixed to the silicon substrate 1, and the resistance component can be reduced.
 以上の構成により、表面ではシリコン基板1の高濃度電子領域に発生した電子を、フィンガー電極3-リボン5を介して直接に外部に取り出すことが可能となると共に、リボン5を窒化膜2を介してシリコン基板1に強固に固定することが可能となる。裏面では本発明によりアルミ電極7の穴を介してリボン9を直接にシリコン基板1にハンダ8でハンダ付けして強固に固定することが可能となる。 With the above configuration, electrons generated in the high-concentration electron region of the silicon substrate 1 on the surface can be taken out directly via the finger electrode 3 -ribbon 5 and the ribbon 5 can be removed via the nitride film 2. Thus, it can be firmly fixed to the silicon substrate 1. On the back surface, according to the present invention, the ribbon 9 can be directly soldered to the silicon substrate 1 with the solder 8 through the hole of the aluminum electrode 7 and firmly fixed.
 次に、図2および図3の順番に従い、図1の構成の製造方法を詳細に説明する。 Next, according to the order of FIGS. 2 and 3, the manufacturing method of the configuration of FIG. 1 will be described in detail.
 図2および図3は、本発明の製造方法説明フローチャートを示す。 2 and 3 are flowcharts for explaining the production method of the present invention.
 図2において、S1は、基板を準備する。これは、既述した図1の太陽電池を形成しようとするシリコン基板1として、例えば右側に記載したように、P型の単結晶あるいは多結晶のシリコン基板1を準備する。 In FIG. 2, S1 prepares a substrate. For example, a P-type single crystal or polycrystalline silicon substrate 1 is prepared as the silicon substrate 1 on which the solar cell shown in FIG.
 S2は、窒化膜を形成する。これは、既述した図1のシリコン基板1の表面に窒化膜(絶縁膜)2を形成する。窒化膜2の膜厚は例えば60-90nm程度が良い。 S2 forms a nitride film. This forms a nitride film (insulating film) 2 on the surface of the silicon substrate 1 shown in FIG. The film thickness of the nitride film 2 is preferably about 60-90 nm, for example.
 S3は、裏面にアルミペーストを塗布する。これは、右側に記載したように、図1のシリコン基板1の裏面にアルミペーストをスクリーン印刷して塗布する。この塗布は、図1の(a-1),図1の(b-1)は裏面の全面に塗布する。図1の(c-1)では表面のフィンガー電極3のパターンに直交する方向に、裏面にスペース有あるいはスペース無しにアルミペーストを塗布し、裏面のシリコン基板1の上に帯状のパターンあるいは飛び飛びの帯状のアルミペーストで塗布する(塗布されない部分はアルミ電極7の無い穴の部分となる)。 In S3, an aluminum paste is applied to the back surface. As described on the right side, an aluminum paste is screen printed on the back surface of the silicon substrate 1 in FIG. In this application, (a-1) in FIG. 1 and (b-1) in FIG. In FIG. 1 (c-1), an aluminum paste is applied on the back surface with or without a space in a direction orthogonal to the pattern of the finger electrode 3 on the front surface, and a band-like pattern or a jumping pattern is formed on the back silicon substrate 1. It is applied with a strip-shaped aluminum paste (the part that is not applied becomes a hole part without the aluminum electrode 7).
 S4は、溶剤飛ばしを行う。これは、S3で塗布したアルミペーストを加熱乾燥(例えば80から120℃で、30分から60分の加熱乾燥)を行い、溶剤を無くす。 S4 performs solvent blowing. In this method, the aluminum paste applied in S3 is heated and dried (for example, heated and dried at 80 to 120 ° C. for 30 to 60 minutes) to eliminate the solvent.
 S5は、表面にフィンガー電極を印刷する。これは、図1の窒化膜2の上に、例えば右側に記載した銀と鉛ガラスフリットを含むペーストを用いスクリーン印刷する。 S5 prints finger electrodes on the surface. This is screen-printed on the nitride film 2 of FIG. 1 using, for example, a paste containing silver and lead glass frit described on the right side.
 S6は、溶剤飛ばしを行う。これは、S5で塗布したペーストを加熱乾燥(例えば80から120℃で、30分から60分の加熱乾燥)を行い、溶剤を無くす。 S6 performs solvent blowing. In this process, the paste applied in S5 is heat-dried (for example, heat-dried at 80 to 120 ° C. for 30 to 60 minutes) to eliminate the solvent.
 図3において、図1の(a)の場合には、S7、S8を行う。S7、S8は、S5、S6のフィンガー電極の印刷・溶剤飛ばしと同時に行っても良い。 In FIG. 3, in the case of FIG. 1A, S7 and S8 are performed. S7 and S8 may be performed at the same time as the finger electrode printing and solvent removal in S5 and S6.
 S7は、バスバー電極を印刷する。これは、図1のバスバー電極4をABSペーストでスクリーン印刷する。 S7 prints the bus bar electrode. This screen-prints the bus bar electrode 4 of FIG. 1 with ABS paste.
 S8は、溶剤飛ばしを行う。これらS7、S8は、ABSペースト(バナジウム、バリウム、(錫または亜鉛または両者(またはこれらの酸化物))のガラスペースト)を用いて図1の(a)のようにバスバー電極をスクリーン印刷、溶剤飛ばしを行う。 S8 performs solvent blowing. These S7 and S8 are ABS pastes (vanadium, barium, glass paste of tin or zinc or both (or oxides thereof)), screen printing of busbar electrodes as shown in FIG. Do a skip.
 S9は、焼結する。これは、S3とS4、S5とS6、更にS7とS8で印刷・溶剤飛ばしした裏面のアルミ電極7、フィンガー電極3、更に必要に応じてバスバー電極4をまとめて一括焼結する。尚、個別に焼結してもよい。焼結は、右側に記載したように、例えば750から820℃、1秒から60秒の範囲内が望ましく、赤外線を照射して行う。  S9 is sintered. In this process, the aluminum electrode 7 on the back surface, the finger electrode 3, and, if necessary, the bus bar electrode 4 printed together in S3 and S4; In addition, you may sinter separately. As described on the right side, the sintering is desirably performed within a range of, for example, 750 to 820 ° C. and 1 second to 60 seconds, and is performed by irradiation with infrared rays. *
 S10は、表面に超音波ハンダ付けを行う。これは、図1で既述したように、表面の取出線(リボン5)を直接にフィンガー電極6にハンダ付けする。尚、既述したように、ハンダ付けされる部分が予め予備ハンダ(超音波予備ハンダあるいは超音波なし予備ハンダ)されている場合には、超音波なしのハンダ付けでよい。また、超音波ハンダ付け(超音波なしのハンダ付けも)は、ハンダ付けされる部分(できればハンダ付けする部分も)の温度をハンダが溶解する温度以下(溶解する温度以下、室温以上)に予備加熱した状態でハンダ付けすることにより、本発明のハンダを確実にハンダ付けすることが可能となる(他の部分の超音波ハンダ付け(超音波なしハンダ付け)も同様である)。 S10 performs ultrasonic soldering on the surface. As described above with reference to FIG. 1, the lead wire (ribbon 5) on the surface is soldered directly to the finger electrode 6. As described above, when the portion to be soldered is preliminarily soldered (ultrasonic preliminary solder or preparatory solder without ultrasonic waves), soldering without ultrasonic waves may be used. Ultrasonic soldering (also soldering without ultrasonic waves) reserves the temperature of the part to be soldered (preferably the part to be soldered) below the temperature at which the solder melts (below the melting temperature or above room temperature). By soldering in a heated state, the solder of the present invention can be securely soldered (the same applies to ultrasonic soldering of other parts (soldering without ultrasonic waves)).
 S11は、裏面に超音波ハンダ付け行う。これは、図1で既述したように、取出線(リボン9)を直接にアルミ電極7にハンダ付けしたり、アルミ電極7の穴の内部のシリコン基板1に直接にハンダ付けしたりする。尚、既述したように、ハンダ付けされる部分が予め予備ハンダ(超音波予備ハンダあるいは超音波なし予備ハンダ)されている場合には、超音波なしのハンダ付けでよい。 S11 performs ultrasonic soldering on the back surface. As described above with reference to FIG. 1, the lead-out line (ribbon 9) is soldered directly to the aluminum electrode 7 or directly to the silicon substrate 1 inside the hole of the aluminum electrode 7. As described above, when the portion to be soldered is preliminarily soldered (ultrasonic preliminary solder or preparatory solder without ultrasonic waves), soldering without ultrasonic waves may be used.
 以上のように、図1のシリコン基板1の表面に窒化膜(絶縁膜)2を形成した後、裏面にアルミ電極7を形成するアルミペーストを塗布・溶剤飛ばしし、表面にフィンガー電極3を形成する銀・鉛ガラスフリットを塗布・溶剤飛ばしし、必要に応じてバスバー電極4を形成するABSペーストを塗布・溶剤飛ばしし、これらアルミ電極7、フィンガー電極3、必要に応じてバスバー電極4を一括焼結し、裏面のアルミ電極7、表面のフィンガー電極3、必要に応じてABSのバスバー電極4を形成することが可能となる。そして、表面のフィンガー電極3と露出している窒化膜2の両者に直接にリボン5をハンダ6でハンダ付けしたり(図1の(b)、図1の(c))、フィンガー電極3とバスバー電極4の両者に直接にリボン5をハンダ6でハンダ付けしたり(図1の(a))し、更に、裏面のアルミ電極7とリボン5をハンダ8で直接にハンダ付けしたり(図1の(a),図1の(b))、リボン8をアルミ電極7の穴を介してシリコン基板1に直接にハンダ8でハンダ付けおよびアルミ電極7の穴のない部分にリボン8を直接にハンダ8でハンダ付けする(図1の(c))ことにより、リボン9を強固にシリコン基板1に固定およびリボン9からシリコン基板1への抵抗を小さくすることが可能となる。 As described above, after forming the nitride film (insulating film) 2 on the surface of the silicon substrate 1 in FIG. 1, the aluminum paste for forming the aluminum electrode 7 is applied on the back surface and the solvent is blown off, and the finger electrode 3 is formed on the surface. Apply the silver / lead glass frit to be blown, solvent blown, and apply ABS paste to form the bus bar electrode 4 if necessary, then blow off the solvent, and the aluminum electrode 7, finger electrode 3, and bus bar electrode 4 as needed It is possible to form the aluminum electrode 7 on the back surface, the finger electrode 3 on the front surface, and the ABS bus bar electrode 4 if necessary. Then, the ribbon 5 is soldered directly to both the finger electrode 3 on the surface and the exposed nitride film 2 with the solder 6 (FIG. 1 (b), FIG. 1 (c)), Ribbon 5 is soldered directly to both bus bar electrodes 4 with solder 6 (FIG. 1A), and aluminum electrode 7 on the back surface and ribbon 5 are soldered directly with solder 8 (FIG. 1). 1 (a) and FIG. 1 (b)), the ribbon 8 is soldered directly to the silicon substrate 1 through the hole of the aluminum electrode 7 with the solder 8, and the ribbon 8 is directly applied to the portion of the aluminum electrode 7 where there is no hole. By soldering with the solder 8 (FIG. 1C), the ribbon 9 can be firmly fixed to the silicon substrate 1 and the resistance from the ribbon 9 to the silicon substrate 1 can be reduced.
 図4は、本発明の説明図(表面ーその1)を示す。 FIG. 4 shows an explanatory diagram of the present invention (surface-part 1).
 図4の(a)はフィンガー電極3のパターン例を示し、図4の(b)は図4の(a)の拡大図を示す。 4A shows a pattern example of the finger electrode 3, and FIG. 4B shows an enlarged view of FIG. 4A.
 図4において、フィンガー電極3のパターン例は、図1のフィンガー電極3に直交する方向に幅bのリボン5をハンダ6でハンダ付けする領域(図示のバスバー領域41と同じ領域)の幅を幅cに広げた例を示す。この幅cにフィンガー電極3の幅を広げたことにより、リボン5とフィンガー電極3との間のハンダ付け面積(接触面積)を増大して接触抵抗を小さくすることが可能となる。一方、幅cを広げすぎると、広げた部分からの電子の漏洩(再結合)が多くなってリーク電流が増大する傾向にあるので、最適値に実験で決める必要がある。 4, the pattern example of the finger electrode 3 is the width of the region (the same region as the bus bar region 41 shown in the figure) where the ribbon 5 having the width b is soldered in the direction orthogonal to the finger electrode 3 of FIG. An expanded example is shown in c. By expanding the width of the finger electrode 3 to this width c, it becomes possible to increase the soldering area (contact area) between the ribbon 5 and the finger electrode 3 and reduce the contact resistance. On the other hand, if the width c is excessively widened, electron leakage (recombination) from the widened portion tends to increase and the leakage current tends to increase. Therefore, it is necessary to determine the optimum value by experiment.
 また、図4の(b)に示すように、バスバー領域41の幅b(リボン5の幅)を広げた状態でハンダ付けする場合、バスバー領域41の隣のものとの間隔aが、超音波ハンダコテ先の長さよりも小さくし、ハンダコテ先が直接に下方の窒化膜2に触れて当該窒化膜2を破壊したりなどの影響を与えないようにする必要があった。例えばハンダコテ先の長が2mmの場合には、間隔aは約1mm程度が実験の結果、窒化膜2に悪影響を与えないことが判明した。 As shown in FIG. 4B, when soldering in a state where the width b of the bus bar area 41 (the width of the ribbon 5) is widened, the distance a between the bus bar area 41 and the adjacent one is determined by the ultrasonic wave. It is necessary to make the length smaller than the length of the solder iron tip so that the solder iron tip directly touches the lower nitride film 2 and does not affect the nitride film 2 or the like. For example, when the length of the soldering iron tip is 2 mm, the distance a is about 1 mm. As a result of the experiment, it has been found that the nitride film 2 is not adversely affected.
 また、直接にハンダ付けした場合、下地の窒化膜2のハンダ材料は錫、亜鉛がしっかり密着し、通常のハンダ材料(錫、鉛)では得られない5N以上の密着力が得られた。 In addition, when soldering directly, tin and zinc were firmly adhered to the solder material of the underlying nitride film 2, and an adhesion strength of 5 N or more that cannot be obtained with ordinary solder materials (tin and lead) was obtained.
 図5は、本発明の説明図(表面ーその2)を示す。これは、既述した図1の(b).(c)の表面の拡大詳細図を示す。 FIG. 5 shows an explanatory diagram (surface-part 2) of the present invention. This is because (b) of FIG. The enlarged detail drawing of the surface of (c) is shown.
 図5において、シリコン基板1の表面に窒化膜(絶縁膜)2を形成し、この上にフィンガー電極3のパターンを銀と鉛ガラスのペーストを塗布して焼結して図示のフィンガー電極3を形成する(窒化膜2に穴を開けて内部を銀としたフィンガー電極3を形成する)。 In FIG. 5, a nitride film (insulating film) 2 is formed on the surface of a silicon substrate 1, and a finger electrode 3 pattern is applied on the surface of the finger electrode 3 by applying a paste of silver and lead glass and sintered. (A finger electrode 3 is formed in which a hole is made in the nitride film 2 and the inside is made of silver).
 本発明では、窒化膜2の上に飛び出しているフィンガー電極3に直接にハンダ6でリボン5をハンダ付けすると共に、同時に、窒化膜2の部分にハンダ6をリボン5をハンダ付けする。この際、フィンガー電極3の幅を既述した図4に示すように広く(リボン5の幅に相当する部分を広く)しておくことにより、フィンガー電極3とリボン6との間の接触面積を増大して接触抵抗を小さくできると共に、間隔をハンダコテ先の長よりも小さくしてハンダコテ先が下地の窒化膜2に直接に接触しないようにして該窒化膜2の破壊などの悪影響がでないように工夫する(図4の説明参照)。 In the present invention, the ribbon 5 is soldered directly to the finger electrode 3 protruding over the nitride film 2 with the solder 6, and at the same time, the solder 6 is soldered to the portion of the nitride film 2. At this time, by increasing the width of the finger electrode 3 as shown in FIG. 4 described above (the portion corresponding to the width of the ribbon 5 is widened), the contact area between the finger electrode 3 and the ribbon 6 is reduced. The contact resistance can be reduced by increasing the distance, and the interval is made smaller than the length of the soldering iron tip so that the soldering iron tip does not directly contact the underlying nitride film 2 so that there is no adverse effect such as destruction of the nitride film 2. Devise (refer to the description of FIG. 4).
 これらにより、高濃度電子領域からの電子をフィンガー電極3を介してリボン5に直接に取り出すおよびフィンガー電極3とリボン5との接触抵抗を小さくして高効率にすることが可能となると共に、リボン5を窒化膜2に直接にハンダ6でハンダ付けして強固に固定することが可能となる。 As a result, electrons from the high-concentration electron region can be directly taken out to the ribbon 5 through the finger electrode 3 and the contact resistance between the finger electrode 3 and the ribbon 5 can be reduced, and the ribbon can be made highly efficient. 5 can be firmly fixed to the nitride film 2 by soldering directly with the solder 6.
 図6は、本発明の説明図(裏面ーその1)を示す。 FIG. 6 is an explanatory view of the present invention (back surface—part 1).
 図6の(a)は、従来の裏面の構成例を示す。従来は、シリコン基板の裏面に、一部に穴を形成したアルミ電極を形成し、この穴の部分に銀ペーストを塗布・焼結して銀電極を形成し、この銀電極にハンダ(鉛ハンダ)でリボンをハンダ付けし、リボンを規定以上の力でシリコン基板に固定するようにしていた。 FIG. 6A shows a configuration example of a conventional back surface. Conventionally, an aluminum electrode having a hole formed in part is formed on the back surface of a silicon substrate, and a silver electrode is formed by applying and sintering a silver paste in the hole, and solder (lead solder) is formed on the silver electrode. ), The ribbon was soldered, and the ribbon was fixed to the silicon substrate with a force exceeding a specified level.
 図6の(b)は、本発明の直接ハンダの1例を示す。 FIG. 6B shows an example of the direct solder according to the present invention.
 図6の(b-1)はシリコン基板1の裏面の全面にアルミ電極7を形成し、これにハンダ8でリボン9をハンダ付けする例を示す(図1の(a).図1の(b)と同じ)。本発明では、ハンダ(錫、亜鉛)8を用いて超音波ハンダコテでアルミ電極7に直接にリボン9を超音波ハンダ付け可能である。尚、アルミ電極7に予備ハンダした場合には、超音波なしのハンダ付けで可能である。 6 (b-1) shows an example in which the aluminum electrode 7 is formed on the entire back surface of the silicon substrate 1, and the ribbon 9 is soldered to the solder electrode 8 (FIG. 1 (a). Same as b). In the present invention, the ribbon 9 can be ultrasonically soldered directly to the aluminum electrode 7 using an ultrasonic soldering iron using solder (tin, zinc) 8. When preliminary soldering is performed on the aluminum electrode 7, soldering without ultrasonic waves is possible.
 図6の(b-2)はシリコン基板1の裏面に、一部に穴の開いたアルミ電極7を形成し、この穴の部分およびそれ以外の両者の部分にハンダ8でリボン9をハンダ付けする例を示す(図1の(c)と同じ)。本発明では、ハンダ(錫、亜鉛)8を用いて超音波ハンダコテでアルミ電極7の穴の部分のシリコン基板1および穴以外のアルミ電極7に直接にリボン9を超音波ハンダ付け可能である。尚、予備ハンダした場合には、超音波なしのハンダ付けで可能である。 6B-2, an aluminum electrode 7 having a hole in part is formed on the back surface of the silicon substrate 1, and a ribbon 9 is soldered to the hole part and other parts by soldering 8. An example is shown (same as (c) of FIG. 1). In the present invention, the ribbon 9 can be ultrasonically soldered directly to the silicon substrate 1 in the hole portion of the aluminum electrode 7 and the aluminum electrode 7 other than the hole by soldering using a solder (tin, zinc) 8. When preliminary soldering is performed, soldering without ultrasonic waves is possible.
 図7は、本発明の説明図(その1)を示す。これは、超音波ハンダ条件の1例を示す。 FIG. 7 shows an explanatory diagram (part 1) of the present invention. This shows one example of ultrasonic solder conditions.
 図7において、既述した図1などでリボン5、9をハンダ6,8で超音波を印加した超音波ハンダ付けする場合、超音波の出力が強すぎると、図1の窒化膜2を破壊などして悪影響を与えてしまい、超音波の出力が弱すぎると、リボン5.9をハンダ付けできないという事態が発生した。超音波ハンダ付けするには最適な超音波出力があり、特にフィンガー電極3の超音波ハンダ付けする部分(領域)のサイズに依存する。本実験では3W以上の超音波出力では素子劣化(窒化膜2が破壊などされて悪影響がでた)、0.5W以下ではハンダ付け不良がでた。この実験では、3W以下、0.5W以上の範囲が良好な超音波ハンダ付け可能な範囲であった。 In FIG. 7, when the ultrasonic soldering is performed by applying ultrasonic waves to the ribbons 5 and 9 with the solders 6 and 8 in FIG. 1 described above, the nitride film 2 in FIG. If the ultrasonic output is too weak, the ribbon 5.9 cannot be soldered. There is an optimum ultrasonic output for ultrasonic soldering, and particularly depends on the size (region) of the finger electrode 3 to be ultrasonically soldered. In this experiment, the element was deteriorated when the ultrasonic output was 3 W or more (the nitride film 2 was broken and was adversely affected), and the soldering was poor when the output was 0.5 W or less. In this experiment, the range of 3 W or less and 0.5 W or more was a range in which good ultrasonic soldering was possible.
 図8は、本発明の説明図(その2)を示す。これは、既述した図1の(b)のABS技法-1,図1の(c)のABS技法-2、図12の従来技術の比較例を示す。 FIG. 8 shows an explanatory diagram (part 2) of the present invention. This shows a comparative example of the ABS technique-1 shown in FIG. 1B, the ABS technique-2 shown in FIG. 1C, and the conventional technique shown in FIG.
 ・ABS技法ー1(図1の(b):裏面はアルミ電極7に直接にリボン9をハンダ付け。表面はフィンガー電極3にリボン5を直接にハンダ付けおよびリボン5を窒化膜2に直接にハンダ付け。これにより、1.裏面の密着力はABS技法ー2より少し劣るが規格には充分である。2.従来の銀を削減できる。3.電気特性良好である。 ABS technique-1 (FIG. 1 (b): The back surface is soldered with the ribbon 9 directly on the aluminum electrode 7. The front surface is soldered with the ribbon 5 directly on the finger electrode 3 and the ribbon 5 directly on the nitride film 2. As a result, the adhesive strength on the back surface is slightly inferior to that of the ABS technique-2, but it is sufficient for the standard, 2. Silver can be reduced, and 3. Good electrical characteristics.
 ・ABS技法ー2(図1の(c)):裏面はアルミ電極7の穴の下のシリコン基板1に直接にリボン9をハンダ付けおよび穴以外の部分のアルミ電極7に直接にハンダ付け。表面はABS技法ー1と同じ。これにより、1.裏面のリボンの強い密着力。2.従来の銀を削減できる。3.電気特性良好である。 ・ ABS technique-2 ((c) in FIG. 1): The back surface is directly soldered to the silicon substrate 1 below the hole of the aluminum electrode 7 and the solder is directly soldered to the aluminum electrode 7 other than the hole. The surface is the same as ABS Technique-1. As a result, 1. Strong adhesion of the ribbon on the back. 2. Conventional silver can be reduced. 3. Good electrical characteristics.
 ・従来技法(図12):裏面はアルミ電極7の上に銀焼結しこれにリボン9を鉛ハンダ付け、あるいはアルミ電極7の穴の部分に銀焼結してシリコン基板1に接続しこの銀にリボン9を鉛ハンダ付け。表面はフィンガー電極3、銀のバスバー電極を介してリボンを鉛ハンダ付け。これにより、1.表面の銀のバスバー電極が必要。2.裏面に銀電極が必要。 Conventional technique (FIG. 12): The back side is silver-sintered on the aluminum electrode 7 and the ribbon 9 is lead-soldered, or silver is sintered in the hole portion of the aluminum electrode 7 and connected to the silicon substrate 1. Silver ribbon 9 is lead soldered. The surface is soldered with lead through the finger electrode 3 and silver bus bar electrode. As a result, 1. Requires surface silver busbar electrodes. 2. A silver electrode is required on the back side.
 図9は、本発明の説明図(その3)を示す。 FIG. 9 shows an explanatory diagram (part 3) of the present invention.
 図9において、ABS技法ー0、ABS技法ー1、ABS技法ー2は、図1のABS技法ー0、ABS技法ー1、ABS技法ー2にそれぞれ対応する。  9, ABS technique-0, ABS technique-1 and ABS technique-2 correspond to ABS technique-0, ABS technique-1 and ABS technique-2 in FIG. 1, respectively. *
 結晶は、多結晶、単結晶のシリコン基板1の種類である。 The crystal is a kind of polycrystalline or single crystal silicon substrate 1.
 電気的特性中のV(v)は、後述する図10の開放電圧である。 V (v) in the electrical characteristics is an open circuit voltage shown in FIG.
 電気的特性中のI(mA/cm2)は、後述する図10の短絡電流である。 I (mA / cm 2) in the electrical characteristics is a short-circuit current in FIG.
 電気的特性中のFFは、後述する図10の最適動作点である(最大の電力が得られる点である)。 FF in the electrical characteristics is an optimum operating point of FIG. 10 described later (that is, a point where maximum power can be obtained).
 電気的特性中のEFFは下の(式1)で表される変換効率である。 EFF in the electrical characteristics is the conversion efficiency represented by (Equation 1) below.
      EFF=Jsc×Voc×FF・・・・・・(式1)
 Refは、相対的に比較するための標準値(従来例の標準値)、ここでは100(電気的特性)、1(密着力、銀)、0(製造工程数)とした。
EFF = Jsc × Voc × FF (Formula 1)
Ref is a standard value for comparison (standard value of the conventional example), here 100 (electrical characteristics), 1 (adhesion strength, silver), and 0 (number of manufacturing steps).
 以上の図9に図示の実験結果より、
  ・電気的特性中のV(V)(開放電圧)は本発明はいずれも100.7から101.7にあり若干大きい電圧値であった。
From the experimental results shown in FIG.
-V (V) (open circuit voltage) in electrical characteristics was 100.7 to 101.7 in all of the present invention, and was a slightly large voltage value.
  ・短絡電流Iは100.0から101.5の範囲にあり、Refに比較して十分な性能を有している。 ・ Short-circuit current I is in the range of 100.0 to 101.5 and has sufficient performance compared to Ref.
  ・最適動作点FFは、ABS技法はいずれもRefに比較して優位性を示している。 ・ As for the optimum operating point FF, the ABS technique is superior to Ref.
  ・変換効率EFFは、ABS技法ではRefに比較して優位性を示している。 ・ Conversion efficiency EFF is superior to Ref in the ABS technique.
  ・リボンのシリコン基板1への密着力は、表面は2となり標準値の2倍あり、極めて強固に固定されることが判明し、裏面もほぼ同じか、ABS技法ー2の直接にシリコン基板1にハンダ付けした場合には2倍あり、強固に固定されることが判明した。 -The adhesion of the ribbon to the silicon substrate 1 is 2 on the front surface, which is twice the standard value, and it has been found that the ribbon is extremely firmly fixed. It has been found that the soldering is twice as strong when it is soldered.
  ・銀の表面の使用量は、本発明は0.1から0.5の範囲内で半分以下に削減できた。裏面については、本発明は銀の使用量を100%削減できた。 ・ The amount of silver used on the surface of the present invention was reduced to less than half within the range of 0.1 to 0.5. Regarding the back side, the present invention was able to reduce the amount of silver used by 100%.
  ・製造工程数は、ABS技法ー1、ABS技法ー2(図1の(b)、図1の(c))は、それぞれ2工程削減できた(表面の銀のバスバー電極の形成が不要となり工数-1、および裏面の銀の電極形成が不要となり工数ー1の計2工程削減できた)。 ・ The number of manufacturing processes can be reduced by 2 each for ABS technique-1 and ABS technique-2 (Fig. 1 (b), Fig. 1 (c)) (no need to form a silver busbar electrode on the surface) The number of man-hours and the formation of silver electrodes on the back surface are no longer necessary, and man-hours—one man-hour, can be reduced in two steps).
 図10は、本発明の説明図(その4)を示す。これは、既述した図9の太陽電池の電気特性を分かり易く説明した図である。横軸を太陽電池から取り出した電圧、縦軸がそのときの電流を表す。 FIG. 10 shows an explanatory diagram (part 4) of the present invention. This is a diagram for easily explaining the electrical characteristics of the solar cell of FIG. 9 described above. The horizontal axis represents the voltage taken out from the solar cell, and the vertical axis represents the current at that time.
 図10において、開放電圧をVoc(図9のV)という。 In FIG. 10, the open circuit voltage is referred to as Voc (V in FIG. 9).
 短絡電流をJsc(図9のI)という、
 最適動作点FFは太陽電池から取り出した電圧・電流の特性曲線中のその積が最大となる図示の位置の値である。
The short-circuit current is called Jsc (I in FIG. 9).
The optimum operating point FF is a value at the illustrated position where the product in the voltage / current characteristic curve taken out from the solar cell is maximum.
 変換効率はJsc×Voc×FFの式で求められる値である。 The conversion efficiency is a value obtained by the formula of Jsc × Voc × FF.
 図11は、本発明の説明図(その5)を示す。 FIG. 11 shows an explanatory diagram (No. 5) of the present invention.
 図11の(a)は、図1の(a)のABS技法ー0のバスバー電極にABSガラスを用いた太陽電池の表面、裏面の写真の1例を示す。 (A) of FIG. 11 shows an example of a photograph of the front and back surfaces of a solar cell using ABS glass as the bus bar electrode of the ABS technique-0 of FIG. 1 (a).
 図11の(a-1)は、表面の横方向にフィンガー電極3を形成し、その上にABSガラスを用いたバスバー電極を形成した太陽電池の写真の例を示す。ABSガラスは、フィンガー電極3のない部分にのみ形成し、このフィンガー電極3およびABSガラスで形成したバスバー電極の部分(非導電性であり、本発明のハンダでリボンを超音波ハンダ付け可能)にリボンをハンダ付けした状態の写真を示す。 FIG. 11 (a-1) shows an example of a photograph of a solar cell in which finger electrodes 3 are formed in the lateral direction of the surface and bus bar electrodes using ABS glass are formed thereon. The ABS glass is formed only on the portion without the finger electrode 3, and the bus bar electrode portion formed of the finger electrode 3 and the ABS glass (which is non-conductive and can be subjected to ultrasonic soldering with the ribbon of the present invention). The photograph of the state which soldered the ribbon is shown.
 図11の(a-2)は、図11の(a-1)の裏面であって、全面にアルミ電極を形成した状態の写真の1例を示す。 (A-2) in FIG. 11 shows an example of a photograph in which an aluminum electrode is formed on the entire rear surface of FIG. 11 (a-1).
 図11の(b)は、図1の(c)のABS技法ー2の太陽電池の表面、裏面の写真の1例を示す。 (B) in FIG. 11 shows an example of a photograph of the front and back surfaces of the solar cell of the ABS technique-2 in (c) of FIG.
 図11の(b-1)は、表面の横方向にフィンガー電極3として、リボンをハンダ付けする部分の幅を広げて当該フィンガー電極3(図4参照)を形成した状態の写真の1例を示す。ここでは、縦方向のリボンをハンダ付けする部分のフィンガー電極3の幅が広くなっている様子が判明する。 FIG. 11 (b-1) shows an example of a photograph in which the finger electrode 3 (see FIG. 4) is formed by extending the width of the soldering portion of the ribbon as the finger electrode 3 in the lateral direction of the surface. Show. Here, it can be seen that the width of the finger electrode 3 in the portion where the longitudinal ribbon is soldered is wide.
 図11の(b-2)は、裏面の縦方向に、リボンを下地のシリコン基板1に直接にハンダ付けする縦方向に穴の開いたアルミ電極7を形成した1例を示す。 (B-2) of FIG. 11 shows an example in which an aluminum electrode 7 having a hole in the vertical direction is formed in the vertical direction of the back surface, in which a ribbon is soldered directly to the underlying silicon substrate 1.
 図11の(b-3)は、図11の(b-1)および図11の(b-2)の上からリボンをハンダ付けした後の写真の1例を示す。 (B-3) in FIG. 11 shows an example of a photograph after the ribbon is soldered from above (b-1) and (b-2) in FIG.
 図11の(b-3)の左側は、図11の(b-1)の表面のフィンガー電極の幅が広くなった部分に、縦方向にリボンをハンダ付けした後の写真の1例を示す。 The left side of (b-3) in FIG. 11 shows an example of a photograph after soldering a ribbon in the vertical direction on the surface of FIG. 11 (b-1) where the width of the finger electrode is widened. .
 図11の(b-3)の右側は、図11の(b-2)の裏面のアルミ電極の縦方向に当該アルミがない穴(長い穴)に、リボンを縦方向にハンダ付けした後の写真の1例を示す。 The right side of (b-3) in FIG. 11 shows a state after soldering the ribbon in the vertical direction in a hole (long hole) where the aluminum does not exist in the vertical direction of the aluminum electrode on the back surface of (b-2) in FIG. An example of a photograph is shown.
 次に、図13から図17を用いて本発明の他の実施例を詳細に説明する。ここでは、シリコン基板30の裏面のアルミ電極23を形成した領域と、シリコン基板30との間に絶縁膜(窒化膜)21を設け、該窒化膜21によりアルミ電極23を分離、例えば表面のフィンガー電極に並行に矩形状に形成し分離して電荷の再結合を低減し、結果として太陽電池の効率を向上させる他の実施例(いわゆる裏面のパーク構造)を示す。以下順次詳細に説明する。 Next, another embodiment of the present invention will be described in detail with reference to FIGS. Here, an insulating film (nitride film) 21 is provided between a region where the aluminum electrode 23 is formed on the back surface of the silicon substrate 30 and the silicon substrate 30, and the aluminum electrode 23 is separated by the nitride film 21. Another embodiment (a so-called backside park structure) is shown that forms and separates in parallel with the electrodes and reduces the recombination of the charges, resulting in improved solar cell efficiency. Details will be sequentially described below.
 図13は、本発明の裏面パーク構造の工程フローチャートを示す。 FIG. 13 shows a process flowchart of the backside park structure of the present invention.
 図13において、S21は、全面窒化膜等の絶縁膜を形成する。これは、後述する図14の(b)に示すように、シリコン基板30の裏面の全面に窒化膜21を形成する。 In FIG. 13, in S21, an insulating film such as a nitride film is formed over the entire surface. In this process, a nitride film 21 is formed on the entire back surface of the silicon substrate 30 as shown in FIG.
 S22は、レーザーで絶縁膜の部分に穴を開ける。これは、シリコン基板30の裏面の全面に窒化膜21を形成し、この裏面の全面に形成した窒化膜21について、アルミ焼結してシリコン基板30の裏面との間にアルミ・シリコン合金層(P+)24を作成する領域のみにレーザーで窒化膜21に穴を開ける。これにより、
 (1)アルミ電極23を形成する部分(アルミ電極23が直接にシリコン基板30に接触する部分)の穴
 (2)リボン(リード線)をハンダ付けする部分(リボンを直接にシリコン基板30にハンダ付けするための部分)の穴部22
が形成され、上記(1)の穴と(2)の穴部22とについてシリコン基板30が露出した状態に形成される。
In step S22, a hole is formed in the insulating film with a laser. This is because a nitride film 21 is formed on the entire back surface of the silicon substrate 30, the nitride film 21 formed on the entire back surface is sintered with aluminum, and an aluminum / silicon alloy layer ( A hole is made in the nitride film 21 with a laser only in a region where the P +) 24 is to be formed. This
(1) Hole in the portion where the aluminum electrode 23 is formed (the portion where the aluminum electrode 23 directly contacts the silicon substrate 30) (2) The portion where the ribbon (lead wire) is soldered (the ribbon is soldered directly to the silicon substrate 30) Hole part 22 for attaching)
And the silicon substrate 30 is exposed in the hole (1) and the hole 22 (2).
 S23は、上記の穴開け以外の部分にアルミペースト印刷・溶剤飛ばしする。そして、これに続く図示外の表面工程中で焼結(フィンガー電極等の焼結)を行ったときに同時に裏面のアルミ電極23を焼結する。 In step S23, aluminum paste printing / solvent removal is performed on portions other than the above-described perforations. Then, when sintering (sintering of finger electrodes or the like) is performed in the subsequent surface process (not shown), the aluminum electrode 23 on the back surface is simultaneously sintered.
 S34は、穴部のシリコン、窒化膜、アルミにハンダ付けを行う。これは、
  (A)後述する図14(a)に示すように、図示の横方向(表面のフィンガー電極に直角方向)に設けた矩形状の穴部22をふさぐ形状の横長のプリハンダしたリボンを本発明のハンダ付けによりシリコン基板30に直接にハンダ付けを行う。
In S34, soldering is performed on the silicon, nitride film, and aluminum in the hole. this is,
(A) As shown in FIG. 14A, which will be described later, a horizontally pre-soldered ribbon having a shape that closes a rectangular hole portion 22 provided in the illustrated horizontal direction (perpendicular to the finger electrodes on the surface) is used in the present invention. Soldering is directly performed on the silicon substrate 30 by soldering.
  (B)更に、(A)のハンダ付けと併せてリボンを窒化膜21に本発明のハンダ付けを行う。 (B) Furthermore, the ribbon of the present invention is soldered to the nitride film 21 together with the soldering of (A).
  (C)更に、(A)のハンダ付けと併せてアルミ電極23に本発明のハンダ付けを行う。 (C) Further, the soldering of the present invention is performed on the aluminum electrode 23 together with the soldering of (A).
 以上によって、例えば図14の(a)の横長の穴部22に露出しているシリコン基板30にリボンを直接にハンダ付けすると共に併せて当該リボンの左右の部分の窒化膜21、アルミ電極23に直接にハンダ付けを行うことが可能となる。尚、ハンダ付けは、通常、超音波ハンダ付けで行う。プリハンダ(予め超音波ハンダ付けあるいは超音波なしハンダ付けでアルミ電極23、窒化膜21、リボンをプリハンダ)した場合には、超音波なし(通常)のハンダ付けでも良い。 As described above, for example, the ribbon is directly soldered to the silicon substrate 30 exposed in the horizontally long hole 22 shown in FIG. 14A, and the nitride film 21 and the aluminum electrode 23 on the left and right portions of the ribbon are also attached. It becomes possible to perform soldering directly. The soldering is usually performed by ultrasonic soldering. When pre-soldering (preliminarily soldering the aluminum electrode 23, the nitride film 21, and the ribbon by ultrasonic soldering or soldering without ultrasonic waves), soldering without ultrasonic waves (normal) may be used.
 図14は、本発明の太陽電池の裏面のパーク構造に対するハンダ付け説明図を示す。 FIG. 14 shows a soldering explanatory diagram for the park structure on the back surface of the solar cell of the present invention.
 図14の(a)は要部(図15参照)を示し、図14の(b)は断面模式図を示す。 14A shows the main part (see FIG. 15), and FIG. 14B shows a schematic cross-sectional view.
 図14の(a)において、穴部22は、図示外のリボン(リード線)をハンダ付けするシリコン基板30が露出した穴である。 14A, a hole 22 is a hole in which a silicon substrate 30 to which a ribbon (lead wire) (not shown) is soldered is exposed.
 窒化膜21は、図示の裏面に縦方向に形成した窒化膜(絶縁膜)であって、裏面に形成するアルミ電極23を短冊状に分離(分割)し、該アルミ電極23を全面に形成した場合に生じる電荷の再結合を低減し、太陽電池の効率を向上させるためのものである(パーク構造)。 The nitride film 21 is a nitride film (insulating film) formed in the vertical direction on the back surface in the figure, and the aluminum electrode 23 formed on the back surface is separated (divided) into strips to form the aluminum electrode 23 on the entire surface. This is to reduce charge recombination that occurs in some cases and improve the efficiency of the solar cell (park structure).
 アルミ電極23は、縦方向の窒化膜21の間に形成され、シリコン基板30と接触する部分に形成されたアルミ電極である。 The aluminum electrode 23 is an aluminum electrode formed between the vertical nitride films 21 and in contact with the silicon substrate 30.
 以上の構成のもとで、図示外のリボンを穴部22に露出したシリコン基板30に直接にハンダ付け、更に穴部22の長い方向の図示の横方向に該リボンを窒化膜21、アルミ電極23の部分に直接にハンダ付けする。これらにより、穴部22の露出したシリコン基板30に極めて強固にリボンを固定、更にリボンをアルミ電極23に固定かつ電気的接続し、更に窒化膜21の部分にリボンを固定し、全体として強固にシリコン基板30、窒化膜21、アルミ電極23に固定し、かつアルミ電極23に電気的接続することが可能となる。そして、アルミ電極23を短冊状に分離してシリコン基板30に接触させてアルミ・シリコン合金層24を形成して、電荷の再結合を低減し、太陽電池の効率を向上させることが可能となる(パーク構造)。 Under the above configuration, a ribbon (not shown) is directly soldered to the silicon substrate 30 exposed in the hole 22, and the ribbon is further formed in the lateral direction of the drawing in the long direction of the hole 22. Solder directly to part 23. As a result, the ribbon is extremely firmly fixed to the silicon substrate 30 where the hole 22 is exposed, and the ribbon is fixed and electrically connected to the aluminum electrode 23. Further, the ribbon is fixed to the portion of the nitride film 21, and the entire structure is firmly fixed. The silicon substrate 30, the nitride film 21, and the aluminum electrode 23 can be fixed and electrically connected to the aluminum electrode 23. Then, the aluminum electrode 23 is separated into strips and brought into contact with the silicon substrate 30 to form the aluminum / silicon alloy layer 24, thereby reducing charge recombination and improving the efficiency of the solar cell. (Park structure).
 図14の(b)において、
  ・ハンダ(1)は、アルミ電極23の上にリボンをハンダ付けした状態を示す。この状態では、シリコン基板30の上に窒化膜21、更にアルミ電極23を形成し、この最上層のアルミ電極23の上にハンダ(1)をハンダ付けしている。従来は、図17に示すように、アルミ電極33の上に銀34を形成してこの上にリボンをハンダ付けしていた。
In FIG. 14B,
Solder (1) indicates a state where a ribbon is soldered on the aluminum electrode 23. In this state, the nitride film 21 and the aluminum electrode 23 are formed on the silicon substrate 30, and the solder (1) is soldered on the uppermost aluminum electrode 23. Conventionally, as shown in FIG. 17, silver 34 is formed on an aluminum electrode 33 and a ribbon is soldered thereon.
  ・ハンダ(2)は、窒化膜21の上にリボンをハンダ付けした状態を示す。この状態では、シリコン基板30の上に窒化膜21を形成し、この最上層の窒化膜21の上にハンダ(2)をハンダ付けしている。従来は、図17に示すように、窒化膜の上に銀を形成してこの上にリボンをハンダ付け、あるいは窒化膜の一部をレーザーで除去した後、銀を形成してこの上にリボンをハンダ付けしていた。 Solder (2) indicates a state in which a ribbon is soldered on the nitride film 21. In this state, the nitride film 21 is formed on the silicon substrate 30, and the solder (2) is soldered on the uppermost nitride film 21. Conventionally, as shown in FIG. 17, silver is formed on a nitride film and a ribbon is soldered thereon, or a part of the nitride film is removed with a laser and then silver is formed and the ribbon is formed thereon. Was soldered.
  ・ハンダ(3)は、シリコン基板30の上に直接にハンダ付けした状態を示す。この状態では、シリコン基板30にハンダ(3)を直接にハンダ付けしている。このハンダ(3)は、シリコン基板30にリボンを強固に固定できた(例えば実験では2倍以上の引っ張り強さが得られた)。従来は、このハンダ(3)は行われていなかった。 Solder (3) indicates a state where the solder is directly soldered on the silicon substrate 30. In this state, the solder (3) is soldered directly to the silicon substrate 30. This solder (3) was able to firmly fix the ribbon to the silicon substrate 30 (for example, a tensile strength of twice or more was obtained in the experiment). Conventionally, this solder (3) has not been performed.
 アルミ・シリコン合金層(P+)24は、アルミ電極23を窒化膜21のない穴の部分に直接にシリコン基板30に接するようにアルミペーストを印刷・溶剤飛ばし・焼結して形成し、アルミ・シリコン合金層(P+)を形成したものである。このアルミ・シリコン合金層(+P)24は、窒化膜21により図14の(a)に示すように短冊状に分離(分割)されているので、従来の裏面全面に形成した場合に比し、電荷の再結合を低減し、太陽電池の効率を向上させることが可能となる(パーク構造)。 The aluminum / silicon alloy layer (P +) 24 is formed by printing, solvent-blowing, and sintering aluminum paste so that the aluminum electrode 23 is in direct contact with the silicon substrate 30 in the hole portion without the nitride film 21. A silicon alloy layer (P +) is formed. Since this aluminum-silicon alloy layer (+ P) 24 is separated (divided) into strips as shown in FIG. 14A by the nitride film 21, compared to the conventional case where it is formed on the entire back surface, It is possible to reduce charge recombination and improve the efficiency of the solar cell (park structure).
 図15は、本発明の太陽電池セルの裏面のパーク構造に対する配置例を示す。 FIG. 15 shows an arrangement example for the park structure on the back surface of the solar battery cell of the present invention.
 図15において、穴部22は、実験では、図示のように、例えば2.5mm×25mmの横長の矩形領域を図示のように合計9個設け、プリハンダしたリボンを横方向に3本ハンダ付けし、従来の後述する図17のリボンのハンダ付けよりも、2倍以上の引っ張り強度が得られた。特に引っ張り強度は、既述した図14の(b)のハンダ(3)によるもの、即ちリボンを穴部22に露出したシリコン基板30に直接にハンダ付けした部分が大きかった。 In FIG. 15, in the experiment, as shown in the figure, the hole 22 is provided with a total of nine horizontally long rectangular areas of 2.5 mm × 25 mm as shown in the figure, and three pre-soldered ribbons are soldered in the horizontal direction. The tensile strength more than twice that of the conventional soldering of the ribbon shown in FIG. 17 described later was obtained. Particularly, the tensile strength was large due to the solder (3) of FIG. 14B described above, that is, the portion where the ribbon was directly soldered to the silicon substrate 30 exposed in the hole 22.
 図16は、本発明の太陽電池セルの裏面のパーク構造に対する穴部の写真例を示す。これは、既述した図16の穴部22を形成した太陽電池セルの写真例であって、横方向に2.5mm×25mmの穴部の写真例を示す。 FIG. 16 shows an example of a photograph of a hole for the park structure on the back surface of the solar battery cell of the present invention. This is a photograph example of the solar battery cell in which the hole portion 22 of FIG. 16 described above is formed, and shows a photograph example of a hole portion of 2.5 mm × 25 mm in the horizontal direction.
 図17は、従来の太陽電池セルの裏面のパーク構造例を示す。これは、参考のために記載したものであって、従来は、シリコン基板30の上に窒化膜31を全面に形成し、アルミ電極33を形成する部分にのみレーザーで穴を開ける。そして、穴の部分にアルミペースト印刷・焼結してアルミ電極33を形成する。そして、リボン35は、窒化膜31の上に銀34を形成(銀ペーストを印刷して焼結して形成)した上にハンダ付けしていた。このため、リボン35は銀34-窒化膜31-シリコン基板30という経路で固定していたため、該リボン35の引っ張り強度が極めて弱く、人が引っ張ると簡単に剥げ落ちてしまうため、取り扱いが極めてむつかしいという欠点があると共に、銀34が必要となっていた。 FIG. 17 shows an example of a park structure on the back surface of a conventional solar battery cell. This is described for reference, and conventionally, a nitride film 31 is formed on the entire surface of the silicon substrate 30, and a hole is formed by a laser only in a portion where the aluminum electrode 33 is formed. Then, an aluminum electrode 33 is formed by printing and sintering an aluminum paste on the hole. The ribbon 35 is soldered after forming silver 34 on the nitride film 31 (formed by printing and sintering a silver paste). For this reason, since the ribbon 35 is fixed by the path of silver 34 -nitride film 31 -silicon substrate 30, the tensile strength of the ribbon 35 is very weak, and it is easily peeled off when pulled by a person, so that handling is extremely difficult. In addition to the disadvantages described above, silver 34 was required.
 一方、本発明は、既述した図14の(b)のハンダ(3)で直接にリボンをシリコン基板30にハンダ付けしたため、極めて強固に固定できると共に、従来の図17の銀34が不要となり、銀の使用量を低減できる。
 図18は、本発明の詳細構成図を示す。
On the other hand, according to the present invention, since the ribbon is soldered directly to the silicon substrate 30 with the solder (3) of FIG. 14B described above, it can be fixed very firmly and the conventional silver 34 of FIG. 17 becomes unnecessary. The amount of silver used can be reduced.
FIG. 18 shows a detailed block diagram of the present invention.
 図18の(a)および(b)は太陽電池の基板の表面および裏面を模式的に示し、図18の(c)および(d)は図18の(a)および(b)の(a-1)の横方向の部分(バスバー電極32の方向の部分)を直角方向から見た断面図を模式的に示す。 18 (a) and 18 (b) schematically show the front and back surfaces of the substrate of the solar cell, and FIGS. 18 (c) and 18 (d) show (a−) in FIGS. 18 (a) and 18 (b). Sectional drawing which looked at the horizontal direction part (part of the direction of the bus-bar electrode 32) of 1) from the right angle direction is shown typically.
 図18の(a),(b),(c)、(d)において、フィンガー電極31は、シリコン基板1に形成された高濃度電子領域の電子を、当該高濃度電子領域の上に全面に形成した窒化膜2にファイアリングにより穴を空けて銀を形成した公知の電極である。 18 (a), (b), (c), and (d), the finger electrode 31 causes electrons in the high-concentration electron region formed on the silicon substrate 1 to be spread over the high-concentration electron region. This is a known electrode in which silver is formed by opening a hole in the formed nitride film 2 by firing.
 バスバー電極32は、複数のフィンガー電極31の上側に直角方向に設けた電極であって、フィンガー電極31により取り出した電子を集めて図示外のリボン5(図5参照)により外部に取り出すものである。 The bus bar electrode 32 is an electrode provided in a direction perpendicular to the upper side of the plurality of finger electrodes 31, and collects electrons taken out by the finger electrodes 31 and takes them out to the outside by a ribbon 5 (see FIG. 5) not shown. .
 アルミ電極33は、シリコン基板1の裏面に形成したアルミ電極である。 The aluminum electrode 33 is an aluminum electrode formed on the back surface of the silicon substrate 1.
 銀電極34は、シリコン基板1の上に形成したアルミ電極33の穴の部分に直接にシリコン基板1に接するように銀ペースを塗付・焼結して形成した、強固にシリコン基板1に固着させた銀の電極である。 The silver electrode 34 is formed by applying and sintering a silver paste so as to be in direct contact with the silicon substrate 1 in the hole portion of the aluminum electrode 33 formed on the silicon substrate 1, and firmly attached to the silicon substrate 1. Silver electrode.
 ABSソルダー(電極)35は、アルミ電極33の穴の部分に直接にABSハンダ(Sn+Znからなるハンダ)をハンダ付けしたものであって、強固に直接にシリコン基板1にプリハンダ付け(あるいはリード線と一緒にハンダ付け)したものである。 The ABS solder (electrode) 35 is obtained by soldering ABS solder (Sn + Zn solder) directly to the hole portion of the aluminum electrode 33, and pre-soldering the silicon substrate 1 directly (or with a lead wire). Solder together).
 図18の(a)は、本発明の太陽電池のシリコン基板1の表面を模式的に示す。横方向に断続する線状の部分は、バスバー電極32であって、ペーストを塗付・乾燥・焼結して形成した断続する直線上の部分を模式的に示す。この図示の断続するバスバー電極32の場合には、当該バスバー電極32は導電性であっても非導電性のいずれでもよい。当該バスバー電極32の下側に直角方向に形成されているフィンガー電極31の部分にはバスバー電極32を無しにし、フィンガー電極31の無い部分にのみバスバー電極32を形成する。そして、このバスバー電極32の上からリード線をバスバー電極32のある部分にハンダ付けおよびバスバー電極32の無い部分では突出したフィンガー電極31に直接にハンダ付けする(超音波ハンダ付け)。一方、図18の(a)の断続するバスバー電極32でなはなく、連続するバスバー電極32を形成した場合には、この上に単にリード線を全面にハンダ付けすればよい。 FIG. 18 (a) schematically shows the surface of the silicon substrate 1 of the solar cell of the present invention. The linear portion intermittent in the horizontal direction is the bus bar electrode 32 and schematically shows an intermittent straight portion formed by applying, drying and sintering the paste. In the case of the illustrated intermittent bus bar electrode 32, the bus bar electrode 32 may be either conductive or non-conductive. The bus bar electrode 32 is omitted from the portion of the finger electrode 31 formed in the direction perpendicular to the lower side of the bus bar electrode 32, and the bus bar electrode 32 is formed only in the portion without the finger electrode 31. Then, the lead wire is soldered from above the bus bar electrode 32 to a portion where the bus bar electrode 32 is present, and is directly soldered to the protruding finger electrode 31 where the bus bar electrode 32 is not present (ultrasonic soldering). On the other hand, when the continuous bus bar electrode 32 is formed instead of the intermittent bus bar electrode 32 of FIG. 18A, the lead wire may be simply soldered on the entire surface.
 図18の(b)は、本発明の太陽電池のシリコン基板1の裏面を模式的に示す。図示の場合には裏面の全面にアルミ電極が形成されている。 FIG. 18B schematically shows the back surface of the silicon substrate 1 of the solar cell of the present invention. In the illustrated case, an aluminum electrode is formed on the entire back surface.
 図18の(c)は、従来手法の改善例を模式的に示す。太陽電池のシリコン基板1の表面にはフィンガー電極31と直角方向にバスバー電極32が図示にょうに横方向に形成されている。 (C) of FIG. 18 schematically shows an improvement example of the conventional method. A bus bar electrode 32 is formed on the surface of the silicon substrate 1 of the solar cell in a direction perpendicular to the finger electrodes 31 in the lateral direction as shown in the figure.
 一方、裏面には全面に形成されたアルミ電極33に直接に図示外のリード線をハンダ付けしたのでは、当該リード線を引っ張ると簡単にシリコン基板1から剥がれてしまい、製品不良が多発した。そこで、リード線を強くシリコン基板1の裏側に固着するために、図18の(c)に示すように、シリコン基板1の裏の全面に形成したアルミ電極に穴を開けてこの部分に銀ペーストを塗付・乾燥・焼結して図示のようにシリコン基板1に強く固着させ、この強く固着させた銀電極に、図示外のリード線をハンダ付けして当該リード線を強固にシリコン基板1に固定するように改善を図ったものである。 On the other hand, when a lead wire (not shown) was directly soldered to the aluminum electrode 33 formed on the entire surface on the back surface, when the lead wire was pulled, it was easily peeled off from the silicon substrate 1, resulting in frequent product defects. Therefore, in order to strongly fix the lead wire to the back side of the silicon substrate 1, as shown in FIG. 18C, a hole is made in the aluminum electrode formed on the entire back side of the silicon substrate 1, and silver paste is applied to this portion. Is applied, dried and sintered, and is firmly fixed to the silicon substrate 1 as shown in the figure, and a lead wire (not shown) is soldered to the strongly fixed silver electrode to firmly attach the lead wire to the silicon substrate 1. It is intended to be improved so that it is fixed to.
 図18の(d)は、本発明のABS手法を模式的に示す。太陽電池のシリコン基板1の表面にはフィンガー電極31と直角方向にバスバー電極32が図示のように横方向に形成されている。そして、バスバー電極32は、上述したように、断続する線状のもの、あるいは線状のもののいずれでもよい。断続する線状のものの場合には、導電性あるいは非導電性のいずれでもよいが、下地(窒化膜2)に強く固着するペーストを用いて塗付・乾燥・焼結する必要がある。 FIG. 18D schematically shows the ABS method of the present invention. On the surface of the silicon substrate 1 of the solar cell, a bus bar electrode 32 is formed in a transverse direction as shown in the figure in a direction perpendicular to the finger electrodes 31. As described above, the bus bar electrode 32 may be either an intermittent line or a linear line. In the case of an intermittent line, it may be either conductive or non-conductive, but it is necessary to apply, dry, and sinter using a paste that firmly adheres to the base (nitride film 2).
 一方、裏面には全面に形成されたアルミ電極33に直接に図示外のリード線をハンダ付けしたのでは、当該リード線を引っ張ると簡単にシリコン基板1から剥がれてしまう。この従来の欠点をなくすために、シリコン基板1の裏の全面に形成したアルミ電極に形成した穴の部分に直接にABSハンダ付け(超音波ハンダ付け)を行い、図示のABSソルダー(電極)35を形成する。このABSソルダー35は、予めABSハンダで予備ハンダ付けしてよいし、リード線をハンダ付けする際にアルミ電極33および当該アルミ電極33の穴の開いた部分のシリコン基板1の両者に直接にハンダ付けしてもよい(超音波ハンダ付け)。 On the other hand, if a lead wire (not shown) is directly soldered to the aluminum electrode 33 formed on the entire back surface, the lead wire is easily peeled off from the silicon substrate 1. In order to eliminate this conventional defect, ABS solder (ultrasonic soldering) is directly performed on the hole formed in the aluminum electrode formed on the entire back surface of the silicon substrate 1 to obtain the ABS solder (electrode) 35 shown in the figure. Form. The ABS solder 35 may be preliminarily soldered with ABS solder in advance, or when soldering a lead wire, it is soldered directly to both the aluminum electrode 33 and the silicon substrate 1 in the holed portion of the aluminum electrode 33. It may be attached (ultrasonic soldering).
 以上のように、シリコン基板1の表面ではバスバー電極32を断続する線状に形成してリード線を当該断続するバスバー電極32およびバスバー電極32の無い部分に露出したフィンガー電極31の両者に直接にABSハンダ付け(Sn+Znハンダを用いたハンダ付け)することにより、リード線を強くシリコン基板1の表面に固着させかつ抵抗値を小さくして効率を高めることが可能となる。 As described above, the bus bar electrode 32 is formed in an intermittent line on the surface of the silicon substrate 1, and the lead wire is directly applied to both the intermittent bus bar electrode 32 and the finger electrode 31 exposed in the portion without the bus bar electrode 32. By performing ABS soldering (soldering using Sn + Zn solder), it is possible to strongly fix the lead wire to the surface of the silicon substrate 1 and reduce the resistance value to increase the efficiency.
 一方、シリコン基板1の裏面では全面に形成したアルミ電極に、リード線をハンダ付けする際に当該アルミ電極33、および該アルミ電極33の穴の開いた部分のシリコン基板1に直接にABSハンダ付け(あるいはプリハンダ付けしたABSソルダー35にハンダ付け)することにより、リード線をシリコン基板1の裏面に強く固着させかつ抵抗値を小さくして効率を高めることが可能となる。 On the other hand, when soldering the lead wire to the aluminum electrode formed on the entire back surface of the silicon substrate 1, ABS soldering is directly applied to the aluminum electrode 33 and the silicon substrate 1 in the holed portion of the aluminum electrode 33. By soldering (or soldering to the pre-soldered ABS solder 35), it is possible to strongly fix the lead wire to the back surface of the silicon substrate 1 and reduce the resistance value to increase the efficiency.
 図19は、本発明の電圧電流特性測定例を示す。横軸は太陽電池の出力電圧を示し、縦軸は電流を示し、実線は図18の(c)の従来手法(銀電極34を用いた手法)の測定例を示し、点線は図18の(d)の本発明のABS手法(銀電極34を用いずにABSソルダー35を用いた手法)の測定例を示す。 FIG. 19 shows an example of voltage-current characteristic measurement according to the present invention. The horizontal axis indicates the output voltage of the solar cell, the vertical axis indicates the current, the solid line indicates a measurement example of the conventional method (method using the silver electrode 34) of FIG. 18C, and the dotted line indicates the ( A measurement example of the ABS method of the present invention (d) (method using the ABS solder 35 without using the silver electrode 34) is shown.
 図19において、本発明の点線のABS手法の測定例は、電圧の小さい部分から大きい部分まで全体的に値(VとI)が大きく、太陽電池の効率が約0.2から1%高い値が得られた。 In FIG. 19, the measurement example of the dotted-line ABS method of the present invention has a large overall value (V and I) from a small voltage portion to a large voltage portion, and the solar cell efficiency is about 0.2 to 1% higher. was gotten.
 図20は、本発明の引張試験説明図を示す。 FIG. 20 shows an explanatory diagram of the tensile test of the present invention.
 図20の(a)は、プリハンダ付け(プリハンダ付け面積(2mm×25mm))の例を示す。ここでは、図示のように、シリコン基板40にABSハンダ(Sn+Znハンダ)を用いてプリハンダ付け(超音波ハンダ付け)を行う。この際、プリハンダ付けの面積は、図示のように2mm×25mmの横長の矩形とした。 20A shows an example of pre-soldering (pre-soldering area (2 mm × 25 mm)). Here, as shown in the drawing, pre-soldering (ultrasonic soldering) is performed on the silicon substrate 40 using ABS solder (Sn + Zn solder). At this time, the pre-soldering area was a horizontally long rectangle of 2 mm × 25 mm as shown in the figure.
 図20の(b)は、リボンのハンダ付けの例を示す。ここでは、図示のように、リボン(ABSハンダを予め形成したプリンハンダ付きリボン)を図20の(a)でシリコン基板40の上にプリハンダした部分にリボンを重ねてその上からハンダゴテを押し付けた状態でリボンの長方向に移動させ、両者のハンダ付けを行う(超音波ハンダ付けあるいは超音波なしハンダ付けのいずれでもよい)。 FIG. 20 (b) shows an example of soldering a ribbon. Here, as shown in the drawing, a ribbon (a ribbon with a pudding solder in which ABS solder is formed in advance) is overlapped on the portion pre-soldered on the silicon substrate 40 in FIG. 20A, and a soldering iron is pressed thereon. In this state, the ribbon is moved in the longitudinal direction, and soldering is performed on both of them (either ultrasonic soldering or soldering without ultrasonic waves may be used).
 図20の(c)は、引張り方向(リボン方向と180度逆方向)の例を示す。ここでは、図示のように、リボンをハンダ付けしたリボン方向と180度逆のリボンを引き剥がす方向に引っ張り、そのときの引張り強度を測定する。 (C) of FIG. 20 shows an example of the pulling direction (180 degrees opposite to the ribbon direction). Here, as shown in the figure, the ribbon is pulled in the direction of peeling the ribbon which is 180 degrees opposite to the direction of soldering the ribbon, and the tensile strength at that time is measured.
 図20の(d)は、引張試験装置例を示す。ここでは、図示のように、リボンを右方向にハンダ付けした状態で、リボン方向と逆の左方向にリボンを曲げてフックで引っ張る。フックの先には図示外の引張強度測定器を設置し、引張強度を徐々に高くし、リード線が剥がれるときの強度(引張強度)を実測する。 FIG. 20 (d) shows an example of a tensile test apparatus. Here, with the ribbon soldered to the right as shown, the ribbon is bent in the left direction opposite to the ribbon direction and pulled with a hook. A tensile strength measuring instrument (not shown) is installed at the tip of the hook, and the tensile strength is gradually increased to measure the strength (tensile strength) when the lead wire is peeled off.
 以上によって、シリコン基板40にABSハンダを著音波プリハンダ付けし、この部分にABSハンダのついたリボンをハンダ付け(超音波有あるいは無しのハンダ付け)し、リード線を180度逆方向の引き剥がす方向に引っ張り、リード線が剥がれるときの引張強度を測定することより、リード線を直接にシリコン基板40にハンダ付けした場合の引張強度を実測することが可能となる。 By the above, ABS solder is ultrasonically pre-soldered to the silicon substrate 40, a ribbon with ABS solder is soldered to this part (soldering with or without ultrasonic waves), and the lead wire is peeled 180 degrees in the reverse direction. By measuring the tensile strength when the lead wire is peeled off in the direction, the tensile strength when the lead wire is directly soldered to the silicon substrate 40 can be actually measured.
 図21は、本発明の引張試験実測例を示す。図中の横軸はシリコン基板40の下記の種別を表し、縦軸は引張強度(N/0.5cm2)を表す。また、図中の条件(1)、(2)、(3)は、図22の下記を表す。各グラフは5個づつ試験してその平均値を求めてプロットした。 FIG. 21 shows an actual measurement example of the tensile test according to the present invention. The horizontal axis in the figure represents the following types of silicon substrate 40, and the vertical axis represents the tensile strength (N / 0.5 cm2). Also, the conditions (1), (2), and (3) in the figure represent the following in FIG. Each graph was tested five by five and the average value was obtained and plotted.
 種別:
  種別(a):POLY-SI(A):多結晶シリコン基板(A)
  種別(b):MONO-SI(A):単結晶シリコン基板(A)
  種別(c):POLY-SI(B):多結晶シリコン基板(B)
 また、条件(1)、(2)、(3)は図23に表す下記をそれぞれ表す。
Type:
Type (a): POLY-SI (A): Polycrystalline silicon substrate (A)
Type (b): MONO-SI (A): Single crystal silicon substrate (A)
Type (c): POLY-SI (B): Polycrystalline silicon substrate (B)
Conditions (1), (2), and (3) represent the followings shown in FIG.
 条件:
        基板への     リボンの基板への  リボンの材料
        プリハンダ付け  ハンダ付け     (表面の材料)
  条件(1) 超音波有     超音波有      ABSハンダ
        ABSハンダ             (Sn+Zn)
        (Sn+Zn) 
  条件(2) 超音波有     超音波無      ABSハンダ
        ABSハンダ             (Sn+Zn)
        (Sn+Zn) 

  条件(3) 超音波有     超音波無      従来ハンダ
        ABSハンダ             (Sn+Pb)
        (Sn+Zn) 
 図21において、種別(a)は、多結晶シリコン基板(A)40上に、条件(1)、(2)、(3)でリボンをそれぞれ図20のようにしてハンダ付けし、180度逆方向に引張試験したときの引張強度測定例を示す。条件(3)の「従来ハンダ(Sn+Pb)」では引張強度は小さく、条件(1)、(2)の「ABSハンダ(Sn+Zn)」では引張強度は高い。特に条件(1)の「ABSハンダ」、かつリボンの基板へのハンダ付けの際に「超音波有」の場合には約2倍引張強度が高い。尚、従来の許容される引張強度は、図21の左側の目盛で2.0であるので、条件(1)、(2)も約2倍程度の引張強度が得られている。これは、基板へのプリハンダ付けが「超音波有」によるものである。超音波無しプリハンダ付けしたのでは、2以下となってしまい、使いもににならない。、 
 同様に、種別(b)は、単結晶シリコン基板(A)40上に、条件(1)、(2)、(3)でリボンをそれぞれ図20のようにしてハンダ付けし、180度逆方向に引張試験したときの引張強度測定例を示す。条件(3)、(2)の「従来ハンダ(Sn+Pb)」、「ABSハンダ(Sn+Zn)」では引張強度は小さい。条件(1)の「ABSハンダ」、かつリボンの基板へのハンダ付けの際に「超音波有」の場合には約2倍引張強度が高い。
conditions:
Ribbon to substrate Ribbon material to substrate Pre-soldering Soldering (surface material)
Condition (1) Ultrasonic Yes Ultrasonic Yes ABS Solder ABS Solder (Sn + Zn)
(Sn + Zn)
Condition (2) Ultrasonic Yes No Ultrasonic ABS Solder ABS Solder (Sn + Zn)
(Sn + Zn)

Condition (3) With ultrasonic wave Without ultrasonic wave Conventional solder ABS solder (Sn + Pb)
(Sn + Zn)
In FIG. 21, type (a) indicates that the ribbon is soldered on the polycrystalline silicon substrate (A) 40 under the conditions (1), (2), and (3) as shown in FIG. An example of tensile strength measurement when a tensile test is performed in the direction is shown. In the condition (3) “conventional solder (Sn + Pb)”, the tensile strength is small, and in the conditions (1) and (2) “ABS solder (Sn + Zn)”, the tensile strength is high. In particular, in the case of “ABS solder” in condition (1) and “with ultrasonic waves” when soldering the ribbon to the substrate, the tensile strength is about twice as high. Since the conventional allowable tensile strength is 2.0 on the scale on the left side of FIG. 21, the tensile strength of about twice the conditions (1) and (2) is obtained. This is because pre-soldering to the substrate is due to “with ultrasonic waves”. If pre-soldering without ultrasonic waves is used, it will be 2 or less, and it will not be useful. ,
Similarly, for type (b), the ribbon is soldered on the single crystal silicon substrate (A) 40 under the conditions (1), (2), and (3) as shown in FIG. Shows an example of tensile strength measurement when a tensile test is performed. In the conditions (3) and (2), “conventional solder (Sn + Pb)” and “ABS solder (Sn + Zn)” have low tensile strength. In the case of “ABS solder” in the condition (1) and “with ultrasonic waves” when soldering the ribbon to the substrate, the tensile strength is about twice as high.
 同様に、種別(c)は、多結晶シリコン基板(B)40上に、条件(1)、(2)、(3)でリボンをそれぞれ図20のようにしてハンダ付けし、180度逆方向に引張試験したときの引張強度測定例を示す。条件(3)の「従来ハンダ(Sn+Pb)」では引張強度が小さく、「ABSハンダ(Sn+Zn)」では引張強度は少し大きく、更に、条件(1)の「ABSハンダ」、かつリボンの基板へのハンダ付けの際に「超音波有」の場合には約2倍引張強度が高い。 Similarly, for type (c), the ribbon is soldered on the polycrystalline silicon substrate (B) 40 under the conditions (1), (2), and (3) as shown in FIG. Shows an example of tensile strength measurement when a tensile test is performed. Condition (3) “Conventional solder (Sn + Pb)” has a low tensile strength, “ABS solder (Sn + Zn)” has a little higher tensile strength. Furthermore, “ABS solder” in condition (1) and ribbon In the case of “with ultrasonic waves” when soldering to the substrate, the tensile strength is about twice as high.
 以上のように、「基板へのプリハンダ付けに超音波を用い」、「リボンの表面の材料がABSハンダ(Sn+Zn)」、かつ「リボンの基板へのハンダ付けに超音波を用い」た場合に引張強度が最も高く、従来の許容される引張強度2.0の約7.5倍の引張強度が得られることが実験で確認された(図21の種別(c)の条件(1)参照)。 As described above, when “uses ultrasonic waves for pre-soldering to the substrate”, “the material of the ribbon surface is ABS solder (Sn + Zn)”, and “uses ultrasonic waves for soldering the ribbon to the substrate” It was confirmed by experiments that the tensile strength was the highest and that a tensile strength that was approximately 7.5 times the conventional allowable tensile strength of 2.0 was obtained (see condition (1) of type (c) in FIG. 21). .
 図22は、本発明の引張試験実測例(図21の説明図)を示す。これは、既述した図21の条件(1)、(2)、(3)の具体的条件例をそれぞれ示す。 FIG. 22 shows a tensile test actual measurement example of the present invention (an explanatory diagram of FIG. 21). This shows a specific example of the conditions (1), (2), and (3) in FIG.
本発明の要部構成図である。It is a principal part block diagram of this invention. 本発明の製造方法説明フローチャート(その1)である。It is a manufacturing method explanation flowchart (the 1) of the present invention. 本発明の製造方法説明フローチャート(その2)である。It is a manufacturing method explanation flowchart (the 2) of the present invention. 本発明の説明図(表面ーその1)である。It is explanatory drawing (surface-the 1) of this invention. 本発明の説明図(表面ーその2)である。It is explanatory drawing (surface-the 2) of this invention. 本発明の説明図(裏面ーその1)である。It is explanatory drawing (back surface-the 1) of this invention. 本発明の説明図(その1)である。It is explanatory drawing (the 1) of this invention. 本発明の説明図(その2)である。It is explanatory drawing (the 2) of this invention. 本発明の説明図(その3)である。It is explanatory drawing (the 3) of this invention. 本発明の説明図(その4)である。It is explanatory drawing (the 4) of this invention. 本発明の説明図(その5)である。It is explanatory drawing (the 5) of this invention. 従来技術の説明図である。It is explanatory drawing of a prior art. 本発明の裏面パーク構造の工程フローチャートである。It is a process flowchart of the back surface park structure of this invention. 本発明の太陽電池セルの裏面のパーク構造に対するハンダ付け説明図である。It is soldering explanatory drawing with respect to the park structure of the back surface of the photovoltaic cell of this invention. 本発明の太陽電池セルの裏面のパーク構造に対する配置例である。It is the example of arrangement | positioning with respect to the park structure of the back surface of the photovoltaic cell of this invention. 本発明の太陽電池セルの裏面のパーク構造に対する穴部の写真例である。It is a photograph example of the hole part with respect to the park structure of the back surface of the photovoltaic cell of this invention. 従来の太陽電池セルの裏面のパーク構造例である。It is an example of the park structure of the back surface of the conventional photovoltaic cell. 本発明の詳細構成図である。It is a detailed block diagram of the present invention. 本発明の電圧電流特性測定例である。It is an example of a voltage-current characteristic measurement of this invention. 本発明の引張試験説明図である。It is a tensile test explanatory drawing of this invention. 本発明の引張試験実測例である。It is a tensile test actual measurement example of this invention. 本発明の引張試験実測例(図21の説明図)である。FIG. 22 is an actual measurement example of the tensile test of the present invention (an explanatory diagram of FIG. 21).
1:基板(シリコン基板)
2:窒化膜(絶縁膜)
3:フィンガー電極
4:バスバー電極
41:バスバー領域
5、9:リボン(リード線、取出線)
6、8:ハンダ
7:アルミ電極
21:窒化膜
22:穴部
23:アルミ電極
24:アルミ・シリコン合金層
25、26,27:ハンダ
30:アルミ基板
40:シリコン基板
41:プリハンダ付け
1: Substrate (silicon substrate)
2: Nitride film (insulating film)
3: Finger electrode 4: Bus bar electrode 41: Bus bar region 5, 9: Ribbon (lead wire, lead wire)
6, 8: Solder 7: Aluminum electrode 21: Nitride film 22: Hole 23: Aluminum electrode 24: Aluminum / silicon alloy layers 25, 26, 27: Solder 30: Aluminum substrate 40: Silicon substrate 41: Pre-soldering

Claims (11)

  1.  基板上に光などを照射したときに高電子濃度を生成する領域を形成すると共に該領域の上に光を透過する絶縁膜を形成し、該絶縁膜の上に前記領域から電子を取り出す取出口であるフィンガー電極を形成して該フィンガー電極を介して前記電子を外部に取り出すと共に、前記基板の裏面から前記電子を流入させて回路を形成する太陽電池において、
     前記基板の裏面にアルミ電極を全面に形成あるいはアルミ電極の一部に穴を形成し、該形成したアルミ電極の全面の一部あるいは穴を形成した部分に、ハンダで取出線をハンダ付けし、当該基板の裏面から前記電子を流入させると共に該取出線を前記基板に固定することを特徴とする太陽電池。
    A region that generates a high electron concentration when light or the like is irradiated on the substrate, an insulating film that transmits light is formed on the region, and an extraction port that extracts electrons from the region is formed on the insulating film. In the solar cell that forms a finger electrode and takes out the electrons to the outside through the finger electrode, and forms a circuit by flowing the electrons from the back surface of the substrate,
    Forming an aluminum electrode on the entire back surface of the substrate or forming a hole in a part of the aluminum electrode, soldering a lead wire to the part of the entire surface of the formed aluminum electrode or a hole, A solar cell, wherein the electrons are caused to flow from the back surface of the substrate and the lead-out line is fixed to the substrate.
  2.  前記アルミ電極の全面の一部あるいは穴を形成した部分は、表面の前記取出線に対応する部分としたことを特徴とする請求項1記載の太陽電池。 The solar cell according to claim 1, wherein a part of the entire surface of the aluminum electrode or a part where a hole is formed is a part corresponding to the lead-out line on the surface.
  3.  前記ハンダ付けは、超音波ハンダ付けであることを特徴とする請求項1から請求項2のいずれかに記載の太陽電池。 3. The solar cell according to claim 1, wherein the soldering is ultrasonic soldering.
  4.  前記ハンダ付けにより前記取出線がハンダ付けされる部分に、予め超音波なし予備ハンダあるいは必要に応じて超音波予備ハンダしたことを特徴とする請求項1から請求項2のいずれかに記載の太陽電池。 3. The sun according to claim 1, wherein the lead wire is soldered to the portion to be soldered by the soldering, and preliminarily soldered without ultrasonic waves or ultrasonic preliminarily soldered as necessary. battery.
  5.  請求項4において、前記取出線がハンダ付けされる部分に前記予備ハンダした場合には、前記取出線を超音波なしでハンダ付けしたことを特徴とする太陽電池。 5. The solar cell according to claim 4, wherein when the preliminary soldering is performed on a portion where the lead-out line is soldered, the lead-out line is soldered without ultrasonic waves.
  6.  前記ハンダ付けによりハンダ付けする前記取出線は、予め予備ハンダしたことを特徴とする請求項1から請求項5のいずれかに記載の太陽電池。 6. The solar cell according to claim 1, wherein the lead wire to be soldered by the soldering is preliminarily soldered.
  7.  前記取出線のハンダ付けは、ハンダ付けされる部分の温度をハンダが溶融する温度以下で室温以上に予備加熱した状態で、ハンダ付けすることを特徴とする請求項1から請求項6のいずれかに記載の太陽電池。 The soldering of the lead-out line is performed by soldering in a state where the temperature of the soldered part is preheated to room temperature or more below the temperature at which the solder melts. The solar cell as described in.
  8.  前記ハンダは、錫あるいは錫に亜鉛、銅、銀の1つ以上を含むことを特徴とする請求項1から請求項7のいずれかに記載の太陽電池。 The solar cell according to any one of claims 1 to 7, wherein the solder includes one or more of tin, tin, zinc, copper, and silver.
  9.  前記基板の裏面にアルミ電極を形成する領域の下の基板上の任意部分に予め絶縁膜を形成し、該基板の裏面に形成したアルミ電極による電荷の再結合を低減したことを特徴とする請求項1から請求項8のいずれかに記載の太陽電池。 An insulating film is formed in advance on an arbitrary portion of the substrate below the region where the aluminum electrode is formed on the back surface of the substrate to reduce charge recombination due to the aluminum electrode formed on the back surface of the substrate. The solar cell according to any one of claims 1 to 8.
  10.  前記任意部分に予め絶縁膜を形成しとして、表面のフィンガー電極の方向に並行に該アルミ電極を短冊状に分離するように該絶縁膜を形成したことを特徴とする請求項9記載の太陽電池。 10. The solar cell according to claim 9, wherein an insulating film is formed in advance at the arbitrary portion, and the insulating film is formed so as to separate the aluminum electrodes into strips in parallel with the direction of the finger electrodes on the surface. .
  11.  基板上に光を照射したときに高電子濃度を生成する領域を形成すると共に該領域の上に光などを透過する絶縁膜を形成し、該絶縁膜の上に前記領域から電子を取り出す取出口であるフィンガー電極を形成して該フィンガー電極を介して前記電子を外部に取り出すと共に、前記基板の裏面から前記電子を流入させて回路を形成する太陽電池の製造方法において、
     前記基板の裏面にアルミ電極を全面に形成あるいはアルミ電極の一部に穴を形成し、該形成したアルミ電極の全面の一部あるいは穴を形成した部分に、ハンダで取出線をハンダ付けし、当該基板の裏面から前記電子を流入させると共に該取出線を前記基板に固定することを特徴とする太陽電池の製造方法。
    A region that generates a high electron concentration when light is irradiated on the substrate and an insulating film that transmits light or the like is formed on the region, and an extraction port that extracts electrons from the region is formed on the insulating film. In the method of manufacturing a solar cell in which a finger electrode is formed and the electrons are taken out through the finger electrode and a circuit is formed by flowing the electrons from the back surface of the substrate.
    Forming an aluminum electrode on the entire back surface of the substrate or forming a hole in a part of the aluminum electrode, soldering a lead wire to the part of the entire surface of the formed aluminum electrode or a hole, A method for manufacturing a solar cell, wherein the electrons are caused to flow from the back surface of the substrate and the lead-out line is fixed to the substrate.
PCT/JP2018/005255 2017-02-28 2018-02-15 Solar cell and production method for solar cell WO2018159306A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197025900A KR102299228B1 (en) 2017-02-28 2018-02-15 Solar cell and manufacturing method of solar cell
CN201880014238.6A CN110383500A (en) 2017-02-28 2018-02-15 The manufacturing method of solar battery and solar battery

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017037781 2017-02-28
JP2017-037781 2017-02-28
JP2017-049842 2017-03-15
JP2017049842 2017-03-15
JP2018-022908 2018-02-13
JP2018022908A JP6932659B2 (en) 2017-03-15 2018-02-13 Solar cells and solar cell manufacturing methods

Publications (1)

Publication Number Publication Date
WO2018159306A1 true WO2018159306A1 (en) 2018-09-07

Family

ID=63370990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005255 WO2018159306A1 (en) 2017-02-28 2018-02-15 Solar cell and production method for solar cell

Country Status (1)

Country Link
WO (1) WO2018159306A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256172A1 (en) * 2020-06-16 2021-12-23 アートビーム有限会社 Snzn solder and production method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209115A (en) * 1993-01-12 1994-07-26 Sanyo Electric Co Ltd Solder part forming method of solar cell
WO2012086235A1 (en) * 2010-12-21 2012-06-28 三菱電機株式会社 Solar cell module and method for manufacturing same
US20150050773A1 (en) * 2012-01-23 2015-02-19 Society For The Promotion Of Applied Research E.V. Method for producing an electrically conductive contact on a solar cell
JP2015159276A (en) * 2014-01-24 2015-09-03 京セラ株式会社 Solar battery element, and solar battery module
JP2016006869A (en) * 2014-05-28 2016-01-14 京セラ株式会社 Solar cell element and solar cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209115A (en) * 1993-01-12 1994-07-26 Sanyo Electric Co Ltd Solder part forming method of solar cell
WO2012086235A1 (en) * 2010-12-21 2012-06-28 三菱電機株式会社 Solar cell module and method for manufacturing same
US20150050773A1 (en) * 2012-01-23 2015-02-19 Society For The Promotion Of Applied Research E.V. Method for producing an electrically conductive contact on a solar cell
JP2015159276A (en) * 2014-01-24 2015-09-03 京セラ株式会社 Solar battery element, and solar battery module
JP2016006869A (en) * 2014-05-28 2016-01-14 京セラ株式会社 Solar cell element and solar cell module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256172A1 (en) * 2020-06-16 2021-12-23 アートビーム有限会社 Snzn solder and production method therefor

Similar Documents

Publication Publication Date Title
JP2021010299A (en) Solar cell and manufacturing method thereof
US20160126363A1 (en) Solar cell module and manufacturing method thereof
JP2009253096A (en) Solar battery cell manufacturing method, solar battery module manufacturing method, and solar battery module
CN109564945B (en) Conductive paste and solar cell
JP5126878B2 (en) Solar cell manufacturing method and solar cell
CN107408587A (en) Solar battery apparatus and its manufacture method
US4524091A (en) Method of preparing TiO2 thick film photoanodes for photoelectrochemical cells
TWI637528B (en) Solar battery and method of manufacturing solar battery
WO2018159306A1 (en) Solar cell and production method for solar cell
CN109313957A (en) Conductive paste and solar battery
CN105336817B (en) A kind of crystal silicon solar cell sheet string and preparation method thereof
WO2018159251A1 (en) Solar cell and production method for solar cell
CN104205353A (en) Crystal system solar battery module and method for manufacturing same
KR102299228B1 (en) Solar cell and manufacturing method of solar cell
JP2013065588A (en) Solar cell
US20180309009A1 (en) Ageing-resistant aluminium connectors for solar cells
TWI475707B (en) The method for forming the contact pattern on the solar cell surface
WO2018123687A1 (en) Solar battery and solar battery manufacturing method
CN104143585A (en) Method for processing photovoltaic panel with back-contact architecture
JP5105427B2 (en) A method for forming a fired electrode and a method for producing a photoelectric conversion element using the method.
WO2016065931A1 (en) Solar cell array, solar cell module and manufacturing method thereof
WO2016065946A1 (en) Solar cell array, solar cell module and manufacturing method thereof
TW202139475A (en) Solar cell, method for manufacturing solar cell, and measuring device thereof
WO2016065945A1 (en) Solar cell array, solar cell module and manufacturing method thereof
US20200243695A1 (en) Solar cell connector having a functional longitudinal coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197025900

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18761652

Country of ref document: EP

Kind code of ref document: A1