WO2018012195A1 - レーザ加工方法およびレーザ加工装置 - Google Patents

レーザ加工方法およびレーザ加工装置 Download PDF

Info

Publication number
WO2018012195A1
WO2018012195A1 PCT/JP2017/022337 JP2017022337W WO2018012195A1 WO 2018012195 A1 WO2018012195 A1 WO 2018012195A1 JP 2017022337 W JP2017022337 W JP 2017022337W WO 2018012195 A1 WO2018012195 A1 WO 2018012195A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
laser
laser processing
laser light
processing method
Prior art date
Application number
PCT/JP2017/022337
Other languages
English (en)
French (fr)
Inventor
弘徳 宇佐美
義弘 二神
文崇 大田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to EP17827326.4A priority Critical patent/EP3486026A4/en
Priority to CN201780035844.1A priority patent/CN109311125A/zh
Publication of WO2018012195A1 publication Critical patent/WO2018012195A1/ja
Priority to US16/221,675 priority patent/US20190118289A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove

Definitions

  • the present invention relates to a laser processing method and a laser processing apparatus.
  • Patent Document 1 discloses a laser processing method using a laser beam having a diameter smaller than the diameter of a hole to be processed.
  • the laser beam is moved along a spiral orbit connecting the center of the hole and the outer edge, or a concentric orbit centering on the center of the hole.
  • the starting point of the trajectory is the position rotated relative to the center of the hole.
  • Patent Document 2 discloses a laser processing method for forming a plurality of recesses on a mask blank glass substrate with a laser beam.
  • the laser beam is moved in a spiral activation or a circular orbit with the center of the recess as a reference, and the orbits of the dug portions dug by the laser beam are at least partially overlapped.
  • One of the factors that determines the result of laser processing is the amount of energy per unit area.
  • the amount of energy per unit area depends on the laser beam power and the laser beam scanning speed.
  • the amount of energy per unit area can be increased on the workpiece surface.
  • the power of the laser beam output from the laser processing apparatus is low, the scanning speed of the laser beam must be lowered in order to increase the amount of energy per unit area.
  • the lower the laser beam scanning speed the longer the time required for processing. In the case of processing using low-power laser light, there is a problem that it is difficult to obtain desired processing quality while preventing the processing time from becoming long.
  • An object of the present invention is to provide a laser processing method and a laser processing apparatus that can improve processing quality while preventing a reduction in processing speed.
  • a laser processing method is a laser processing method using a laser processing apparatus including a laser light source that emits laser light and a scanning mechanism that scans the laser light. Scanning.
  • the step of scanning includes changing the scanning direction of the laser light a plurality of times at the turning portion in the processing area.
  • the scanning speed is lowered by changing the scanning direction of the laser light. Therefore, by changing the scanning direction of the laser light a plurality of times in the turning portion in the work area, the amount of energy per unit area can be increased in the turning portion. Even when a processing region is processed using low-power laser light, processing that can achieve a desired quality while suppressing an increase in the time required to scan the laser light in the processing region (for example, Marking, drilling, etc.).
  • the work area is a unit area where laser processing is performed. For example, when one hole is formed in a certain region by laser processing, the region corresponds to a region to be processed.
  • the turning part is typically located at the center of the work area. However, it is not so limited.
  • the turning portion may be located at a position shifted from the center of the region to be processed.
  • changing the scanning direction in the direction changing unit includes changing the scanning direction of the laser beam in a direction that forms an acute angle with respect to the scanning direction before being changed in the direction changing unit.
  • the scanning speed of the laser beam can be further reduced at the turning portion to the extent that the processing speed is not significantly reduced. Therefore, the amount of energy per unit area can be further increased in the turning portion.
  • changing the scanning direction in the direction changing unit includes changing the scanning direction in the direction changing unit every time the laser beam is scanned in the direction toward the direction changing unit.
  • the step of scanning includes a combination of changing the scanning direction at the direction changing portion and changing the scanning direction outside the direction changing portion.
  • the power of the laser light when it is not preferable that the power of the laser light is concentrated too much in the turning portion, the power of the laser light can be dispersed in a region outside the turning portion.
  • the scanning step scans the laser beam from a point on the curved line outside the turning portion toward the turning portion, and scans the laser beam from the turning portion toward the point on the curved line. Including at least one of the following steps.
  • machining shape typically a circular hole having a curve in a plan view
  • a machining shape having a curve in a plan view
  • the step of scanning includes the step of scanning the laser beam from the point on the side of the polygon surrounding the direction change part toward the direction change part, and the direction from the direction change part to the point on the side of the polygon. At least one of scanning the laser beam.
  • machining shape having a polygon in a plan view can be formed in the work area.
  • the turning portion is located at the center of the work area. Thereby, the amount of energy per unit area can be maximized at the center of the region to be processed.
  • the laser processing method further includes a step of forming a plurality of cells by repeating the step of scanning the next region to be processed.
  • the plurality of cells are arranged in two dimensions. Thereby, for example, marking can be performed.
  • the plurality of cells are arranged in one dimension.
  • a groove can be formed.
  • a laser processing apparatus includes a laser light source that emits laser light, a scanning mechanism that scans the laser light, and a control unit that controls the scanning mechanism.
  • the scanning mechanism is controlled so as to change the scanning direction of the laser light a plurality of times.
  • control unit controls the scanning mechanism so as to change the scanning direction of the laser light in a direction that forms an acute angle with respect to the scanning direction before being changed.
  • the scanning speed of the laser beam can be further reduced at the turning portion to the extent that the processing speed is not significantly reduced. Therefore, the amount of energy per unit area can be further increased in the turning portion.
  • control unit controls the scanning mechanism so that the laser beam is scanned according to a scanning pattern including a plurality of straight lines extending radially from the turning unit.
  • the scanning pattern includes a pattern in which the scanning direction of the laser light is turned back outside the turning portion.
  • the power of the laser light when it is not preferable that the power of the laser light is concentrated too much in the turning portion, the power of the laser light can be dispersed in a region outside the turning portion.
  • the scanning pattern includes a straight line connecting the curve surrounding the turning portion and the turning portion.
  • the processing shape typically circular hole which has a curve in planar view can be formed in a to-be-processed area
  • the scanning pattern includes a straight line connecting the turning portion and a polygonal side surrounding the turning portion.
  • the processing shape which has a polygon in planar view can be formed in a to-be-processed area
  • the present invention it is possible to provide a laser processing method and a laser processing apparatus that can improve processing quality while preventing a reduction in processing speed.
  • FIG. 1 is a diagram illustrating a configuration example of a laser processing apparatus according to the present embodiment.
  • a laser processing apparatus 100 according to an embodiment of the present invention includes a controller 101, a head unit 102, and a cable 103.
  • the controller 101 includes a laser light source 111 that emits laser light and a control unit 112.
  • the type of the laser light source 111 is not particularly limited.
  • a fiber laser can be used for the laser light source 111.
  • the laser light source 111 may be a solid-state laser such as a YAG laser or a gas laser such as a CO 2 laser.
  • the laser light from the laser light source 111 is, for example, pulse light. However, the laser light may be continuous (CW) light.
  • the control unit 112 controls the laser processing apparatus 100 in an integrated manner.
  • the power (average output) of the laser beam is not particularly limited.
  • the average power of the laser light is 20W.
  • the laser processing apparatus and laser processing method according to the embodiment of the present invention can use laser light having a lower power than the average power (for example, 50 W or more) of a conventional laser processing apparatus.
  • the present invention is not limited to using low power laser light.
  • the head unit 102 is connected to the controller 101 by a cable 103.
  • the cable 103 is an optical fiber cable for transmitting light from the laser light source 111 to the head unit 102, a signal cable for transmitting a control signal from the control unit 112 to the head unit 102, and power to the head unit 102.
  • a power cable for supplying can be included.
  • the head unit 102 includes a scanning mechanism 120 for scanning the laser light generated by the laser light source 111.
  • the scanning mechanism 120 includes a mirror 121 and a drive unit 122 that drives the mirror 121.
  • the laser light generated by the laser light source 111 is reflected by the mirror 121 and applied to the surface of the workpiece 11 placed on the stage 10.
  • the processing region 11a is processed by irradiating the processing region 11a of the surface of the workpiece 11 with the laser beam 20.
  • the driving unit 122 drives the mirror 121 in response to a control signal from the control unit 112. Thereby, the laser beam 20 is scanned.
  • the scanning mechanism 120 can be realized by, for example, a galvanometer mirror.
  • the scanning direction of the laser beam by the scanning mechanism 120 may be a one-dimensional direction, a two-dimensional direction, or both.
  • controller 101 and the head unit 102 are separate. However, the controller 101 and the head unit 102 may be housed in one housing.
  • FIG. 2 is a schematic view showing an example of laser beam scanning for processing the surface of a workpiece.
  • a region 11 a to be processed is a unit region that is a part of the surface of the workpiece 11 shown in FIG. 1 and is subjected to laser processing.
  • the laser light is pulsed light and is scanned so as to reciprocate on the processing area 11a.
  • the spot 21 represents a place irradiated with laser light in the processing area 11a.
  • the scanning speed of the laser beam is higher at the center of the processing region 11a than at the peripheral portion of the processing region 11a.
  • the depth of the hole formed at the position of the spot 21 depends on the energy density per unit area. Since the scanning speed of the laser beam is low at the peripheral portion of the processed region 11a, the energy density per unit area is high. For this reason, a deeper spot is formed in the peripheral part of the to-be-processed area
  • FIG. 3 is a diagram showing the principle of laser beam scanning by the laser processing method according to the embodiment of the present invention.
  • the scanning direction of the laser beam is changed at the central portion 11b in the processing region 11a.
  • the scanning speed of the laser beam is reduced, so that the energy density per unit area is increased. Therefore, by scanning the laser beam as shown in FIG. 3, the energy density per unit area can be increased in the central portion 11b of the processed region 11a.
  • FIG. 4 is a diagram showing an example of a scanning pattern of laser light for laser processing according to the embodiment of the present invention. Referring to FIG. 4, changing the scanning direction of the laser beam at the center portion 11b of the processing region 11a is repeated. In the central portion 11b of the processed region 11a, the scanning direction of the laser light is changed a plurality of times, so that the energy per unit area can be further increased in the central portion of the processed region 11a. Thereby, a deeper hole can be formed.
  • control unit 112 and the scanning mechanism 120 of the laser processing apparatus 100 make the laser beam scanning direction an acute angle with respect to the scanning direction before being changed in the central portion 11b of the processing area 11a. Change direction.
  • the scanning speed of the laser beam can be further reduced in the central portion 11b of the processed region 11a to the extent that the processing speed is not significantly reduced. Therefore, the energy can be further concentrated at the center of the processing area 11a.
  • FIG. 5 is a schematic cross-sectional view of the workpiece 11 for explaining the result of laser processing according to the embodiment of the present invention.
  • (A) is sectional drawing which showed typically the processing result of the workpiece
  • (B) is sectional drawing which showed typically the processing result of the workpiece
  • FIG. 6 is a diagram illustrating a result of photographing a hole formed in the processing region 11a along the depth direction from the processing region 11a of the workpiece 11. As illustrated in FIG. In FIG. 5A and FIG. 5B, the material of the workpiece 11 and the power of the laser beam are the same, and are different in the scanning of the laser beam.
  • a deep hole is formed in the peripheral portion of the region to be processed 11a.
  • the depth of the hole formed in the central portion of the processed region 11 a is increased from the surface of the workpiece 11. It can be confirmed that it has reached at least 200 ⁇ m.
  • the time required to form the hole of 100 ⁇ m depth in the work 11 made of aluminum was about 62 seconds.
  • a hole having a depth of 100 ⁇ m could be formed in the workpiece 11 in about 23 seconds.
  • the time for forming the hole is fixed to 10 seconds, the depth of the formed hole is 15 ⁇ m in the general laser beam scanning method shown in FIG.
  • the depth of the hole was 60 ⁇ m.
  • the processing speed can be increased without increasing the power (output) of the laser beam. Thereby, processing time can be shortened.
  • the same processing for example, marking, formation of a hole, etc.
  • the processing can be realized by a lower power laser beam. Therefore, the laser processing apparatus can be realized at a lower cost.
  • FIG. 7 is a flowchart for explaining the laser processing method according to the embodiment of the present invention.
  • laser processing apparatus 100 scans laser light in processing area 11a. More specifically, the laser processing apparatus 100 changes the scanning direction of the laser light a plurality of times at a predetermined turning portion of the processing area 11a.
  • the “predetermined turning portion” is typically the central portion 11b of the work area 11a, but is not limited thereto. As illustrated later, the “turning portion” may be a location shifted from the center portion 11b of the processing region 11a.
  • the laser processing apparatus 100 changes the scanning direction of the laser beam directed to the turning portion (for example, the central portion 11b) in the processing area 11a at the turning portion. That is, the laser processing apparatus 100 repeats scanning the laser beam so as to be folded at the turning portion.
  • step S2 it is determined whether or not all the work area 11a on the workpiece 11 has been processed. This determination is executed by the control unit 112. If it is determined that all the work area 11a has been processed (YES in step S2), the process ends. On the other hand, when it is determined that the unprocessed region 11a remains (NO in step S2), the process proceeds to step S3.
  • step S3 the control unit 112 controls the laser processing apparatus 100 so as to process the next processing area 11a.
  • This control can include, for example, control of the laser light source 111 and control of the drive unit 122 of the scanning mechanism 120.
  • Example of laser beam scanning> 8 to 17 show examples of laser beam scanning patterns by the laser processing method according to the embodiment of the present invention.
  • the scanning pattern of the laser beam is a pattern in which a plurality of fan shapes having the same shape are arranged at an equal angle with the center portion 11b of the processing region 11a as the center.
  • the laser beam is scanned from the central portion 11b of the processed region 11a to the peripheral portion of the processed region 11a, and is scanned along an arc or a straight line at the peripheral portion of the processed region 11a.
  • the laser beam is scanned from the peripheral portion of the processing region 11a to the central portion 11b of the processing region 11a, and is scanned again from the central portion 11b of the processing region 11a to the peripheral portion of the processing region 11a.
  • the locus of the laser beam spreads radially from the central portion 11b of the processed region 11a, and forms a broken line (in other words, intermittent) circumference at the peripheral portion of the processed region 11a.
  • FIG. 9 is a diagram showing another example of the scanning pattern of the laser beam in the laser processing method according to the embodiment of the present invention.
  • the density of the fan-shaped arrangement is sparse compared to the pattern shown in FIG.
  • the fan-shaped central angle and the angle formed by two adjacent fan-shaped patterns are larger than those in the pattern shown in FIG.
  • either one of the fan-shaped central angle and the angle formed by two adjacent fan-shaped patterns may be larger than the corresponding angle of the pattern shown in FIG. Similar to the pattern shown in FIG. 9, such a scanning pattern can be made sparser in density of the fan-shaped arrangement than the pattern shown in FIG. 8.
  • FIG. 10 is a view showing still another example of the scanning pattern of the laser beam in the laser processing method according to the embodiment of the present invention.
  • the pattern shown in FIG. 10 is a pattern obtained by removing the arc or straight line at the peripheral edge of the processed region 11a from the pattern shown in FIG.
  • the laser beam is reciprocated between a central portion 11b of the processing region 11a and a peripheral portion of the processing region 11a on one straight line.
  • the laser light is reciprocated on another straight line between the central portion 11b of the processed region 11a and the peripheral portion of the processed region 11a.
  • the laser beam is scanned from the peripheral portion of the processed region 11a to the central portion 11b of the processed region 11a, and the scanning direction is changed in the central portion 11b. Then, scanning is performed from the central portion 11b of the processing region 11a toward the peripheral portion.
  • the scanning direction of the laser light is changed at the central portion 11b of the processing region 11a.
  • the position (the turning portion) where the scanning direction of the laser beam is changed is the center point of the processed region 11a.
  • the scanning of the laser beam is not limited in this way.
  • FIG. 11 is a view showing still another example of the scanning pattern of the laser beam in the laser processing method according to the embodiment of the present invention.
  • the scanning pattern may include a pattern in which the scanning direction of the laser light is turned back outside the center portion 11 b.
  • the scanning direction may be changed at the center portion 11b of the processed region 11a and the scanning direction may be changed outside the center portion 11b.
  • a deep hole can be formed over the whole to-be-processed area
  • it can suppress that the process in the center part 11b of the to-be-processed area
  • FIG. 12 is a view showing still another example of the scanning pattern of the laser beam in the laser processing method according to the embodiment of the present invention.
  • the pattern shown in FIG. 12 is different from the pattern shown in FIG. 11 in that the central portion 11b of the region to be processed 11a is not a point but a region having an area of a certain size.
  • the pattern shown in FIG. 12 can be used. That is, the central portion 11b of the processed region 11a is not necessarily limited to be a point, and may be a region having an area of a certain size including the central point of the processed region 11a.
  • the center part 11b can be defined as an area occupying an area of 1/3 or less of the entire area of the processed area 11a, for example. Thereby, the possibility that the processing of the central portion 11b becomes insufficient during laser processing (for example, the central portion 11b remains in an island shape) can be reduced.
  • FIG. 13 is a view showing still another example of the scanning pattern of the laser beam in the laser processing method according to the embodiment of the present invention. As shown in FIG. 13, the turning portion 11 c may be located away from the center portion 11 b of the work area 11 a. 12 and 13 show a scanning pattern that changes the scanning direction of the laser light before the central portion 11b. However, the scanning pattern changes the scanning direction of the laser light after passing through the central portion 11b. Is also possible.
  • FIG. 14 is a view showing still another example of the scanning pattern of the laser beam in the laser processing method according to the embodiment of the present invention.
  • laser beams are emitted radially from the corners 11d, 11e, 11g, and 11f of the processed region 11a toward the inside of the processed region 11a.
  • the pattern to be scanned is overlaid. By adopting such a pattern, the entire processed region 11a can be dug uniformly and deeply.
  • FIG. 15 is a diagram showing another example of the scanning pattern of the laser beam in the laser processing method according to the embodiment of the present invention.
  • the pattern shown in FIG. 15 corresponds to a reduced pattern of the pattern shown in FIG.
  • the pattern shown in FIG. 15 can be employed.
  • FIG. 16 is a diagram showing another example of the scanning pattern of the laser beam in the laser processing method according to the embodiment of the present invention.
  • a scanning pattern in which a plurality of (for example, two) patterns are shifted and overlapped may be used.
  • Each pattern may be the same as each other.
  • each pattern may be, for example, the pattern shown in FIG.
  • one of the two patterns is a pattern in which the scanning direction of the laser beam is changed at the central portion 11b of the processed region 11a, and the other pattern is the processed region.
  • This is a pattern in which the scanning direction of the laser beam is changed at a position different from the central portion 11b of 11a.
  • both of the two patterns may be patterns in which the scanning direction of the laser light is changed at a position different from the central portion 11b of the processing area 11a.
  • the scanning patterns shown in FIGS. 8 to 16 scan the laser beam from a point on the curve outside the turning portion (typically the central portion 11b) of the processing area 11a toward the turning portion. It is formed by performing at least one of a step and a step of scanning the laser beam from the turning portion toward a point on the curve.
  • the scanning pattern includes a straight line connecting the curve surrounding the turning portion and the turning portion. Therefore, the start point or end point of the laser beam scanning is on the curve.
  • the curve is the circumference.
  • the type of curve is not limited to the circumference.
  • an ellipse may be formed by a curve surrounding the turning portion.
  • the curve is not limited to a closed curve, and may be an open curve.
  • the curve may be an arc.
  • the embodiment of the present invention is not limited so that the start point or the end point of the scanning of the laser beam is on the curve.
  • the scanning pattern may include a straight line connecting the turning portion of the work area 11 a and the polygonal side surrounding the turning portion.
  • the step of scanning with the laser beam includes the step of scanning the laser beam from the point on the side of the polygon surrounding the turning portion (typically the central portion 11b) of the work area 11a toward the turning portion, and You may include at least one of the steps of scanning a laser beam toward the point on the side of a polygon from a turning part.
  • the polygon is a rectangle.
  • the type of polygon is not limited.
  • the laser processing apparatus 100 scans the laser beam along any one of the above scanning patterns.
  • the control unit 112 can store, for example, a program for executing all or part of the scanning pattern.
  • the control unit 112 may select the scan pattern exemplified above by executing the program.
  • FIG. 18 is a schematic diagram showing an example of processing by the laser processing method according to the embodiment of the present invention.
  • the laser processing method according to the embodiment of the present invention can be used for marking the code 15 on the surface of the workpiece 11.
  • the code 15 includes a plurality of cells 12 arranged in two dimensions, for example. Each cell 12 is formed by performing laser processing on each of the processed regions 11a.
  • each cell 12 the above-described laser beam scanning is repeatedly performed. Thereby, a highly visible mark can be formed.
  • a highly visible mark can be formed at the manufacturing site.
  • region 11a is shallow, since the possibility that the hole will be filled with an oil film or a film
  • the diameter of the processed hole can be made constant up to a certain depth by adopting the scanning patterns shown in FIGS. Thereby, even if it is a case where post-processes, such as cutting and grinding
  • the center portion 11b of the work area 11a can be dug deepest, so that the accuracy of the cell center pitch can be increased. Therefore, a high quality code can be printed on the workpiece surface.
  • FIG. 19 is a schematic diagram showing another example of processing by the laser processing method according to the embodiment of the present invention.
  • the laser processing method according to the embodiment of the present invention can be used to form linear groove 16 on the surface of workpiece 11.
  • the groove 16 is composed of a plurality of cells 12 that are continuously arranged in a one-dimensional manner. According to the embodiment of the present invention, a deeper groove can be formed on the surface of the workpiece 11.
  • the plurality of cells 12 are cells arranged at an equal pitch, for example. However, the plurality of cells 12 may be cells having unequal pitches.

Abstract

レーザ加工方法は、レーザ光を発するレーザ光源と、レーザ光を走査する走査機構とを備えたレーザ加工装置によるレーザ加工方法であって、被加工領域(11)内においてレーザ光を走査するステップを備える。走査するステップは、被加工領域(11a)の中の変向部において、レーザ光の走査方向を複数回変向することを含む。

Description

レーザ加工方法およびレーザ加工装置
 本発明は、レーザ加工方法およびレーザ加工装置に関する。
 ワークの表面への文字や図形等の描画、穴開け、剥離、切断等の各種の加工のためのレーザ加工方法、および、そのレーザ加工を行うためのレーザ加工装置がこれまでに提案されている。たとえば特開2007-268576号公報(特許文献1)は、加工しようとする穴の直径よりも小さい径を有するレーザビームによるレーザ加工方法を開示する。このレーザ加工方法では、レーザビームを、穴の中心と外縁とを結ぶ螺旋状の軌道、あるいは穴の中心を中心とする同心円の軌道に沿って移動させる。軌道の始点は、その穴の中心として互いに回転した位置である。
 たとえば特開2011-170359号公報(特許文献2)は、レーザ光によって、マスクブランク用ガラス基板上に複数の凹部を形成するためのレーザ加工方法を開示する。このレーザ加工方法では、レーザ光を、凹部の中心を基準とした螺旋起動あるいは周回軌道で、かつ、レーザ光によって掘られる掘込部の軌道同士が少なくとも一部重なるように移動させることによって、凹部を形成する。
特開2007-268576号公報 特開2011-170359号公報
 ワークの表面の文字や図形の濃さ、あるいはワークに形成される穴の深さといったレーザ加工の結果を決定する要素の1つが、単位面積当たりのエネルギー量である。単位面積当たりのエネルギー量は、レーザ光のパワーおよびレーザ光の走査速度に依存する。
 レーザ加工装置から高パワーのレーザ光を出力することによって、ワーク表面において、単位面積当たりのエネルギー量を高くすることができる。一方、レーザ加工装置から出力されるレーザ光のパワーが低い場合には、単位面積当たりのエネルギー量を高くするためにレーザ光の走査速度を下げなければならない。しかし、レーザ光の走査速度が低いほど、加工に要する時間は長くなる。低パワーのレーザ光を用いた加工の場合、加工時間が長くなるのを防ぎつつ、所望の加工品質を得ることが難しいという課題がある。
 本発明の目的は、加工速度の低下を防ぎつつ加工品質を高めることを可能にするレーザ加工方法およびレーザ加工装置を提供することである。
 本発明の一態様に係るレーザ加工方法は、レーザ光を発するレーザ光源と、レーザ光を走査する走査機構とを備えたレーザ加工装置によるレーザ加工方法であって、被加工領域内においてレーザ光を走査するステップを備える。走査するステップは、被加工領域の中の変向部において、レーザ光の走査方向を複数回変向することを含む。
 これにより、加工速度の低下を防ぎつつ加工品質を高めることができる。変向部では、レーザ光の走査方向を変向することによって走査速度が低下する。したがって、被加工領域の中の変向部において、レーザ光の走査方向を複数回変向することによって、変向部では単位面積当たりのエネルギー量を高めることができる。低パワーのレーザ光を使用して被加工領域を加工する場合にも、被加工領域内でレーザ光を走査するために要する時間が長くなるのを抑えつつ、所望の品質が得られる加工(たとえばマーキング、穴開けなど)を行うことができる。
 被加工領域とは、レーザ加工の処理が施される単位領域である。たとえば、ある領域内に1つの穴をレーザ加工によって形成する場合には、その領域が被加工領域に相当する。
 変向部は、典型的には被加工領域の中心に位置する。しかしそのように限定されるものではない。変向部が被加工領域の中心からずれた位置にあってもよい。
 好ましくは、走査方向を変向部において変向することは、変向部において、変向される前の走査方向に対して鋭角をなす方向にレーザ光の走査方向を変向することを含む。
 これにより、加工速度の大幅な低下が生じない程度において、変向部においてレーザ光の走査速度をより低下させることができる。したがって変向部において単位面積当たりのエネルギー量をより高めることができる。
 好ましくは、走査方向を変向部において変更することは、レーザ光を変向部へと向かう向きに走査するごとに、変向部において、走査方向を変向することを含む。
 これにより、変向部において単位面積当たりのエネルギー量をより高めることができる。
 好ましくは、走査するステップは、走査方向を変向部において変更することと、走査方向を変向部よりも外側において変更することとを組み合わせることを含む。
 これにより、変向部においてレーザ光のパワーが集中し過ぎるのが好ましくない場合において、変向部よりも外側の領域にレーザ光のパワーを分散させることができる。
 好ましくは、走査するステップは、変向部よりも外側の曲線上の点から変向部に向けてレーザ光を走査するステップ、および、変向部から曲線上の点に向けてレーザ光を走査するステップのうちの少なくとも一方を含む。
 これにより、平面視において曲線を有する加工形状(典型的には円形の穴)を被加工領域内に形成することができる。
 好ましくは、走査するステップは、変向部を囲む多角形の辺上の点から変向部に向けてレーザ光を走査するステップ、および、変向部から多角形の辺上の点に向けてレーザ光を走査するステップのうちの少なくとも一方を含む。
 これにより、平面視において多角形を有する加工形状を被加工領域内に形成することができる。
 好ましくは、変向部は、被加工領域の中央に位置する。
 これにより、被加工領域の中央において単位面積当たりのエネルギー量を最も大きくすることができる。
 好ましくは、レーザ加工方法は、さらに、次の被加工領域に対して走査するステップを実行することを繰り返して、複数のセルを形成するステップをさらに備える。
 これにより、複数の加工領域の各々を加工する場合に、たとえば正確なピッチで同じ加工を繰り返すことが可能になる。
 好ましくは、複数のセルは、二次元に配置される。
 これにより、たとえば、マーキングを行うことができる。
 好ましくは、複数のセルは、一次元に配置される。
 これにより、たとえば、溝を形成することができる。
 本発明の一態様に係るレーザ加工装置は、レーザ光を発するレーザ光源と、レーザ光を走査する走査機構と、走査機構を制御する制御部とを備え、制御部は、被加工領域の中の変向部において、レーザ光の走査方向を複数回変向するように、走査機構を制御する。
 これにより、加工速度の低下を防ぎつつ加工品質を高めることが可能なレーザ加工装置を実現できる。
 好ましくは、制御部は、変向される前の走査方向に対して鋭角をなす方向に、レーザ光の走査方向を変向するように走査機構を制御する。
 これにより、加工速度の大幅な低下が生じない程度において、変向部においてレーザ光の走査速度をより低下させることができる。したがって変向部において単位面積当たりのエネルギー量をより高めることができる。
 好ましくは、制御部は、変向部から放射状に延びる複数の直線を含む走査パターンに従ってレーザ光が走査されるように走査機構を制御する。
 これにより、変向部において単位面積当たりのエネルギー量をより高めることができる。
 好ましくは、走査パターンは、レーザ光の走査方向を変向部よりも外側において折り返すパターンを含む。
 これにより、変向部においてレーザ光のパワーが集中し過ぎるのが好ましくない場合において、変向部よりも外側の領域にレーザ光のパワーを分散させることができる。
 好ましくは、走査パターンは、変向部を囲む曲線と変向部とを結ぶ直線を含む。
 これにより、平面視において曲線を有する加工形状(典型的には円形の穴)を被加工領域内に形成することができる。
 好ましくは、走査パターンは、変向部と変向部を囲む多角形の辺とを結ぶ直線を含む。
 これにより、平面視において多角形を有する加工形状を被加工領域内に形成することができる。
 本発明によれば、加工速度の低下を防ぎつつ加工品質を高めることを可能にするレーザ加工方法およびレーザ加工装置を提供することができる。
本実施の形態に係るレーザ加工装置の構成例を示す図である。 ワークの表面を加工するためのレーザ光の走査の例を示した概略図である。 本発明の実施の形態に係るレーザ加工方法によるレーザ光の走査の原理を示した図である。 本発明の実施の形態に係るレーザ加工のためのレーザ光の走査パターンの一例を示した図である。 本発明の実施の形態に係るレーザ加工の結果を説明するためのワークの模式的な断面図である。 ワークの被加工領域から深さ方向に沿って、被加工領域に形成された穴を撮影した結果を示した図である。 本発明の実施の形態に係るレーザ加工方法を説明するためのフローチャートである。 本発明の実施の形態に係るレーザ加工方法におけるレーザ光の走査パターンの一例を示した図である。 本発明の実施の形態に係るレーザ加工方法におけるレーザ光の走査パターンの別の例を示した図である。 本発明の実施の形態に係るレーザ加工方法におけるレーザ光の走査パターンのさらに別の例を示した図である。 本発明の実施の形態に係るレーザ加工方法におけるレーザ光の走査パターンのさらに別の例を示した図である。 本発明の実施の形態に係るレーザ加工方法におけるレーザ光の走査パターンのさらに別の例を示した図である。 本発明の実施の形態に係るレーザ加工方法におけるレーザ光の走査パターンのさらに別の例を示した図である。 本発明の実施の形態に係るレーザ加工方法におけるレーザ光の走査パターンのさらに別の例を示した図である。 本発明の実施の形態に係るレーザ加工方法におけるレーザ光の走査パターンのさらに別の例を示した図である。 本発明の実施の形態に係るレーザ加工方法におけるレーザ光の走査パターンのさらに別の例を示した図である。 本発明の実施の形態に係るレーザ加工方法におけるレーザ光の走査パターンのさらに別の例を示した図である。 本発明の実施の形態に係るレーザ加工方法による加工の一例を示した模式図である。 本発明の実施の形態に係るレーザ加工方法による加工の他の例を示した模式図である。
 本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰り返さない。
 <1.レーザ加工装置およびレーザ加工方法>
 図1は、本実施の形態に係るレーザ加工装置の構成例を示す図である。図1を参照して、本発明の実施の形態に係るレーザ加工装置100は、コントローラ101と、ヘッド部102と、ケーブル103とを含む。
 コントローラ101は、レーザ光を発するレーザ光源111と、制御部112とを含む。レーザ光源111の種類は特に限定されない。たとえば、レーザ光源111に、ファイバレーザを用いることができる。レーザ光源111は、YAGレーザなどの固体レーザ、あるいはCOレーザなどのガスレーザであってもよい。レーザ光源111からのレーザ光は、たとえばパルス光である。しかしながら、レーザ光は、連続(CW)光であってもよい。制御部112は、レーザ加工装置100を統括的に制御する。
 本発明の実施の形態において、レーザ光のパワー(平均出力)は特に限定されるものではない。本発明の実施形態の1つの例において、レーザ光の平均パワーは20Wである。本発明の実施の形態に係るレーザ加工装置およびレーザ加工方法は、従来のレーザ加工装置の平均パワー(たとえば50W以上)に比べて低パワーのレーザ光を利用することができる。しかしながら本発明は、低パワーのレーザ光を用いるものと限定されないことに注意すべきである。
 ヘッド部102は、ケーブル103によってコントローラ101に接続される。たとえばケーブル103は、レーザ光源111からの光をヘッド部102に伝送するための光ファイバケーブル、制御部112からの制御信号をヘッド部102に伝送するための信号ケーブル、およびヘッド部102に電力を供給するための電源ケーブル等を含むことができる。
 ヘッド部102は、レーザ光源111により発生したレーザ光を走査するための走査機構120を含む。走査機構120は、ミラー121と、ミラー121を駆動する駆動部122とを含む。レーザ光源111により発生したレーザ光は、ミラー121において反射されて、ステージ10に置かれたワーク11の表面に照射される。ワーク11の表面のうちの被加工領域11aにレーザ光20が照射されることにより、被加工領域11aが加工される。
 駆動部122は、制御部112からの制御信号に応答してミラー121を駆動する。これによりレーザ光20が走査される。走査機構120は、たとえばガルバノミラーによって実現可能である。走査機構120によるレーザ光の走査の方向は、1次元方向、2次元方向、または、その両方であってもよい。
 この実施の形態では、コントローラ101とヘッド部102とが別体である。しかし、コントローラ101とヘッド部102とが1つの筐体に収容されてもよい。
 図2は、ワークの表面を加工するためのレーザ光の走査の例を示した概略図である。図2を参照して、被加工領域11aは、図1に示されたワーク11の表面の一部であるとともにレーザ加工の処理が施される単位領域である。たとえば、レーザ光は、パルス光であり、かつ被加工領域11a上を往復するように走査される。スポット21は、被加工領域11aにおいてレーザ光が照射された場所を表す。
 被加工領域11aの周縁部では、レーザ光の走査方向が変向されるので、レーザ光の走査速度が低下する。被加工領域11aの中心部では、被加工領域11aの周縁部に比べてレーザ光の走査速度が大きい。
 スポット21の位置に形成される穴の深さは、単位面積当たりのエネルギー密度に依存する。被加工領域11aの周縁部では、レーザ光の走査速度が低いために、単位面積当たりのエネルギー密度が高い。このため、図2の平面図および断面図によって示されるように、被加工領域11aの周縁部において、より深いスポットが形成される。一方、被加工領域11aの中心部では、レーザ光の走査速度が大きいために、単位面積当たりのエネルギー密度が低い。レーザ光のパワーが小さい場合には、被加工領域11aの周縁部に比べて、被加工領域11aの中心部では浅い穴が形成されやすい。このため、被加工領域11a全体では、レーザ光による加工が不十分となることが起こり得る。
 本発明の実施の形態では、レーザ光の走査の改善によって、低いパワーのレーザ光であっても、被加工領域11aにマーキングあるいは穴の形成など所望の加工を施すことができる。以下、本発明の実施の形態について詳細を説明する。
 図3は、本発明の実施の形態に係るレーザ加工方法によるレーザ光の走査の原理を示した図である。図1および図3を参照して、本発明の実施の形態では、被加工領域11a内の中心部11bにおいて、レーザ光の走査方向が変向される。レーザ光の走査方向が変向される位置では、レーザ光の走査速度が低下するために単位面積当たりのエネルギー密度が高くなる。したがって図3に示すようにレーザ光を走査することにより、被加工領域11aの中心部11bにおいて単位面積当たりのエネルギー密度を高くすることができる。
 図4は、本発明の実施の形態に係るレーザ加工のためのレーザ光の走査パターンの一例を示した図である。図4を参照して、被加工領域11aの中心部11bにおいてレーザ光の走査方向を変向することが繰り返される。被加工領域11aの中心部11bでは、レーザ光の走査方向が複数回にわたり変向されるため、被加工領域11aの中心部において、単位面積当たりのエネルギーをより高くすることができる。これにより、より深い穴を形成することができる。
 一実施の形態では、レーザ加工装置100の制御部112および走査機構120は、被加工領域11aの中心部11bにおいて、レーザ光の走査方向を、変向される前の走査方向に対して鋭角をなす方向に変向する。これにより、たとえば加工速度の大幅な低下が生じない程度において、被加工領域11aの中心部11bにおいてレーザ光の走査速度をより低下させることができる。したがって被加工領域11aの中心部にエネルギーをより一層集中させることができる。
 図5は、本発明の実施の形態に係るレーザ加工の結果を説明するためのワーク11の模式的な断面図である。(A)は、図2に示した一般的なレーザ光の走査方法によるワークの加工結果を模式的に示した断面図である。(B)は、本発明の実施の形態に係るレーザ加工方法によるワークの加工結果を模式的に示した断面図である。図6は、ワーク11の被加工領域11aから深さ方向に沿って、被加工領域11aに形成された穴を撮影した結果を示した図である。図5(A)と図5(B)とでは、ワーク11の材質およびレーザ光のパワーは同じであり、レーザ光の走査の点で異なっている。
 図5(A)および図6を参照して、図2に示した一般的なレーザ光の走査方法によれば、被加工領域11aの周縁部に深い穴が形成される。被加工領域11aの中心部では、ワーク11の表面から50μmの深さにおいて、穴が形成された痕を確認することが難しい。これに対して図5(B)および図6に示されるように、本発明の実施の形態によれば、被加工領域11aの中心部に形成された穴の深さが、ワーク11の表面から少なくとも200μmに達していることを確認することができる。
 また、図2に示した一般的なレーザ光の走査方法を用いた場合、アルミニウムの材質のワーク11に、深さ100μmの穴を形成するために要した時間は約62秒であった。これに対して、本発明の実施の形態によれば、約23秒で深さ100μmの穴をワーク11に形成することができた。一方、穴を形成するための時間を10秒に固定した場合、図2に示した一般的なレーザ光の走査方法では、形成された穴の深さは、15μmであった。これに対して、本発明の実施の形態によるレーザ加工方法によって同じ径の穴を形成した場合、その穴の深さは60μmであった。
 このように、本発明の実施の形態によれば、レーザ光のパワー(出力)を上げずに加工速度を上げることができる。これにより加工時間を短縮できる。あるいは、本発明の実施の形態によれば、同一の加工(たとえばマーキング、穴の形成等)であれば、より低パワーのレーザ光によって、その加工が実現できる。したがって、レーザ加工装置をより安価に実現することができる。
 図7は、本発明の実施の形態に係るレーザ加工方法を説明するためのフローチャートである。図1および図7を参照して、処理が開始されると、ステップS1において、レーザ加工装置100は、被加工領域11aにおいてレーザ光を走査する。より詳細には、レーザ加工装置100は、被加工領域11aの所定の変向部においてレーザ光の走査方向を複数回変向する。
 「所定の変向部」は、典型的には、被加工領域11aの中心部11bであるが、これに限定されない。後に例示されるように、「変向部」は、被加工領域11aの中心部11bからずれた場所であってもよい。
 図3に示されるように、レーザ加工装置100は、被加工領域11a内の変向部(たとえば中心部11b)に向けられたレーザ光の走査方向を、変向部において変向する。すなわち、レーザ加工装置100は、変向部において折り返すように、レーザ光を走査することを繰り返す。
 次に、ステップS2において、ワーク11上の全ての被加工領域11aが加工されたかどうかが判断される。この判断は、制御部112により実行される。全ての被加工領域11aが加工されたと判断された場合(ステップS2においてYES)、処理は終了する。一方、未加工の被加工領域11aが残っていると判断された場合(ステップS2においてNO)、処理はステップS3に進む。
 ステップS3において、制御部112は、次の被加工領域11aを加工するようにレーザ加工装置100を制御する。この制御には、たとえばレーザ光源111の制御および走査機構120の駆動部122の制御を含むことができる。ステップS3の処理が実行された後、全体の処理は、ステップS1に戻り、ステップS1の処理が全ての被加工領域11aに対して実行される。
 <2.レーザ光の走査の例>
 図8~図17に、本発明の実施の形態に係るレーザ加工方法によるレーザ光の走査パターンの例を示す。図8を参照して、レーザ光の走査パターンは、被加工領域11aの中心部11bを中心として、形状の等しい複数の扇型を等角度に配置したパターンである。レーザ光は、被加工領域11aの中心部11bから被加工領域11aの周縁部へと走査され、被加工領域11aの周縁部において円弧または直線に沿って走査される。次に、レーザ光は、被加工領域11aの周縁部から被加工領域11aの中心部11bへと走査されて、被加工領域11aの中心部11bから被加工領域11aの周縁部へと再び走査される。レーザ光の軌跡は、被加工領域11aの中心部11bから放射状に広がり、被加工領域11aの周縁部では、破線状の(言い換えると断続的な)円周を形成する。
 図9は、本発明の実施の形態に係るレーザ加工方法におけるレーザ光の走査パターンの別の例を示した図である。図9に示されるように、図8に示したパターンに比べて、扇形の配置の密度を疎にしたパターンである。図9に示したパターンでは、図8に示したパターンに比べて、扇型の中心角、および、隣あう2つの扇型パターンの成す角度が大きい。しかしながら扇型の中心角および隣あう2つの扇型のパターンの成す角度のいずれか一方を図8に示したパターンの対応する角度よりも大きくしてもよい。このような走査パターンも図9に示したパターンと同じく、扇形の配置の密度を図8に示したパターンに比べて疎にすることができる。
 図10は、本発明の実施の形態に係るレーザ加工方法におけるレーザ光の走査パターンのさらに別の例を示した図である。図10に示されたパターンは、図8に示したパターンから、被加工領域11aの周縁部の円弧または直線を除いたパターンである。レーザ光は、たとえば、1つの直線上を被加工領域11aの中心部11bと被加工領域11aの周縁部との間で往復される。次に、レーザ光は、別の直線上を、被加工領域11aの中心部11bと被加工領域11aの周縁部への間で往復される。図8あるいは図9に示されたパターンと同様に、レーザ光は、被加工領域11aの周縁部から被加工領域11aの中心部11bへと走査されて、中心部11bにおいて走査方向が変向され、被加工領域11aの中心部11bから周縁部に向けて走査される。
 図8~図10に示されたパターンでは、レーザ光を被加工領域11aの中心部11bへと向かう向きに走査するごとに、被加工領域11aの中心部11bにおいてレーザ光の走査方向を変向する。より具体的には、中心部11bに向けてレーザ光を走査する場合において、レーザ光の走査方向が変向される位置(変向部)は、被加工領域11aの中心点である。しかしながら本発明の実施の形態において、レーザ光の走査はこのように限定されるものではない。
 図11は、本発明の実施の形態に係るレーザ加工方法におけるレーザ光の走査パターンのさらに別の例を示した図である。図11に示されるように、走査パターンは、レーザ光の走査方向を中心部11bよりも外側において折り返すパターンを含んでもよい。レーザ光を走査するステップでは、走査方向を被加工領域11aの中心部11bにおいて変向することと、走査方向を中心部11bよりも外側において変向することとを組み合わせてもよい。これにより、被加工領域11aの全体にわたり、深い穴を形成することができる。また、被加工領域11aの中心部11bにおける加工が過度になる(たとえば穴が必要以上に深くなる)ことを抑えることができる。
 図12は、本発明の実施の形態に係るレーザ加工方法におけるレーザ光の走査パターンのさらに別の例を示した図である。図12に示されたパターンは、被加工領域11aの中心部11bが、点ではなく、ある大きさの面積を有する領域である点において図11に示されたパターンとは異なる。被加工領域11aの中心点に集中するエネルギーが高すぎる場合には、図12に示されたパターンを用いることができる。すなわち被加工領域11aの中心部11bは、点であると限定される必要はなく、被加工領域11aの中心点を含む、ある大きさの面積を有する領域であってもよい。
 なお、図12のパターンにおいて、中心部11bは、たとえば、被加工領域11aの全体の面積の1/3以下の面積を占める領域であると定義することができる。これにより、レーザ加工の際に中心部11bの加工が不十分となる(たとえば中心部11bが島状に残る)可能性を低減することができる。
 さらに、レーザ光の走査方向が変わる位置である変向部は、被加工領域11aの中心部であると限定される必要はない。図13は、本発明の実施の形態に係るレーザ加工方法におけるレーザ光の走査パターンのさらに別の例を示した図である。図13に示されるように、変向部11cは、被加工領域11aの中心部11bから外れた位置にあってもよい。なお、図12および図13では、中心部11bの手前においてレーザ光の走査方向を変向する走査パターンを示しているが、中心部11bを通過した後にレーザ光の走査方向を変向する走査パターンも可能である。
 図14は、本発明の実施の形態に係るレーザ加工方法におけるレーザ光の走査パターンのさらに別の例を示した図である。図14を参照して、図8に示される走査パターンに加えて、被加工領域11aの隅部11d,11e,11g,11fの各々から、被加工領域11aの内部に向けて放射状にレーザ光を走査するパターンが重ねられる。このようなパターンを採用することによって、被加工領域11aの全体を均一に深く掘ることができる。
 図15は、本発明の実施の形態に係るレーザ加工方法におけるレーザ光の走査パターンの別の例を示した図である。図15に示されたパターンは、図8に示されたパターンを縮小したパターンに相当する。被加工領域11aの中心部11b付近の狭い領域のみ加工することが必要である場合には、図15に示されたパターンを採用することができる。
 図16は、本発明の実施の形態に係るレーザ加工方法におけるレーザ光の走査パターンの別の例を示した図である。図16に示されるように、複数(たとえば2つ)のパターンをずらせて重ね合わせた走査パターンを用いてもよい。各パターンは、互いに同一であってもよい。その場合、各パターンは、たとえば図8に示されたパターンであってもよい。図16に示された例では、2つのパターンのうちの一方は、被加工領域11aの中心部11bにおいてレーザ光の走査方向が変向されるパターンであり、もう一方のパターンは、被加工領域11aの中心部11bとは異なる位置においてレーザ光の走査方向が変向されるパターンである。しかし、そのように限定されない。たとえば2つのパターンの両方が、被加工領域11aの中心部11bとは異なる位置においてレーザ光の走査方向が変向されるパターンであってもよい。
 図8~図16に示された走査パターンは、被加工領域11aの変向部(典型的には中心部11b)よりも外側の曲線上の点から変向部に向けてレーザ光を走査するステップ、および、変向部から曲線上の点に向けてレーザ光を走査するステップの少なくとも1つを実行することによって形成される。走査パターンは、変向部を囲む曲線と変向部とを結ぶ直線を含む。したがってレーザ光の走査の始点または終点が曲線上にある。図8~図16に示された走査パターンにおいて、曲線は円周である。しかし曲線の種類は円周に限定されない。たとえば、変向部を囲む曲線によって楕円が形成されてもよい。また、曲線は閉曲線に限定されず、開曲線であってもよい。たとえば曲線は円弧であってもよい。
 さらに、本発明の実施の形態は、曲線上にレーザ光の走査の始点または終点があるように限定されない。図17に示されるように、走査パターンは、被加工領域11aの変向部と変向部を囲む多角形の辺とを結ぶ直線を含んでもよい。レーザ光を走査するステップは、被加工領域11aの変向部(典型的には中心部11b)を囲む多角形の辺上の点から変向部に向けてレーザ光を走査するステップ、および、変向部から多角形の辺上の点に向けてレーザ光を走査するステップのうちの少なくとも一方を含んでもよい。図17に示された走査パターンにおいて、多角形は矩形である。しかしながら多角形の種類は限定されない。
 レーザ加工装置100は、上記のいずれかの走査パターンに沿って、レーザ光を走査する。このために、制御部112は、たとえば上記の走査パターンのすべて、あるいは一部を実行するためのプログラムを記憶することができる。制御部112は、そのプログラムを実行させることにより、上記に例示された走査パターンを選択してもよい。
 <3.レーザ加工の応用例>
 図18は、本発明の実施の形態に係るレーザ加工方法による加工の一例を示した模式図である。図18を参照して、たとえば、本発明の実施の形態に係るレーザ加工方法は、ワーク11の表面にコード15をマーキングするために利用することができる。コード15は、たとえば二次元に配置された複数のセル12を含む。被加工領域11aの各々に対してレーザ加工が施されることにより、各々のセル12が形成される。
 各々のセル12を形成するために、上記したレーザ光の走査が繰り返して実行される。これにより、視認性の高いマークを形成することができる。たとえば製造現場では、ワーク11の表面にコード15をマーキングした後に、コード15の上に油膜あるいは塗料の膜が付着することが考えられる。被加工領域11aに形成された穴が浅い場合には、その穴が油膜あるいは塗料の膜によって埋められる可能性が高くなるので、コードの視認性が低下しやすい。このためにコードの読取に障害が起こりやすい。しかしながら本発明の実施の形態によれば、被加工領域11aの中心部に、より深い穴を形成することができるので、穴が油膜によって完全に埋まる可能性を低くすることができる。したがって、本発明の実施の形態によれば、コード15の上に油膜あるいは塗料の膜が付着した場合にも、コード15の高い視認性を維持することができる。
 また、ワークによっては、後工程において切削加工、研磨等が必要なものがある。本発明の実施の形態によれば、被加工領域11aに、より深い穴を形成することができる。したがって、上記のような後工程が施される場合にも、形成されたコードが消失する可能性をより低くすることができる。
 さらに、本発明の実施の形態によれば、上記の図8~図17に示した走査パターンを採用することによって、加工された穴の径を、ある程度の深さまで一定にすることができる。これにより、切削加工、研磨等の後工程がワーク11に施された場合であっても、セルのサイズを保つことができる。
 また、バーコードあるいは二次元コードの印字においてはセル中心のピッチが正確ほどコードの品質が良いとされる。本発明の実施の形態によれば、被加工領域11aの中心部11bを最も深く掘ることができるので、セル中心のピッチの精度を高めることができる。したがってワーク表面に品質の高いコードを印字することができる。
 さらに、本発明の実施の形態に係るレーザ加工方法は、ワーク表面にコードを印字する方法に限定されない。図19は、本発明の実施の形態に係るレーザ加工方法による加工の他の例を示した模式図である。図19を参照して、たとえば、本発明の実施の形態に係るレーザ加工方法は、ワーク11の表面に直線状の溝16を形成するために利用することができる。溝16は、一次元状に連続的に配置された複数のセル12によって構成される。本発明の実施の形態によれば、より深い溝をワーク11の表面に形成することができる。複数のセル12は、たとえば等ピッチで配置されたセルである。しかしながら、複数のセル12は、不等ピッチのセルであってもよい。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 10 ステージ、11 ワーク、11a 被加工領域、11b 中心部、11c 変向部、11d,11e,11f,11g 隅部、12 セル、15 コード、16 溝、20 レーザ光、21 スポット、100 レーザ加工装置、101 コントローラ、102 ヘッド部、103 ケーブル、111 レーザ光源、112 制御部、120 走査機構、121 ミラー、122 駆動部、S1,S2,S3 ステップ。

Claims (16)

  1.  レーザ光を発するレーザ光源と、前記レーザ光を走査する走査機構とを備えたレーザ加工装置によるレーザ加工方法であって、
     被加工領域内において前記レーザ光を走査するステップを備え、
     前記走査するステップは、
     前記被加工領域の中の変向部において、前記レーザ光の走査方向を複数回変向することを含む、レーザ加工方法。
  2.  前記走査方向を前記変向部において前記変向することは、
     前記変向部において、変向される前の走査方向に対して鋭角をなす方向に前記レーザ光の前記走査方向を変向することを含む、請求項1に記載のレーザ加工方法。
  3.  前記走査方向を前記変向部において前記変向することは、
     前記レーザ光を前記変向部へと向かう向きに走査するごとに、前記変向部において、前記走査方向を変向することを含む、請求項1または請求項2に記載のレーザ加工方法。
  4.  前記走査するステップは、
     前記走査方向を前記変向部において変向することと、前記走査方向を前記変向部よりも外側において変向することとを組み合わせることを含む、請求項1または請求項2に記載のレーザ加工方法。
  5.  前記走査するステップは、
     前記変向部よりも外側の曲線上の点から前記変向部に向けて前記レーザ光を走査するステップ、および、前記変向部から前記曲線上の前記点に向けて前記レーザ光を走査するステップのうちの少なくとも一方を含む、請求項1から請求項4のいずれか1項に記載のレーザ加工方法。
  6.  前記走査するステップは、
     前記変向部を囲む多角形の辺上の点から前記変向部に向けて前記レーザ光を走査するステップ、および、前記変向部から前記多角形の前記辺上の点に向けて前記レーザ光を走査するステップのうちの少なくとも一方を含む、請求項1から請求項4のいずれか1項に記載のレーザ加工方法。
  7.  前記変向部は、前記被加工領域の中央に位置する、請求項1から請求項6のいずれか1項に記載のレーザ加工方法。
  8.  次の被加工領域に対して前記走査するステップを実行することを繰り返して、複数のセルを形成するステップをさらに備える、請求項1から請求項7のいずれか1項に記載のレーザ加工方法。
  9.  前記複数のセルは、二次元に配置される、請求項8に記載のレーザ加工方法。
  10.  前記複数のセルは、一次元に配置される、請求項8に記載のレーザ加工方法。
  11.  レーザ光を発するレーザ光源と、
     前記レーザ光を走査する走査機構と、
     前記走査機構を制御する制御部とを備え、
     前記制御部は、被加工領域の中の変向部において、前記レーザ光の走査方向を複数回変向するように、前記走査機構を制御する、レーザ加工装置。
  12.  前記制御部は、変向される前の走査方向に対して鋭角をなす方向に、前記レーザ光の前記走査方向を変向するように前記走査機構を制御する、請求項11に記載のレーザ加工装置。
  13.  前記制御部は、
     前記変向部から放射状に延びる複数の直線を含む走査パターンに従って前記レーザ光が走査されるように前記走査機構を制御する、請求項11または請求項12に記載のレーザ加工装置。
  14.  前記走査パターンは、前記レーザ光の走査方向を前記変向部よりも外側において折り返すパターンを含む、請求項13に記載のレーザ加工装置。
  15.  前記走査パターンは、
     前記変向部を囲む曲線と前記変向部とを結ぶ直線を含む、請求項13または請求項14に記載のレーザ加工装置。
  16.  前記走査パターンは、
     前記変向部と前記変向部を囲む多角形の辺とを結ぶ直線を含む、請求項13または請求項14に記載のレーザ加工装置。
PCT/JP2017/022337 2016-07-13 2017-06-16 レーザ加工方法およびレーザ加工装置 WO2018012195A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17827326.4A EP3486026A4 (en) 2016-07-13 2017-06-16 LASER TREATMENT METHOD AND LASER TREATMENT APPARATUS
CN201780035844.1A CN109311125A (zh) 2016-07-13 2017-06-16 激光加工方法以及激光加工装置
US16/221,675 US20190118289A1 (en) 2016-07-13 2018-12-17 Laser machining method and laser machining apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-138630 2016-07-13
JP2016138630A JP6769146B2 (ja) 2016-07-13 2016-07-13 レーザ加工方法およびレーザ加工装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/221,675 Continuation US20190118289A1 (en) 2016-07-13 2018-12-17 Laser machining method and laser machining apparatus

Publications (1)

Publication Number Publication Date
WO2018012195A1 true WO2018012195A1 (ja) 2018-01-18

Family

ID=60952954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022337 WO2018012195A1 (ja) 2016-07-13 2017-06-16 レーザ加工方法およびレーザ加工装置

Country Status (5)

Country Link
US (1) US20190118289A1 (ja)
EP (1) EP3486026A4 (ja)
JP (1) JP6769146B2 (ja)
CN (1) CN109311125A (ja)
WO (1) WO2018012195A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102310466B1 (ko) * 2019-06-27 2021-10-13 세메스 주식회사 기판 처리 장치 및 방법
EP3995237A1 (de) * 2020-11-05 2022-05-11 Siemens Energy Global GmbH & Co. KG Bestrahlungsstrategie für die additive herstellung eines bauteils und entsprechendes bauteil
CN116174968B (zh) * 2023-03-24 2023-09-29 中国科学院西安光学精密机械研究所 一种异形孔激光加工的直线型轨迹规划方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002178157A (ja) * 2000-12-07 2002-06-25 Daido Steel Co Ltd 肉盛溶接方法および肉盛溶接装置
JP2004512690A (ja) * 2000-10-26 2004-04-22 エグシル テクノロジー リミテッド レーザ加工の制御
JP2007268576A (ja) 2006-03-31 2007-10-18 Hitachi Via Mechanics Ltd レーザ加工方法
JP2011170359A (ja) 2011-02-24 2011-09-01 Hoya Corp マスクブランク用ガラス基板、マスクブランク、マスクおよび反射型マスク並びにこれらの製造方法
JP2011173146A (ja) * 2010-02-24 2011-09-08 Mazda Motor Corp レーザ溶接方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3557512B2 (ja) * 1997-12-03 2004-08-25 ミヤチテクノス株式会社 2次元バーコードのレーザマーキング方法
DE10207288B4 (de) * 2002-02-21 2005-05-04 Newson Engineering Nv Verfahren zum Bohren von Löchern mittels eines Laserstrahls in einem Substrat, insbesondere in einem elektrischen Schaltungsubstrat
JP6002392B2 (ja) * 2012-01-20 2016-10-05 パナソニック デバイスSunx株式会社 レーザ加工装置
US20140273752A1 (en) * 2013-03-13 2014-09-18 Applied Materials, Inc. Pad conditioning process control using laser conditioning
US9358635B2 (en) * 2013-12-19 2016-06-07 Siemens Energy, Inc. Rastered laser melting of a curved surface path with uniform power density distribution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512690A (ja) * 2000-10-26 2004-04-22 エグシル テクノロジー リミテッド レーザ加工の制御
JP2002178157A (ja) * 2000-12-07 2002-06-25 Daido Steel Co Ltd 肉盛溶接方法および肉盛溶接装置
JP2007268576A (ja) 2006-03-31 2007-10-18 Hitachi Via Mechanics Ltd レーザ加工方法
JP2011173146A (ja) * 2010-02-24 2011-09-08 Mazda Motor Corp レーザ溶接方法
JP2011170359A (ja) 2011-02-24 2011-09-01 Hoya Corp マスクブランク用ガラス基板、マスクブランク、マスクおよび反射型マスク並びにこれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3486026A4

Also Published As

Publication number Publication date
JP6769146B2 (ja) 2020-10-14
JP2018008291A (ja) 2018-01-18
EP3486026A1 (en) 2019-05-22
US20190118289A1 (en) 2019-04-25
EP3486026A4 (en) 2020-01-22
CN109311125A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2018012195A1 (ja) レーザ加工方法およびレーザ加工装置
JP5146948B2 (ja) 金属表面加工方法
US7807944B2 (en) Laser processing device, processing method, and method of producing circuit substrate using the method
JP2005511313A (ja) レーザーフライス加工方法
US20140263212A1 (en) Coordination of beam angle and workpiece movement for taper control
JP2008504964A (ja) ターゲット表面材料を加工するレーザベース方法およびシステム並びにその製造物
JP2008279503A (ja) マルチレーザシステム
JP2007029952A (ja) レーザ加工装置及びレーザ加工方法
JP4711774B2 (ja) 平板状ワークの加工方法
US20060097430A1 (en) UV pulsed laser machining apparatus and method
WO2015136948A1 (ja) レーザ加工方法
JP7006022B2 (ja) 面取り加工方法
CN107662053A (zh) 脆性材料基板的激光加工方法及激光加工装置
CN107662054B (zh) 脆性材料基板的激光加工方法及激光加工装置
JP2006315035A (ja) レーザーマーキング方法及びその装置
KR101952756B1 (ko) 고속 스캐너를 이용한 가공물 절단 방법 및 절단 장치
JP2005101305A (ja) 無機窒化物部材のマーキング方法および無機窒化物部材
JP6920762B2 (ja) 脆性材料基板のレーザー加工装置
CN107662055B (zh) 脆性材料基板的激光加工方法及激光加工装置
CN111716025B (zh) 用于为蓝宝石表镜加标记的方法
KR102320500B1 (ko) 듀얼 레이저 제염 장치
US20110198325A1 (en) Relief manufacturing apparatus and relief manufacturing method
JP7144119B2 (ja) レーザー加工装置およびレーザー加工装置による長尺状の被加工物の加工方法
KR20230129791A (ko) 레이저 가공장치 및 레이저 가공방법
JP2017104875A (ja) レーザー加工装置及びレーザー加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017827326

Country of ref document: EP

Effective date: 20190213