WO2018012143A1 - 撮像素子および撮像装置 - Google Patents

撮像素子および撮像装置 Download PDF

Info

Publication number
WO2018012143A1
WO2018012143A1 PCT/JP2017/020904 JP2017020904W WO2018012143A1 WO 2018012143 A1 WO2018012143 A1 WO 2018012143A1 JP 2017020904 W JP2017020904 W JP 2017020904W WO 2018012143 A1 WO2018012143 A1 WO 2018012143A1
Authority
WO
WIPO (PCT)
Prior art keywords
control signal
unit
pixel
image signal
signal transmission
Prior art date
Application number
PCT/JP2017/020904
Other languages
English (en)
French (fr)
Inventor
正起 小田原
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US16/314,937 priority Critical patent/US10998373B2/en
Priority to JP2018527435A priority patent/JPWO2018012143A1/ja
Priority to EP17827275.3A priority patent/EP3484146A4/en
Publication of WO2018012143A1 publication Critical patent/WO2018012143A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • H01L27/14812Special geometry or disposition of pixel-elements, address lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • This technology relates to an image sensor and an imaging device.
  • the present invention relates to an imaging device and an imaging device configured by a plurality of semiconductor chips.
  • an image sensor including a chip in which a pixel is formed and a chip in which a circuit for processing an image signal from the pixel is formed is used.
  • the pixel is composed of an analog circuit, and a transistor having a relatively high withstand voltage is used.
  • a circuit for processing an image signal is mainly composed of a digital circuit, and a transistor having a relatively low withstand voltage is used.
  • a solid-state imaging device that includes a first chip having a pixel, a circuit that processes a signal output from the first chip, and a second chip that has a circuit that generates a control signal for the pixel has been proposed (for example, see Patent Document 1.)
  • this solid-state imaging device after the first chip and the second chip are bonded together, vias penetrating the first chip are formed, and these chips are electrically connected by the metal embedded in the vias, and the image signal In addition, control signals are transmitted.
  • Such a via is referred to as TSV (Through SiliconiaVia).
  • the present technology has been created in view of such a situation, and an object thereof is to simplify wiring such as a signal line in an imaging device constituted by two semiconductor chips.
  • the present technology has been made to solve the above-described problems.
  • the first aspect of the present technology provides a charge transfer unit that transfers charges generated in accordance with incident light to a charge holding unit in accordance with a control signal.
  • a plurality of pixels, and a pixel chip including a plurality of first control signal transmission units that transmit the control signal to each of the charge transfer units, and the control signal for each of the charge transfer units of the plurality of pixels.
  • a circuit chip provided with a plurality of second control signal transmission units provided corresponding to the first control signal transmission units and transmitting the generated control signals, respectively. It is an imaging device. Accordingly, there is an effect that the control signals of the plurality of charge transfer units are transmitted by the first control signal transmission unit and the second control signal transmission unit.
  • the plurality of first control signal transmission units include a plurality of first control signal pads
  • the plurality of second control signal transmission units include a plurality of second control signal pads. It may be constituted by a control signal pad. This brings about the effect that the respective control signals of the plurality of charge transfer units are transmitted by the first control signal pad and the second control signal pad.
  • the plurality of first control signal pads may be arranged in a central portion of the pixel chip. As a result, there is an effect that the control signal is transmitted by the first control signal pad arranged at the center of the pixel chip.
  • the plurality of first control signal pads and the plurality of second control signal pads may be connected by thermocompression bonding.
  • the first control signal pad and the second control signal pad are connected by thermocompression bonding.
  • the plurality of first control signal transmission units and the plurality of second control signal transmission units may be made of copper.
  • the first control signal pad and the second control signal pad made of copper are used.
  • the pixel chip further includes a first image signal transmission unit that transmits an image signal generated according to the charge transferred to the charge holding unit
  • the circuit chip includes: An analog-to-digital conversion unit that performs analog-to-digital conversion on the generated image signal, and a second that is provided corresponding to the first image signal transmission unit and transmits the generated image signal to the analog-to-digital conversion unit
  • An image signal transmission unit may be further provided. This brings about the effect that the image signals transmitted by the first image signal transmission unit and the second image signal transmission unit are converted from analog to digital.
  • the first image signal transmission unit is configured by a first image signal pad
  • the second image signal transmission unit is configured by a second image signal pad.
  • the second image signal transmission unit may be configured by a second image signal pad. This brings about the effect that the image signal is transmitted by the first image signal pad and the second image signal pad.
  • the first image signal pad may be disposed at a central portion of the pixel chip. This brings about the effect that the image signal is transmitted by the first image signal pad arranged at the center of the pixel chip.
  • the analog-digital conversion unit may be distributed and arranged for each pixel unit including the plurality of pixels. This brings about the effect that an analog-digital conversion unit is arranged for each pixel unit.
  • control signal generation unit generates a signal that causes the charge transfer units of the plurality of pixels to sequentially transfer the generated charges as the control signal.
  • the generated charge may be transferred to the charge holding unit sequentially for each of the plurality of pixels. As a result, the charge transfer by the charge transfer units of the plurality of pixels is performed sequentially.
  • the second aspect of the present technology provides a plurality of pixels each having a charge transfer unit that transfers charges generated according to incident light to a charge holding unit according to a control signal, and the control signal for each of the charge transfer units.
  • a plurality of first control signal transmission units that transmit the image signal;
  • a pixel chip that includes a first image signal transmission unit that transmits an image signal generated according to the charge transferred to the charge holding unit;
  • a plurality of second control signals that are provided corresponding to the control signal generation unit and the first control signal transmission unit, respectively, that transmit the generated control signal.
  • an excellent effect of simplifying the wiring of the signal line can be obtained in the imaging device constituted by two semiconductor chips.
  • the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • composition of imaging device 1 in an embodiment of this art. It is a figure showing an example of composition of pixel unit 100 in an embodiment of this art. It is a figure showing an example of composition of pixel 110 in an embodiment of this art. It is a figure showing an example of composition of analog-digital conversion unit 200 in an embodiment of this art. It is a figure showing an example of composition of analog-digital conversion part 220 in an embodiment of this art. It is a figure which shows the structural example of the vertical scanning part 21 in embodiment of this technique. It is a figure showing an example of composition of a semiconductor chip in an embodiment of this art. It is a figure which shows the example of arrangement
  • FIG. 1 is a diagram illustrating a configuration example of an imaging device 1 according to an embodiment of the present technology.
  • the imaging device 1 includes a pixel chip 10 and a circuit chip 20.
  • the pixel chip 10 includes a pixel unit 100.
  • the circuit chip 20 includes an analog-to-digital (AD) conversion unit 200, a vertical scanning unit 21, a timing control unit 22, a reference signal generation unit 23, a sense amplifier 24, and a signal processing unit 25.
  • the imaging device 1 is configured by joining these two chips.
  • the pixel unit 100 includes a plurality of pixels that generate image signals.
  • the pixel chip 10 shown in the figure is configured by arranging a plurality of pixel units 100 in a two-dimensional lattice pattern.
  • a control signal is input from the vertical scanning unit 21 to the pixel unit 100 via the signal line 11. Further, the image signal generated by the pixel of the pixel unit 100 is output via the signal line 12. Details of the configuration of the pixel unit 100 will be described later.
  • the analog-digital conversion unit 200 performs analog-digital conversion on the image signal output from the pixel unit 100.
  • the analog-digital conversion unit 200 is arranged for each pixel unit 100 described above, and performs analog-digital conversion of the image signal output by the corresponding pixel unit 100.
  • the digital image signal after analog-digital conversion is output via a signal line 15. Details of the configuration of the analog-digital conversion unit will be described later.
  • the vertical scanning unit 21 generates a control signal for the pixel unit 100.
  • the vertical scanning unit 21 generates and outputs a control signal for each row of the pixel unit 100 in the pixel chip 10.
  • a control signal is commonly input to the pixel units 100 arranged in one row of the pixel chip 10.
  • the vertical scanning unit 21 is an example of a control signal generation unit described in the claims.
  • the reference signal generator 23 generates a reference signal and outputs it to the analog-digital conversion unit 200. This reference signal is output via the signal line 14.
  • the reference signal is a signal whose voltage changes in a ramp shape.
  • the timing control unit 22 controls the vertical scanning unit 21, the reference signal generation unit 23, and the analog / digital conversion unit 200.
  • the timing control unit 22 generates and outputs control signals for controlling these operation timings.
  • the sense amplifier 24 amplifies the digital image signal output from the analog / digital conversion unit 200.
  • the sense amplifier 24 sequentially reads digital image signals from the plurality of analog-digital conversion units 200, amplifies them, and outputs them to the signal processing unit 25.
  • the signal processing unit 25 processes the digital image signal output from the sense amplifier 24. As this processing, for example, black level adjustment processing or image signal rearrangement processing can be performed.
  • the signal processing unit 25 corresponds to the processing circuit described in the claims.
  • FIG. 2 is a diagram illustrating a configuration example of the pixel unit 100 according to the embodiment of the present technology. The figure shows the configuration of the pixel unit 100 and the connection of the signal lines of the pixel chip 10 and the circuit chip 20.
  • the pixel 110 has a photoelectric conversion element that generates an image signal, and generates an image signal corresponding to incident light. As shown in the figure, the pixels 110 are arranged in a two-dimensional grid. In the figure, a pixel unit 100 in which 10 ⁇ 10 pixels 110 are arranged is assumed. A control signal is input to the pixel 110 from the vertical scanning unit 21 via the signal line 11. The signal line 11 includes a plurality of signal lines and is wired to the pixel 110. The pixel 110 arranged at the upper left of the pixel unit 100 in the figure will be described as an example. A transfer gate signal line TRG (Transfer Gate) 00, a reset signal line RST (Reset) 0, and a vertical selection signal line VSEL (Vertical Select). ) 0 is wired to the pixel 110.
  • TRG Transfer Gate
  • RST reset signal line
  • VSEL Vertical Selection signal
  • the transfer gate signal line TRG00 is a signal line that transmits a control signal to a charge transfer unit described later. This control signal is a control signal for transferring the charge generated by the photoelectric conversion unit to the charge holding unit. Further, the transfer gate signal line TRG00 is individually wired to the pixel 110 arranged in the pixel unit 100, and a different control signal is transmitted to each pixel 110. In the figure, row and column numbers are given to identify these signal lines. For example, TRG00 represents a signal line wired to the pixel 110 arranged in the first row and first column, and TRG19 represents a signal line wired to the pixel 110 arranged in the second row and tenth column.
  • the reset signal line RST0 is a signal line that transmits a control signal for simultaneously resetting the pixels 110 arranged in one row.
  • the selection signal line VSEL0 is a signal line that transmits a control signal for simultaneously selecting the pixels 110 arranged in one row. In the figure, these signal lines are identified by adding row numbers. For example, RST0 and VSEL0 represent signal lines wired to the pixels 110 arranged in the first row, respectively.
  • the transfer gate signal line TRG00, the reset signal line RST0, and the selection signal line VSEL0 are connected to the gates of the MOS transistors.
  • an ON signal a voltage equal to or higher than the threshold voltage between the gate and the source of the MOS transistor
  • the image signal generated by the pixel 110 is transmitted to the analog-digital conversion unit 200 via the signal line 12.
  • the signal line 12 includes a plurality of signal lines and is wired for each column. That is, one of the signal lines 12 is commonly connected to the pixels 110 arranged in one column.
  • Each signal line constituting the signal line 11 is arranged between the pixel chip 10 and the circuit chip 20 and transmits a control signal. This state will be described by taking the transfer gate signal line TRG00 as an example.
  • the transfer gate signal line TRG00 transmits a control signal via the first control signal transfer unit 102 and the second control signal transfer unit 202.
  • the first control signal transmission unit 102 is disposed in the pixel chip 10 and transmits a control signal for the transfer gate signal line TRG00.
  • the second control signal transmission unit 202 is disposed in the circuit chip 20 and transmits a control signal of the transfer gate signal line TRG00.
  • As the first control signal transmission unit 102 a first control signal pad that is a pad formed on the bonding surface of the pixel chip 10 can be used.
  • a second control signal pad which is a pad formed on the bonding surface of the circuit chip 20 can be used as the second control signal transmission unit 202.
  • pads are composed of conductors. Further, when the pixel chip 10 and the circuit chip 20 are joined, the pads are aligned so as to contact each other. Thereafter, the pixel chip 10 and the circuit chip 20 can be joined by thermocompression bonding. At this time, an electrical connection can be obtained between these pads.
  • pads made of copper can be used.
  • the first control signal transmission unit 102 and the pixel 110 are wired by the first control signal line 101 to transmit the control signal.
  • the second control signal transmission unit 202 and the vertical scanning unit 21 are wired by the second control signal line 201 to transmit the control signal.
  • the control signal is transmitted through the transfer gate signal line TRG00.
  • the first control signal transmission unit 102 and the second control signal are also used in the control signals (control signals of the transfer gate signal lines TRG01 to TRG09) of the charge transfer unit 113 of the other pixels 110 arranged in the pixel unit 100. It can be transmitted by the transmission unit 202.
  • the control signals are transmitted by the plurality of first control signal transmission units 102 and the plurality of second control signal transmission units 202. Note that signals can be transmitted by the first control signal transmission unit 102 and the second control signal transmission unit 202 also in other signal lines such as the reset signal line RST0.
  • each signal line constituting the signal line 12 is arranged between the pixel chip 10 and the circuit chip 20 to transmit an image signal.
  • image signals are transmitted via the first image signal transmission unit 108 and the second image signal transmission unit 204.
  • the first image signal transmission unit 108 is disposed in the pixel chip 10 and transmits an image signal.
  • the second image signal transmission unit 204 is disposed on the circuit chip 20 and transmits an image signal.
  • a first image signal pad that is a pad formed on the bonding surface of the pixel chip 10 can be used.
  • a second image signal pad that is a pad formed on the bonding surface of the circuit chip 20 can be used as the second image signal transmission unit 204. Similar to the pads used as the first control signal transmission unit 102 and the second control signal transmission unit 202 described above, these pads can be connected by thermocompression bonding and can be made of copper.
  • the image signal is transmitted through the first image signal line 107.
  • the second image signal transmission unit 204 and the analog / digital conversion unit 200 are wired by the second image signal line 203 to transmit the image signal.
  • the plurality of pixels 110 of the pixel chip 10 and the vertical scanning unit 21 of the circuit chip 20 constitute an imaging device.
  • FIG. 3 is a diagram illustrating a configuration example of the pixel 110 according to the embodiment of the present technology.
  • the pixel 110 in the figure corresponds to the pixel 110 arranged in the first row and first column in the pixel unit 100 described in FIG.
  • This pixel 110 includes a photoelectric conversion unit 111, a charge transfer unit 113, a charge holding unit 112, a reset unit 114, a signal generation unit 115, and a selection unit 116.
  • N-channel MOS transistors can be used for the charge transfer unit 113, the reset unit 114, the signal generation unit 115, and the selection unit 116.
  • the anode of the photoelectric conversion unit 111 is grounded, and the cathode is connected to the source of the charge transfer unit 113.
  • the gate of the charge transfer unit 113 is connected to the transfer gate signal line TRG00 (first control signal line 101), and the drain is connected to the drain of the reset unit 114, the gate of the signal generation unit 115, and one end of the charge holding unit 112. .
  • the other end of the charge holding unit 112 is grounded.
  • the gate of the reset unit 114 is connected to the reset signal line RST0, and the source is connected to the power supply line Vdd.
  • the signal generation unit 115 has a drain connected to the power supply line Vdd and a source connected to the drain of the selection unit 116.
  • the gate of the selection unit 116 is connected to the selection signal line VSEL 0, and the source is connected to the first image signal line 107.
  • the photoelectric conversion unit 111 generates and holds charges corresponding to the irradiated light.
  • a photodiode can be used for the photoelectric conversion unit 111.
  • the charge transfer unit 113 transfers the charge held in the photoelectric conversion unit 111 to the charge holding unit 112.
  • the charge transfer unit 113 performs charge transfer by conducting between the photoelectric conversion unit 111 and the charge holding unit 112. An on signal is input to the charge transfer unit 113 via the transfer gate signal line TRG00.
  • the charge holding unit 112 holds the charge transferred by the charge transfer unit 113. That is, the charge holding unit 112 holds the charge generated by the photoelectric conversion unit 111. As the charge holding portion 112, a floating diffusion region formed in the diffusion layer of the semiconductor substrate can be used.
  • the charge holding unit 112 is also a charge-voltage conversion unit. That is, since the charge holding unit 112 has a stray capacitance, the voltage of the electrode connected to the signal generation unit 115 among the two electrodes of the charge holding unit 112 depends on the amount of charge held in the charge holding unit 112. Voltage.
  • the reset unit 114 discharges the charge held in the charge holding unit 112 and resets it.
  • the reset unit 114 discharges charges by applying a power supply voltage to the charge holding unit 112.
  • An ON signal is input to the reset unit 114 via the reset signal line RST0.
  • the signal generation unit 115 generates a signal corresponding to the charge held in the charge holding unit 112 as an image signal.
  • the signal generation unit 115 generates an image signal by amplifying the voltage of the charge holding unit 112 as charge-voltage conversion means.
  • the selection unit 116 outputs the image signal generated by the signal generation unit 115 to the first image signal line 107.
  • An ON signal is input to the selection unit 116 via the selection signal line VSEL0.
  • FIG. 4 is a diagram illustrating a configuration example of the analog-digital conversion unit 200 according to the embodiment of the present technology.
  • the analog / digital conversion unit 200 includes a MOS transistor 210 and an analog / digital conversion unit 220.
  • the analog-to-digital conversion unit 220 performs analog-to-digital conversion on an image signal input via the signal line 205 to generate a digital image signal.
  • the generated digital image signal is output to the sense amplifier 24 via the signal line 15.
  • the analog / digital converter 220 receives a control signal from the timing controller 22 via the signal line 13 and receives a reference signal from the reference signal generator 23 via the signal line 14.
  • the MOS transistor 210 switches the image signal output from the pixel 110.
  • the MOS transistor 210 is disposed for each signal line 12.
  • the MOS transistor 210 arranged at the left end of the figure will be described as an example.
  • the drain of the MOS transistor 210 is connected to the signal line 12 (second image signal line 203), and the source is connected to the signal line 205.
  • the gate of the MOS transistor 210 is connected to a horizontal selection signal line HSEL (Horizontal Select) 0.
  • the horizontal selection signal line HSEL0 is a signal line for transmitting an ON signal of the MOS transistor 210. This signal line is also individually wired to the gates of the other MOS transistors 210.
  • an ON signal is input to one of the plurality of MOS transistors 210 and becomes conductive, and is output from the pixel 110 connected to the corresponding signal line 12.
  • An image signal is selected. This ON signal is generated by the timing control unit 22 and transmitted through the horizontal selection signal lines HSEL0 to HSEL9.
  • FIG. 5 is a diagram illustrating a configuration example of the analog-digital conversion unit 220 according to the embodiment of the present technology.
  • the analog-digital conversion unit 220 includes a comparison unit 221, a count unit 222, and a holding unit 223.
  • the comparison unit 221 compares the image signal generated by the pixel 110 and the reference signal. The result of this comparison is output to the count unit 222.
  • the operation of the comparison unit 221 will be described assuming a case where a signal whose voltage is reduced to a lamp shape is used as a reference signal.
  • the reference signal generation unit 23 starts outputting the reference signal when the analog-digital conversion of the analog-digital conversion unit 220 is started.
  • the comparison unit 221 detects this and outputs it as a comparison result. That is, the comparison result is output when the reference signal and the image signal are substantially equal.
  • the count unit 222 measures the time from the start of analog-digital conversion in the analog-digital conversion unit 220 to the output of the comparison result in the comparison unit 221. This timing can be performed by counting clock signals. Specifically, the count unit 222 starts counting the clock signal at the start of analog-digital conversion, and stops counting when the comparison result is input from the comparison unit 221. As described above, since the reference signal is a signal in which the voltage decreases in a ramp shape, the voltage of the reference signal and the count value of the count unit 222 correspond one-to-one. For this reason, the count value of the count unit 222 corresponds to the result of analog-digital conversion of the image signal input to the analog-digital conversion unit 220.
  • the clock signal and the control signal of the count unit 222 are generated by the timing control unit 22 and input via the signal line 13.
  • the holding unit 223 holds the digital image signal generated by the counting unit 222.
  • the held digital image signal is output to the sense amplifier 24.
  • This control signal is generated by the timing control unit 22 and input via the signal line 13.
  • the analog-to-digital converter 220 can perform correlated double sampling (CDS).
  • CDS correlated double sampling
  • This CDS can be performed as follows, for example. After the elapse of a predetermined exposure period, the reset unit 114 of the pixel 110 described in FIG. 3 is turned on to perform reset, and an image signal at that time (image signal at the time of reset) is input to the analog-digital conversion unit 220 to be counted. Counting is performed at 222. Next, the counting unit 222 logically inverts the counting result. Next, the charge transfer unit 113 is made conductive in the pixel 110, and the charge generated by the photoelectric conversion unit 111 is held in the charge holding unit 112.
  • the image signal at that time is input to the analog-to-digital converter 220, and the counting unit 222 performs counting again. Thereby, the image signal at the time of resetting is subtracted and counting is performed, and a noise component specific to each pixel 110 arranged in the pixel chip 10 can be removed.
  • FIG. 6 is a diagram illustrating a configuration example of the vertical scanning unit 21 according to the embodiment of the present technology.
  • the vertical scanning unit 21 includes a logic circuit unit 240 and a driving unit 250.
  • the logic circuit unit 240 generates a control signal for the pixels 110 arranged in the pixel unit 100 based on the control of the timing control unit 22.
  • the driving unit 250 generates an ON signal from the control signal generated by the logic circuit unit 240 and outputs the ON signal as a control signal for the pixel 110.
  • a control signal having the same waveform is input to the same signal line of the pixel unit 100 arranged in the pixel chip 10 described in FIG.
  • the transfer gate signal line TRG00 described with reference to FIG. 2 will be described as an example. Signals having the same waveform are input to the transfer gate signal line TRG00 wired to all the pixel units 100. This signal is generated by the logic circuit unit 240. And it outputs via the drive part 250 different for every row of the pixel unit 100 arrange
  • FIG. 7 is a diagram illustrating a configuration example of a semiconductor chip according to the embodiment of the present technology.
  • FIG. 2 is a schematic cross-sectional view illustrating a configuration example of the joined pixel chip 10 and circuit chip 20 in the imaging apparatus 1.
  • the pixel chip 10 in the figure represents a configuration in the vicinity of the pixel 110.
  • a P-type well region 180 is formed in the semiconductor substrate 190, and elements constituting the pixel 110 are formed in the well region 180.
  • the photoelectric conversion unit 111 includes an N-type semiconductor region 181 and a surrounding well region 180. Photoelectric conversion is performed at the PN junction formed at these interfaces. The charge generated by this photoelectric conversion is held in the N-type semiconductor region 181.
  • a gate 171, an N-type semiconductor region 182, a gate 172, an N-type semiconductor region 183, a gate 173 and an N-type semiconductor region 184 are formed in this order adjacent to the photoelectric conversion unit 111.
  • the gates 171 to 173 are formed in the insulating layer 170 formed on the surface of the well region 180 (lower side in the figure).
  • the gates 171 to 173 can be made of polysilicon.
  • the insulating layer 170 can be made of silicon dioxide or organic silica glass.
  • the charge transfer unit 113 is composed of MOS transistors having N-type semiconductor regions 181 and 182 as sources and drains, respectively, and a well region 180 near the gate 171 as a channel region.
  • the N-type semiconductor region 182 forms a floating diffusion and also serves as the charge holding portion 112.
  • the N-type semiconductor region 182 is configured to have a higher impurity concentration than the N-type semiconductor region 181.
  • the reset unit 114 is configured by a MOS transistor having N-type semiconductor regions 182 and 183 as sources and drains, respectively, and a well region 180 near the gate 172 as a channel.
  • the signal generator 115 includes MOS transistors having N-type semiconductor regions 183 and 184 as drains and sources, respectively, and a well region 180 near the gate 173 as a channel.
  • the N-type semiconductor region 182 constituting the charge holding unit 112 and the gate 173 of the signal generation unit 115 are connected by via plugs 175 and 176 and a wiring 178.
  • the via plugs 175 and 176 and the wiring 178 can be made of a metal such as copper.
  • the N-type semiconductor region 183 is connected to the power supply line Vdd (not shown), and the N-type semiconductor region 184 is connected to the drain of the selection unit 116 (not shown).
  • These N type semiconductor regions 183 and 184 are configured to have a higher impurity concentration than the N type semiconductor region 181.
  • the first control signal transmission unit 102 is disposed on the surface of the insulating layer 170 of the pixel chip 10 (joint surface with the circuit chip 20).
  • the first control signal transmission unit 102 and the gate 171 of the charge transfer unit 113 are connected by via plugs 174 and 177 and a wiring 179.
  • the via plugs 174 and 177 and the wiring 179 constitute the first control signal line 101.
  • the circuit chip 20 in the figure is a simplified representation of the configuration in the vicinity of the second control signal transmission unit 202.
  • the second control signal transmission unit 202 is disposed at a position facing the first control signal transmission unit 102 on the surface of the circuit chip 20 and is electrically connected to the first control signal transmission unit 102.
  • a second control signal line 201 is disposed between the second control signal transmission unit 202 and the vertical scanning unit 21 to transmit a control signal.
  • FIG. 8 is a diagram illustrating an arrangement example of the control signal transmission unit in the embodiment of the present technology.
  • the figure shows a schematic top view of the pixel chip 10 and the circuit chip 20.
  • the pixel chip 10 in FIG. 1 represents the arrangement of the pixel unit 100, the first control signal transmission unit 102, and the first control signal line 101.
  • the circuit chip 20 in FIG. 2 represents the arrangement of the logic circuit unit 240 and the drive unit 250, the second control signal transmission unit 202, and the second control signal line 201 that constitute the vertical scanning unit 21.
  • the broken line in the figure indicates the correspondence between the first control signal transmission unit 102 and the second control signal transmission unit 202 when the pixel chip 10 and the circuit chip 20 are joined.
  • the wiring length of the first control signal line 101 can be shortened.
  • the pixel 110 and the like are arranged in the center of the pixel chip 10.
  • the first control signal pad can also be arranged at the center of the pixel chip 10.
  • the central portion of the pixel chip 10 represents a region where the pixels 110 in the pixel chip 10 are arranged, and represents a region excluding the peripheral portion of the pixel chip 10.
  • the wiring length of the second control signal line 201 can be shortened by arranging the vertical scanning unit 21 in the vicinity of the second control signal pad.
  • the first image signal pad can also be arranged at the center of the pixel chip 10.
  • FIG. 9 is a diagram illustrating another configuration example of the semiconductor chip according to the embodiment of the present technology. This figure shows a case where a connection is made using a TSV instead of the connection by the first control signal transmission unit 102 and the second control signal transmission unit 202 described in FIG. 7 as a comparative example. .
  • the imaging apparatus 1 shown in the figure is different from the imaging apparatus 1 described in FIG. 7 in the following points.
  • a wiring 161 is arranged in the pixel chip 10 instead of the first control signal transmission unit 102, and a wiring 261 is arranged in the circuit chip 20 instead of the second control signal transmission unit 202.
  • These wirings are formed inside the insulating layer 170 and the like.
  • a TSV 191 is formed in the pixel chip 10 and the circuit chip 20 in FIG.
  • the TSV 191 is disposed at the end of the pixel chip 10. Since the configuration of the imaging apparatus 1 other than this is the same as that of the imaging apparatus 1 described with reference to FIG.
  • TSV191 can be formed as follows. First, the pixel chip 10 and the circuit chip 20 are bonded. Next, a via hole reaching the wiring 261 of the circuit chip 20 from the pixel chip 10 side is formed. Next, a TSV191 is formed by disposing metal in the via hole. At this time, the arranged metal and the wirings 161 and 261 are electrically connected.
  • the control signal can be transmitted between the pixel chip 10 and the circuit chip 20.
  • the TSV 191 since it is necessary to form a via hole penetrating the pixel chip 10, the TSV 191 requires a relatively large occupied area. Further, it is necessary to form it in a region away from the MOS transistor or the like constituting the pixel 110. Therefore, the TSV 191 is formed at the end of the semiconductor chip (pixel chip 10).
  • FIG. 10 is a diagram illustrating an arrangement example of TSVs according to the embodiment of the present technology.
  • This figure shows a schematic top view of the pixel chip 10 and the circuit chip 20 described in FIG.
  • the pixel chip 10 and the circuit chip 20 illustrated in FIG. 8 include the TSV 191 instead of the first control signal transmission unit 102 and the second control signal transmission unit 202, and thus the pixel chip 10 and the circuit chip 20 described in FIG. And different.
  • the TSV 191 is formed at the end of the pixel chip 10.
  • the first control signal line 101 and the second control signal line 201 become long.
  • the control signal is deteriorated due to an increase in wiring resistance.
  • an intersection 401 occurs with the signal line 16 due to an increase in the wiring length of the second control signal line 201.
  • the wiring needs to have a multilayer structure, and the cost increases.
  • the connection arranged in the bonding portion Each control signal is transmitted by the unit. Thereby, the wiring of the control signal can be simplified.
  • FIG. 11 is a diagram illustrating an example of an image signal generation process according to the embodiment of the present technology. This figure shows the image signal generation processing of the pixels 110 arranged in the first row in the pixel unit 100 described in FIG.
  • VSEL0 and RST0 represent signals of the vertical selection signal line VSEL0 and the reset signal line RST0, respectively.
  • TRG00 to TRG09 represent signals of the transfer gate signal lines TRG00 to TRG09.
  • HSEL0 to HSEL9 represent signals of the horizontal selection signal lines HSEL0 to HSEL9. In these signals, the portion of the value “1” in the binarized signal represents the input of the ON signal.
  • an ON signal is input to the reset signal line RST0, and the reset unit 114 of the pixel 110 arranged in the first row becomes conductive. Thereafter, an ON signal is input to the transfer gate signal line TRG00, and among the pixels 110 arranged in the first row, the charge transfer unit 113 of the pixel 110 arranged in the first column becomes conductive, and the pixel 110 The charges held in the photoelectric conversion unit 111 and the charge holding unit 112 are discharged and reset (T1 to T2). After the reset is finished, the input of the ON signal to the reset signal line RST0 and the transfer gate signal line TRG00 is stopped (T2). As a result, the charge transfer unit 113 becomes non-conductive, and an exposure period is started in the pixel.
  • an ON signal is input to the horizontal selection signal line HSEL0, and the MOS transistor 210 at the left end in FIG. 4 becomes conductive (T1 to T3).
  • no ON signal is input to the vertical selection signal line VSEL0, no image signal is output.
  • an image signal is output from the pixels arranged in the tenth row in the pixel unit 100.
  • the input of the ON signal to the horizontal selection signal line HSEL0 is stopped (T3).
  • an ON signal is input to the reset signal line RST0 in the same manner as T1 to T3.
  • ON signals are sequentially input to the transfer gate signal lines TRG01 to TRG09. Thereby, reset is sequentially performed in the pixels 110 excluding the pixels 110 arranged in the first column among the pixels 110 arranged in the first row.
  • an ON signal is input to the vertical selection signal line VSEL0.
  • positioned at the 1st row will be in a conduction
  • the ON signal input to the vertical selection signal line VSEL0 is continued until T8.
  • an ON signal is input to the horizontal selection signal line HSEL0, and the MOS transistor 210 at the left end in FIG. 4 becomes conductive (T5 to T7).
  • an ON signal is input to the reset signal line RST0, the reset unit 114 becomes conductive, and the charge holding unit 112 is reset (T5 to T6).
  • the reset image signal described with reference to FIG. 5 is output from the pixel 110 and is analog-digital converted by the analog-digital converter 220.
  • the input of the ON signal to the reset signal line RST0 is stopped, and the ON signal is input to the transfer gate signal line TRG00 (T6 to T7).
  • the charge transfer unit 113 becomes conductive, and the charge held in the photoelectric conversion unit 111 is changed to the charge holding unit 112.
  • the image signal is generated by the signal generation unit 115 and output.
  • the output image signal is subjected to analog-to-digital conversion in the analog-to-digital conversion unit 220 and CDS is executed. Note that the exposure period in the pixel ends when an ON signal is input to the transfer gate signal line TRG00. Thereafter, the input of the ON signal from the transfer gate signal line TRG00 is stopped. Further, the input of the ON signal to the horizontal selection signal line HSEL0 is also stopped (T7).
  • the ON signal is continuously input to the reset signal line RST0 similar to T5 to T7. Further, ON signals are sequentially input to the transfer gate signal lines TRG01 to TRG09 and the horizontal selection signal lines HSEL1 to HSEL9. As a result, among the pixels 110 arranged in the first row, the pixels 110 excluding the pixels 110 arranged in the first column sequentially output image signals and perform analog-digital conversion.
  • a period from T1 to T4 corresponds to a reset period in which each pixel is reset.
  • a period from T5 to T8 corresponds to a readout period in which an image signal is output from each pixel.
  • FIG. 12 is a diagram illustrating an example of image signal generation processing according to the embodiment of the present technology. This figure shows the image signal processing of all the pixels 110 arranged in the pixel unit 100.
  • VSEL0 to VSEL9 represent signals of the vertical selection signal lines VSEL0 to VSEL9.
  • RST0 to RST9 represent signals on the reset signal lines RST0 to RST9. The description of other signals is omitted.
  • the reset period and the readout period are sequentially set for each row of the pixels 110 in the pixel unit 100 to generate an image signal.
  • the reset period and the readout period are sequentially set for each row of the pixels 110 in the pixel unit 100 to generate an image signal.
  • rolling shutter imaging is performed in an imaging element in which a pixel chip having a plurality of pixels and a circuit chip that generates a control signal for each of the plurality of pixels are joined.
  • the image quality can be improved.
  • the processing procedure described in the above embodiment may be regarded as a method having a series of these procedures, and a program for causing a computer to execute these series of procedures or a recording medium storing the program. You may catch it.
  • a recording medium for example, a CD (Compact Disc), an MD (MiniDisc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray disc (Blu-ray (registered trademark) Disc), or the like can be used.
  • a plurality of pixels each having a charge transfer unit that transfers charges generated according to incident light to a charge holding unit according to a control signal, and a plurality of first signals that transmit the control signal to each of the charge transfer units.
  • a pixel chip including one control signal transmission unit;
  • a plurality of control signal generation units for generating the control signals for the charge transfer units of the plurality of pixels, and a plurality of the control signal generation units provided corresponding to the first control signal transmission units, respectively, for transmitting the generated control signals.
  • An image pickup device comprising: a circuit chip including the second control signal transmission unit.
  • the plurality of first control signal transmission units includes a plurality of first control signal pads
  • the pixel chip further includes a first image signal transmission unit that transmits an image signal generated according to the charge transferred to the charge holding unit,
  • the circuit chip is provided corresponding to the analog-to-digital conversion unit that performs analog-to-digital conversion on the generated image signal, and the generated image signal to the analog-to-digital conversion unit.
  • the imaging device according to any one of (1) to (5), further including a second image signal transmission unit for transmitting.
  • the first image signal transmission unit includes a first image signal pad
  • the image sensor according to any one of (6) to (8), wherein the analog-to-digital conversion unit is distributed and arranged for each pixel unit including the plurality of pixels.
  • the control signal generation unit generates, as the control signal, a signal that causes the charge transfer units of the plurality of pixels to sequentially transfer the generated charges
  • the imaging device according to any one of (1) to (8), wherein the pixel chip generates the control signal for sequentially transferring the generated charge to the charge holding unit for each of the plurality of pixels.
  • (11) A plurality of pixels each having a charge transfer unit that transfers charges generated according to incident light to a charge holding unit according to a control signal, and a plurality of first signals that transmit the control signal to each of the charge transfer units.
  • a pixel chip including a control signal transmission unit, and a first image signal transmission unit configured to transmit an image signal generated according to the charge transferred to the charge holding unit; A plurality of second control signals for transmitting the generated control signal provided corresponding to the control signal generation unit for generating the control signal for each of the charge transfer units of the plurality of pixels and the first control signal transmission unit, respectively.
  • An image pickup apparatus comprising: a second image signal transmission unit that transmits to the circuit board; and a circuit chip that includes a processing circuit that processes the analog-digital converted image signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

2つの半導体チップにより構成された撮像素子において、信号線の配線を簡略化する。 撮像素子は、画素チップと回路チップとを具備する。画素チップは、入射光に応じて生成された電荷を制御信号に従って電荷保持部に転送する電荷転送部をそれぞれ有する複数の画素、および、前記電荷転送部のそれぞれに対する前記制御信号を伝達する複数の第1の制御信号伝達部を備える。回路チップは、前記複数の画素の電荷転送部のそれぞれに対する前記制御信号を生成する制御信号生成部、および、前記第1の制御信号伝達部にそれぞれ対応して設けられて前記生成された制御信号を伝達する複数の第2の制御信号伝達部を備える。

Description

撮像素子および撮像装置
 本技術は、撮像素子および撮像装置に関する。詳しくは、複数の半導体チップにより構成された撮像素子および撮像装置に関する。
 従来、画素が形成されたチップとその画素からの画像信号を処理する回路が形成されたチップとからなる撮像素子が使用されている。画素は、アナログ回路により構成され、比較的耐圧が高いトランジスタが使用される。一方、画像信号を処理する回路は、主にデジタル回路により構成され、比較的耐圧が低いトランジスタが使用される。これらを異なるチップに配置することにより、それぞれの回路に適したプロセスを選択してチップを製造することができ、撮像素子を高性能かつ低コスト化することができる。例えば、画素を有する第1チップとこの第1チップから出力された信号を処理する回路および画素に対する制御信号を生成する回路を有する第2チップとにより構成される固体撮像装置が提案されている(例えば、特許文献1参照。)。この固体撮像装置では、第1チップおよび第2チップを貼り合せた後、第1チップを貫通するビアを形成し、このビアに埋め込まれた金属によりこれらのチップを電気的に接続し、画像信号および制御信号の伝達を行っている。この様なビアは、TSV(Through Silicon Via)と称される。
特開2011-159958号公報
 上述の従来技術では、TSVによりチップ間の信号の伝達を行っている。しかし、このTSVは第1チップを貫通するビアであるため、比較的大きな占有面積を要する。また、このようなビアを形成するプロセスによる画素等の回路素子への影響を軽減するため、TSVを画素から離れた領域に形成する必要がある。このため、TSVは、第1チップの端部に形成される。そのため、画像信号を伝達する信号線と制御信号を伝達する信号線とを第1チップの端部まで配線する必要が生じ、配線が複雑になるという問題がある。
 本技術はこのような状況に鑑みて生み出されたものであり、2つの半導体チップにより構成された撮像素子において、信号線等の配線を簡略化することを目的とする。
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、入射光に応じて生成された電荷を制御信号に従って電荷保持部に転送する電荷転送部をそれぞれ有する複数の画素、および、上記電荷転送部のそれぞれに対する上記制御信号を伝達する複数の第1の制御信号伝達部を備える画素チップと、上記複数の画素の電荷転送部のそれぞれに対する上記制御信号を生成する制御信号生成部、および、上記第1の制御信号伝達部にそれぞれ対応して設けられて上記生成された制御信号を伝達する複数の第2の制御信号伝達部を備える回路チップとを具備する撮像素子である。これにより、第1の制御信号伝達部および第2の制御信号伝達部により複数の電荷転送部のそれぞれの制御信号が伝達されるという作用をもたらす。
 また、この第1の側面において、上記複数の第1の制御信号伝達部は、複数の第1の制御信号パッドにより構成され、上記複数の第2の制御信号伝達部は、複数の第2の制御信号パッドにより構成されてもよい。これにより、第1の制御信号パッドおよび第2の制御信号パッドにより複数の電荷転送部のそれぞれの制御信号が伝達されるという作用をもたらす。
 また、この第1の側面において、上記複数の第1の制御信号パッドは、上記画素チップの中央部に配置されてもよい。これにより、画素チップの中央部に配置された第1の制御信号パッドにより制御信号が伝達されるという作用をもたらす。
 また、この第1の側面において、上記複数の第1の制御信号パッドと上記複数の第2の制御信号パッドとの間は加熱圧着により接続されてもよい。これにより、第1の制御信号パッドおよび第2の制御信号パッドが加熱圧着により接続されるという作用をもたらす。
 また、この第1の側面において、上記複数の第1の制御信号伝達部および上記複数の第2の制御信号伝達部は銅により構成されてもよい。これにより、銅により構成された第1の制御信号パッドおよび第2の制御信号パッドが使用されるという作用をもたらす。
 また、この第1の側面において、上記画素チップは、上記電荷保持部に転送された電荷に応じて生成された画像信号を伝達する第1の画像信号伝達部をさらに備え、上記回路チップは、上記生成された画像信号をアナログデジタル変換するアナログデジタル変換部と、上記第1の画像信号伝達部に対応して設けられて上記生成された画像信号を上記アナログデジタル変換部に伝達する第2の画像信号伝達部とをさらに備えてもよい。これにより、第1の画像信号伝達部および第2の画像信号伝達部により伝達された画像信号がアナログデジタル変換されるという作用をもたらす。
 また、この第1の側面において、上記第1の画像信号伝達部は、第1の画像信号パッドにより構成され、上記第2の画像信号伝達部は、第2の画像信号パッドにより構成され、上記第2の画像信号伝達部は、第2の画像信号パッドにより構成されてもよい。これにより、第1の画像信号パッドおよび第2の画像信号パッドにより画像信号が伝達されるという作用をもたらす。
 また、この第1の側面において、上記第1の画像信号パッドは、上記画素チップの中央部に配置されてもよい。これにより、画素チップの中央部に配置された第1の画像信号パッドにより画像信号が伝達されるという作用をもたらす。
 また、この第1の側面において、上記アナログデジタル変換部は、上記複数の画素からなる画素ユニット毎に分散して配置されてもよい。これにより、画素ユニット毎にアナログデジタル変換部が配置されるという作用をもたらす。
 また、この第1の側面において、上記制御信号生成部は、上記複数の画素の電荷転送部に上記生成された電荷の転送を順次行わせる信号を上記制御信号として生成し、上記画素チップは、上記生成された電荷の上記電荷保持部への転送を上記複数の画素毎に順次行ってもよい。これにより、複数の画素の電荷転送部による電荷の転送が順次行われるという作用をもたらす。
 また、本技術の第2の側面は、入射光に応じて生成された電荷を制御信号に従って電荷保持部に転送する電荷転送部をそれぞれ有する複数の画素、上記電荷転送部のそれぞれに対する上記制御信号を伝達する複数の第1の制御信号伝達部、および、上記電荷保持部に転送された電荷に応じて生成された画像信号を伝達する第1の画像信号伝達部を備える画素チップと、上記複数の画素の電荷転送部のそれぞれに対する上記制御信号を生成する制御信号生成部、上記第1の制御信号伝達部にそれぞれ対応して設けられて上記生成された制御信号を伝達する複数の第2の制御信号伝達部、上記生成された画像信号をアナログデジタル変換するアナログデジタル変換部、上記第1の画像信号伝達部に対応して設けられて上記生成された画像信号を上記アナログデジタル変換部に伝達する第2の画像信号伝達部、および、上記アナログデジタル変換された画像信号を処理する処理回路を備える回路チップとを具備する撮像装置である。これにより、第1の制御信号伝達部および第2の制御信号伝達部により複数の電荷転送部のそれぞれの制御信号が伝達されるという作用をもたらす。
 本技術によれば、2つの半導体チップにより構成された撮像素子において、信号線の配線を簡略化するという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の実施の形態における撮像装置1の構成例を示す図である。 本技術の実施の形態における画素ユニット100の構成例を示す図である。 本技術の実施の形態における画素110の構成例を示す図である。 本技術の実施の形態におけるアナログデジタル変換ユニット200の構成例を示す図である。 本技術の実施の形態におけるアナログデジタル変換部220の構成例を示す図である。 本技術の実施の形態における垂直走査部21の構成例を示す図である。 本技術の実施の形態における半導体チップの構成例を示す図である。 本技術の実施の形態における制御信号伝達部の配置例を示す図である。 本技術の実施の形態における半導体チップの他の構成例を示す図である。 本技術の実施の形態におけるTSVの配置例を示す図である。 本技術の実施の形態における画像信号生成処理の一例を示す図である。 本技術の実施の形態における画像信号生成処理の一例を示す図である。
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.実施の形態の構成
 2.実施の形態の動作
 <1.実施の形態の構成>
 [撮像装置の構成]
 図1は、本技術の実施の形態における撮像装置1の構成例を示す図である。この撮像装置1は、画素チップ10と、回路チップ20とを備える。
 画素チップ10は、画素ユニット100を備える。また、回路チップ20は、アナログデジタル(AD)変換ユニット200と、垂直走査部21と、タイミング制御部22と、参照信号生成部23と、センスアンプ24と、信号処理部25とを備える。撮像装置1は、これら2つチップが接合されて構成される。
 画素ユニット100は、画像信号を生成する複数の画素により構成されるものである。同図の画素チップ10は、複数の画素ユニット100が2次元格子状に配置されて構成される。画素ユニット100には、信号線11を介して垂直走査部21から制御信号が入力される。また、画素ユニット100の画素により生成された画像信号は、信号線12を介して出力される。画素ユニット100の構成の詳細については、後述する。
 アナログデジタル変換ユニット200は、画素ユニット100から出力された画像信号をアナログデジタル変換するものである。このアナログデジタル変換ユニット200は、上述の画素ユニット100毎に配置され、対応する画素ユニット100により出力された画像信号のアナログデジタル変換を行う。アナログデジタル変換後のデジタルの画像信号は、信号線15を介して出力される。アナログデジタル変換ユニットの構成の詳細については後述する。
 垂直走査部21は、画素ユニット100の制御信号を生成するものである。この垂直走査部21は、画素チップ10における画素ユニット100の行毎に制御信号を生成し、出力する。画素チップ10の1行に配置された画素ユニット100には、共通に制御信号が入力される。なお、垂直走査部21は、特許請求の範囲に記載の制御信号生成部の一例である。
 参照信号生成部23は、参照信号を生成し、アナログデジタル変換ユニット200に対して出力するものである。この参照信号は、信号線14を介して出力される。ここで、参照信号とは、電圧がランプ状に変化する信号である。
 タイミング制御部22は、垂直走査部21、参照信号生成部23およびアナログデジタル変換ユニット200を制御するものである。このタイミング制御部22は、これらの動作タイミングを制御する制御信号を生成し、出力する。
 センスアンプ24は、アナログデジタル変換ユニット200から出力されたデジタルの画像信号を増幅するものである。このセンスアンプ24は、複数のアナログデジタル変換ユニット200からデジタル画像信号を順次読み出して増幅を行い、信号処理部25に対して出力する。
 信号処理部25は、センスアンプ24から出力されたデジタルの画像信号を処理するものである。この処理として、例えば、黒レベル調整処理や画像信号の並替え処理を行うことができる。なお、信号処理部25は、特許請求の範囲に記載の処理回路に該当する。
 [画素ユニットの構成]
 図2は、本技術の実施の形態における画素ユニット100の構成例を示す図である。同図は、画素ユニット100の構成と画素チップ10および回路チップ20の信号線の接続を表したものである。
 画素110は、画像信号を生成する光電変換素子を有し、入射した光に応じた画像信号を生成するものである。同図に表したように画素110は、2次元格子状に配置される。同図においては、画素110が10×10個配置された画素ユニット100を想定する。画素110には、垂直走査部21から信号線11を介して制御信号が入力される。この信号線11は、複数の信号線により構成され、画素110に配線される。同図の画素ユニット100の左上に配置された画素110を例に挙げて説明すると、転送ゲート信号線TRG(Transfer Gate)00、リセット信号線RST(Reset)0および垂直選択信号線VSEL(Vertical Select)0が画素110に配線される。
 転送ゲート信号線TRG00は、後述する電荷転送部に制御信号を伝達する信号線である。この制御信号は、光電変換部により生成された電荷を電荷保持部に転送させるための制御信号である。また、この転送ゲート信号線TRG00は、画素ユニット100に配置された画素110に対して個別に配線され、それぞれ異なる制御信号が伝達される。同図においては、行および列番号を付して、これらの信号線を識別する。例えば、TRG00は第1行第1列に配置された画素110に配線される信号線を表し、TRG19は第2行第10列に配置された画素110に配線される信号線を表す。
 リセット信号線RST0は、1行に配置された画素110を同時にリセットするための制御信号を伝達する信号線である。選択信号線VSEL0は、1行に配置された画素110を同時に選択する制御信号を伝達する信号線である。同図においては、行番号を付してこれらの信号線を識別する。例えば、RST0およびVSEL0は、それぞれ第1行に配置された画素110に配線される信号線を表す。
 後述するように、転送ゲート信号線TRG00、リセット信号線RST0および選択信号線VSEL0は、MOSトランジスタのゲートに接続される。これらの信号線にMOSトランジスタのゲートおよびソース間の閾値電圧以上の電圧(以下オン信号と称する)が入力されると、該当するMOSトランジスタが導通状態になる。
 また、画素110により生成された画像信号は、信号線12を介してアナログデジタル変換ユニット200に伝達される。この信号線12は、複数の信号線により構成され、列毎に配線される。すなわち、1列に配置された画素110には、複数の信号線12うちの1つが共通に接続される。
 なお、信号線11を構成するそれぞれの信号線は、画素チップ10および回路チップ20の間に配置されて制御信号の伝達を行う。この様子を、転送ゲート信号線TRG00を例に挙げて説明すると、転送ゲート信号線TRG00は、第1の制御信号伝達部102および第2の制御信号伝達部202を介して制御信号の伝達を行う。第1の制御信号伝達部102は、画素チップ10に配置されて転送ゲート信号線TRG00の制御信号を伝達するものである。また、第2の制御信号伝達部202は、回路チップ20に配置されて転送ゲート信号線TRG00の制御信号を伝達するものである。この第1の制御信号伝達部102として、画素チップ10の接合面に形成されたパッドである第1の制御信号パッドを使用することができる。同様に、第2の制御信号伝達部202として、回路チップ20の接合面に形成されたパッドである第2の制御信号パッドを使用することができる。
 これらのパッドは、導体により構成される。また、画素チップ10および回路チップ20の接合の際、これらのパッドが互いに接触するように位置合せされる。その後、加熱圧着することにより、画素チップ10および回路チップ20を接合することができる。この際、これらのパッドの間において電気的な接続を得ることができる。なお、これらのパッドには、例えば銅により構成されたパッドを使用することができる。
 第1の制御信号伝達部102と画素110との間は第1の制御信号線101により配線されて制御信号が伝達される。また、第2の制御信号伝達部202と垂直走査部21との間は第2の制御信号線201により配線されて制御信号が伝達される。このように、転送ゲート信号線TRG00による制御信号の伝達が行われる。同様に、画素ユニット100に配置された他の画素110の電荷転送部113の制御信号(転送ゲート信号線TRG01乃至TRG09の制御信号)においても第1の制御信号伝達部102および第2の制御信号伝達部202により伝達することができる。このように、複数の第1の制御信号伝達部102および複数の第2の制御信号伝達部202により制御信号の伝達が行われる。なお、リセット信号線RST0等、他の信号線においても、第1の制御信号伝達部102および第2の制御信号伝達部202による信号の伝達を行うことができる。
 また、信号線12を構成するそれぞれの信号線は、画素チップ10および回路チップ20の間に配置されて画像信号の伝達を行う。この様子を同図の左端に配置された信号線12を例に挙げて説明すると、第1の画像信号伝達部108および第2の画像信号伝達部204を介して画像信号の伝達が行われる。第1の画像信号伝達部108は、画素チップ10に配置されて画像信号を伝達するものである。また、第2の画像信号伝達部204は、回路チップ20に配置されて画像信号を伝達するものである。この第1の画像信号伝達部108として、画素チップ10の接合面に形成されたパッドである第1の画像信号パッドを使用することができる。同様に、第2の画像信号伝達部204として、回路チップ20の接合面に形成されたパッドである第2の画像信号パッドを使用することができる。上述の第1の制御信号伝達部102および第2の制御信号伝達部202として使用するパッドと同様に、これらのパッドは、加熱圧着により接続することができ、銅により構成することができる。
 画素110と第1の画像信号伝達部108との間は、第1の画像信号線107により配線されて画像信号が伝達される。また、第2の画像信号伝達部204とアナログデジタル変換ユニット200との間は、第2の画像信号線203により配線されて画像信号が伝達される。
 なお、画素チップ10の複数の画素110および回路チップ20の垂直走査部21は、撮像素子を構成する。
 [画素の構成]
 図3は、本技術の実施の形態における画素110の構成例を示す図である。同図の画素110は、図2において説明した画素ユニット100における第1行第1列に配置された画素110に該当するものである。この画素110は、光電変換部111と、電荷転送部113と、電荷保持部112と、リセット部114、信号生成部115と、選択部116とを備える。なお、電荷転送部113、リセット部114、信号生成部115および選択部116には、NチャンネルMOSトランジスタを使用することができる。
 光電変換部111のアノードは接地され、カソードは電荷転送部113のソースに接続される。電荷転送部113のゲートは転送ゲート信号線TRG00(第1の制御信号線101)に接続され、ドレインはリセット部114のドレイン、信号生成部115のゲートおよび電荷保持部112の一端に接続される。電荷保持部112の他の一端は、接地される。リセット部114のゲートはリセット信号線RST0に接続され、ソースは電源線Vddに接続される。信号生成部115のドレインは電源線Vddに接続され、ソースは選択部116のドレインに接続される。選択部116のゲートは選択信号線VSEL0に接続され、ソースは第1の画像信号線107に接続される。
 光電変換部111は、照射された光に応じた電荷を生成し保持するものである。この光電変換部111には、フォトダイオードを使用することができる。
 電荷転送部113は、光電変換部111に保持された電荷を電荷保持部112に転送するものである。この電荷転送部113は、光電変換部111と電荷保持部112との間を導通することにより、電荷の転送を行う。電荷転送部113には、転送ゲート信号線TRG00を介してオン信号が入力される。
 電荷保持部112は、電荷転送部113により転送された電荷を保持するものである。すなわち、電荷保持部112は、光電変換部111により生成された電荷を保持する。この電荷保持部112には、半導体基板の拡散層に形成されたフローティングディフージョン領域を使用することができる。この電荷保持部112は、電荷-電圧変換手段でもある。すなわち、電荷保持部112は浮遊容量であるため、電荷保持部112の2つの電極のうち信号生成部115に接続された側の電極の電圧は、電荷保持部112に保持された電荷量に応じた電圧になる。
 リセット部114は、電荷保持部112に保持された電荷を排出してリセットするものである。リセット部114は、電荷保持部112に電源電圧を印加することにより、電荷の排出を行う。リセット部114には、リセット信号線RST0を介してオン信号が入力される。
 信号生成部115は、電荷保持部112に保持された電荷に応じた信号を画像信号として生成するものである。この信号生成部115は、電荷-電圧変換手段である電荷保持部112の電圧を増幅することにより、画像信号を生成する。
 選択部116は、信号生成部115により生成された画像信号を第1の画像信号線107に対して出力するものである。選択部116には、選択信号線VSEL0を介してオン信号が入力される。
 [アナログデジタル変換ユニットの構成]
 図4は、本技術の実施の形態におけるアナログデジタル変換ユニット200の構成例を示す図である。このアナログデジタル変換ユニット200は、MOSトランジスタ210と、アナログデジタル変換部220とを備える。
 アナログデジタル変換部220は、信号線205を介して入力された画像信号をアナログデジタル変換してデジタルの画像信号を生成するものである。生成されたデジタルの画像信号は、信号線15を介してセンスアンプ24に対して出力される。また、アナログデジタル変換部220には、タイミング制御部22から信号線13を介して制御信号が入力され、参照信号生成部23から信号線14を介して参照信号が入力される。
 MOSトランジスタ210は、画素110から出力された画像信号を切り替えるものである。このMOSトランジスタ210は、信号線12毎に配置される。同図の左端に配置されたMOSトランジスタ210を例に挙げて説明する。MOSトランジスタ210のドレインは信号線12(第2の画像信号線203)に接続され、ソースは信号線205に接続される。MOSトランジスタ210のゲートは、水平選択信号線HSEL(Horizontal Select)0に接続される。この水平選択信号線HSEL0は、MOSトランジスタ210のオン信号を伝達する信号線である。この信号線は、他のMOSトランジスタ210のゲートにも個別に配線される。同図においては、図2において説明した列番号を付してこれらを識別する。アナログデジタル変換部220においてアナログデジタル変換が行われる際、複数のMOSトランジスタ210のうちの1つにオン信号が入力されて導通状態となり、対応する信号線12に接続された画素110から出力された画像信号が選択される。このオン信号はタイミング制御部22により生成され、水平選択信号線HSEL0乃至HSEL9により伝達される。
 [画素ユニットの構成]
 図5は、本技術の実施の形態におけるアナログデジタル変換部220の構成例を示す図である。このアナログデジタル変換部220は、比較部221と、カウント部222と、保持部223とを備える。
 比較部221は、画素110により生成された画像信号および参照信号の比較を行うものである。この比較の結果は、カウント部222に対して出力される。参照信号として電圧がランプ形状に低下する信号を使用する場合を想定し、比較部221の動作を説明する。アナログデジタル変換部220のアナログデジタル変換の開始とともに参照信号生成部23が参照信号の出力を開始する。比較部221に入力された参照信号が画像信号より低い電圧に移行した場合に、比較部221がこれを検出して比較結果として出力する。すなわち、参照信号および画像信号が略等しくなった際に比較結果が出力される。
 カウント部222は、アナログデジタル変換部220におけるアナログデジタル変換の開始から比較部221における比較結果の出力までの時間を計時するものである。この計時は、クロック信号の計数により行うことができる。具体的には、カウント部222は、アナログデジタル変換の開始とともにクロック信号の計数を開始し、比較部221から比較結果が入力されると計数を停止する。前述のように参照信号は電圧がランプ状に低下する信号であるため、参照信号の電圧とカウント部222の計数値とは1対1に対応する。このため、カウント部222の計数値は、アナログデジタル変換部220に入力された画像信号のアナログデジタル変換の結果に該当する。クロック信号やカウント部222の制御信号は、タイミング制御部22により生成され、信号線13を介して入力される。
 保持部223は、カウント部222により生成されたデジタルの画像信号を保持するものである。保持されたデジタルの画像信号は、センスアンプ24に対して出力される。この制御信号は、タイミング制御部22により生成され、信号線13を介して入力される。
 なお、アナログデジタル変換部220は、相関二重サンプリング(Correlated Double Sampling:CDS)を行うことができる。このCDSは、例えば、次のように行うことができる。所定の露光期間の経過後に、図3において説明した画素110のリセット部114を導通させてリセットを行い、その時の画像信号(リセット時の画像信号)をアナログデジタル変換部220に入力してカウント部222において計数を行う。次に、カウント部222において計数結果を論理反転する。次に、画素110において電荷転送部113を導通させて光電変換部111により生成された電荷を電荷保持部112に保持させる。その時の画像信号をアナログデジタル変換部220に入力してカウント部222において再度計数を行う。これにより、リセット時の画像信号が差し引かれて計数が行われ、画素チップ10に配置されたそれぞれの画素110に固有のノイズ成分を除去することができる。
 [垂直走査部]
 図6は、本技術の実施の形態における垂直走査部21の構成例を示す図である。この垂直走査部21は、論理回路部240と、駆動部250とを備える。
 論理回路部240は、タイミング制御部22の制御に基づいて画素ユニット100に配置された画素110の制御信号を生成するものである。
 駆動部250は、論理回路部240により生成された制御信号からオン信号を生成し、画素110の制御信号として出力するものである。
 図1において説明した画素チップ10に配置された画素ユニット100の同一の信号線には、同一の波形の制御信号が入力される。図2において説明した転送ゲート信号線TRG00を例に挙げて説明すると、全ての画素ユニット100に配線される転送ゲート信号線TRG00には、同じ波形の信号が入力される。この信号は論理回路部240により生成される。そして、画素チップ10に配置された画素ユニット100の行毎に異なる駆動部250を経由して出力される。このように、駆動部250を分散して配置することにより、駆動能力の不足による画素110のMOSトランジスタの動作速度の低下等を防ぐことができる。
 [半導体チップの構成]
 図7は、本技術の実施の形態における半導体チップの構成例を示す図である。同図は、撮像装置1における接合された画素チップ10および回路チップ20の構成例を表す模式断面図である。
 同図の画素チップ10は、画素110の近傍の構成を表したものである。半導体基板190にP型のウェル領域180が形成され、このウェル領域180に画素110を構成する素子が形成される。光電変換部111は、N型半導体領域181および周囲のウェル領域180により構成される。これらの界面に形成されたPN接合において光電変換が行われる。この光電変換により生成された電荷は、N型半導体領域181に保持される。光電変換部111に隣接してゲート171、N型半導体領域182、ゲート172、N型半導体領域183、ゲート173およびN型半導体領域184が順に形成される。このうちゲート171乃至173は、ウェル領域180の表面(同図における下側)に形成された絶縁層170の中に形成される。ゲート171乃至173は、ポリシリコンにより構成することができる。また、絶縁層170は、二酸化ケイ素や有機シリカガラスにより構成することができる。
 電荷転送部113は、N型半導体領域181および182をそれぞれソースおよびドレインとし、ゲート171近傍のウェル領域180をチャンネル領域とするMOSトランジスタにより構成される。また、N型半導体領域182は、フローティングディフージョンを構成し、電荷保持部112を兼ねている。このN型半導体領域182は、N型半導体領域181より高い不純物濃度に構成される。リセット部114は、N型半導体領域182および183をそれぞれソースおよびドレインとし、ゲート172近傍のウェル領域180をチャンネルとするMOSトランジスタにより構成される。信号生成部115は、N型半導体領域183および184をそれぞれドレインおよびソースとし、ゲート173近傍のウェル領域180をチャンネルとするMOSトランジスタにより構成される。
 電荷保持部112を構成するN型半導体領域182および信号生成部115のゲート173は、ビアプラグ175および176ならびに配線178により接続される。ビアプラグ175および176ならびに配線178は、銅等の金属により構成することができる。N型半導体領域183は電源線Vddに接続され(不図示)、N型半導体領域184は選択部116のドレインに接続される(不図示)。これらN型半導体領域183および184は、N型半導体領域181より高い不純物濃度に構成される。
 画素チップ10の絶縁層170の表面(回路チップ20との接合面)には、第1の制御信号伝達部102が配置される。この第1の制御信号伝達部102と電荷転送部113のゲート171とは、ビアプラグ174および177ならびに配線179により接続される。なお、ビアプラグ174および177ならびに配線179は、第1の制御信号線101を構成する。
 同図の回路チップ20は、第2の制御信号伝達部202近傍の構成を簡略化して表したものである。第2の制御信号伝達部202は、回路チップ20の表面における第1の制御信号伝達部102と対向する位置に配置され、第1の制御信号伝達部102と電気的に接続される。この第2の制御信号伝達部202と垂直走査部21との間に第2の制御信号線201が配置され、制御信号が伝達される。
 [制御信号伝達部の配置]
 図8は、本技術の実施の形態における制御信号伝達部の配置例を示す図である。同図は、画素チップ10および回路チップ20の模式上面図を表したものである。同図の画素チップ10は、画素ユニット100、第1の制御信号伝達部102および第1の制御信号線101の配置を表したものである。また、同図の回路チップ20は、垂直走査部21を構成する論理回路部240および駆動部250ならびに第2の制御信号伝達部202および第2の制御信号線201の配置を表したものである。同図の破線は、画素チップ10および回路チップ20を接合した際の第1の制御信号伝達部102および第2の制御信号伝達部202の対応関係を示すものである。
 このように、第1の制御信号伝達部102を画素ユニット100の近傍、例えば、画素110に隣接して配置することにより、第1の制御信号線101の配線長を短くすることができる。通常、画素110等は画素チップ10の中央部に配置される。このため、第1の制御信号パッドも画素チップ10の中央部に配置することができる。ここで、画素チップ10の中央部とは、画素チップ10における画素110が配置される領域を表し、画素チップ10の周縁部を除く領域を表す。さらに、垂直走査部21を第2の制御信号パッドの近傍に配置することにより、第2の制御信号線201の配線長を短くすることができる。同様に、第1の画像信号パッドも画素チップ10の中央部に配置することができる。
 [半導体チップの他の構成]
 図9は、本技術の実施の形態における半導体チップの他の構成例を示す図である。同図は、図7において説明した第1の制御信号伝達部102および第2の制御信号伝達部202による接続の代わりにTSVを使用して接続を行った場合を比較例として表したものである。
 同図の撮像装置1は、以下の点で図7において説明した撮像装置1と異なる。まず、画素チップ10には第1の制御信号伝達部102の代わりに配線161が配置され、回路チップ20には第2の制御信号伝達部202の代わりに配線261が配置される。これらの配線は、絶縁層170等の内部に形成される。また、同図の画素チップ10および回路チップ20には、TSV191が形成される。このTSV191は、画素チップ10の端部に配置される。これ以外の撮像装置1の構成は図7において説明した撮像装置1と同様であるため、説明を省略する。
 TSV191は、次のように形成することができる。まず、画素チップ10および回路チップ20を接合する。次に画素チップ10の側から回路チップ20の配線261に達するビアホールを形成する。次に、ビアホール内に金属を配置してTSV191を形成する。この際、配置された金属と配線161および261との間が電気的に接続される。
 このように、TSV191を使用した場合であっても、画素チップ10および回路チップ20の間において制御信号の伝達を行うことができる。しかし、画素チップ10を貫通するビアホールを形成する必要があるため、TSV191は比較的大きな占有面積を要する。また、画素110を構成するMOSトランジスタ等から離れた領域に形成する必要がある。このため、TSV191は、半導体チップ(画素チップ10)の端部に形成される。
 [TSVの配置]
 図10は、本技術の実施の形態におけるTSVの配置例を示す図である。同図は、図9において説明した画素チップ10および回路チップ20の模式上面図を表したものである。同図の画素チップ10および回路チップ20は、第1の制御信号伝達部102および第2の制御信号伝達部202の代わりにTSV191を備える点で、図8において説明した画素チップ10および回路チップ20と異なる。図9において説明したようにTSV191は、画素チップ10の端部に形成される。このため、第1の制御信号線101および第2の制御信号線201が長くなる。このため、配線抵抗の増加による制御信号の劣化を生じる。また、回路チップ20においては、第2の制御信号線201の配線長の増加により信号線16との間で交差401を生じる。このため、配線を多層構造にする必要が生じ、コストが増加する。
 このように、本技術の実施の形態では、複数の画素を有する画素チップとその複数の画素のそれぞれに対する制御信号を生成する回路チップとが接合された撮像素子において、接合部分に配置された接続部によりそれぞれの制御信号を伝達する。これにより、制御信号の配線を簡略化することができる。
 <2.実施の形態の動作>
 次に、本技術の実施の形態における撮像装置1の動作について説明する。
 [画像信号生成処理]
 図11は、本技術の実施の形態における画像信号生成処理の一例を示す図である。同図は、図2において説明した画素ユニット100における第1行に配置された画素110の画像信号生成処理を表したものである。
 同図において、VSEL0およびRST0は、それぞれ垂直選択信号線VSEL0およびリセット信号線RST0の信号を表す。TRG00乃至TRG09は、転送ゲート信号線TRG00乃至TRG09の信号を表す。HSEL0乃至HSEL9は、水平選択信号線HSEL0乃至HSEL9の信号を表す。これらは、2値化された信号のうち値「1」の部分がオン信号の入力を表す。
 T0乃至T1において、全ての信号線にオン信号が入力されておらず、第1行に配置された画素110の電荷転送部113等が非導通の状態になる。当該期間は、初期状態に該当する。
 T1乃至T3において、リセット信号線RST0にオン信号が入力され、第1行に配置された画素110のリセット部114が導通状態になる。その後、転送ゲート信号線TRG00にオン信号が入力されて、第1行に配置された画素110のうち第1列に配置された画素110の電荷転送部113が導通状態になり、この画素110の光電変換部111および電荷保持部112に保持されていた電荷が排出されてリセットされる(T1乃至T2)。リセット終了後、リセット信号線RST0および転送ゲート信号線TRG00へのオン信号の入力が停止される(T2)。これにより、電荷転送部113が非導通の状態になり、当該画素において露光期間が開始される。また、水平選択信号線HSEL0にオン信号が入力されて図4の左端のMOSトランジスタ210が導通状態になる(T1乃至T3)。しかし、垂直選択信号線VSEL0にはオン信号が入力されていないため、画像信号は出力されない。後述するように、当該期間においては、画素ユニット100における第10行に配置された画素から画像信号が出力される。その後、水平選択信号線HSEL0へのオン信号の入力は、停止される(T3)。
 T3乃至T5において、リセット信号線RST0には、T1乃至T3と同様にオン信号の入力が行われる。一方、転送ゲート信号線TRG01乃至TRG09にオン信号が順次入力される。これにより、第1行に配置された画素110のうち第1列に配置された画素110を除く画素110において順次リセットが行われる。
 T5乃至T7において、垂直選択信号線VSEL0にオン信号が入力される。これにより、第1行に配置された画素110の選択部116が導通状態になる。なお、垂直選択信号線VSEL0へのオン信号の入力は、T8まで継続される。また、水平選択信号線HSEL0にオン信号が入力されて図4の左端のMOSトランジスタ210が導通状態になる(T5乃至T7)。さらに、リセット信号線RST0にオン信号が入力されてリセット部114が導通し、電荷保持部112がリセットされる(T5乃至T6)。この際、図5において説明したリセット時の画像信号が画素110から出力されてアナログデジタル変換部220においてアナログデジタル変換される。
 その後、リセット信号線RST0へのオン信号の入力が停止され、転送ゲート信号線TRG00にオン信号が入力される(T6乃至T7)。これにより、第1行に配置された画素110のうち第1列に配置された画素110において、電荷転送部113が導通状態になり、光電変換部111に保持されていた電荷が電荷保持部112に転送され、信号生成部115により画像信号が生成されて出力される。この出力された画像信号は、アナログデジタル変換部220においてアナログデジタル変換されるとともにCDSが実行される。なお、この転送ゲート信号線TRG00へのオン信号の入力により、当該画素における露光期間が終了する。その後、転送ゲート信号線TRG00からのオン信号の入力が停止される。また、水平選択信号線HSEL0へのオン信号の入力も停止される(T7)。
 T7乃至T8において、T5乃至T7と同様のリセット信号線RST0へのオン信号の入力が継続して行われる。また、転送ゲート信号線TRG01乃至TRG09および水平選択信号線HSEL1乃至HSEL9にオン信号が順次入力される。これにより、第1行に配置された画素110のうち第1列に配置された画素110を除く画素110において順次画像信号の出力およびアナログデジタル変換が行われる。
 これにより、第1行に配置された画素110において、電荷転送部113における電荷の転送が画素110毎に順次行われ、画像信号の生成処理が順次実行される。このような、複数の画素110毎にリセットおよび画像信号の生成を順次行う方式は、ローリングシャッタと称される。同図において、T1乃至T4の期間は、各画素のリセットを行うリセット期間に該当する。一方、T5乃至T8の期間は、各画素から画像信号を出力させる読出し期間に該当する。
 図12は、本技術の実施の形態における画像信号生成処理の一例を示す図である。同図は、画素ユニット100に配置された全ての画素110の画像信号処理を表したものである。同図において、VSEL0乃至VSEL9は、垂直選択信号線VSEL0乃至VSEL9の信号を表す。また、RST0乃至RST9は、リセット信号線RST0乃至RST9の信号を表す。これ以外の信号については、記載を省略した。
 同図に表したように、画素ユニット100における画素110の行毎にリセット期間および読出し期間が順次設定されて画像信号が生成される。この処理を画素チップ10に配置された全ての画素ユニット100に対して行うことにより、画素チップ10における画像信号生成を行うことができる。また、画素ユニット100毎にローリングシャッタ方式の撮像を行うことにより、ローリングシャッタ方式に特有の歪を目立たなくすることができる。
 このように、本技術の実施の形態によれば、複数の画素を有する画素チップとその複数の画素のそれぞれに対する制御信号を生成する回路チップとが接合された撮像素子において、ローリングシャッタ方式の撮像を行うことができ、画質を向上させることができる。
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。
 なお、本技術は以下のような構成もとることができる。
(1)入射光に応じて生成された電荷を制御信号に従って電荷保持部に転送する電荷転送部をそれぞれ有する複数の画素、および、前記電荷転送部のそれぞれに対する前記制御信号を伝達する複数の第1の制御信号伝達部を備える画素チップと、
 前記複数の画素の電荷転送部のそれぞれに対する前記制御信号を生成する制御信号生成部、および、前記第1の制御信号伝達部にそれぞれ対応して設けられて前記生成された制御信号を伝達する複数の第2の制御信号伝達部を備える回路チップと
を具備する撮像素子。
(2)前記複数の第1の制御信号伝達部は、複数の第1の制御信号パッドにより構成され、
 前記複数の第2の制御信号伝達部は、複数の第2の制御信号パッドにより構成される
前記(1)に記載の撮像素子。
(3)前記複数の第1の制御信号パッドは、前記画素チップの中央部に配置される前記(2)に記載の撮像素子。
(4)前記複数の第1の制御信号パッドと前記複数の第2の制御信号パッドとは加熱圧着により接続される前記(2)または(3)に記載の撮像素子。
(5)前記複数の第1の制御信号パッドと前記複数の第2の制御信号パッドとは銅により構成される前記(2)から(4)のいずれかに記載の撮像素子。
(6)前記画素チップは、前記電荷保持部に転送された電荷に応じて生成された画像信号を伝達する第1の画像信号伝達部をさらに備え、
 前記回路チップは、前記生成された画像信号をアナログデジタル変換するアナログデジタル変換部と、前記第1の画像信号伝達部に対応して設けられて前記生成された画像信号を前記アナログデジタル変換部に伝達する第2の画像信号伝達部とをさらに備える
前記(1)から(5)のいずれかに記載の撮像素子。
(7)前記第1の画像信号伝達部は、第1の画像信号パッドにより構成され、
 前記第2の画像信号伝達部は、第2の画像信号パッドにより構成される
前記(6)に記載の撮像素子。
(8)前記第1の画像信号パッドは、前記画素チップの中央部に配置される前記(7)に記載の撮像素子。
(9)前記アナログデジタル変換部は、前記複数の画素からなる画素ユニット毎に分散して配置される前記(6)から(8)のいずれかに記載の撮像素子。
(10)前記制御信号生成部は、前記複数の画素の電荷転送部に前記生成された電荷の転送を順次行わせる信号を前記制御信号として生成し、
 前記画素チップは、前記生成された電荷の前記電荷保持部への転送を前記複数の画素毎に順次行う
前記制御信号を生成する前記(1)から(8)のいずれかに記載の撮像素子。
(11)入射光に応じて生成された電荷を制御信号に従って電荷保持部に転送する電荷転送部をそれぞれ有する複数の画素、前記電荷転送部のそれぞれに対する前記制御信号を伝達する複数の第1の制御信号伝達部、および、前記電荷保持部に転送された電荷に応じて生成された画像信号を伝達する第1の画像信号伝達部を備える画素チップと、
 前記複数の画素の電荷転送部のそれぞれに対する前記制御信号を生成する制御信号生成部、前記第1の制御信号伝達部にそれぞれ対応して設けられて前記生成された制御信号を伝達する複数の第2の制御信号伝達部、前記生成された画像信号をアナログデジタル変換するアナログデジタル変換部、前記第1の画像信号伝達部に対応して設けられて前記生成された画像信号を前記アナログデジタル変換部に伝達する第2の画像信号伝達部、および、前記アナログデジタル変換された画像信号を処理する処理回路を備える回路チップと
を具備する撮像装置。
 1 撮像装置
 10 画素チップ
 20 回路チップ
 21 垂直走査部
 22 タイミング制御部
 23 参照信号生成部
 24 センスアンプ
 25 信号処理部
 100 画素ユニット
 101 第1の制御信号線
 102 第1の制御信号伝達部
 107 第1の画像信号線
 108 第1の画像信号伝達部
 110 画素
 111 光電変換部
 112 電荷保持部
 113 電荷転送部
 114 リセット部
 115 信号生成部
 116 選択部
 161、178、179、261 配線
 174~177 ビアプラグ
 191 TSV
 200 アナログデジタル変換ユニット
 201 第2の制御信号線
 202 第2の制御信号伝達部
 203 第2の画像信号線
 204 第2の画像信号伝達部
 220 アナログデジタル変換部
 221 比較部
 222 カウント部
 223 保持部
 240 論理回路部
 250 駆動部

Claims (11)

  1.  入射光に応じて生成された電荷を制御信号に従って電荷保持部に転送する電荷転送部をそれぞれ有する複数の画素、および、前記電荷転送部のそれぞれに対する前記制御信号を伝達する複数の第1の制御信号伝達部を備える画素チップと、
     前記複数の画素の電荷転送部のそれぞれに対する前記制御信号を生成する制御信号生成部、および、前記第1の制御信号伝達部にそれぞれ対応して設けられて前記生成された制御信号を伝達する複数の第2の制御信号伝達部を備える回路チップと
    を具備する撮像素子。
  2.  前記複数の第1の制御信号伝達部は、複数の第1の制御信号パッドにより構成され、
     前記複数の第2の制御信号伝達部は、複数の第2の制御信号パッドにより構成される
    請求項1記載の撮像素子。
  3.  前記複数の第1の制御信号パッドは、前記画素チップの中央部に配置される請求項2記載の撮像素子。
  4.  前記複数の第1の制御信号パッドと前記複数の第2の制御信号パッドとの間は加熱圧着により接続される請求項2記載の撮像素子。
  5.  前記複数の第1の制御信号伝達部および前記複数の第2の制御信号伝達部は銅により構成される請求項2載の撮像素子。
  6.  前記画素チップは、前記電荷保持部に転送された電荷に応じて生成された画像信号を伝達する第1の画像信号伝達部をさらに備え、
     前記回路チップは、前記生成された画像信号をアナログデジタル変換するアナログデジタル変換部と、前記第1の画像信号伝達部に対応して設けられて前記生成された画像信号を前記アナログデジタル変換部に伝達する第2の画像信号伝達部とをさらに備える
    請求項1記載の撮像素子。
  7.  前記第1の画像信号伝達部は、第1の画像信号パッドにより構成され、
     前記第2の画像信号伝達部は、第2の画像信号パッドにより構成される
    請求項6記載の撮像素子。
  8.  前記第1の画像信号パッドは、前記画素チップの中央部に配置される請求項7記載の撮像素子。
  9.  前記アナログデジタル変換部は、前記複数の画素からなる画素ユニット毎に分散して配置される請求項6記載の撮像素子。
  10.  前記制御信号生成部は、前記複数の画素の電荷転送部に前記生成された電荷の転送を順次行わせる信号を前記制御信号として生成し、
     前記画素チップは、前記生成された電荷の前記電荷保持部への転送を前記複数の画素毎に順次行う
    請求項1記載の撮像素子。
  11.  入射光に応じて生成された電荷を制御信号に従って電荷保持部に転送する電荷転送部をそれぞれ有する複数の画素、前記電荷転送部のそれぞれに対する前記制御信号を伝達する複数の第1の制御信号伝達部、および、前記電荷保持部に転送された電荷に応じて生成された画像信号を伝達する第1の画像信号伝達部を備える画素チップと、
     前記複数の画素の電荷転送部のそれぞれに対する前記制御信号を生成する制御信号生成部、前記第1の制御信号伝達部にそれぞれ対応して設けられて前記生成された制御信号を伝達する複数の第2の制御信号伝達部、前記生成された画像信号をアナログデジタル変換するアナログデジタル変換部、前記第1の画像信号伝達部に対応して設けられて前記生成された画像信号を前記アナログデジタル変換部に伝達する第2の画像信号伝達部、および、前記アナログデジタル変換された画像信号を処理する処理回路を備える回路チップと
    を具備する撮像装置。
PCT/JP2017/020904 2016-07-11 2017-06-06 撮像素子および撮像装置 WO2018012143A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/314,937 US10998373B2 (en) 2016-07-11 2017-06-06 Imaging element and imaging device
JP2018527435A JPWO2018012143A1 (ja) 2016-07-11 2017-06-06 撮像素子および撮像装置
EP17827275.3A EP3484146A4 (en) 2016-07-11 2017-06-06 IMAGING MEMBER AND IMAGING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016136937 2016-07-11
JP2016-136937 2016-07-11

Publications (1)

Publication Number Publication Date
WO2018012143A1 true WO2018012143A1 (ja) 2018-01-18

Family

ID=60952051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020904 WO2018012143A1 (ja) 2016-07-11 2017-06-06 撮像素子および撮像装置

Country Status (4)

Country Link
US (1) US10998373B2 (ja)
EP (1) EP3484146A4 (ja)
JP (1) JPWO2018012143A1 (ja)
WO (1) WO2018012143A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019161520A (ja) * 2018-03-15 2019-09-19 ソニーセミコンダクタソリューションズ株式会社 撮像装置駆動回路および撮像装置
WO2022025810A1 (en) * 2020-07-29 2022-02-03 Fingerprint Cards Anacatum Ip Ab Adaptive readout from a global shutter optical biometric sensor
US11516413B2 (en) 2020-07-29 2022-11-29 Fingerprint Cards Anacatum Ip Ab Adaptive readout from an optical biometric sensor to a host device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049361A (ja) * 2004-07-30 2006-02-16 Sony Corp 半導体モジュール及びmos型固体撮像装置
JP2011159958A (ja) 2010-01-08 2011-08-18 Sony Corp 半導体装置、固体撮像装置、およびカメラシステム
JP2013225632A (ja) * 2012-04-23 2013-10-31 Canon Inc 固体撮像装置、その製造方法、及びカメラ
JP2013232647A (ja) * 2012-04-27 2013-11-14 Taiwan Semiconductor Manufacturing Co Ltd 縦方向に集積化される背面照射型イメージセンサ装置
JP2015070591A (ja) * 2013-10-01 2015-04-13 オリンパス株式会社 撮像装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100752713B1 (ko) * 2005-10-10 2007-08-29 삼성전기주식회사 이미지센서의 웨이퍼 레벨 칩 스케일 패키지 및 그제조방법
JP5187550B2 (ja) * 2007-08-21 2013-04-24 ソニー株式会社 撮像装置
JP5500007B2 (ja) * 2010-09-03 2014-05-21 ソニー株式会社 固体撮像素子およびカメラシステム
US9257468B2 (en) * 2012-11-21 2016-02-09 Olympus Corporation Solid-state imaging device, imaging device, and signal reading medium that accumulates an amplified signal without digitization
WO2012165647A1 (en) * 2011-06-01 2012-12-06 Canon Kabushiki Kaisha Semiconductor device
JP2013090127A (ja) * 2011-10-18 2013-05-13 Olympus Corp 固体撮像装置および撮像装置
US9343497B2 (en) * 2012-09-20 2016-05-17 Semiconductor Components Industries, Llc Imagers with stacked integrated circuit dies
JP5424371B1 (ja) * 2013-05-08 2014-02-26 誠 雫石 固体撮像素子及び撮像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049361A (ja) * 2004-07-30 2006-02-16 Sony Corp 半導体モジュール及びmos型固体撮像装置
JP2011159958A (ja) 2010-01-08 2011-08-18 Sony Corp 半導体装置、固体撮像装置、およびカメラシステム
JP2013225632A (ja) * 2012-04-23 2013-10-31 Canon Inc 固体撮像装置、その製造方法、及びカメラ
JP2013232647A (ja) * 2012-04-27 2013-11-14 Taiwan Semiconductor Manufacturing Co Ltd 縦方向に集積化される背面照射型イメージセンサ装置
JP2015070591A (ja) * 2013-10-01 2015-04-13 オリンパス株式会社 撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3484146A4

Also Published As

Publication number Publication date
EP3484146A1 (en) 2019-05-15
JPWO2018012143A1 (ja) 2019-04-25
US10998373B2 (en) 2021-05-04
US20190312079A1 (en) 2019-10-10
EP3484146A4 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
US10811454B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic apparatus
JP5570377B2 (ja) 固体撮像装置
JP4752447B2 (ja) 固体撮像装置およびカメラ
TWI501595B (zh) 半導體積體電路、電子器件、固態成像裝置及成像裝置
JP6809525B2 (ja) 撮像装置および撮像装置の製造方法
US20190181170A1 (en) Solid state imaging device and electronic apparatus
JP2008235478A (ja) 撮像素子
JP5558801B2 (ja) 固体撮像装置
JP5682638B2 (ja) 撮像素子
WO2017126232A1 (ja) 固体撮像素子および撮像装置
JP6238558B2 (ja) 撮像装置、および、撮像システム。
WO2018012143A1 (ja) 撮像素子および撮像装置
WO2017203839A1 (ja) 固体撮像素子および撮像装置
WO2017119177A1 (ja) 固体撮像素子、固体撮像素子の駆動方法、及び、電子機器
US11532660B2 (en) Photoelectric conversion device
JP6048482B2 (ja) 撮像素子
JP6361633B2 (ja) 撮像素子
WO2021033454A1 (ja) 半導体装置及び電子機器
JP7358300B2 (ja) 撮像素子
JP2022180871A (ja) 撮像素子及び撮像装置
JP5868451B2 (ja) 光電変換装置
JP2019201425A (ja) 撮像素子
JP2018011304A (ja) 撮像素子
JP2018164280A (ja) 撮像素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527435

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017827275

Country of ref document: EP

Effective date: 20190211