WO2018011835A1 - 試験試料が植物病原性真菌を含有するかどうかを判定する方法 - Google Patents
試験試料が植物病原性真菌を含有するかどうかを判定する方法 Download PDFInfo
- Publication number
- WO2018011835A1 WO2018011835A1 PCT/JP2016/004417 JP2016004417W WO2018011835A1 WO 2018011835 A1 WO2018011835 A1 WO 2018011835A1 JP 2016004417 W JP2016004417 W JP 2016004417W WO 2018011835 A1 WO2018011835 A1 WO 2018011835A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- test sample
- cellulose film
- micrometers
- fungus
- back surface
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/02—Cellulose; Modified cellulose
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
- C12M25/06—Plates; Walls; Drawers; Multilayer plates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/37—Assays involving biological materials from specific organisms or of a specific nature from fungi
Definitions
- the present invention relates to a method for determining whether a test sample contains a phytopathogenic fungus.
- Patent Document 1 discloses a method for measuring filamentous fungi.
- FIG. 12 shows a cross-sectional view of a microporous membrane support used for the method for measuring filamentous fungi disclosed in Patent Document 1.
- the method for measuring the number of filamentous fungi disclosed in Patent Document 1 is a method for measuring the number of filamentous fungi in a test material, measuring the number of filamentous fungi in a short period of time, and measuring the number of filamentous fungi. The purpose is to provide a weighing method.
- the shape and area of the filamentous fungus 13 cultivated in liquid culture or the plurality of the filamentous fungi 13 cultured on the microporous membrane 1 of the microporous membrane support 4 are imaged.
- the image analysis means 10 recognizes and analyzes the light emission luminance, so that the filamentous fungus 13 can be measured in a short time culture.
- the microporous membrane 1 is sandwiched between the pressing ring 2 and the base 3.
- Non-Patent Document 1 discloses that a pseudomycelium of Phytophthora sojae, which is a kind of phytopathogenic oomycete, penetrates a PET membrane having a 3 micrometer pore.
- An object of the present invention is to provide a method for selectively determining whether a test sample contains a phytopathogenic fungus from two types of fungi, a phytopathogenic fungus and a plant non-pathogenic fungus. .
- the present invention is a method for determining whether a test sample contains a phytopathogenic fungus comprising the following steps: (A) a step of placing the test sample on the front surface of the substrate having a through hole; here, The substrate comprises a cellulose film on the back surface, The cellulose film has a thickness not less than 0.5 micrometers and not more than 2 micrometers, and the through hole has a cross-sectional area not less than 7.065 micrometers and not more than 19.625 micrometers.
- step (B) After the step (a), the step of standing the test sample, (C) a step of observing the back side of the film after step (b), and (d) if a fungus is found on the back side of the film in step (c), the test sample is the phytopathogenicity A step of determining that it contains a fungus.
- the present invention provides a method for selectively determining whether or not a test sample contains a phytopathogenic fungus from two types of fungi, a phytopathogenic fungus and a plant non-pathogenic fungus.
- FIG. 1 shows a cross-sectional view of the first container 100.
- FIG. 2 shows a cross-sectional view of a substrate 170 having the cellulose film 104 on the back surface.
- FIG. 3 shows a cross-sectional view of the first container 100 supplied with the test sample.
- FIG. 4 shows a cross-sectional view of a substrate 170 with phytopathogenic fungi placed on the surface.
- FIG. 5 is a cross-sectional view showing a state in which a phytopathogenic fungus has penetrated the through hole 172 and the cellulose film 104.
- FIG. 6 shows a cross-sectional view of an example of a method for accelerating fungal culture.
- FIG. 7 shows a cross-sectional view of an example of a method for accelerating fungal culture following FIG. 6.
- FIG. 8 is a cross-sectional view showing how the fungus is observed from the back surface of the cellulose film 104.
- FIG. 9 is a cross-sectional view showing a state in which fungi are observed from the back surface of the cellulose film 104.
- FIG. 10 is a photomicrograph of the back surface of the cellulose film 104 in Example 1A.
- FIG. 11 is a photomicrograph of the back surface of the cellulose film 104 in Comparative Example 2A.
- FIG. 12 shows a cross-sectional view of a microporous membrane support used for the method for measuring filamentous fungi disclosed in Patent Document 1.
- the phytopathogenic fungi belong to the genus Fusarium, Pyricularia, or Colletotrichum, for example.
- Examples of phytopathogenic fungi are Fusarium oxysporum, Pyricularia grisea, or Colletotrichum gloeosporioides. These phytopathogenic fungi cause root rot, blast, blast, Anthrax, gray mold, and the like. These phytopathogenic fungi kill the plant.
- Examples of plant non-pathogenic fungi are Saccharomyces cerevisiae, Penicillium chysogeum, or Aspergillus oryzae.
- phytopathogenicity means having a pathogenicity to plants.
- plant non-pathogenic means not pathogenic to plants.
- a fungus is "plant non-pathogenic” if it is pathogenic but not pathogenic to the plant. In other words, a fungus is “plant non-pathogenic” if it does not adversely affect the plant.
- the prefix “non” included in the term “plant non-pathogenic” does not modify “plant”. The prefix “non” modifies “pathogenicity”.
- a test sample is placed on the surface on the front side of the substrate 170 having the through holes 172.
- a cellulose film 104 is attached to the back surface 170 b of the substrate 170.
- the front surface 104 a of the cellulose film 104 is in contact with the back surface 170 b of the substrate 170.
- a container 100 is prepared as shown in FIG.
- the container 100 preferably has a flange 102 at the upper end.
- the bottom surface of the container 100 is formed from the substrate 170.
- the substrate 170 includes the cellulose film 104 on the back surface 170b (that is, the outer surface of the bottom surface of the container 100).
- the substrate 170 includes a through-hole 172 that penetrates from the front surface 170a to the back surface 170b.
- the through-hole 172 has a diameter of 3 micrometers or more and 5 micrometers or less. In other words, the through-hole 172 has a cross-sectional area of 7.065 microsquare meters or more and 19.625 microsquare meters or less.
- a test sample 200 is supplied into the container 100.
- the test sample 200 is disposed on the front surface 170a of the substrate 170 (that is, the inner surface of the bottom surface of the container 170).
- the test sample 200 contains the phytopathogenic fungus 202
- the phytopathogenic fungus 202 is disposed on the front surface 170a of the substrate 170 as shown in FIG.
- the test sample 200 is a solid, liquid, or gas.
- the test sample 200 is preferably solid or liquid.
- solid test sample 200 are soil or crushed plants.
- Other examples are agricultural materials such as vermiculite, rock wool, or urethane.
- liquid test samples 200 include agricultural water, solutions used for hydroponics, liquids used to wash plants, liquids extracted from plants, used to wash agricultural materials Liquid after use or after use to wash an operator's clothing or shoes.
- test sample 200 is allowed to stand for a predetermined incubation time. Desirably, the test sample 200 is allowed to stand for 24 hours. In this way, the fungus is cultured. In other words, the culture time is desirably approximately 24 hours.
- the importance of the thickness of the cellulose film 104 and the size of the through hole 172 will be described below.
- the phytopathogenic fungus 202 has a through-hole as shown in FIG. Grows so as to penetrate both 172 and the cellulose film 104. As a result, phytopathogenic fungi 202 appear on the back surface 104 b of the cellulose film 104.
- the cellulose film 104 has a thickness of 0.5 micrometers or more and 2 micrometers or less.
- the through-hole 172 has a cross-sectional area of 7.065 microsquare meters or more and 19.625 microsquare meters or less.
- the plant non-pathogenic fungus hardly penetrates the cellulose film 104.
- the number of intrusion points is at most 31.9. Therefore, plant non-pathogenic fungi hardly appear on the back surface 104b of the cellulose film 104.
- the phytopathogenic fungus 202 selectively appears on the back surface 104b.
- the number of intrusion points is at least 77.4. In this way, the phytopathogenic fungus 202 selectively appears outside the container 100.
- the cellulose film 104 When the cellulose film 104 has a thickness exceeding 2 micrometers, not only plant non-pathogenic fungi but also plant pathogenic fungi do not penetrate the cellulose film 104. Thus, if the cellulose film 104 has a thickness greater than 2 micrometers, selectivity is lost. When the cellulose film 104 has a thickness of less than 0.5 micrometers (including the case where the cellulose film 104 is not provided), not only plant non-pathogenic fungi but also phytopathogenic fungi penetrate the cellulose film 104 ( Alternatively, it is found on the back surface 170b of the substrate 170). Thus, selectivity is lost when the cellulose film 104 has a thickness of less than 0.5 micrometers.
- the through-hole 172 has a cross-sectional area of less than 7.065 micro square meters (ie, a diameter of less than 3 micrometers), not only plant non-pathogenic fungi but also plant non-pathogenic fungi will not penetrate the cellulose film 104. .
- the through-hole 172 has a cross-sectional area of greater than 19.625 micrometers (ie, a diameter greater than 5 micrometers)
- the through-hole 172 has a cross-sectional area of 19.625 micrometers (ie, a diameter of 5 micrometers).
- the cellulose film 104 is pinned on the back surface 170 b of the substrate 170. As such, the substrate 170 supports the cellulose film 104.
- the substrate 170 preferably has a plurality of through holes 172.
- substrate 170 is not limited, As an example, they are 1 micrometer or more and 500 micrometers or less.
- the cellulose film 104 is very thin. However, when the cellulose film 104 is disposed on such a substrate 170, the cellulose film 104 can be easily handled.
- a medium can be supplied to the test sample 200.
- the medium can be supplied into the container 100 containing the test sample 200.
- the medium is desirably a liquid.
- the medium can be supplied in step (b).
- the medium can be supplied prior to step (b).
- the culture medium can be supplied in step (a).
- the culture medium may be supplied to the inside of the container 100 before the step (a).
- FIG. 6 shows another method for accelerating fungal culture.
- a second container 300 having a liquid medium 302 therein is prepared.
- the container 100 is referred to as a “first container 100”.
- the first container 100 is overlaid on the second container 300 such that the lower surface of the flange 102 contacts the upper end of the second container 300.
- the first container 100 is supported by the upper end of the second container 300.
- the liquid culture medium 302 is sandwiched between the back surface 104 b of the cellulose film 104 and the bottom surface of the second container 300.
- the liquid medium 302 may be supplied between the back surface 104 b of the cellulose film 104 and the bottom surface of the second container 300.
- liquid medium 302 a viscous solid medium can also be used. As shown in FIG. 6, both solid medium 304 and liquid medium 302 can be used. In this case, the liquid medium 302 is sandwiched between the solid medium 304 and the cellulose film 104. As shown in FIG. 5, the cultivation of the phytopathogenic fungi appearing on the back surface 104 b is accelerated by at least one of the liquid medium 302 and the solid medium 304.
- the back surface 104b of the cellulose film 104 is observed after the step (b). It is desirable that the back surface 104b is observed using an optical microscope.
- the phytopathogenic fungus 202 appears on the back surface 104 b of the cellulose film 104.
- plant non-pathogenic fungi do not appear on the back surface 104 b of the cellulose film 104.
- the phytopathogenic fungus 202 selectively appears on the back surface 104 b of the cellulose film 104.
- the phytopathogenic fungus 202 penetrates the cellulose film 104.
- plant non-pathogenic fungi do not penetrate the cellulose film 104. Therefore, plant non-pathogenic fungi do not appear on the back surface 104 b of the cellulose film 104. In this way, the phytopathogenic fungus 202 selectively appears on the back surface 104b. In other words, the phytopathogenic fungus 202 selectively appears outside the first container 100.
- step (c) it is observed whether phytopathogenic fungi 202 appear on the back surface 104b of the cellulose film 104.
- phytopathogenic fungus 202 appears on the back surface 104b of the cellulose film 104 as follows.
- a phytopathogenic fungus 202 is observed optically.
- the liquid medium 302 and the solid medium 304 are removed from the second container 300.
- the fungal fluorescent solution 402 is added to the inside of the second container 300.
- the first container 100 is superimposed on the second container 300 having the fungal fluorescent solution 402 therein.
- the fungal fluorescent solution 402 may be supplied between the back surface 104 b of the cellulose film 104 and the bottom surface of the second container 300.
- a part of the phytopathogenic fungus 202 that appears on the back surface 104 b of the cellulose film 104 can be stained with the fungal staining solution 402. Since the second container 300 and the first container 100 are separated by the cellulose film 104, the fungal fluorescent liquid 402 does not spread inside the first container 100. Therefore, plant non-pathogenic fungi contained in the first container 100 are not stained with the fungal fluorescent solution 402.
- phytopathogenic fungi 202 stained with a fungal fluorescent agent are observed using an epifluorescence microscope 600 disposed under the back surface 104b of the cellulose film 104. Needless to say, the phytopathogenic fungus 202 can be observed without using a fungal fluorescent agent.
- step (d) if a fungus is found on the back surface 104b of the cellulose film 104 in step (c), it is determined that the test sample contains a phytopathogenic fungus. Needless to say, if no fungus is found on the back surface 104b of the cellulose film 104 in step (c), it is determined that the test sample does not contain a phytopathogenic fungus.
- Example 1 Fusarium oxysporum culture
- Fusarium oxysporum a plant pathogen
- the medium was then allowed to stand for 1 week at a temperature of 25 degrees Celsius. Fusarium oxysporum was given by Associate Professor Shimizu belonging to the Faculty of Applied Biological Sciences, Gifu University.
- the part including the tip of the mycelium was cut out together with the medium in a size of 1 cm ⁇ 1 cm.
- the cut out part was immersed in pure water placed on a 12-well plate. The volume of each pure water was 1 milliliter.
- Experimental Example 1 is composed of Example 1A to Example 1D and Comparative Example 1E to Comparative Example 1L.
- Example 1A The first container 100 shown in FIG. 1 was prepared as follows.
- cellulose obtained from SIGMA-ALDRICH, trade name: Avicel PH-101
- ionic liquid 1-Butyl-3-methyl imidazolium chloride (available from SIGMA-ALDRICH).
- the cellulose solution was heated to 60 degrees Celsius.
- the cellulose solution was applied to the back surface of a container having a polyethylene terephthalate film on the bottom surface (available from Millipore, trade name: Millicell PISP 12R 48) for 30 seconds at a rotation speed of 2000 rpm by a spin coating method.
- the polyethylene terephthalate film functioned as the substrate 170.
- the polyethylene terephthalate film randomly had a plurality of through holes 172 having a diameter of 3 micrometers. In this way, a cellulose film 104 having a thickness of 2.0 micrometers was formed on the back side surface of the polyethylene terephthalate film. According to Millipore, the diameter of the through-hole 104c can have an error of about ⁇ 10%.
- the container was allowed to stand at room temperature for 12 hours in ethanol. In this way, 1-Butyl-3-methyl imidazolium chloride was replaced with ethanol. In other words, 1-Butyl-3-methyl imidazolium chloride was removed from the cellulose film 104.
- the container was dried in a vacuum desiccator.
- the 1st container 100 shown by FIG. 1 was obtained. Note that in FIG. 1, a polyethylene terephthalate film that functions as substrate 170 is not shown.
- the first container 100 was overlaid on the second container 300.
- the back surface 104 b of the cellulose film 104 was in contact with the liquid medium 302.
- water having a volume of 200 microliters was added to the inside of the first container 100.
- a phytopathogenic aqueous solution containing 200 Fusarium oxysporum spores was added to the inside of the first container 100.
- the first container 100 was left at a temperature of 25 degrees Celsius for 24 hours.
- the culture time was 24 hours.
- FIG. 10 is a photomicrograph of the back surface of the cellulose film 104 in Example 1A.
- Example 1B In Example 1B, an experiment similar to Example 1A was performed, except that the diameter of the through hole 172 was 5 micrometers. A container having a bottom surface with a through-hole having a diameter of 5 micrometers was obtained from Millipore under the trade name: PIMP 12R 48.
- Example 1C In Example 1C, the same experiment as in Example 1A, except that the cellulose solution had a concentration of 1.0% and the cellulose film 104 had a thickness of 0.5 micrometers. Was done.
- Reference Example 1D In Reference Example 1D, the cellulose solution had a concentration of 1.0%, the cellulose film 104 had a thickness of 0.5 micrometers, and the diameter of the through-hole 172 was 5 micrometers. An experiment similar to Example 1A was performed except that.
- Comparative Example 1E In Comparative Example 1E, an experiment similar to Example 1A was performed, except that the diameter of the through hole 172 was 1 micrometer. A container having a bottom surface with a through-hole having a diameter of 1 micrometer was obtained from Millipore as trade name: PIRP 12R48.
- Comparative Example 1F Comparative Example 1F
- an experiment similar to Example 1A was performed, except that the diameter of the through hole 172 was 8 micrometers.
- a container having a bottom surface with a through-hole having a diameter of 8 micrometers was obtained from Millipore as trade name: PIEP 12R 48.
- Comparative Example 1G In Comparative Example 1G, the cellulose film 104 had a thickness of 0.5 micrometers (that is, the cellulose solution had a concentration of 1.0%), and the diameter of the through-hole 172 was An experiment similar to that of Example 1A was performed, except that it was 1 micrometer.
- Comparative Example 1H In Comparative Example 1H, the cellulose film 104 had a thickness of 0.5 micrometers (that is, the cellulose solution had a concentration of 1.0%), and the diameter of the through-hole 172 was An experiment similar to that of Example 1A was performed, except that it was 8 micrometers.
- Comparative Example 1I In Comparative Example 1I, except that the cellulose film 104 was not formed (that is, the cellulose film 104 had a thickness of 0 micrometer) and the diameter of the through-hole 172 was 1 micrometer, An experiment similar to Example 1A was performed.
- Comparative Example 1J In Comparative Example 1I, an experiment similar to Example 1A was performed, except that the cellulose film 104 was not formed (that is, the cellulose film 104 had a thickness of 0 micrometer).
- Comparative Example 1K In Comparative Example 1K, the cellulose film 104 was not formed (that is, the cellulose film 104 had a thickness of 0 micrometer), and the diameter of the through hole 172 was 5 micrometers, An experiment similar to Example 1A was performed.
- Comparative Example 1L Comparative Example 1L
- the cellulose film 104 was not formed (that is, the cellulose film 104 had a thickness of 0 micrometer), and the diameter of the through hole 172 was 8 micrometers, An experiment similar to Example 1A was performed.
- Example 2 In Experimental Example 2, a plant non-pathogenic fungal aqueous solution containing Saccharomyces cerevisiae spores was used in place of the phytopathogenic fungal aqueous solution containing Fusarium oxysporum spores. Unlike Fusarium oxysporum, Saccharomyces cerevisiae is a plant non-pathogenic fungus. A non-phytopathogenic fungal aqueous solution containing Saccharomyces cerevisiae spores was prepared in the same manner as a phytopathogenic fungal aqueous solution containing Fusarium oxysporum spores. Experimental Example 2 includes Comparative Examples 2A to 2L. Comparative Example 2A to Comparative Example 2L are the same as Example 1A to Comparative Example 1L, except that different fungi were used. FIG. 11 is a photomicrograph of the back surface of the cellulose film 104 in Comparative Example 2A.
- Example 3 In Experimental Example 3, a phytopathogenic aqueous solution containing Pyricularia grisea spores was used instead of the phytopathogenic fungal aqueous solution containing Fusarium oxysporum spores. Like Fusarium oxysporum, Pyricularia grisea is also a phytopathogenic fungus.
- An aqueous solution of phytopathogenic fungi containing spores of Pyricularia grisea was prepared as follows.
- Pyricularia grisea culture First, Pyricularia grisea, a kind of plant pathogen, was inoculated into oatmeal agar medium containing 2% sucrose. The medium was then allowed to stand for 1 week at a temperature of 25 degrees Celsius. Then, it was left still for 4 days under near ultraviolet rays.
- the part including the tip of the mycelium was cut out together with the medium in a size of 1 cm ⁇ 1 cm.
- the cut out part was immersed in pure water placed on a 12-well plate. The volume of each pure water was 1 milliliter.
- Experimental Example 3 is composed of Example 3A to Example 3D and Comparative Example 3E to Comparative Example 3L.
- Example 3A to Example 3D and Comparative Example 3E to Comparative Example 3L are the same as Example 1A to Example 1D and Comparative Example 1E to Comparative Example 1L, respectively, except that different fungi were used.
- Example 4 In Experimental Example 4, a phytopathogenic aqueous solution containing spores of Colletotrichum gloeosporioides was used in place of the phytopathogenic fungal aqueous solution containing Fusarium oxysporum spores. Like Fusarium oxysporum, Colletotrichum gloeosporioides is also a phytopathogenic fungus. An aqueous phytopathogenic fungus solution containing spores of Colletotrichum gloeosporioides was prepared in the same manner as an aqueous phytopathogenic fungus solution containing Fusarium oxysporum spores.
- Experimental Example 4 is composed of Example 4A to Example 4D and Comparative Example 4E to Comparative Example 4L.
- Example 4A to Example 4D and Comparative Example 4E to Comparative Example 4L are the same as Example 1A to Example 1D and Comparative Example 1E to Comparative Example 1L, respectively, except that different fungi were used.
- Example 5 (Experimental example 5) In Experimental Example 5, a plant non-pathogenic fungal aqueous solution containing Penicillium chysogeum spores was used instead of the phytopathogenic fungal aqueous solution containing Fusarium oxysporum spores. Unlike Fusarium oxysporum, Penicillium chysogeum is a plant non-pathogenic fungus. A non-phytopathogenic fungal aqueous solution containing Penicillium chysogeum spores was prepared in the same manner as a phytopathogenic fungal aqueous solution containing Fusarium oxysporum spores. Experimental Example 5 consists of Comparative Examples 5A to 5L. Except that different fungi were used, Comparative Example 5A to Comparative Example 5L were the same as Example 1A to Comparative Example 1L, respectively.
- Example 6 In Experimental Example 5, a plant non-pathogenic fungal aqueous solution containing Aspergillus oryzae spores was used instead of the phytopathogenic fungal aqueous solution containing Fusarium oxysporum spores. Unlike Fusarium oxysporum, Aspergillus oryzae is a kind of plant non-pathogenic fungus. A non-phytopathogenic fungal aqueous solution containing Aspergillus oryzae spores was prepared in the same manner as a phytopathogenic fungal aqueous solution containing Fusarium oxysporum spores. Experimental Example 6 consists of Comparative Examples 6A to 6L. Except that different fungi were used, Comparative Example 6A to Comparative Example 6L were the same as Example 1A to Comparative Example 1L, respectively.
- Tables 1 to 6 below show the number of pseudomycelia that penetrate the cellulose film 104 in the above experimental example.
- phytopathogenic fungi selectively appear on the back surface of the cellulose film 104 when both of the following conditions (I) and (II) are satisfied. In other words, the phytopathogenic fungus 202 selectively appears outside the container 100.
- Condition (I) The cellulose film 104 has a thickness of 0.5 micrometers or more and 2 micrometers or less.
- Condition (II) The diameter of the through-hole 172 is 3 micrometers or more and 5 micrometers or less.
- the phytopathogenic fungal invasion score is at least 77.4.
- plant non-pathogenic fungi hardly appear on the back surface 104b of the cellulose film 104.
- the plant non-pathogenic fungus entry point is no more than 31.9.
- the present invention can be used to easily determine whether a test sample such as agricultural water or soil contains phytopathogenic fungi.
- SYMBOLS 100 1st container 102 Flange 104 Cellulose film 104a Front side surface 104b Back side surface 170 Substrate 170a Front side surface 170b Back side surface 200 Test sample 202 Phytopathogenic fungus 202a Part of phytopathogenic fungus 300 Second container 302 Liquid medium 304 Solid medium 402 Fungal stain 500 Light source 600 Microscope
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Toxicology (AREA)
- Virology (AREA)
- Botany (AREA)
- Mycology (AREA)
- Sustainable Development (AREA)
- Tropical Medicine & Parasitology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
(a) 貫通孔を具備する基板の表側の面に、前記試験試料を配置する工程、
ここで、
前記基板は、セルロースフィルムを、その裏側の面に具備しており、
前記セルロースフィルムは、0.5マイクロメートル以上、2マイクロメートル以下の厚みを有しており、かつ
前記貫通孔は、7.065マイクロ平方メートル以上19.625マイクロ平方メートル以下の断面積を有しており、
(b) 工程(a)の後、前記試験試料を静置する工程、
(c) 工程(b)の後、前記フィルムの裏面を観察する工程、および
(d) 工程(c)において前記フィルムの裏面に真菌が見いだされた場合には、前記試験試料は前記植物病原性真菌を含有すると判定する工程。
工程(a)では、貫通孔172を具備する基板170の表側の面に試験試料が配置される。基板170の裏側の面170bには、セルロースフィルム104が貼付されている。言い換えれば、セルロースフィルム104の表側の面104aは、基板170の裏側の面170bに接している。
工程(b)では、工程(a)の後、試験試料200が所定の培養時間、静置される。望ましくは、試験試料200は、24時間静置される。このようにして、真菌は培養される。言い換えれば、培養時間はおおよそ24時間であることが望ましい。以下、セルロースフィルム104の厚みおよび貫通孔172の大きさの重要性が以下、説明される。
条件(I) セルロースフィルム104が、0.5マイクロメートル以上、2マイクロメートル以下の厚みを有すること。
条件(II) 貫通孔172が、7.065マイクロ平方メートル以上19.625マイクロ平方メートル以下の断面積を有していること。
工程(c)では、工程(b)の後、セルロースフィルム104の裏面104bが観察される。光学顕微鏡を用いて裏面104bが観察されることが望ましい。
工程(d)では、工程(c)においてセルロースフィルム104の裏面104bに真菌が見いだされた場合には、試験試料は植物病原性真菌を含有すると判定される。言うまでもないが、工程(c)においてセルロースフィルム104の裏面104bに真菌が見いだされなかった場合には、試験試料は植物病原性真菌を含有しないと判定される。
以下の実施例を参照しながら、本発明がさらにより詳細に説明される。
(Fusarium oxysporumの培養)
植物病原菌の一種であるFusarium oxysporumが、ポテトデキストロース寒天培地に接種された。次いで、培地は摂氏25度の温度下で1週間静置された。Fusarium oxysporumは岐阜大学応用生物科学部に所属する清水准教授より与えられた。
第2容器300に、650マイクロリットルのポテトデキストロース培地が液体の培地302として添加された。このようにして、液体の培地302を含む第2容器300が用意された。
実験例1は、実施例1A~実施例1Dおよび比較例1E~比較例1Lからなる。
図1に示される第1容器100が以下のように用意された。
実施例1Bでは、貫通孔172の直径が5マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。5マイクロメートルの直径を有する貫通孔を具備する底面を有する容器は、ミリポア社より商品名:PIMP 12R 48として入手した。
実施例1Cでは、セルロース溶液が1.0%の濃度を有していたこと、およびセルロースフィルム104が、0.5マイクロメートルの厚みを有していたこと以外は、実施例1Aと同様の実験が行われた。
参考例1Dでは、セルロース溶液が1.0%の濃度を有していたこと、セルロースフィルム104が、0.5マイクロメートルの厚みを有していたこと、および貫通孔172の直径が5マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。
比較例1Eでは、貫通孔172の直径が1マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。1マイクロメートルの直径を有する貫通孔を具備する底面を有する容器は、ミリポア社より商品名:PIRP 12R 48として入手した。
比較例1Fでは、貫通孔172の直径が8マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。8マイクロメートルの直径を有する貫通孔を具備する底面を有する容器は、ミリポア社より商品名:PIEP 12R 48として入手した。
比較例1Gでは、セルロースフィルム104が、0.5マイクロメートルの厚みを有していたこと(すなわち、セルロース溶液が1.0%の濃度を有していたこと)、および貫通孔172の直径が1マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。
比較例1Hでは、セルロースフィルム104が、0.5マイクロメートルの厚みを有していたこと(すなわち、セルロース溶液が1.0%の濃度を有していたこと)、および貫通孔172の直径が8マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。
比較例1Iでは、セルロースフィルム104が形成されなかった(すなわち、セルロースフィルム104は0マイクロメートルの厚みを有していた)こと、および貫通孔172の直径が1マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。
比較例1Iでは、セルロースフィルム104が形成されなかった(すなわち、セルロースフィルム104は0マイクロメートルの厚みを有していた)こと以外は、実施例1Aと同様の実験が行われた。
比較例1Kでは、セルロースフィルム104が形成されなかった(すなわち、セルロースフィルム104は0マイクロメートルの厚みを有していた)こと、および貫通孔172の直径が5マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。
(比較例1L)
比較例1Lでは、セルロースフィルム104が形成されなかった(すなわち、セルロースフィルム104は0マイクロメートルの厚みを有していた)こと、および貫通孔172の直径が8マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。
実験例2では、Fusarium oxysporumの胞子を含有する植物病原性真菌水溶液に代えて、Saccharomyces cerevisiaeの胞子を含有する植物非病原性真菌水溶液が用いられた。Fusarium oxysporumとは異なり、Saccharomyces cerevisiaeは、植物非病原真菌の1種である。Saccharomyces cerevisiaeの胞子を含有する植物非病原性真菌水溶液は、Fusarium oxysporumの胞子を含有する植物病原性真菌水溶液と同様に調製された。実験例2は、比較例2A~比較例2Lからなる。異なる真菌が用いられたこと以外は、比較例2A~比較例2Lは、実施例1A~比較例1Lと同様である。図11は、比較例2Aにおけるセルロースフィルム104の裏面の顕微鏡写真である。
実験例3では、Fusarium oxysporumの胞子を含有する植物病原性真菌水溶液に代えて、Pyricularia griseaの胞子を含有する植物病原性水溶液が用いられた。Fusarium oxysporumと同様、Pyricularia griseaもまた、植物病原菌の1種である。Pyricularia griseaの胞子を含有する植物病原性真菌水溶液は、以下のように調製された。
まず、植物病原菌の一種であるPyricularia griseaが、ショ糖2%を含むオートミール寒天培地に接種された。次いで、培地は摂氏25度の温度下で1週間静置された。続いて、近紫外線下で4日間静置された。
実験例4では、Fusarium oxysporumの胞子を含有する植物病原性真菌水溶液に代えて、Colletotrichum gloeosporioidesの胞子を含有する植物病原性水溶液が用いられた。Fusarium oxysporumと同様、Colletotrichum gloeosporioidesもまた、植物病原菌の1種である。Colletotrichum gloeosporioidesの胞子を含有する植物病原性真菌水溶液は、Fusarium oxysporumの胞子を含有する植物病原性真菌水溶液と同様に調製された。実験例4は、実施例4A~実施例4Dおよび比較例4E~比較例4Lからなる。異なる真菌が用いられたこと以外は、実施例4A~実施例4Dおよび比較例4E~比較例4Lは、それぞれ、実施例1A~実施例1Dおよび比較例1E~比較例1Lと同様である。
実験例5では、Fusarium oxysporumの胞子を含有する植物病原性真菌水溶液に代えて、Penicillium chysogeumの胞子を含有する植物非病原性真菌水溶液が用いられた。Fusarium oxysporumとは異なり、Penicillium chysogeumは、植物非病原真菌の1種である。Penicillium chysogeumの胞子を含有する植物非病原性真菌水溶液は、Fusarium oxysporumの胞子を含有する植物病原性真菌水溶液と同様に調製された。実験例5は、比較例5A~比較例5Lからなる。異なる真菌が用いられたこと以外は、比較例5A~比較例5Lは、それぞれ、実施例1A~比較例1Lと同様である。
実験例5では、Fusarium oxysporumの胞子を含有する植物病原性真菌水溶液に代えて、Aspergillus oryzaeの胞子を含有する植物非病原性真菌水溶液が用いられた。Fusarium oxysporumとは異なり、Aspergillus oryzaeは、植物非病原真菌の1種である。Aspergillus oryzaeの胞子を含有する植物非病原性真菌水溶液は、Fusarium oxysporumの胞子を含有する植物病原性真菌水溶液と同様に調製された。実験例6は、比較例6A~比較例6Lからなる。異なる真菌が用いられたこと以外は、比較例6A~比較例6Lは、それぞれ、実施例1A~比較例1Lと同様である。
条件(I) セルロースフィルム104が0.5マイクロメートル以上2マイクロメートル以下の厚みを有すること。
条件(II) 貫通孔172の直径が3マイクロメートル以上5マイクロメートル以下であること。
102 フランジ
104 セルロースフィルム
104a 表側の面
104b 裏側の面
170 基板
170a 表側の面
170b 裏側の面
200 試験試料
202 植物病原性真菌
202a 植物病原性真菌の一部分
300 第2容器
302 液体の培地
304 固体の培地
402 真菌染色液
500 光源
600 顕微鏡
Claims (14)
- 試験試料が植物病原性真菌を含有するかどうかを判定する方法であって、以下の工程を具備する:
(a) 貫通孔を具備する基板の表側の面に、前記試験試料を配置する工程、
ここで、
前記基板は、セルロースフィルムを、その裏側の面に具備しており、
前記セルロースフィルムは、0.5マイクロメートル以上、2マイクロメートル以下の厚みを有しており、かつ
前記貫通孔は、7.065マイクロ平方メートル以上19.625マイクロ平方メートル以下の断面積を有しており、
(b) 工程(a)の後、前記試験試料を静置する工程、
(c) 工程(b)の後、前記フィルムの裏面を観察する工程、および
(d) 工程(c)において前記フィルムの裏面に真菌が見いだされた場合には、前記試験試料は前記植物病原性真菌を含有すると判定する工程。 - 請求項1に記載の方法であって、
前記植物病原性真菌は、fusarium属、pyricularia属、およびcolletotrichum属からなる群から選択される少なくとも1つの属に属している。 - 請求項1に記載の方法であって、
前記植物病原性真菌は、Fusarium oxysporum、Pyricularia grisea、およびColletotrichum gloeosporioidesからなる群から選択される少なくとも1つである。 - 請求項1に記載の方法であって、
前記工程(b)および前記工程(c)の間に、前記セルロースフィルムの裏面を真菌染色液に接触させる工程をさらに具備する。 - 請求項1に記載の方法であって、
前記工程(b)の前に、前記試験試料に培地を供給する工程をさらに具備する。 - 請求項5に記載の方法であって、
前記培地が液体培地である。 - 請求項5に記載の方法であって、
前記工程(b)において、前記セルロースフィルムの裏面を培地に接触させながら、前記試験試料が静置される。 - 請求項5に記載の方法であって、
前記培地が固体培地である。 - 請求項1に記載の方法であって、
前記試験試料が固体である。 - 請求項9に記載の方法であって、
前記固体が、土壌および破砕された植物からなる群から選択される少なくとも1つである。 - 請求項1に記載の方法であって、
前記試験試料が液体である。 - 請求項11に記載の方法であって、
前記液体が、農業用水、水耕栽培のために用いられた液体、植物を洗浄するために使用した後の液体、植物から抽出された液体、農業資材を洗浄するために使用した後の液体、および衣類または靴を洗浄するために使用した後の液体からなる群から選択される少なくとも1つである。 - 試験試料が植物病原性真菌を含有するかどうかを判定する方法であって、以下の工程(c)および工程(d)を具備する:
(c) セルロースフィルムの裏面を観察する工程、
ここで、
前記セルロースフィルムは、基板の裏側の面に貼付されており、
前記基板は、貫通孔を具備しており、
前記基板の表側の面には、前記試験試料が配置されており、
前記セルロースフィルムは、0.5マイクロメートル以上、2マイクロメートル以下の厚みを有しており、かつ
前記貫通孔は、7.065マイクロ平方メートル以上19.625マイクロ平方メートル以下の断面積を有しており、
(d) 工程(c)において前記フィルムの裏面に真菌が見いだされた場合には、前記試験試料は前記植物病原性真菌を含有すると判定する工程。 - 底面を有する容器であって、
前記底面は基板から形成され、
前記底面の外側の面にはセルロースフィルムが貼付されており、
前記セルロースフィルムは、0.5マイクロメートル以上、2マイクロメートル以下の厚みを有しており、
前記基板は貫通孔を具備し、かつ
前記貫通孔は、7.065マイクロ平方メートル以上19.625マイクロ平方メートル以下の断面積を有している、容器。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16908739.2A EP3438277B1 (en) | 2016-07-15 | 2016-09-30 | Method for determining whether or not test sample contains phytopathogenic fungus |
JP2017503624A JP6739005B2 (ja) | 2016-07-15 | 2016-09-30 | 試験試料が植物病原性真菌を含有するかどうかを判定する方法 |
BR112018072475-0A BR112018072475A2 (pt) | 2016-07-15 | 2016-09-30 | método para determinar se ou não uma amostra de teste possui fungo fitopatogênico |
AU2016414842A AU2016414842B2 (en) | 2016-07-15 | 2016-09-30 | Method for determining whether or not test sample contains phytopathogenic fungus |
US16/162,467 US11098340B2 (en) | 2016-07-15 | 2018-10-17 | Method for determining whether or not test sample contains phytopathogenic fungus |
US17/378,468 US11807740B2 (en) | 2016-07-15 | 2021-07-16 | Method for determining whether or not test sample contains phytopathogenic fungus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-139916 | 2016-07-15 | ||
JP2016139916 | 2016-07-15 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/162,467 Continuation US11098340B2 (en) | 2016-07-15 | 2018-10-17 | Method for determining whether or not test sample contains phytopathogenic fungus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018011835A1 true WO2018011835A1 (ja) | 2018-01-18 |
Family
ID=60952875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/004417 WO2018011835A1 (ja) | 2016-07-15 | 2016-09-30 | 試験試料が植物病原性真菌を含有するかどうかを判定する方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US11098340B2 (ja) |
EP (1) | EP3438277B1 (ja) |
JP (1) | JP6739005B2 (ja) |
AU (1) | AU2016414842B2 (ja) |
BR (1) | BR112018072475A2 (ja) |
WO (1) | WO2018011835A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018198681A1 (ja) * | 2017-04-28 | 2018-11-01 | パナソニックIpマネジメント株式会社 | 試験試料が植物病原性菌を含有するかどうかを判定する方法 |
WO2019225172A1 (ja) * | 2018-05-23 | 2019-11-28 | パナソニックIpマネジメント株式会社 | トマト病原性真菌の検出装置およびそれを用いた検出方法 |
WO2019225171A1 (ja) * | 2018-05-23 | 2019-11-28 | パナソニックIpマネジメント株式会社 | トマト病原性真菌の検出装置およびそれを用いた検出方法 |
WO2020012781A1 (ja) * | 2018-07-09 | 2020-01-16 | パナソニックIpマネジメント株式会社 | 植物病原性真菌の検出装置、並びに、それを用いた検出方法および農薬濃度の選択方法 |
EP3848448A4 (en) * | 2018-09-05 | 2021-11-03 | Panasonic Intellectual Property Management Co., Ltd. | DEVICE FOR DETECTION OF PATHOGENIC FUNGI IN TOMATOES AND DETECTION METHOD THEREOF |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2017396004B2 (en) * | 2017-01-25 | 2024-08-29 | Panasonic Intellectual Property Management Co., Ltd. | Method for determining whether or not test sample contains phytopathogenic fungus |
WO2020202161A1 (en) * | 2019-04-04 | 2020-10-08 | Technion Research & Development Foundation Limited | A method for identifying a fungal symbiont |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005287337A (ja) | 2004-03-31 | 2005-10-20 | Matsushita Electric Ind Co Ltd | 糸状菌計量方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006515065A (ja) * | 2002-08-16 | 2006-05-18 | ディシジョン バイオマーカーズ インコーポレイテッド | 蛍光配列の読み取り |
US6698880B1 (en) * | 2002-09-20 | 2004-03-02 | Eastman Kodak Company | Porous inkjet recording system comprising ink-pigment-trapping surface layer |
JP5814262B2 (ja) * | 2010-01-22 | 2015-11-17 | 日立化成株式会社 | 複数病原菌検出の方法 |
FR2957354B1 (fr) | 2010-03-11 | 2012-03-30 | Agronomique Inst Nat Rech | Traitement des vegetaux contre l'infection par des oomycetes |
EP2576812A1 (en) * | 2010-06-07 | 2013-04-10 | 3M Innovative Properties Company | Filtration methods and devices |
JP6167309B2 (ja) * | 2015-08-03 | 2017-07-26 | パナソニックIpマネジメント株式会社 | 試験試料が植物病原性卵菌を含有するかどうかを判定する方法 |
-
2016
- 2016-09-30 WO PCT/JP2016/004417 patent/WO2018011835A1/ja active Application Filing
- 2016-09-30 JP JP2017503624A patent/JP6739005B2/ja active Active
- 2016-09-30 BR BR112018072475-0A patent/BR112018072475A2/pt not_active Application Discontinuation
- 2016-09-30 AU AU2016414842A patent/AU2016414842B2/en active Active
- 2016-09-30 EP EP16908739.2A patent/EP3438277B1/en active Active
-
2018
- 2018-10-17 US US16/162,467 patent/US11098340B2/en active Active
-
2021
- 2021-07-16 US US17/378,468 patent/US11807740B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005287337A (ja) | 2004-03-31 | 2005-10-20 | Matsushita Electric Ind Co Ltd | 糸状菌計量方法 |
Non-Patent Citations (6)
Title |
---|
INABA, T. ET AL.: "Morphology of hyphae in leaf tissues infected with Java corn downy mildew fungus, Peronosclerospora maydis, in relation to sporulation ability", JAPANESE JOURNAL OF PHYTOPATHOLOGY, vol. 46, no. 2, 1980, pages 200 - 208, XP055548073 * |
KOICHIRO AKECHI ET AL.: "A specific mycelial structure formed by Rhizoctonia and other fungi on cellulose membranes", TRANSACTIONS OF THE MYCOLOGICAL SOCIETY OF JAPAN, vol. 36, no. 4, 1995, pages 143 - 151 * |
MORRIS, P. F. ET AL.: "Chemotropic and contact responses of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates", PLANT PHYSIOLOGY, vol. 117, no. 4, August 1998 (1998-08-01), pages 1171 - 1178, XP055548061 * |
NIKAWA, H. ET AL.: "A novel method to study the hyphal phase of Candida albicans and to evaluate its hydrophobicity", ORAL MICROBIOLOGY AND IMMUNOLOGY, vol. 10, no. 2, April 1995 (1995-04-01), pages 110 - 114, XP055548075 * |
PAUL F. MORRIS: "Chemotropic and Contact Responses of Phytophthora sojae Hyphae to Soybean Isoflavonoids and Artificial Substrates", PLANT PHYSIOL., vol. 117, 1998, pages 1171 - 1178, XP055463542 |
SUZUKI, K. ET AL.: "Chemical dissolution of cellulose membranes as a prerequisite for penetration from appressoria of Colletotrichum lagenarium", JOURNAL OF GENERAL MICROBIOLOGY, vol. 128, 1982, pages 1035 - 1039, XP055548068 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11098341B2 (en) | 2017-04-28 | 2021-08-24 | Panasonic Intellectual Property Management Co., Ltd. | Method for determining whether or not test sample contains phytopathogenic fungus |
WO2018198681A1 (ja) * | 2017-04-28 | 2018-11-01 | パナソニックIpマネジメント株式会社 | 試験試料が植物病原性菌を含有するかどうかを判定する方法 |
US11713479B2 (en) | 2017-04-28 | 2023-08-01 | Panasonic Intrilectual Property Management Co., Ltd. | Method for determining whether or not test sample contains phytopathogenic fungus |
JP7394394B2 (ja) | 2018-05-23 | 2023-12-08 | パナソニックIpマネジメント株式会社 | トマト病原性真菌の検出装置およびそれを用いた検出方法 |
WO2019225171A1 (ja) * | 2018-05-23 | 2019-11-28 | パナソニックIpマネジメント株式会社 | トマト病原性真菌の検出装置およびそれを用いた検出方法 |
JPWO2019225171A1 (ja) * | 2018-05-23 | 2021-05-27 | パナソニックIpマネジメント株式会社 | トマト病原性真菌の検出装置およびそれを用いた検出方法 |
JPWO2019225172A1 (ja) * | 2018-05-23 | 2021-07-08 | パナソニックIpマネジメント株式会社 | トマト病原性真菌の検出装置およびそれを用いた検出方法 |
US12060600B2 (en) | 2018-05-23 | 2024-08-13 | Panasonic Intellectual Property Management Co., Ltd. | Tomato pathogenic fungus detecting apparatus and detecting method using same |
JP7394393B2 (ja) | 2018-05-23 | 2023-12-08 | パナソニックIpマネジメント株式会社 | トマト病原性真菌の検出装置およびそれを用いた検出方法 |
WO2019225172A1 (ja) * | 2018-05-23 | 2019-11-28 | パナソニックIpマネジメント株式会社 | トマト病原性真菌の検出装置およびそれを用いた検出方法 |
JPWO2020012781A1 (ja) * | 2018-07-09 | 2021-08-12 | パナソニックIpマネジメント株式会社 | 植物病原性真菌の検出装置、並びに、それを用いた検出方法および農薬濃度の選択方法 |
JP7289112B2 (ja) | 2018-07-09 | 2023-06-09 | パナソニックIpマネジメント株式会社 | 植物病原性真菌の検出装置、並びに、それを用いた検出方法および農薬濃度の選択方法 |
WO2020012781A1 (ja) * | 2018-07-09 | 2020-01-16 | パナソニックIpマネジメント株式会社 | 植物病原性真菌の検出装置、並びに、それを用いた検出方法および農薬濃度の選択方法 |
CN111836881B (zh) * | 2018-07-09 | 2024-06-21 | 松下知识产权经营株式会社 | 植物病原性真菌的检测装置、以及使用了该检测装置的检测方法和农药浓度的选择方法 |
US12054765B2 (en) | 2018-07-09 | 2024-08-06 | Panasonic Intellectual Property Management Co., Ltd. | Phytopathogenic fungus detecting apparatus, and detecting method and method for selecting concentration of agricultural chemical using same |
CN111836881A (zh) * | 2018-07-09 | 2020-10-27 | 松下知识产权经营株式会社 | 植物病原性真菌的检测装置、以及使用了该检测装置的检测方法和农药浓度的选择方法 |
EP3848448A4 (en) * | 2018-09-05 | 2021-11-03 | Panasonic Intellectual Property Management Co., Ltd. | DEVICE FOR DETECTION OF PATHOGENIC FUNGI IN TOMATOES AND DETECTION METHOD THEREOF |
Also Published As
Publication number | Publication date |
---|---|
AU2016414842B2 (en) | 2023-05-11 |
US20190048388A1 (en) | 2019-02-14 |
US11098340B2 (en) | 2021-08-24 |
EP3438277B1 (en) | 2020-06-24 |
AU2016414842A2 (en) | 2018-11-22 |
EP3438277A4 (en) | 2019-03-06 |
BR112018072475A2 (pt) | 2019-02-19 |
AU2016414842A1 (en) | 2018-11-15 |
EP3438277A1 (en) | 2019-02-06 |
US20210340589A1 (en) | 2021-11-04 |
JP6739005B2 (ja) | 2020-08-12 |
US11807740B2 (en) | 2023-11-07 |
JPWO2018011835A1 (ja) | 2019-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018011835A1 (ja) | 試験試料が植物病原性真菌を含有するかどうかを判定する方法 | |
JP6167310B2 (ja) | 試験試料が植物病原性卵菌を含有するかどうかを判定する方法 | |
JP2016220667A (ja) | 試験試料が植物病原性卵菌を含有するかどうかを判定する方法 | |
JP2016220668A (ja) | 試験試料が植物病原性卵菌を含有するかどうかを判定する方法 | |
US11913057B2 (en) | Method for determining whether or not test sample contains phytopathogenic fungus | |
US11098341B2 (en) | Method for determining whether or not test sample contains phytopathogenic fungus | |
JP7015991B2 (ja) | 試験試料が植物病原性真菌を含有するかどうかを判定する方法 | |
JP7012200B2 (ja) | 試験試料がExserohilum属の植物病原性真菌を含有するかどうかを判定する方法 | |
US11104932B2 (en) | Method for determining whether or not all of pythiums contained in test sample are non-phytopathogenic | |
WO2020049866A1 (ja) | トマト病原性真菌の検出装置およびそれを用いた検出方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017503624 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016908739 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018072475 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2016414842 Country of ref document: AU Date of ref document: 20160930 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2016908739 Country of ref document: EP Effective date: 20181030 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16908739 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112018072475 Country of ref document: BR Kind code of ref document: A2 Effective date: 20181031 |