WO2018123687A1 - Solar battery and solar battery manufacturing method - Google Patents

Solar battery and solar battery manufacturing method Download PDF

Info

Publication number
WO2018123687A1
WO2018123687A1 PCT/JP2017/045304 JP2017045304W WO2018123687A1 WO 2018123687 A1 WO2018123687 A1 WO 2018123687A1 JP 2017045304 W JP2017045304 W JP 2017045304W WO 2018123687 A1 WO2018123687 A1 WO 2018123687A1
Authority
WO
WIPO (PCT)
Prior art keywords
finger electrode
fixing bar
insulating film
solar cell
firing
Prior art date
Application number
PCT/JP2017/045304
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 上迫
傑也 新井
ミエ子 菅原
小林 賢一
秀利 小宮
正五 松井
潤 錦織
Original Assignee
アートビーム有限会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アートビーム有限会社 filed Critical アートビーム有限会社
Priority to KR1020197019096A priority Critical patent/KR102227075B1/en
Priority to CN201780081471.1A priority patent/CN110268531A/en
Publication of WO2018123687A1 publication Critical patent/WO2018123687A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor
    • H01L23/4924Bases or plates or solder therefor characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention a region that generates a high electron concentration when light or the like is irradiated on a substrate is formed, an insulating film that transmits light or the like is formed on the region, and electrons are extracted from the region on the insulating film.
  • the present invention relates to a solar cell having a fixed bar in place of a conventional bus bar electrode and a method for manufacturing the solar cell, wherein a finger electrode forming an outlet is formed, and a plurality of finger electrodes are electrically connected to take out electrons to the outside. It is.
  • the vanadate glass which is a conductive glass filed by the present inventors, is used for the bus bar electrode to reduce the resistance value between the connection between the finger electrode and the externally taken out ribbon (lead wire), and the bus bar.
  • There are techniques for reducing the disappearance of electrons collected on electrodes Japanese Patent Application No. 2016-015873, Japanese Patent Application No. 2015-180720).
  • the above-described conventional conductive glass is used for the bus bar electrode to reduce the resistance value between the connection between the finger electrode and the externally extracted ribbon (lead wire), and to reduce the disappearance of the electrons collected on the bus bar electrode.
  • it is still not enough, and it is necessary to reduce the dependence of the baking process of conductive glass on the good and bad, and to improve it further by using general materials to achieve high efficiency. There was a problem that there was.
  • the inventors pay attention to the fact that the upper part of the finger electrode is exposed on the insulating film, and if a strip-like ribbon as an external terminal is directly connected to the exposed upper part of the finger electrode, the resistance component We found a configuration that reduces the leakage of electrons as well as the amount of leakage.
  • the resistance component between the finger electrode and the external terminal is reduced, and the fixing bar is formed by using an inexpensive material instead of an expensive material such as silver or conductive glass, which is a conventional bus bar electrode material.
  • connection terminals can be securely soldered to the back side of the solar cell substrate with a strong and inexpensive material.
  • the present inventors formed a region that generates a high electron concentration when light or the like is irradiated on the substrate, and formed an insulating film that transmits light or the like on the region, and the region on the insulating film
  • a finger electrode containing silver and lead is formed on an insulating film, and a portion of the finger electrode
  • a fixed bar is formed on the insulating film with a part having an allowance as an opening, and then fired, and an insulating film that is a film under the finger electrode is formed by the action of silver and lead contained in the finger electrode at the time of firing.
  • An electrically conductive passage is formed between the region penetrating through the finger electrode, and is firmly fixed to the insulating film by the action of the glass material contained in the fixing bar at the same time during firing. And so that to form a soldering good fixation bar.
  • the glass material is vanadate glass containing any one or more of vanadium and barium and tin and zinc or oxides thereof.
  • the firing is performed at the former temperature which is equal to or higher than the latter among the temperature for firing the finger electrode and the temperature for forming the fixing bar.
  • the firing is performed for 1 second or more and 60 seconds or less.
  • a portion having a margin is an opening
  • a portion having a predetermined width that is less affected by errors in forming the finger electrode and the fixing bar is set as an opening.
  • the opening is equal to or slightly narrower than the contact part of the tip of the ultrasonic soldering iron when the external terminal is ultrasonically soldered on the finger electrode and the fixing bar.
  • the contact part of the contact is not directly touching the insulating film.
  • solder material for soldering the external terminal to the finger electrode and the fixing bar includes at least one of tin, tin oxide, zinc, and zinc oxide.
  • solder material is added with one or more of copper and silver as an additive as required.
  • the external terminals are soldered to the finger electrodes and the fixing bar by ultrasonic soldering.
  • the external terminals are strip-shaped ribbons.
  • aluminum is formed on the entire surface of the back side opposite to the front side where the substrate region, insulating film, finger electrodes, and fixing bar are provided, and external terminals on the back side are soldered or ultrasonically soldered to this. .
  • the external terminals on the back side are fired by forming a fixed bar on the back side of aluminum corresponding to almost the same position as the front side fixed bar or at any position, and soldering the external terminals on the back side Alternatively, ultrasonic soldering is performed.
  • the upper part of the finger electrode is exposed on the oxide film, the upper part of the finger electrode and the strip-shaped ribbon that is the external terminal are electrically connected directly. Therefore, a highly efficient solar cell is obtained.
  • connection terminals can be securely soldered to the back side of the solar cell substrate with a strong and inexpensive material.
  • 1 to 3 show a configuration diagram of one embodiment of the present invention.
  • a nitride film 3 is an insulating film formed on a substrate (wafer) 1.
  • the finger electrode 5 is formed by printing and sintering a paste of silver and lead (lead glass) on the nitride film 3 to break through the nitride film 3 by a known firing and between the high-concentration electron region. An electrically conductive path is formed to take out electrons to the outside (described later).
  • the fixing bar 6 is provided in the present invention, and the finger electrode 5 is an opening, and is firmly fixed to the nitride film 3, and the external terminal (strip-shaped ribbon) is soldered well. This is for reducing leakage of electrons taken out from the finger electrode 5 (described later).
  • the fixed bar area 61 is an area for forming the fixed bar 6 (described later).
  • FIG. 1 shows a partially enlarged schematic diagram of the finger electrode 5 and the fixing bar 6 from the upper side of the wafer.
  • the illustrated rectangular substrate (silicon substrate, wafer) was used for the experiment.
  • a rectangular size of 48 mm was used (the numerical value is one example).
  • the finger electrodes 5 are provided in a large number at a predetermined interval in the lateral direction, and are sintered to form an electrically conductive path between the high concentration electron regions by firing. (It will be described later).
  • the fixed bar region 61 is a region where a fixed bar 6 to be described later is formed with a predetermined width in a direction perpendicular to the finger electrode 5 as indicated by a dotted line in the figure.
  • FIG. 2 shows a partially enlarged schematic example of the finger electrode 5 and the fixing bar 6 from the upper side of the wafer.
  • the fixing bar 6 is formed in the fixing bar region 61 of FIG. 1, and here, as shown in the figure, a plurality of band-like portions having openings of the finger electrodes 5 are provided. is there.
  • a plurality of ones having a width of 2.0 mm, a length of 1.2 mm, and an opening with the finger electrode 5 of about 0.5 mm are provided.
  • the fixing bar 6 is formed by screen printing, and then sintered to firmly adhere to the nitride film 3 and improve soldering (described later).
  • FIG. 3 shows an enlarged schematic sectional view of the finger electrode 5 and the fixing bar 6 from the side surface of the wafer.
  • the finger electrode 5 is screen-printed and sintered, penetrates the underlying nitride film 3 by firing and forms an electrically conductive path with the lower high-concentration electron region as shown in the figure.
  • a protrusion of about 40 nm is normally formed as an upper part (head) in the upward direction (described later).
  • the fixing bar 6 is employed in the present invention, and is screen-printed with a paste containing vanadate glass and melted by simultaneous heating at the time of sintering of the finger electrode 5 to firmly adhere to the nitride film 3 And the surface is formed so as to be easily soldered (described later).
  • the fixing bar 6 is desirably highly electrically insulating, because electrons flowing through the ribbon do not leak to the substrate or the like.
  • the fixing bar 6 is adjusted so as to be formed at a height (about 20 nm here) lower than the height (about 40 nm here) of the upper part (head) of the finger electrode 5 as shown in the drawing (screen printing). It is desirable to adjust the concentration of the paste containing the vanadate glass at the time).
  • the ribbon 7 shown in the figure preferably ultrasonic soldering
  • it is completely soldered so as to cover the upper part (head) of the finger electrode 5 to reduce contact resistance and mechanical strength. It is possible to strengthen (so that the ribbon 7 does not peel when pulled).
  • the lower limit is that the solder slope shown in FIG. 3 is not too steep and is within the screen printing overlay accuracy so that the solder material is not cut (determined by experiment).
  • the upper limit of the width between the finger electrode 5 and the fixed bar 6 is the ribbon width (the width of the fixed bar 6).
  • the lower limit is about 0.8, the upper limit.
  • ultrasonic soldering is about 2W. If it is too large, the N + emitter (high-concentration electron region) is damaged. If it is small, solder adhesion cannot be obtained (the solder adhesion is defined to be 0.2 N or more, and in the present invention, 0.5 N or more). Therefore, the optimum W number is determined by experiment (ultrasonic soldering iron (trowel (It depends on the length, width, etc.)
  • the requirement for soldering the fixing bar 6 and the finger electrode 5 and the ribbon (external terminal) is that the adhesiveness between the finger electrode 5 (silver) and the fixing bar 6 (vanadate glass) needs to be good. is there.
  • solder material suitable for it an alloy of tin and zinc, an alloy of tin and copper, an alloy of tin and silver, etc. are used.
  • the ultrasonic output when ultrasonically soldering the ribbon (pre-soldered) to the fixing bar 6 and the finger electrode 5 is preferably about 2 W as described above. Ultrasonic soldering does not require higher temperatures than necessary. Moreover, it is not necessary to raise the temperature of the useless part outside the soldering area, and performance degradation due to useless surrounding temperature rise can be prevented.
  • the ribbon (external terminal) is a wire made of copper at the center, and the outside is covered with a solder material (pre-soldered).
  • the entire back side of the substrate is coated with aluminum, so that the ribbon is ultrasonically soldered directly or after being formed in the same manner as the fixing bar 6 described above.
  • the formation of the fixing bar 6 is, in the experiment, -Using a paste mainly composed of vanadate glass, it was formed by screen printing and sintering.
  • Material examples Glass paste of vanadium, barium, (tin or zinc, or both (or oxides thereof)).
  • the requirements for forming the fixing bar 6 are: (1) Good adhesion to the solder material used (2) Good electrical insulation (3) Material, screen printing thickness, sintering temperature, etc. so as to satisfy good adhesion to the nitride film 3 Is determined experimentally.
  • S1 prepares a Si substrate (tetravalent). This prepares a wafer to be a solar cell substrate (tetravalent).
  • S2 creates a P-type (trivalent) substrate 1. This is to form P-type (trivalent) by diffusing boron or the like into the Si substrate (tetravalent) of S1.
  • N + type a high concentration electron region
  • S4 forms the nitride film 3 on the N + region (high electron concentration region) on the front side of the substrate 1.
  • the nitride film 3 is usually about 60 nm. As a result, the N + region (high electron concentration region) is protected by the nitride film 3.
  • an aluminum film 4 is formed on the back side of the substrate 1 by vapor deposition, sputtering, or the like.
  • the aluminum film 4 is a portion that becomes an electrode on the back side of the solar cell.
  • S5 prints finger electrodes.
  • the shape of the finger electrode 5 in FIGS. 1 to 3 described above is screen-printed using a paste made of silver or lead glass.
  • S6 performs solvent blowing. This is performed by heating at 100 to 120 ° C. for about 1 hour to completely remove the solvent contained in the screen-printed paste.
  • the fixed bar 6 is printed.
  • the shape of the fixing bar 6 in FIGS. 1 to 3 described above is screen-printed using a paste containing vanadate glass.
  • S8 performs solvent removal of the fixing bar. This is performed by heating at 100 to 120 ° C. for about 1 hour to completely remove the solvent contained in the screen-printed paste.
  • S9 performs firing.
  • firing is performed under conditions that cause fire-through of the finger electrode 5.
  • the finger electrode 5 is screen-printed on the nitride film 3 using a paste made of silver or lead glass (silver / lead glass paste) in S5 and S6, and similarly not overlapped in S7 and S8.
  • the fixing bar 6 is screen-printed on the nitride film 3 using a paste containing vanadate glass (vanadate glass paste)
  • both are simultaneously fired (heated).
  • the firing conditions include the former (fire through with silver / lead glass paste) firing temperature and the latter (dissolution / adhesion of vanadate glass paste) temperature (a kind of brazing temperature).
  • the former is higher than or equal to the latter.
  • the former firing temperature fire-through firing temperature
  • baking is performed in a range of 750 ° C. to 850 ° C. for 1 to 60 seconds (heating is performed using a far-infrared lamp, and optimum conditions are determined by experiment).
  • pre-soldering is performed.
  • the solder material is pre-soldered with ultrasonic soldering iron from above the finger electrode 5 and the fixing bar 6 fired in S9.
  • S11 performs ribbon attachment.
  • the ribbon is soldered from the pre-soldering in S10 (refer to the description of FIG. 3 for details). Note that ultrasonic soldering may be performed directly on the finger electrode 5 and the fixing bar 6 using a pre-soldered ribbon.
  • the ribbon on the back side is attached.
  • a ribbon is ultrasonically soldered to the aluminum film 4 formed on the back side of the substrate 1 in S4 of FIG.
  • the pre-soldered ribbon may be ultrasonically soldered directly to the aluminum film 4 of S4 in the figure, or, like the fixing bar 6, the fixing bar on the back side having an opening is screen-printed. After firing and firmly fixing, both the ribbon, the fixing bar and the aluminum film 4 may be ultrasonically soldered to increase the strength.
  • FIG. 8 shows a specific example of the present invention and a conventional example.
  • FIG. 8 (a) shows a photograph of an example of the split type of the present invention. This shows an example (referred to as a split type) in which the fixed bar 6 is separated from the finger electrode 5 and the fixed bar 6 is divided in the length direction.
  • FIG. 8B shows a photograph of an example of the touch bar type of the present invention. This shows an example in which the fixing bar 6 is in contact with the finger electrode 5 and the fixing bar 6 is divided in the length direction (referred to as a touch bar type).
  • the touch bar type of FIG. 8B is used when the accuracy (positioning, etc.) of the fixed bar 6 during screen printing and the accuracy (positioning, etc.) of the finger electrode 5 during screen printing are large. It is preferable to select the split side in FIG. 8A so that the accuracy error is not affected.
  • the tip is slightly smaller than the tip size (length direction) when ultrasonic soldering, as described above. As a result, it is possible to prevent a situation such as contact with the underlying nitride film 3 and destroying it, so that good soldering can be performed.
  • FIG. 8 shows an example in which a finger electrode is present under a conventional bus bar electrode.
  • the strip-shaped bus bar electrode is formed by screen-printing and baking a paste containing silver and lead glass so as to be orthogonal to the finger electrode, so that the finger electrode protrudes above the bus bar electrode. It is not possible to solder the ribbon directly to the finger electrode of the present invention, and as a result, the electrons are taken out via the finger electrode-bus bar electrode-ribbon, so the resistance of the path cannot be reduced, resulting in As a disadvantage, the efficiency of the solar cell is reduced.
  • FIG. 1 is a configuration diagram of one embodiment of the present invention (partially enlarged schematic diagram of finger electrodes 5 and fixing bars 6 from the upper side of a wafer).
  • FIG. 1 is a configuration diagram of an embodiment of the present invention (an example of an enlarged schematic cross-sectional view of a portion of a finger electrode 5 and a fixing bar 6 from a side surface of a wafer). It is the process flow (the 1) of this invention. It is the process flow (the 2) of this invention. It is the process flow (the 3) of this invention. It is the process flow (the 4) of this invention. It is the specific example of this invention, and a prior art example.

Abstract

The present invention pertains to a solar battery and a method for manufacturing a solar battery, the purpose being to improve the efficiency of the solar battery by connecting a belt-shaped ribbon (7), which is an external terminal, directly to the top part of a finger electrode (5) and reducing the resistance component. After the finger electrode (5) containing silver and lead is formed on an insulating film (3), and a fixing bar (6) is formed on the insulating film (3) with the finger electrode (5) portion or a portion with room left as an opening, firing is performed. By the action of the silver and lead contained in the finger electrode (5) during firing, the insulating film (3) that is the film below the finger electrode (5) is pierced through, forming an electrically conductive path between a region that generates a high electron concentration when light, etc., is irradiated on a substrate, and the finger electrode (5), and furthermore, simultaneous with the time of firing, due to the action of the glass material contained in the fixing bar (6), the fixing bar (6) is formed on the insulating film (3) firmly adhered and well soldered.

Description

太陽電池および太陽電池の製造方法Solar cell and method for manufacturing solar cell
 本発明は、基板上に光などを照射したときに高電子濃度を生成する領域を作成すると共に領域の上に光などを透過する絶縁膜を形成し、絶縁膜の上に領域から電子を取り出す取出口を形成するフィンガー電極を形成し、更に複数のフィンガー電極を電気的に接続して電子を外部に取り出す、従来のバスバー電極に代えた固定バーを有する太陽電池および太陽電池の製造方法に関するものである。 In the present invention, a region that generates a high electron concentration when light or the like is irradiated on a substrate is formed, an insulating film that transmits light or the like is formed on the region, and electrons are extracted from the region on the insulating film. The present invention relates to a solar cell having a fixed bar in place of a conventional bus bar electrode and a method for manufacturing the solar cell, wherein a finger electrode forming an outlet is formed, and a plurality of finger electrodes are electrically connected to take out electrons to the outside. It is.
 従来、太陽電池セルの設計では、太陽電池セル内に生成した電子を効率よく接続された外部回路に流すかということが肝要である。これを達成するためにセルから外部に連なる部分の抵抗成分を小さくすることと、生成した電子が消失しないようにすることとが特に重要である。 Conventionally, in the design of a solar battery cell, it is important to flow electrons generated in the solar battery cell to an external circuit connected efficiently. In order to achieve this, it is particularly important to reduce the resistance component of the portion connected to the outside from the cell and to prevent the generated electrons from disappearing.
 そのため、本発明者らが出願した、導電性ガラスであるバナジン酸塩ガラスをバスバー電極に用いてフィンガー電極と外部取り出しのリボン(リード線)との接続間の抵抗値を小さくし、且つ、バスバー電極に集められた電子の消失を少なくなるようにした技術がある(特願2016-015873、特願2015-180720)。 Therefore, the vanadate glass, which is a conductive glass filed by the present inventors, is used for the bus bar electrode to reduce the resistance value between the connection between the finger electrode and the externally taken out ribbon (lead wire), and the bus bar. There are techniques for reducing the disappearance of electrons collected on electrodes (Japanese Patent Application No. 2016-015873, Japanese Patent Application No. 2015-180720).
 しかし、上述した従来の導電性ガラスをバスバー電極に使ってフィンガー電極と外部取り出しのリボン(リード線)との接続間の抵抗値を小さくし、かつバスバー電極に集められた電子の消失を少なくなるようにしていたのではいまだ充分でなく、さらに導電性ガラスの焼成工程の良し悪しの依存性を少なくし、かつ一般的な材料を活用してさらに改善して高効率を達成することが必要であるという課題があった。 However, the above-described conventional conductive glass is used for the bus bar electrode to reduce the resistance value between the connection between the finger electrode and the externally extracted ribbon (lead wire), and to reduce the disappearance of the electrons collected on the bus bar electrode. However, it is still not enough, and it is necessary to reduce the dependence of the baking process of conductive glass on the good and bad, and to improve it further by using general materials to achieve high efficiency. There was a problem that there was.
 また、安価で高効率の太陽電池セルの構造およびその製造方法が必要であるという課題もあった。 In addition, there is a problem that an inexpensive and highly efficient solar cell structure and a manufacturing method thereof are necessary.
 また、従来の高価な銀の使用量を無くしないし低減し、および鉛(鉛ガラス)の使用量を低減ないし無くし、太陽電池の製造コストの更なる低減かつ無公害にするという課題もあった。 In addition, there has been a problem that the amount of conventional expensive silver used is not lost or reduced, and the amount of lead (lead glass) used is reduced or eliminated, so that the manufacturing cost of solar cells is further reduced and pollution-free.
 また、太陽電池の基板の裏側の端子を簡単かつ確実かつ安価に強固にハンダ付けが充分に行われてないという課題もあった。 Also, there has been a problem that the terminals on the back side of the substrate of the solar cell are not sufficiently soldered easily, reliably and inexpensively.
 本発明者らは、フィンガー電極の上部が絶縁膜の上に露出していることに着目し、この露出しているフィンガー電極の上部に直接に外部端子である帯状のリボンを接続すれば抵抗成分が少なくなると共に電子の漏洩が少なくなる構成などを発見した。 The inventors pay attention to the fact that the upper part of the finger electrode is exposed on the insulating film, and if a strip-like ribbon as an external terminal is directly connected to the exposed upper part of the finger electrode, the resistance component We found a configuration that reduces the leakage of electrons as well as the amount of leakage.
 そのため、フィンガー電極と外部端子との間の抵抗成分を少なくすると共に従来のバスバー電極の材料である銀、導電性ガラスなどの高価な材料に代えて、安価な材料で固定バーを形成して外部端子を強固に固定すると共に、低抵抗にしかつ電子の漏洩を少なくする構造を採用し、高効率かつ安価な太陽電池の製造を可能にした。 Therefore, the resistance component between the finger electrode and the external terminal is reduced, and the fixing bar is formed by using an inexpensive material instead of an expensive material such as silver or conductive glass, which is a conventional bus bar electrode material. Adopting a structure that firmly fixes the terminal, lowers resistance, and reduces leakage of electrons, it is possible to manufacture highly efficient and inexpensive solar cells.
 また、太陽電池の基板の裏側に、接続端子を強固に安価な材料で確実にハンダ付け可能にした。 In addition, the connection terminals can be securely soldered to the back side of the solar cell substrate with a strong and inexpensive material.
 そのため、本発明者らは、基板上に光などを照射したときに高電子濃度を生成する領域を形成すると共に領域の上に光などを透過する絶縁膜を形成し、絶縁膜の上に領域から電子を取り出す取出口であるフィンガー電極を形成して該フィンガー電極を介して電子を外部に取り出す太陽電池において、絶縁膜の上に銀および鉛を含むフィンガー電極を形成すると共に、フィンガー電極の部分あるいは余裕を持たせた部分を開口として絶縁膜の上に固定バーを形成した後に焼成し、焼成時の前記フィンガー電極に含まれる銀および鉛の作用によりフィンガー電極の下の膜である絶縁膜を貫通して領域と該フィンガー電極との間に電気導電性通路を形成し、かつ更に、焼成時に同時に固定バーに含まれるガラス材料の作用により絶縁膜に強固に固着およびハンダ付け良好な固定バーを形成するようにしている。 Therefore, the present inventors formed a region that generates a high electron concentration when light or the like is irradiated on the substrate, and formed an insulating film that transmits light or the like on the region, and the region on the insulating film In a solar cell that forms a finger electrode that is an outlet for extracting electrons from the surface and extracts electrons to the outside through the finger electrode, a finger electrode containing silver and lead is formed on an insulating film, and a portion of the finger electrode Alternatively, a fixed bar is formed on the insulating film with a part having an allowance as an opening, and then fired, and an insulating film that is a film under the finger electrode is formed by the action of silver and lead contained in the finger electrode at the time of firing. An electrically conductive passage is formed between the region penetrating through the finger electrode, and is firmly fixed to the insulating film by the action of the glass material contained in the fixing bar at the same time during firing. And so that to form a soldering good fixation bar.
 この際、ガラス材料として、バナジウムとバリウム、および、錫と亜鉛あるいはその酸化物のいずれか1つ以上を含むバナジン酸塩ガラスとするようにしている。 At this time, the glass material is vanadate glass containing any one or more of vanadium and barium and tin and zinc or oxides thereof.
 また、焼成は、フィンガー電極をファイアリングする温度と固定バーを形成する温度とのうち前者が後者と等しいあるいは高く、かつ前者の温度で行うようにしている。 In addition, the firing is performed at the former temperature which is equal to or higher than the latter among the temperature for firing the finger electrode and the temperature for forming the fixing bar.
 また、焼成は、1秒以上60秒以下とするようにしている。 Moreover, the firing is performed for 1 second or more and 60 seconds or less.
 また、余裕を持たせた部分を開口とするとして、フィンガー電極および固定バーの形成時の誤差による影響が小さくなる所定幅の部分を開口とするようにしている。 In addition, assuming that a portion having a margin is an opening, a portion having a predetermined width that is less affected by errors in forming the finger electrode and the fixing bar is set as an opening.
 また、余裕を持たせた部分を開口するとして、フィンガー電極および固定バーの上に外部端子を超音波ハンダ付けする際の超音波ハンダこての先端の接触部分と等しいあるいは若干狭い開口とし、先端の接触部分が直接に絶縁膜に触れないようにしている。 In addition, assuming that the part with a margin is opened, the opening is equal to or slightly narrower than the contact part of the tip of the ultrasonic soldering iron when the external terminal is ultrasonically soldered on the finger electrode and the fixing bar. The contact part of the contact is not directly touching the insulating film.
 また、フィンガー電極および固定バーに、外部端子をハンダ付けするハンダ材料は、錫、錫の酸化物、亜鉛、亜鉛の酸化物の少なくとも1つ以上を含むようにしている。 Further, the solder material for soldering the external terminal to the finger electrode and the fixing bar includes at least one of tin, tin oxide, zinc, and zinc oxide.
 また、ハンダ材料は、添加物として銅、銀のうち1つ以上を必要に応じて添加するようにしている。 Also, the solder material is added with one or more of copper and silver as an additive as required.
 また、フィンガー電極および固定バーに外部端子のハンダ付けは、超音波ハンダ付けするようにしている。 Also, the external terminals are soldered to the finger electrodes and the fixing bar by ultrasonic soldering.
 また、外部端子は、帯状のリボンとするようにしている。 Also, the external terminals are strip-shaped ribbons.
 また、基板の領域、絶縁膜、フィンガー電極、および固定バーを設けた表側と反対の裏側の全面にアルミニウムを形成してこれに裏側の外部端子をハンダ付けあるいは超音波ハンダ付けするようにしている。 Also, aluminum is formed on the entire surface of the back side opposite to the front side where the substrate region, insulating film, finger electrodes, and fixing bar are provided, and external terminals on the back side are soldered or ultrasonically soldered to this. .
 また、裏側の外部端子は、表側の固定バーとほぼ同じ位置に対応する裏側のアルミニウムの上の位置あるいは任意の位置に固定バーを形成して焼成し、この上に裏側の外部端子をハンダ付けあるいは超音波ハンダ付けするようにしている。 The external terminals on the back side are fired by forming a fixed bar on the back side of aluminum corresponding to almost the same position as the front side fixed bar or at any position, and soldering the external terminals on the back side Alternatively, ultrasonic soldering is performed.
  本発明は、上述したように、フィンガー電極の上部が酸化膜の上に露出している構成でフィンガー電極の上部と外部端子である帯状のリボンとが電気的に直接接続するために、抵抗成分の少ない構成となり、高効率の太陽電池となる。 In the present invention, as described above, since the upper part of the finger electrode is exposed on the oxide film, the upper part of the finger electrode and the strip-shaped ribbon that is the external terminal are electrically connected directly. Therefore, a highly efficient solar cell is obtained.
 また、錫(その酸化物)と亜鉛(その酸化物)などをハンダ材料とし、酸化膜、固定バー、リボンの3者をハンダ付け(超音波ハンダ付けなど)した場合には当該固定バーのハンダ密着性が良いため、フィンガー電極とリボンとの接合性を安定に長寿命化してくれるという効果が発生する。 In addition, when tin (its oxide) and zinc (its oxide) are used as solder materials and the oxide film, fixing bar, and ribbon are soldered (such as ultrasonic soldering), the solder of the fixing bar Since the adhesion is good, the effect of stably extending the life of the bonding between the finger electrode and the ribbon occurs.
 また、従来の銀材料や導電性ガラスなどからなるバスバー電極の構成(本発明の固定バーに相当)に対して、安価な材料でよく大幅なコスト削減が可能である。 Also, compared to the conventional bus bar electrode configuration made of silver material or conductive glass (corresponding to the fixed bar of the present invention), an inexpensive material can be used and the cost can be greatly reduced.
 また、従来の鉛ハンダが主流を占める太陽電池における鉛使用を軽減することで環境にフレンドリーなプロセスの構築が計れる。 Also, it is possible to build an environment-friendly process by reducing the use of lead in solar cells, where conventional lead solder is the mainstream.
 また、太陽電池の基板の裏側に、接続端子を強固に安価な材料で確実にハンダ付け可能にした。 In addition, the connection terminals can be securely soldered to the back side of the solar cell substrate with a strong and inexpensive material.
 図1から図3は本発明の1実施例構成図を示す。 1 to 3 show a configuration diagram of one embodiment of the present invention.
 図1から図3において、窒化膜3は、基板(ウェーハ)1上に形成した絶縁膜である。 1 to 3, a nitride film 3 is an insulating film formed on a substrate (wafer) 1.
 フィンガー電極5は、窒化膜3の上に銀、鉛(鉛ガラス)のペーストを印刷して焼結することにより、公知のファイアリングにより当該窒化膜3を突き破って高濃度電子領域との間に電気導電性経路を形成して、電子を外部に取り出すようにしたものである(後述する)。 The finger electrode 5 is formed by printing and sintering a paste of silver and lead (lead glass) on the nitride film 3 to break through the nitride film 3 by a known firing and between the high-concentration electron region. An electrically conductive path is formed to take out electrons to the outside (described later).
 固定バー6は、本発明で設けたものであって、フィンガー電極5の部分を開口とし、窒化膜3に強固に固定すると共に、外部端子(帯状のリボン)のハンダ付けを良好にしたり、更にフィンガー電極5から取り出した電子の漏洩を低減したりなどするためのものである(後述する)。 The fixing bar 6 is provided in the present invention, and the finger electrode 5 is an opening, and is firmly fixed to the nitride film 3, and the external terminal (strip-shaped ribbon) is soldered well. This is for reducing leakage of electrons taken out from the finger electrode 5 (described later).
 固定バー領域61は、固定バー6を形成する領域である(後述する)。 The fixed bar area 61 is an area for forming the fixed bar 6 (described later).
 図1は、ウェーハの上側より、フィンガー電極5と固定バー6の部分拡大模式図例を示す。 FIG. 1 shows a partially enlarged schematic diagram of the finger electrode 5 and the fixing bar 6 from the upper side of the wafer.
 図1において、図示の矩形形状の基板(シリコン基板、ウェーハ)は実験に用いたものである。矩形の寸法はここでは48mmのものを用いた(数値は1例である)。 In FIG. 1, the illustrated rectangular substrate (silicon substrate, wafer) was used for the experiment. Here, a rectangular size of 48 mm was used (the numerical value is one example).
 フィンガー電極5は、図示のように、ここでは、横方向に多数所定間隔毎に設けたものであって、焼結してファイアーリングにより高濃度電子領域との間に電気導電性経路を形成したものである(後述する)。 As shown in the figure, the finger electrodes 5 are provided in a large number at a predetermined interval in the lateral direction, and are sintered to form an electrically conductive path between the high concentration electron regions by firing. (It will be described later).
 固定バー領域61は、図示の点線で示すように、フィンガー電極5に直角方向に所定幅で後述する固定バー6を形成する領域である。 The fixed bar region 61 is a region where a fixed bar 6 to be described later is formed with a predetermined width in a direction perpendicular to the finger electrode 5 as indicated by a dotted line in the figure.
 図2は、ウェーハの上側より、フィンガー電極5と固定バー6の部分拡大模式図例を示す。 FIG. 2 shows a partially enlarged schematic example of the finger electrode 5 and the fixing bar 6 from the upper side of the wafer.
 図2において、固定バー6は、図1の固定バー領域61に形成したものであって、ここでは、図示のように、フィンガー電極5の部分を開口とした帯状の部分を複数設けたものである。ここでは、例えば図示のように、2.0mm幅、長さ1.2mmで、フィンガー電極5との開口が0.5mm程度のものを複数設けたものである。この固定バー6の形成は、スクリーン印刷で行い、その後、焼結を行って窒化膜3に強固に固着させると共にハンダ付け良好にする(後述する)。 In FIG. 2, the fixing bar 6 is formed in the fixing bar region 61 of FIG. 1, and here, as shown in the figure, a plurality of band-like portions having openings of the finger electrodes 5 are provided. is there. Here, for example, as shown in the drawing, a plurality of ones having a width of 2.0 mm, a length of 1.2 mm, and an opening with the finger electrode 5 of about 0.5 mm are provided. The fixing bar 6 is formed by screen printing, and then sintered to firmly adhere to the nitride film 3 and improve soldering (described later).
 図3は、ウェーハの側面より、フィンガー電極5と固定バー6の部分の拡大模式断面図例を示す。 FIG. 3 shows an enlarged schematic sectional view of the finger electrode 5 and the fixing bar 6 from the side surface of the wafer.
 図3において、フィンガー電極5は、スクリーン印刷して焼結し、ファイアーリングにより図示のように下層の窒化膜3を突き抜けて下の高濃度電子領域との間に電気導電性経路を形成すると共に図示のように上方向に上部(頭部)として通常約40nmの突出部を形成する(後述する)。 In FIG. 3, the finger electrode 5 is screen-printed and sintered, penetrates the underlying nitride film 3 by firing and forms an electrically conductive path with the lower high-concentration electron region as shown in the figure. As shown in the figure, a protrusion of about 40 nm is normally formed as an upper part (head) in the upward direction (described later).
 固定バー6は、本発明で採用したものであって、バナジン酸塩ガラスを含むペーストをスクリーン印刷して、フィンガー電極5の焼結時に同時加熱することにより溶融して窒化膜3に強固に固着させかつ表面がハンダ付けしやすい状態に形成されるものである(後述する)。この固定バー6は、電気的に高い絶縁性であることが望ましく、これはリボンを流れる電子が基板等に漏洩しないためである。固定バー6は、図示のように、フィンガー電極5の上部(頭部)の高さ(ここでは約40nm)よりも低い高さ(ここでは約20nm)に形成されるように調整する(スクリーン印刷時のバナジン酸塩ガラスを含むペーストの濃度などを調整する)ことが望ましい。これにより図示のリボン7をハンダ付け(超音波ハンダ付けが望ましい)する際にフィンガー電極5の上部(頭部)の部分に覆いかぶさるように完全にハンダ付けして接触抵抗を小さくかつ機械的強度(リボン7を引っ張っても剥離しないように)を強くすることが可能となる。 The fixing bar 6 is employed in the present invention, and is screen-printed with a paste containing vanadate glass and melted by simultaneous heating at the time of sintering of the finger electrode 5 to firmly adhere to the nitride film 3 And the surface is formed so as to be easily soldered (described later). The fixing bar 6 is desirably highly electrically insulating, because electrons flowing through the ribbon do not leak to the substrate or the like. The fixing bar 6 is adjusted so as to be formed at a height (about 20 nm here) lower than the height (about 40 nm here) of the upper part (head) of the finger electrode 5 as shown in the drawing (screen printing). It is desirable to adjust the concentration of the paste containing the vanadate glass at the time). Accordingly, when soldering the ribbon 7 shown in the figure (preferably ultrasonic soldering), it is completely soldered so as to cover the upper part (head) of the finger electrode 5 to reduce contact resistance and mechanical strength. It is possible to strengthen (so that the ribbon 7 does not peel when pulled).
 実験では
  ・固定バー6の幅:2mm
  ・超音波ハンダ鏝のこて先の長さ:2mm
  ・超音波ハンダ鏝のこて先の幅:2mm
とした場合に、フィンガー電極5と固定バー6との間隔(長さ方向の間隔)の
  ・上限はこて先の動作方向の長さ(上記例では2mm)より長すぎず、こて先が下方の窒化膜3に接触などして損傷しないようにする(実験で決定する)。
In the experiment ・ Fixing bar 6 width: 2 mm
・ Tip length of ultrasonic soldering iron: 2mm
・ Ultrasonic soldering iron tip width: 2mm
In this case, the upper limit of the distance between the finger electrode 5 and the fixing bar 6 (the distance in the length direction) is not longer than the length in the operating direction of the tip (2 mm in the above example), and the tip is The lower nitride film 3 is not damaged by contact or the like (determined by experiment).
  ・下限は図3に図示のハンダ傾斜部分が急すぎず、また、スクリーン印刷重ね合わせ精度以内であって、ハンダ材料が切断しないようにする(実験で決定する)。 ・ The lower limit is that the solder slope shown in FIG. 3 is not too steep and is within the screen printing overlay accuracy so that the solder material is not cut (determined by experiment).
 また、フィンガー電極5と固定バー6との幅の
  ・上限はリボン幅(固定バー6の幅)とする。
The upper limit of the width between the finger electrode 5 and the fixed bar 6 is the ribbon width (the width of the fixed bar 6).
  ・下限は上限の0.8程度する。 ・ The lower limit is about 0.8, the upper limit.
 また、超音波ハンダ付けは、2W程度とする。大すぎるとN+エミッター(高濃度電子領域)に損傷を与える。小さいとハンダ密着性が得られない(ハンダ密着性の規定は0.2N以上、本発明では0.5N以上とした)ので、実験で最適なW数を決定する(超音波ハンダ鏝(こて先の長さ、幅など)により異なるので実験で決定する)。 Also, ultrasonic soldering is about 2W. If it is too large, the N + emitter (high-concentration electron region) is damaged. If it is small, solder adhesion cannot be obtained (the solder adhesion is defined to be 0.2 N or more, and in the present invention, 0.5 N or more). Therefore, the optimum W number is determined by experiment (ultrasonic soldering iron (trowel (It depends on the length, width, etc.)
 ここで、固定バー6およびフィンガー電極5と、リボン(外部端子)とをハンダ付けする要件は、フィンガー電極5(銀)、固定バー6(バナジン酸塩ガラス)との密着性が良好な必要がある。 Here, the requirement for soldering the fixing bar 6 and the finger electrode 5 and the ribbon (external terminal) is that the adhesiveness between the finger electrode 5 (silver) and the fixing bar 6 (vanadate glass) needs to be good. is there.
  ・それに適合するハンダ材料として、錫と亜鉛の合金、錫と銅の合金、錫と銀の合金などを用いる。 ・ As the solder material suitable for it, an alloy of tin and zinc, an alloy of tin and copper, an alloy of tin and silver, etc. are used.
  ・固定バー6およびフィンガー電極5に、リボン(プリハンダ付け済み)を超音波ハンダ付けするときの超音波出力は上述したように2W程度がよい。超音波ハンダ付けすることで、必要以上に高い温度を必要としない。また、ハンダ付け領域外の無用の部分の温度を上げなくてよく、周囲の無用な温度上昇による性能劣化を防ぐことができる。 ・ The ultrasonic output when ultrasonically soldering the ribbon (pre-soldered) to the fixing bar 6 and the finger electrode 5 is preferably about 2 W as described above. Ultrasonic soldering does not require higher temperatures than necessary. Moreover, it is not necessary to raise the temperature of the useless part outside the soldering area, and performance degradation due to useless surrounding temperature rise can be prevented.
 また、リボン(外部端子)は、中心に銅を材料とした線材であって、外側をハンダ材料で覆われている(プリハンダ済み)。 Also, the ribbon (external terminal) is a wire made of copper at the center, and the outside is covered with a solder material (pre-soldered).
  ・基板(ウェーハ)の裏側のハンダ付けは、当該基板の裏側の全面にアルミニウムをコーティングするので、これに直接あるいは上述した固定バー6と同様に形成した後に、リボンを超音波ハンダ付けする。 ・ Since the back side of the substrate (wafer) is soldered, the entire back side of the substrate is coated with aluminum, so that the ribbon is ultrasonically soldered directly or after being formed in the same manner as the fixing bar 6 described above.
 また、ハンダ材料として、錫、亜鉛などを主体とする場合に低温脆性が見込まれる場合には、これを回避するために、必要に応じて添加物(銅、銀など)を添加する(添加して合金とする)。 In addition, when soldering is mainly composed of tin, zinc, etc., if low temperature brittleness is expected, additives (copper, silver, etc.) are added (added) as necessary to avoid this. Alloy).
 尚、固定バー6の形成は、実験では、
  ・バナジン酸塩ガラスを主体としたペーストを用い、スクリーン印刷して焼結して形成した。
In addition, the formation of the fixing bar 6 is, in the experiment,
-Using a paste mainly composed of vanadate glass, it was formed by screen printing and sintering.
   ・材料例:バナジウム、バリウム、(錫または亜鉛または両者(またはこれらの酸化物))のガラスペースト。 Material examples: Glass paste of vanadium, barium, (tin or zinc, or both (or oxides thereof)).
   ・概略説明:全材料を溶融し急速冷却してバナジン酸塩ガラスを生成し、粉末にしてバナジン酸塩ガラスペーストを作成する。これをスクリーン印刷して固定バー6を形成して焼結し、最終的な固定バー6を形成する。 Approximate explanation: All materials are melted and rapidly cooled to produce vanadate glass, which is then powdered to create vanadate glass paste. This is screen-printed to form a fixing bar 6 and sintered to form a final fixing bar 6.
 この固定バー6の形成の要件は、
  (1)使用する半田材料との密着性が良好
  (2)電気的絶縁性が良好
  (3)窒化膜3との密着性が良好
を満たすように材料、スクリーン印刷の厚さ、焼結温度などを実験で決定する。
The requirements for forming the fixing bar 6 are:
(1) Good adhesion to the solder material used (2) Good electrical insulation (3) Material, screen printing thickness, sintering temperature, etc. so as to satisfy good adhesion to the nitride film 3 Is determined experimentally.
 次に、図4から図7の工程フローの順番に図1から図3の構成の工程を順次詳細に説明する。 Next, the steps of the configuration shown in FIGS. 1 to 3 will be sequentially described in detail in the order of the process flow shown in FIGS.
 図4から図7は、本発明の工程フローを示す。 4 to 7 show the process flow of the present invention.
 図4において、S1は、Si基板(4価)を準備する。これは、太陽電池の基板(4価)となるウェーハを準備する。 4, S1 prepares a Si substrate (tetravalent). This prepares a wafer to be a solar cell substrate (tetravalent).
 S2は、P型(3価)の基板1を作成する。これは、S1のSi基板(4価)にホウ素などを拡散してP型(3価)にする。 S2 creates a P-type (trivalent) substrate 1. This is to form P-type (trivalent) by diffusing boron or the like into the Si substrate (tetravalent) of S1.
 S3は、リン(5価)を拡散してN+型を表面に作成する。これにより、高濃度電子領域(N+型)が作成できたこととなる。 S3 diffuses phosphorus (pentavalent) to create N + type on the surface. As a result, a high concentration electron region (N + type) can be created.
 図5において、S4は、基板1の表側のN+領域(高電子濃度領域)の上に窒化膜3を形成する。窒化膜3は、通常60nm程度である。これにより、N+領域(高電子濃度領域)が窒化膜3により保護されることとなる。 5, S4 forms the nitride film 3 on the N + region (high electron concentration region) on the front side of the substrate 1. The nitride film 3 is usually about 60 nm. As a result, the N + region (high electron concentration region) is protected by the nitride film 3.
 また、S4で基板1の裏側にアルミ膜4を蒸着、スパッタなどで形成する。アルミ膜4は太陽電池の裏側の電極となる部分である。 In S4, an aluminum film 4 is formed on the back side of the substrate 1 by vapor deposition, sputtering, or the like. The aluminum film 4 is a portion that becomes an electrode on the back side of the solar cell.
 S5は、フィンガー電極の印刷を行う。これは、既述した図1から図3中のフィンガー電極5の形状を、銀、鉛ガラスからなるペーストを用いてスクリーン印刷を行う。 S5 prints finger electrodes. In this method, the shape of the finger electrode 5 in FIGS. 1 to 3 described above is screen-printed using a paste made of silver or lead glass.
 S6は、溶剤飛ばしを行う。これは、100~120℃に1時間程度の加熱を行い、スクリーン印刷したペーストに含まれる溶剤を完全に除去する。 S6 performs solvent blowing. This is performed by heating at 100 to 120 ° C. for about 1 hour to completely remove the solvent contained in the screen-printed paste.
 図6のS7は、固定バー6の印刷を行う。これは、既述した図1から図3中の固定バー6の形状を、バナジン酸塩ガラスを含むペーストを用いてスクリーン印刷を行う。 In S7 of FIG. 6, the fixed bar 6 is printed. For this, the shape of the fixing bar 6 in FIGS. 1 to 3 described above is screen-printed using a paste containing vanadate glass.
 S8は、固定バーの溶剤飛ばしを行う。これは、100~120℃に1時間程度の加熱を行い、スクリーン印刷したペーストに含まれる溶剤を完全に除去する。 S8 performs solvent removal of the fixing bar. This is performed by heating at 100 to 120 ° C. for about 1 hour to completely remove the solvent contained in the screen-printed paste.
 S9は、焼成を行う。これは、フィンガー電極5のファイヤースルーを生じる条件で焼成を行う。詳細に説明すれば、S5とS6で窒化膜3の上にフィンガー電極5を銀、鉛ガラスからなるペースト(銀・鉛ガラスペースト)を用いてスクリーン印刷し、S7とS8で同様に重複しないように、窒化膜3の上に固定バー6をバナジン酸塩ガラスを含むペースト(バナジン酸塩ガラスペースト)を用いてスクリーン印刷した状態で、両者を同時に焼成(加熱)を行う。この焼成の条件は、既述したように、前者(銀・鉛ガラスペーストによるファイヤースルー)の焼成温度と後者(バナジン酸塩ガラスペーストの溶解・固着)の温度(一種のロー付け温度)とを比較し、前者が後者よりも高いあるいは等しいことが要件であり、ここでは前者の焼成温度(ファイヤースルーの焼成温度)を採用して焼成を行う。具体的には、例えば750℃~850℃の範囲内で、1~60秒の範囲内で焼成を行う(加熱は遠赤外線ランプを用いて行う、最適な条件は実験で決める)。 S9 performs firing. In this case, firing is performed under conditions that cause fire-through of the finger electrode 5. More specifically, the finger electrode 5 is screen-printed on the nitride film 3 using a paste made of silver or lead glass (silver / lead glass paste) in S5 and S6, and similarly not overlapped in S7 and S8. In the state where the fixing bar 6 is screen-printed on the nitride film 3 using a paste containing vanadate glass (vanadate glass paste), both are simultaneously fired (heated). As described above, the firing conditions include the former (fire through with silver / lead glass paste) firing temperature and the latter (dissolution / adhesion of vanadate glass paste) temperature (a kind of brazing temperature). In comparison, it is a requirement that the former is higher than or equal to the latter. Here, the former firing temperature (fire-through firing temperature) is employed for firing. Specifically, for example, baking is performed in a range of 750 ° C. to 850 ° C. for 1 to 60 seconds (heating is performed using a far-infrared lamp, and optimum conditions are determined by experiment).
 これらにより、(1)フィンガー電極5が窒化膜3をファイヤースルーすることと、(2)固定バー6が窒化膜3に強固に固着されかつ表面がハンダ付けしやすくなることとを同時に達成できるという顕著な効果が発生する。 As a result, (1) the finger electrode 5 fires through the nitride film 3 and (2) the fixing bar 6 is firmly fixed to the nitride film 3 and the surface can be easily soldered can be achieved at the same time. A noticeable effect occurs.
 図7のS10は、プリハンダ付けを行う。これは、既述した図3に示すように、S9で焼成したフィンガー電極5および固定バー6の上から超音波ハンダ鏝でハンダ材料のプリハンダ付けを行う。 In S10 of FIG. 7, pre-soldering is performed. As shown in FIG. 3 described above, the solder material is pre-soldered with ultrasonic soldering iron from above the finger electrode 5 and the fixing bar 6 fired in S9.
 S11は、リボン付けを行う。これは、S10でプリハンダ付けした上からリボンのハンダ付けを行う(詳細は既述した図3の説明を参照)。尚、プリハンダ付けされたリボンを用いて直接にフィンガー電極5および固定バー6に超音波ハンダ付けを行っても良い。 S11 performs ribbon attachment. In this case, the ribbon is soldered from the pre-soldering in S10 (refer to the description of FIG. 3 for details). Note that ultrasonic soldering may be performed directly on the finger electrode 5 and the fixing bar 6 using a pre-soldered ribbon.
 S12は、裏側のリボン付けを行う。これは、図5のS4で基板1の裏側に形成したアルミ膜4に、リボンを超音波ハンダ付けする。この裏側のリボン付けは、プリハンダされたリボンを直接に図のS4のアルミ膜4に超音波ハンダ付けしてもよいし、固定バー6と同様に、開口のある裏側の固定バーをスクリーン印刷して焼成して強く固着させた後、リボンと該固定バーおよびアルミ膜4の両者を超音波ハンダ付けし、強度を強くするようにしてもよい。 In S12, the ribbon on the back side is attached. For this, a ribbon is ultrasonically soldered to the aluminum film 4 formed on the back side of the substrate 1 in S4 of FIG. For the ribbon attachment on the back side, the pre-soldered ribbon may be ultrasonically soldered directly to the aluminum film 4 of S4 in the figure, or, like the fixing bar 6, the fixing bar on the back side having an opening is screen-printed. After firing and firmly fixing, both the ribbon, the fixing bar and the aluminum film 4 may be ultrasonically soldered to increase the strength.
 図8は、本発明の具体例と従来例を示す。 FIG. 8 shows a specific example of the present invention and a conventional example.
 図8の(a)は本発明のスプリット型の例の写真を示す。これは、固定バー6がフィンガー電極5から離れており、固定バー6が長さ方向に分割されている例(スプリット型という)を示す。 FIG. 8 (a) shows a photograph of an example of the split type of the present invention. This shows an example (referred to as a split type) in which the fixed bar 6 is separated from the finger electrode 5 and the fixed bar 6 is divided in the length direction.
 図8の(b)は本発明のタッチバー型の例の写真を示す。これは、固定バー6がフィンガー電極5に接しており、固定バー6が長さ方向に分割されている例(タッチバー型という)を示す。 FIG. 8B shows a photograph of an example of the touch bar type of the present invention. This shows an example in which the fixing bar 6 is in contact with the finger electrode 5 and the fixing bar 6 is divided in the length direction (referred to as a touch bar type).
 以上のうち図8の(b)のタッチバー型は、固定バー6のスクリーン印刷時の精度(位置合わせなど)と、フィンガー電極5のスクリーン印刷時の精度(位置合わせなど)とが大きい場合には採用できなく、これら精度誤差が影響しないように図8の(a)のスプリット側を選択する方が望ましい。 Of the above, the touch bar type of FIG. 8B is used when the accuracy (positioning, etc.) of the fixed bar 6 during screen printing and the accuracy (positioning, etc.) of the finger electrode 5 during screen printing are large. It is preferable to select the split side in FIG. 8A so that the accuracy error is not affected.
 また、図8の(a)のスプリット型にした場合には、既述したように、超音波ハンダ付けする際にこて先のサイズ(長さ方向)よりも若干小さい方が、こて先が下の窒化膜3に接触して破壊してしまうなどの事態を防止できるので、良好なハンダ付けを行うことが可能となる。 When the split type shown in FIG. 8A is used, the tip is slightly smaller than the tip size (length direction) when ultrasonic soldering, as described above. As a result, it is possible to prevent a situation such as contact with the underlying nitride film 3 and destroying it, so that good soldering can be performed.
 図8の(c)は、従来のバスバー電極の下にフィンガー電極がある例を示す。この従来の場合には、フィンガー電極に直交するように帯状のバスバー電極を銀、鉛ガラスを含むペーストをスクリーン印刷して焼成して形成していたので、フィンガー電極がバスバー電極の上に突出することができず、本発明の当該フィンガー電極に直接にリボンをハンダ付け不可であり、結果としてフィンガー電極ーバスバー電極ーリボンを経由して外部に電子を取り出していたため、経路の抵抗を小さくできなく、結果として太陽電池の効率を低下させてしまうという欠点があった。 (C) of FIG. 8 shows an example in which a finger electrode is present under a conventional bus bar electrode. In this conventional case, the strip-shaped bus bar electrode is formed by screen-printing and baking a paste containing silver and lead glass so as to be orthogonal to the finger electrode, so that the finger electrode protrudes above the bus bar electrode. It is not possible to solder the ribbon directly to the finger electrode of the present invention, and as a result, the electrons are taken out via the finger electrode-bus bar electrode-ribbon, so the resistance of the path cannot be reduced, resulting in As a disadvantage, the efficiency of the solar cell is reduced.
本発明の1実施例構成図(全体の外観図)である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の1実施例構成図(ウェーハの上側より、フィンガー電極5と固定バー6の部分拡大模式図例)である。1 is a configuration diagram of one embodiment of the present invention (partially enlarged schematic diagram of finger electrodes 5 and fixing bars 6 from the upper side of a wafer). FIG. 本発明の1実施例構成図(ウェーハの側面より、フィンガー電極5と固定バー6の部分の拡大模式断面図例)である。1 is a configuration diagram of an embodiment of the present invention (an example of an enlarged schematic cross-sectional view of a portion of a finger electrode 5 and a fixing bar 6 from a side surface of a wafer). 本発明の工程フロー(その1)である。It is the process flow (the 1) of this invention. 本発明の工程フロー(その2)である。It is the process flow (the 2) of this invention. 本発明の工程フロー(その3)である。It is the process flow (the 3) of this invention. 本発明の工程フロー(その4)である。It is the process flow (the 4) of this invention. 本発明の具体例と従来例である。It is the specific example of this invention, and a prior art example.
1:基板(シリコン基板)
3:窒化膜(絶縁膜)
4:アルミ膜
5:フィンガー電極
6:固定バー
61:固定バー領域
7:リボン(プリハンダ付け)
1: Substrate (silicon substrate)
3: Nitride film (insulating film)
4: Aluminum film 5: Finger electrode 6: Fixing bar 61: Fixing bar area 7: Ribbon (pre-soldering)

Claims (15)

  1.  基板上に光などを照射したときに高電子濃度を生成する領域を形成すると共に該領域の上に光などを透過する絶縁膜を形成し、該絶縁膜の上に前記領域から電子を取り出す取出口であるフィンガー電極を形成して該フィンガー電極を介して前記電子を外部に取り出す太陽電池において、
     前記絶縁膜の上に銀および鉛を含むフィンガー電極を形成すると共に、該フィンガー電極の部分あるいは余裕を持たせた部分を開口として前記絶縁膜の上に固定バーを形成した後に焼成し、
     該焼成時の前記フィンガー電極に含まれる銀および鉛の作用により該フィンガー電極の下の膜である前記絶縁膜を貫通して前記領域と該フィンガー電極との間に電気導電性通路を形成し、かつ更に、該焼成時に同時に前記固定バーに含まれるガラス材料の作用により前記絶縁膜に強固に固着およびハンダ付け良好な前記固定バーを形成したことを特徴とする太陽電池。
    A region that generates a high electron concentration when irradiated with light or the like is formed on the substrate, and an insulating film that transmits light or the like is formed on the region, and electrons are extracted from the region on the insulating film. In a solar cell that forms a finger electrode as an outlet and takes out the electrons to the outside through the finger electrode,
    Forming a finger electrode containing silver and lead on the insulating film, and firing after forming a fixed bar on the insulating film with the part of the finger electrode or a part having a margin as an opening,
    Forming an electrically conductive path between the region and the finger electrode through the insulating film, which is a film under the finger electrode, by the action of silver and lead contained in the finger electrode at the time of firing, Furthermore, the solar cell is characterized in that the fixing bar which is firmly fixed to the insulating film and has good soldering is formed by the action of the glass material contained in the fixing bar simultaneously with the firing.
  2.  前記ガラス材料として、バナジウムとバリウム、および、錫と亜鉛あるいはその酸化物のいずれか1つ以上を含むバナジン酸塩ガラスとしたことを特徴とする請求項1記載の太陽電池。 2. The solar cell according to claim 1, wherein the glass material is vanadate glass containing at least one of vanadium and barium and tin and zinc or an oxide thereof.
  3.  前記焼成は、フィンガー電極をファイアリングする温度と前記固定バーを形成する温度とのうち前者が後者と等しいあるいは高く、かつ前者の温度で行うことを特徴とする請求項1あるいは請求項2記載の太陽電池。 3. The firing according to claim 1, wherein the firing is performed at a former temperature equal to or higher than the latter among a temperature for firing the finger electrode and a temperature for forming the fixing bar. Solar cell.
  4.  前記焼成は、1秒以上60秒以下としたことを特徴とする請求項1から請求項3のいずれかに記載の太陽電池。 The solar cell according to any one of claims 1 to 3, wherein the firing is performed for 1 second to 60 seconds.
  5.  前記余裕を持たせた部分を開口とするとして、前記フィンガー電極および固定バーの形成時の誤差による影響が小さくなる所定幅の部分を開口とすることを特徴とする請求項1から請求項4のいずれかに記載の太陽電池。 5. The portion having a predetermined width that is less affected by errors in forming the finger electrode and the fixing bar is defined as an opening, wherein the portion having the margin is defined as an opening. The solar cell in any one.
  6.  前記余裕を持たせた部分を開口するとして、前記フィンガー電極および前記固定バーの上に外部端子を超音波ハンダ付けする際の該超音波ハンダこての先端の接触部分と等しいあるいは若干狭い開口とし、該先端の接触部分が直接に前記絶縁膜に触れないようにしたことを特徴とする請求項1から請求項5のいずれかに記載の太陽電池。 Assuming that the portion having the margin is opened, the opening is equal to or slightly narrower than the contact portion of the tip of the ultrasonic soldering iron when the external terminal is ultrasonically soldered on the finger electrode and the fixing bar. The solar cell according to any one of claims 1 to 5, wherein a contact portion of the tip does not directly touch the insulating film.
  7.  前記フィンガー電極および前記固定バーに、外部端子をハンダ付けするハンダ材料は、錫、錫の酸化物、亜鉛、亜鉛の酸化物の少なくとも1つ以上を含んだことを特徴とする請求項1から請求項6のいずれかに記載の太陽電池。 The solder material for soldering an external terminal to the finger electrode and the fixing bar includes at least one of tin, an oxide of tin, zinc, and an oxide of zinc. Item 7. The solar cell according to any one of Items 6.
  8.  前記ハンダ材料は、添加物として銅、銀のうち1つ以上を必要に応じて添加したことを特徴とする請求項7記載の太陽電池。 The solar cell according to claim 7, wherein the solder material is added with at least one of copper and silver as an additive as required.
  9.  前記フィンガー電極および前記固定バーに外部端子のハンダ付けは、超音波ハンダ付けすることを特徴とする請求項1から請求項8のいずれに記載の太陽電池。 The solar cell according to any one of claims 1 to 8, wherein the external terminals are soldered to the finger electrodes and the fixing bar by ultrasonic soldering.
  10.  前記外部端子は、帯状のリボンとしたことを特徴とする請求項9記載の太陽電池。 10. The solar cell according to claim 9, wherein the external terminal is a belt-like ribbon.
  11.  前記基板の前記領域、絶縁膜、フィンガー電極、および固定バーを設けた表側と反対の裏側の全面にアルミニウムを形成してこれに裏側の外部端子をハンダ付けあるいは超音波ハンダ付けしたことを特徴とする請求項1から請求項10記載の太陽電池。 The region of the substrate, the insulating film, finger electrodes, and the entire surface on the back side opposite to the front side provided with a fixing bar are formed with aluminum, and external terminals on the back side are soldered or ultrasonically soldered to this. 11. The solar cell according to claim 1, wherein:
  12.  前記裏側の外部端子は、前記表側の固定バーとほぼ同じ位置に対応する該裏側の前記アルミニウムの上の位置あるいは任意の位置に前記固定バーを形成して焼成し、この上に該裏側の外部端子をハンダ付けあるいは超音波ハンダ付けすることを特徴とする請求項11に記載の太陽電池。 The external terminal on the back side is formed by firing the fixing bar at a position on the back side of the aluminum corresponding to substantially the same position as the fixing bar on the front side or at an arbitrary position, and is fired thereon. The solar cell according to claim 11, wherein the terminal is soldered or ultrasonically soldered.
  13.  基板上に光などを照射したときに高電子濃度を生成する領域を形成すると共に該領域の上に光などを透過する絶縁膜を形成し、該絶縁膜の上に前記領域から電子を取り出す取出口であるフィンガー電極を形成して該フィンガー電極を介して前記電子を外部に取り出す太陽電池の製造方法において、
     前記絶縁膜の上に銀および鉛を含むフィンガー電極を形成すると共に、該フィンガー電極の部分あるいは余裕を持たせた部分を開口として前記絶縁膜の上に固定バーを形成した後に焼成するステップと、
     該焼成時の前記フィンガー電極に含まれる銀および鉛の作用により該フィンガー電極の下の膜である前記絶縁膜を貫通して前記領域と該フィンガー電極との間に電気導電性通路を形成し、かつ更に、該焼成時に同時に前記固定バーに含まれるガラス材料の作用により前記絶縁膜に強固に固着およびハンダ付け良好な前記固定バーを形成するステップと
    を有することを特徴とする太陽電池の製造方法。
    A region that generates a high electron concentration when irradiated with light or the like is formed on the substrate, and an insulating film that transmits light or the like is formed on the region, and electrons are extracted from the region on the insulating film. In a method for manufacturing a solar cell, which forms a finger electrode as an outlet and takes out the electrons to the outside through the finger electrode,
    Forming a finger electrode containing silver and lead on the insulating film, and firing after forming a fixed bar on the insulating film with the finger electrode part or a part having a margin as an opening; and
    Forming an electrically conductive path between the region and the finger electrode through the insulating film, which is a film under the finger electrode, by the action of silver and lead contained in the finger electrode at the time of firing, And a step of forming the fixing bar which is firmly fixed and soldered to the insulating film by the action of the glass material contained in the fixing bar simultaneously with the firing. .
  14.  前記基板の前記領域、絶縁膜、フィンガー電極、および固定バーを設けた表側と反対の裏側の全面にアルミニウムを形成してこれに外部端子をハンダ付けあるいは超音波ハンダ付けしたことを特徴とする請求項13記載の太陽電池の製造方法。 The surface of the substrate, the insulating film, the finger electrodes, and the back side opposite to the front side provided with the fixing bar are formed with aluminum, and external terminals are soldered or ultrasonically soldered thereto. Item 14. A method for producing a solar cell according to Item 13.
  15.  前記裏側の外部端子は、前記表側の固定バーとほぼ同じ位置に対応する該裏側の前記アルミニウムの上の位置あるいは任意の位置に前記固定バーを形成して焼成し、この上に該裏側の外部端子をハンダ付けあるいは超音波ハンダ付けすることを特徴とする請求項14に記載の太陽電池の製造方法。 The external terminal on the back side is formed by firing the fixing bar at a position on the back side of the aluminum corresponding to substantially the same position as the fixing bar on the front side or at an arbitrary position, and is fired thereon. The method for manufacturing a solar cell according to claim 14, wherein the terminal is soldered or ultrasonically soldered.
PCT/JP2017/045304 2016-12-30 2017-12-18 Solar battery and solar battery manufacturing method WO2018123687A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197019096A KR102227075B1 (en) 2016-12-30 2017-12-18 Solar cell and manufacturing method of solar cell
CN201780081471.1A CN110268531A (en) 2016-12-30 2017-12-18 The manufacturing method of solar battery and solar battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-257471 2016-12-30
JP2016257471A JP2018110178A (en) 2016-12-30 2016-12-30 Solar cell and manufacturing method for the same

Publications (1)

Publication Number Publication Date
WO2018123687A1 true WO2018123687A1 (en) 2018-07-05

Family

ID=62707340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045304 WO2018123687A1 (en) 2016-12-30 2017-12-18 Solar battery and solar battery manufacturing method

Country Status (5)

Country Link
JP (1) JP2018110178A (en)
KR (1) KR102227075B1 (en)
CN (1) CN110268531A (en)
TW (1) TWI663742B (en)
WO (1) WO2018123687A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020090612A1 (en) * 2018-10-29 2021-09-09 アートビーム有限会社 Solar cells and solar cell manufacturing methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200970A (en) * 2006-01-24 2007-08-09 Sanyo Electric Co Ltd Photovoltaic module
JP2015050412A (en) * 2013-09-04 2015-03-16 三洋電機株式会社 Solar cell module, solar cell, and method of manufacturing the same
WO2016117180A1 (en) * 2015-01-21 2016-07-28 三菱電機株式会社 Solar battery cell, solar battery module, method for manufacturing solar battery cell, and method for manufacturing solar battery module
US20160276499A1 (en) * 2015-03-17 2016-09-22 Solarworld Innovations Gmbh Solar cell
WO2016152481A1 (en) * 2015-03-20 2016-09-29 株式会社マテリアル・コンセプト Solar cell device and method for manufacturing same
JP2016192539A (en) * 2015-03-30 2016-11-10 農工大ティー・エル・オー株式会社 Solar battery and manufacturing method for solar battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045909A1 (en) * 2012-09-22 2014-03-27 株式会社ノリタケカンパニーリミテド Solar cell module, and method for producing same
KR101630526B1 (en) * 2014-09-05 2016-06-14 엘지전자 주식회사 Solar cell
JP5944081B1 (en) * 2015-01-21 2016-07-05 三菱電機株式会社 Solar cell, solar cell module, method for manufacturing solar cell, method for manufacturing solar cell module
US10533063B2 (en) * 2015-04-20 2020-01-14 Exxonmobil Chemical Patents Inc. Supported catalyst systems and processes for use thereof
CN204914964U (en) * 2015-07-14 2015-12-30 正中科技股份有限公司 Positive silver electrode of solar cell can design type printing steel version structure
JP6659074B2 (en) * 2015-10-13 2020-03-04 農工大ティー・エル・オー株式会社 NTA paste

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200970A (en) * 2006-01-24 2007-08-09 Sanyo Electric Co Ltd Photovoltaic module
JP2015050412A (en) * 2013-09-04 2015-03-16 三洋電機株式会社 Solar cell module, solar cell, and method of manufacturing the same
WO2016117180A1 (en) * 2015-01-21 2016-07-28 三菱電機株式会社 Solar battery cell, solar battery module, method for manufacturing solar battery cell, and method for manufacturing solar battery module
US20160276499A1 (en) * 2015-03-17 2016-09-22 Solarworld Innovations Gmbh Solar cell
WO2016152481A1 (en) * 2015-03-20 2016-09-29 株式会社マテリアル・コンセプト Solar cell device and method for manufacturing same
JP2016192539A (en) * 2015-03-30 2016-11-10 農工大ティー・エル・オー株式会社 Solar battery and manufacturing method for solar battery

Also Published As

Publication number Publication date
KR102227075B1 (en) 2021-03-11
TWI663742B (en) 2019-06-21
KR20190082991A (en) 2019-07-10
JP2018110178A (en) 2018-07-12
TW201830717A (en) 2018-08-16
CN110268531A (en) 2019-09-20

Similar Documents

Publication Publication Date Title
TWI697023B (en) Fuse unit, fuse element and heating element are equipped with fuse element
US9224880B2 (en) Method for manufacturing solar cell with interconnection sheet, method for manufacturing solar cell module, solar cell with interconnection sheet, and solar cell module
WO2012081613A1 (en) Solar battery and solar battery manufacturing method
JP2009193993A (en) Method of manufacturing solar cell electrode, and solar cell electrode
JP2021010299A (en) Solar cell and manufacturing method thereof
TW201644061A (en) Solar cell device and method for manufacturing same
JP2001044459A (en) Solar battery
JP3926822B2 (en) Semiconductor device and manufacturing method of semiconductor device
WO2018123687A1 (en) Solar battery and solar battery manufacturing method
JP2006156693A (en) Solar battery element and solar battery module using it
JP2014045124A (en) Solar cell and manufacturing method therefor, solar cell module and manufacturing method therefor
JP2004281800A (en) Solar cell module
JP6986726B2 (en) Solar cells and methods for manufacturing solar cells
JP5756453B2 (en) Manufacturing method of solar cell
JP2016152411A (en) Photovoltaic module and manufacturing method for the same
TWI668878B (en) Solar cell and method for manufacturing solar cell
WO2018159306A1 (en) Solar cell and production method for solar cell
TWI720664B (en) Solar cell and method for manufacturing solar cell
JP2015185731A (en) Solar cell module and manufacturing method therefor
JP2012099566A (en) Semiconductor device, backside contact solar battery cell with wiring board, solar cell module, manufacturing method of semiconductor device
JP5105427B2 (en) A method for forming a fired electrode and a method for producing a photoelectric conversion element using the method.
CN104167465B (en) Method for processing photovoltaic panel with back-contact architecture
JP2001319552A (en) Protective element and its manufacturing method
JP2001189473A (en) Photosensor and manufacturing method therefor
JP2007150356A (en) Method for producing solar battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197019096

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888588

Country of ref document: EP

Kind code of ref document: A1