WO2018010506A1 - 一种送风系统的评判方法和装置 - Google Patents

一种送风系统的评判方法和装置 Download PDF

Info

Publication number
WO2018010506A1
WO2018010506A1 PCT/CN2017/087613 CN2017087613W WO2018010506A1 WO 2018010506 A1 WO2018010506 A1 WO 2018010506A1 CN 2017087613 W CN2017087613 W CN 2017087613W WO 2018010506 A1 WO2018010506 A1 WO 2018010506A1
Authority
WO
WIPO (PCT)
Prior art keywords
air supply
evaluation index
speed
parameter
index parameter
Prior art date
Application number
PCT/CN2017/087613
Other languages
English (en)
French (fr)
Inventor
刘帆
朱敏波
郭雨龙
贺奎尚
翁建刚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018010506A1 publication Critical patent/WO2018010506A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the invention relates to the field of air supply systems, and in particular to a method and a device for judging a ventilation system.
  • the object of the embodiments of the present invention is to provide a method and device for judging the air supply system, which solves the problem that the air supply system has insufficient air supply distance, insufficient air supply speed uniformity, and local overheating.
  • an embodiment of the present invention provides a method for judging a ventilation system, including:
  • the embodiment of the invention further provides a device for judging the air supply system, comprising:
  • the operation module is configured to substitute the design parameter into a preset evaluation index formula to obtain An evaluation indicator parameter;
  • the determining module is configured to determine whether the evaluation index parameter is in a predetermined reasonable interval, and obtain a judgment result
  • the confirmation module is configured to determine that the air supply system is reasonably designed when the determination result indicates that the evaluation index parameter is in the reasonable interval.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores one or more programs executable by a computer, and when the one or more programs are executed by the computer, the computer is executed as described above.
  • a method of judging the air supply system provided.
  • FIG. 1 is a schematic flow chart of a method for judging a ventilation system according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of another method for judging a ventilation system according to an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of another method for judging a ventilation system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a structure of a ventilation system according to an embodiment of the present invention.
  • Figure 5 is a top plan view showing the structure of the air supply system according to the embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a judging device for a ventilation system according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another evaluation device of a ventilation system according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another evaluation device of an air supply system according to an embodiment of the present invention.
  • an embodiment of the present invention provides a method for judging an air supply system, including the following steps:
  • Step S101 Obtain a design parameter of the air supply system.
  • the design parameters of the air supply system are obtained through the simulation module.
  • the above design parameters include the average speed of the inlet section of the air supply passage, the average speed of a section of the air supply path, and the standard deviation of the speed of each point of the section of the air supply passage.
  • the difference between the average speed of the inlet section of the air supply passage minus the average speed of a section of the air supply path is divided by the average speed of the inlet section of the air passage, and a damping coefficient of the air supply speed is obtained;
  • the standard deviation of the velocity of each point at the cross section is divided by the average velocity at a section of the air supply path to obtain a uniform coefficient of the supply air velocity.
  • Step S102 Substituting the design parameter into a preset evaluation index formula to obtain an evaluation index parameter.
  • the above evaluation index parameter may also be a supply air stability parameter.
  • the magnitude of the blowing velocity uniformity coefficient ⁇ is not only affected by the dispersion of the velocity values, but also by the magnitude of the average velocity value, thus eliminating the effects of velocity size and dimension.
  • indicates the degree of dispersion and physically represents the uniformity of the blowing speed. The smaller the ⁇ value, the smaller the dispersion of the velocity, the more uniform the velocity, and the better the airflow organization in the data center.
  • the evaluation index parameter can be determined by the air supply speed attenuation coefficient ⁇ and the air supply speed uniform coefficient ⁇ .
  • the weight coefficients are summed. According to the analysis, the smaller the values of ⁇ and ⁇ , the better the data center airflow organization is, that is, the smaller the evaluation index parameter is, the better the data center airflow organization is. The larger the value of the above evaluation index parameter is, the worse the data center airflow organization is.
  • Step S103 Determine whether the evaluation index parameter is in a predetermined reasonable interval, and obtain a judgment result.
  • the above reasonable interval indicates that when the above-mentioned evaluation index parameter is in the above reasonable interval, the air supply system can effectively improve the air supply distance of the air supply system and the uniformity of the air supply speed, and reduce the local occurrence of the air supply system. overheat.
  • the above reasonable interval can be set to 0.00 to 0.50.
  • Step S104 When the determination result indicates that the evaluation index parameter is in the reasonable interval, it is determined that the air supply system is designed reasonably.
  • the above method can be applied to the evaluation device of the air supply system.
  • an evaluation index parameter is obtained, and it is determined whether the evaluation index parameter is in a predetermined reasonable interval, and As a result of the judgment, when the above-mentioned judgment result indicates that the evaluation index parameter is in the above-mentioned reasonable section, it is determined that the air supply system is designed reasonably, and the product of the air supply system can be landed. This can effectively improve the air supply distance of the air supply system and the uniformity of the air supply speed, and at the same time reduce the local overheating of the air supply system.
  • the method may further include:
  • Step S201 When the determination result indicates that the evaluation index parameter is not in the reasonable interval, determine that the air supply system is unreasonably designed, and adjust basic parameters of the air supply system.
  • the basic parameters of the air supply system are adjusted until the above-mentioned evaluation index parameter is in the above reasonable interval.
  • each program can be as reasonable as possible.
  • the method for judging another air supply system includes the following steps:
  • Step S301 Acquire a data center design rated cooling demand and initialize a room size.
  • Step S302 Obtain a design parameter of the air supply system through the simulation module.
  • Step S303 substituting the design parameters into a preset evaluation index formula, and obtaining an evaluation index parameter.
  • Step S304 Determine whether the design of the air supply system is reasonable according to whether the evaluation index parameter is in a predetermined reasonable interval.
  • Step S305 When the evaluation index parameter is not in a reasonable interval, determine that the air supply system is unreasonably designed, adjust basic parameters of the air supply system, and return to step S302 to re-acquire the design parameters of the air supply system.
  • Step S306 when the parameter of the evaluation index is in a reasonable interval, it is determined that the design of the air supply system is reasonable, and the product of the air supply system can be grounded.
  • the data center is blown from the data center air inlet 41 through the fan unit 43 in the air blowing system 42 to blow the outdoor fresh air into the data center module 44, and then from the data.
  • the central exhaust vent 45 exits the data center, and the data center has the worst airflow organization at the farthest module 44 of the cold source, where the airflow organization represents the airflow organization of the entire machine room.
  • a special air supply system (wind wall) has a data center length of 30.4 m, a width of 10.4 m, and a height of 3.7 m.
  • the data center is designed to have a cooling demand of 51,840 cubic feet per minute (Cubic Feet per Minute, CFM).
  • the design parameters of the air supply system are obtained through the simulation module: the average speed of the inlet section of the air supply passage is 3.643m/s, and the average speed of a section of the air supply path
  • the current standard deviation of each point of the air supply passage is 1.090 m/s, which is 0.200.
  • the obtained design parameters were substituted into the evaluation index formula, and the result of the evaluation index parameter was 0.442.
  • the preset reasonable interval is 0.00 to 0.50. Since the parameter value of the above evaluation index is in the range of 0.00 to 0.50, it indicates that the design is reasonable, and the product of the air supply system can be landed.
  • the data center of a special air supply system is 34.4m long, 10.4m wide and 3.7m high.
  • the rated cooling demand of the data center is 43200CFM.
  • the design parameters of the air supply system are obtained through the simulation module: the average speed of the inlet section of the air supply passage is 3.115m/s, the average speed of a section of the air supply path is 0.362m/s, and the standard deviation of the speed of each section of the air supply passage is 0.176.
  • the obtained design parameters were substituted into the evaluation index formula, and the obtained evaluation index parameter result was 0.685.
  • the preset reasonable interval is 0.00 to 0.50.
  • the design parameters of the air supply system are obtained through the simulation module: the average speed of the inlet section of the air supply passage is 3.277m/s, the average speed of a section of the air supply path is 1.359m/s, and the standard deviation of the speed of each section of the air supply passage is 0.114.
  • the obtained design parameters were substituted into the evaluation index formula, and the obtained evaluation index parameter result was 0.335. Since the value of the evaluation index parameter is within the range of 0.00 to 0.50, the design is reasonable, and the product of the air supply system can be landed.
  • the evaluation method of the invention provides guidance for the design of the air supply system, improves the rationality of the design, effectively improves the air supply distance of the air supply system and the uniformity of the air supply speed, and reduces local overheating of the air supply system. .
  • an embodiment of the present invention provides a device for judging a ventilation system, and the device 60 includes:
  • the obtaining module 61 is configured to acquire design parameters of the air supply system
  • the operation module 62 is configured to substitute the design parameter into a preset evaluation index formula to obtain an evaluation index parameter;
  • the determining module 63 is configured to determine whether the evaluation index parameter is in a predetermined reasonable interval, and obtain a determination result
  • the confirmation module 64 is configured to determine that the air supply system is reasonable in designation when the determination result indicates that the evaluation index parameter is in the reasonable interval.
  • the method further includes:
  • the adjustment module 65 is configured to determine that the design of the air supply system is unreasonable when the determination result indicates that the evaluation index parameter is not in the reasonable interval, and adjust basic parameters of the air supply system.
  • the design parameters include an average speed of the inlet section of the air supply passage, an average speed of a section of the air supply path, and a standard deviation of each point speed of a section of the air supply passage.
  • the operation module 62 includes:
  • the first operation module 621 is configured to obtain a blowing speed by dividing the difference between the average cross-sectional velocity of the air inlet passage and the average speed of a section of the air supply path by the average speed of the inlet section of the air supply passage. Attenuation coefficient
  • the third operation module 622 is configured to divide a standard deviation of each point velocity at a section of the air supply channel by an average speed of a section of the air supply path to obtain a uniform coefficient of the air supply speed;
  • A represents the evaluation index parameter
  • represents the blowing speed attenuation coefficient
  • m and n represent weight coefficients.
  • the evaluation indicator parameter is a wind stability parameter.
  • the device 60 can implement the various processes implemented in the method embodiments of FIG. 1 to FIG. 5, and can achieve the same beneficial effects. To avoid repetition, details are not described herein again.
  • it also includes:
  • the design parameters include an average speed of the inlet section of the air supply passage, an average speed of a section of the air supply path, and a standard deviation of each point speed of a section of the air supply passage.
  • the step of substituting the design parameter into a preset evaluation index formula to obtain an evaluation index parameter includes:
  • the evaluation indicator parameter is a wind stability parameter.
  • the storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the above technical solution provided by the embodiment of the present invention can be applied to the evaluation process of the air supply system, obtain design parameters of the air supply system, and substitute the design parameter into a preset evaluation index.
  • the standard formula obtains an evaluation index parameter, determines whether the evaluation index parameter is in a predetermined reasonable interval, and obtains a judgment result. When the judgment result indicates that the evaluation index parameter is in the reasonable interval, determining the The design of the air supply system is reasonable. This can effectively improve the air supply distance of the air supply system and the uniformity of the air supply speed, and at the same time reduce the local overheating of the air supply system.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种送风系统的评判方法,包括:获取所述送风系统的设计参数(S101);将所述设计参数代入一预设的评价指标公式,得到一评价指标参数(S102);判断所述评价指标参数是否处在预设的合理区间,得到一判断结果(S103);在所述判断结果指示所述评价指标参数处在所述合理区间时,确定所述送风系统设计合理(S104)。该方法可以有效的提升送风系统送风距离以及送风速度的均匀性,同时减少送风系统出现局部过热。

Description

一种送风系统的评判方法和装置 技术领域
本发明涉及送风系统领域,特别涉及一种送风系统的评判方法和装置。
背景技术
随着经济的发展,数据中心机房的热密度不断提高,能耗增长迅速,为了节能减排,很多企业开始采用配有特殊送风系统(风墙)的数据中心。采用风墙等送风系统的数据中心通过优化送风路径上的阻力,降低了制冷系统的能耗,大大提高了全年的能效比,实现了数据中心节能的目的。然而,通过现有的设计方法设计出来的产品存在一些问题,会导致风墙等送风系统的送风距离不够,送分速度均匀性不够,从而引起局部过热等问题。
发明内容
本发明实施例的目的在于提供一种送风系统的评判方法和装置,解决了送风系统送风距离不够、送风速度均匀性不够以及局部过热的问题。
为了达到上述目的,本发明实施例提供一种送风系统的评判方法,包括:
获取所述送风系统的设计参数;
将所述设计参数代入一预设的评价指标公式,得到一评价指标参数;
判断所述评价指标参数是否处在预设的合理区间,得到一判断结果;
在所述判断结果指示所述评价指标参数处在所述合理区间时,确定所述送风系统设计合理。
本发明实施例还提供一种送风系统的评判装置,包括:
获取模块,设置为获取所述送风系统的设计参数;
运算模块,设置为将所述设计参数代入一预设的评价指标公式,得到 一评价指标参数;
判断模块,设置为判断所述评价指标参数是否处在预设的合理区间,得到一判断结果;
确认模块,设置为在所述判断结果指示所述评价指标参数处在所述合理区间时,确定所述送风系统设计合理。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行的一个或多个程序,所述一个或多个程序被所述计算机执行时使所述计算机执行如上述提供的一种送风系统的评判方法。
上述技术方案中的一个技术方案具有如下优点或有益效果:
获取所述送风系统的设计参数,将所述设计参数代入一预设的评价指标公式,得到一评价指标参数,判断所述评价指标参数是否处在预设的合理区间,得到一判断结果,在所述判断结果指示所述评价指标参数处在所述合理区间时,确定所述送风系统设计合理。这样可以有效的提升送风系统送风距离以及送风速度的均匀性,同时减少送风系统出现局部过热。
附图说明
图1为本发明实施例提供的一种送风系统的评判方法的流程示意图;
图2是本发明实施例提供的另一种送风系统的评判方法的流程示意图;
图3是本发明实施例提供的另一种送风系统的评判方法的流程示意图;
图4是本发明实施例提供的送风系统结构的示意图;
图5是本发明实施例提供的送风系统结构的俯视示意图;
图6是本发明实施例提供的一种送风系统的评判装置的结构示意图;
图7是本发明实施例提供的另一种送风系统的评判装置的结构示意图;
图8是本发明实施例提供的另一种送风系统的评判装置的结构示意图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结 合附图及具体实施例进行详细描述。
如图1所示,本发明实施例提供一种送风系统的评判方法,包括以下步骤:
步骤S101、获取所述送风系统的设计参数。
在该步骤中,根据数据中心设计额定制冷需求以及初始化房间尺寸,通过仿真模块获取送风系统的设计参数。上述设计参数包括送风通道入口截面平均速度、送风路径某截面处平均速度和送风通道某截面处各点速度的标准差。
其中,将上述送风通道入口截面平均速度减去上述送风路径某截面处平均速度的差值除以上述送风通道入口截面平均速度,得一送风速度衰减系数;将上述送风通道某截面处各点速度的标准差除以上述送风路径某截面处平均速度,得一送风速度均匀系数。
步骤S102、将所述设计参数代入一预设的评价指标公式,得到一评价指标参数。
在该步骤中,将上述送风速度衰减系数和上述送风速度均匀系数代入预设的评价指标公式A=mα+nβ,以得一评价指标参数;其中,A表示上述评价指标参数,α表示上述送风速度衰减系数,β表示上述送风速度均匀系数,m、n表示权重系数。上述评价指标参数还可以为送风平稳性参数。
在本实施例中,送风速度衰减系数α越小表明速度衰减越小,送风速度越大,数据中心气流组织越好。
送风速度均匀系数β的大小不仅受到速度值离散程度的影响,而且还受到平均速度值大小的影响,这样就消除了速度大小尺寸和量纲的影响。其中β数值上表示其离散程度,物理上表示送风速度均匀性。β数值越小表示速度的离散程度越小,速度约均匀,数据中心的气流组织越好。
其中,m,n分别表示α,β所占评价指标参数的权重,且m+n=1.
评价指标参数可由送风速度衰减系数α和送风速度均匀系数β,按照 权重系数求和得到。根据分析α和β的数值越小表明数据中心气流组织越好,即评价指标参数越小,数据中心气流组织越好;反之,上述评价指标参数数值越大,数据中心气流组织越差。
另外,本公式还可以进行拓展,不只是局限于这两个参数,还可以在本公式精神及实质范围内做其他形式和细节上的各种修改、添加和替换等变化。
步骤S103、判断所述评价指标参数是否处在预设的合理区间,得到一判断结果。
在该步骤中,上述合理区间表示,当上述评价指标参数处在上述合理区间时,送风系统可以有效的提升送风系统送风距离以及送风速度的均匀性,同时减少送风系统出现局部过热。在本实施例中,上述合理区间可设置为0.00~0.50。
步骤S104、在所述判断结果指示所述评价指标参数处在所述合理区间时,确定所述送风系统设计合理。
在该步骤中,当上述评价指标参数处在上述合理区间时,确定上述送风系统设计合理,可进行送风系统产品落地。
在本实施例中,上述方法可以用于送风系统的评判装置。
在本实施例中,通过获取送风系统的设计参数,并将上述设计参数代入一预设的评价指标公式,得到一评价指标参数,判断上述评价指标参数是否处在预设的合理区间,得到一判断结果,在上述判断结果指示上述评价指标参数处在上述合理区间时,确定上述送风系统设计合理,可进行送风系统产品落地。这样可以有效的提升送风系统送风距离以及送风速度的均匀性,同时减少送风系统出现局部过热。
本发明实施例中,如图2所示,当上述判断结果不处在预设的合理区间时,所述方法还可以包括:
步骤S201、在所述判断结果指示所述评价指标参数不处在所述合理区间时,确定所述送风系统设计不合理,调整所述送风系统的基本参数。
在本实施例中,当确定所述送风系统设计不合理时,通过调整送风系统的基本参数,直到上述评价指标参数处在上述合理区间。
通过这种评判方法可以尽可能的使每个方案都达到合理设计的要求。
如图3所示,本发明实施例提供另一种送风系统的评判方法包括以下步骤:
步骤S301、获取数据中心设计额定制冷需求以及初始化房间尺寸。
步骤S302、通过仿真模块获取送风系统的设计参数。
步骤S303、将设计参数代入预设的评价指标公式,并得到一评价指标参数。
步骤S304、根据评价指标参数是否处在预设的合理区间,判断送风系统设计是否合理。
步骤S305、当上述评价指标参数不处在合理区间时,确定所述送风系统设计不合理,调整送风系统的基本参数,返回步骤S302重新获取送风系统的设计参数。
步骤S306、当上述评价指标参数处在合理区间时,确定送风系统设计合理,可进行送风系统产品落地。
如图4和图5所示,在本发明实施例中,数据中心通过送风系统42中的风机组43从数据中心入风口41,将室外新风吹入到数据中心模块44中,接着从数据中心排风口45排出数据中心,该数据中心气流组织最差的区域在离冷源最远端的模块44处,该处气流组织情况代表整个机房的气流组织情况。
下面结合两个实施方案对本发明做进一步详细描述,以下实施例用于说明本发明,但不用来限制本发明的范围。
实施方案一,某特殊送风系统(风墙)的数据中心长为30.4m,宽为10.4m,高为3.7m,该数据中心设计额定制冷需求为51840立方英尺每分钟(Cubic Feet per Minute,CFM)。通过仿真模块获取送风系统的设计参数:送风通道入口截面平均速度为3.643m/s,送风路径某截面处平均速度 为1.090m/s,送风通道某截面处各点速度标准差为0.200。将获得的设计参数代入评价指标公式,得到评价指标参数结果为0.442。在本实施例中,预设的合理区间为0.00~0.50,由于上述评价指标参数数值在0.00~0.50区间内,表明设计合理,送风系统产品可以落地。
实施方案二,某特殊送风系统(风墙)的数据中心长为34.4m,宽为10.4m,高为3.7m,该数据中心设计额定制冷需求为43200CFM。通过仿真模块获取送风系统的设计参数:送风通道入口截面平均速度为3.115m/s,送风路径某截面处平均速度为0.362m/s,送风通道某截面处各点速度标准差为0.176。将获得的设计参数代入评价指标公式,得到的评价指标参数结果为0.685。在本实施例中,预设的合理区间为0.00~0.50,由于评价指标参数数值在0.00~0.50区间外,表明设计不合理需要重新计算验证。重新设计数据中心长度为28m,制冷需求不变。通过仿真模块获取送风系统的设计参数:送风通道入口截面平均速度为3.277m/s,送风路径某截面处平均速度为1.359m/s,送风通道某截面处各点速度标准差为0.114。将获得的设计参数代入评价指标公式,得到的评价指标参数结果为0.335。由于评价指标参数数值在0.00~0.50区间内表明设计合理,送风系统产品可以落地。
采用本发明的评判方法,为送风系统的设计提供了指导,提高了设计的合理性,有效的提升了送风系统送风距离以及送风速度的均匀性,同时减少送风系统出现局部过热。
如图7所示,本发明实施例提供一种送风系统的评判装置,所述装置60包括:
获取模块61,设置为获取所述送风系统的设计参数;
运算模块62,设置为将所述设计参数代入一预设的评价指标公式,得到一评价指标参数;
判断模块63,设置为判断所述评价指标参数是否处在预设的合理区间,得到一判断结果;
确认模块64,设置为在所述判断结果指示所述评价指标参数处在所述合理区间时,确定所述送风系统设计合理。
可选的,如图7所示,还包括:
调整模块65,设置为在所述判断结果指示所述评价指标参数不处在所述合理区间时,确定所述送风系统设计不合理,调整所述送风系统的基本参数。
可选的,所述设计参数包括送风通道入口截面平均速度、送风路径某截面处平均速度和送风通道某截面处各点速度的标准差。
可选的,如图8所示,所述运算模块62包括:
第一运算模块621,设置为将所述送风通道入口截面平均速度减去所述送风路径某截面处平均速度的差值除以所述送风通道入口截面平均速度,获得一送风速度衰减系数;
第三运算模块622,设置为将所述送风通道某截面处各点速度的标准差除以所述送风路径某截面处平均速度,获得一送风速度均匀系数;
第四运算模块623,设置为将所述送风速度衰减系数和所述送风速度均匀系数代入预设的A=mα+nβ,以得一评价指标参数,A表示所述评价指标参数,α表示所述送风速度衰减系数,β表示所述送风速度均匀系数,m、n表示权重系数。
可选的,所述评价指标参数为送风平稳性参数。
装置60能够实现图1至图5的方法实施例中实现的各个过程,以及能达到相同的有益效果,为避免重复,这里不再赘述。
本领域普通技术人员可以理解实现上述实施例方法的全部或者部分步骤是可以通过程序指令相关的硬件来完成,所述的程序可以存储于一计算机可读取介质中,该程序在执行时,包括以下步骤:
获取所述送风系统的设计参数;
将所述设计参数代入一预设的评价指标公式,得到一评价指标参数;
判断所述评价指标参数是否处在预设的合理区间,得到一判断结果;
在所述判断结果指示所述评价指标参数处在所述合理区间时,确定所述送风系统设计合理。
可选的,还包括:
在所述判断结果指示所述评价指标参数不处在所述合理区间时,确定所述送风系统设计不合理,调整所述送风系统的基本参数。
可选的,所述设计参数包括送风通道入口截面平均速度、送风路径某截面处平均速度和送风通道某截面处各点速度的标准差。
可选的,所述将所述设计参数代入一预设的评价指标公式,得到一评价指标参数包括:
将所述送风通道入口截面平均速度减去所述送风路径某截面处平均速度的差值除以所述送风通道入口截面平均速度,获得一送风速度衰减系数;
将所述送风通道某截面处各点速度的标准差除以所述送风路径某截面处平均速度,获得一送风速度均匀系数;
将所述送风速度衰减系数和所述送风速度均匀系数代入预设的A=mα+nβ,以得一评价指标参数,A表示所述评价指标参数,α表示所述送风速度衰减系数,β表示所述送风速度均匀系数,m、n表示权重系数。
可选的,所述评价指标参数为送风平稳性参数。
所述的存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
工业实用性
本发明实施例提供的上述技术方案,可以应用于送风系统的评判过程中,获取所述送风系统的设计参数,将所述设计参数代入一预设的评价指 标公式,得到一评价指标参数,判断所述评价指标参数是否处在预设的合理区间,得到一判断结果,在所述判断结果指示所述评价指标参数处在所述合理区间时,确定所述送风系统设计合理。这样可以有效的提升送风系统送风距离以及送风速度的均匀性,同时减少送风系统出现局部过热。

Claims (10)

  1. 一种送风系统的评判方法,包括:
    获取所述送风系统的设计参数;
    将所述设计参数代入一预设的评价指标公式,得到一评价指标参数;
    判断所述评价指标参数是否处在预设的合理区间,得到一判断结果;
    在所述判断结果指示所述评价指标参数处在所述合理区间时,确定所述送风系统设计合理。
  2. 根据权利要求1所述的方法,其中,还包括:
    在所述判断结果指示所述评价指标参数不处在所述合理区间时,确定所述送风系统设计不合理,调整所述送风系统的基本参数。
  3. 根据权利要求1所述的方法,其中,所述设计参数包括送风通道入口截面平均速度、送风路径某截面处平均速度和送风通道某截面处各点速度的标准差。
  4. 根据权利要求3所述的方法,其中,所述将所述设计参数代入一预设的评价指标公式,得到一评价指标参数包括:
    将所述送风通道入口截面平均速度与所述送风路径某截面处平均速度的差值除以所述送风通道入口截面平均速度,获得一送风速度衰减系数;
    将所述送风通道某截面处各点速度的标准差除以所述送风路径某截面处平均速度,获得一送风速度均匀系数;
    将所述送风速度衰减系数和所述送风速度均匀系数代入预设的A=mα+nβ,以得一评价指标参数,A表示所述评价指标参数,α表示所述送风速度衰减系数,β表示所述送风速度均匀系数,m、n表示权重系数。
  5. 根据权利要求1-4中任一项所述的方法,其中,所述评价指标参数为送风平稳性参数。
  6. 一种送风系统的评判装置,包括:
    获取模块,设置为获取所述送风系统的设计参数;
    运算模块,设置为将所述设计参数代入一预设的评价指标公式,得到 一评价指标参数;
    判断模块,设置为判断所述评价指标参数是否处在预设的合理区间,得到一判断结果;
    确认模块,设置为在所述判断结果指示所述评价指标参数处在所述合理区间时,确定所述送风系统设计合理。
  7. 根据权利要求6所述的装置,其中,还包括:
    调整模块,设置为在所述判断结果指示所述评价指标参数不处在所述合理区间时,确定所述送风系统设计不合理,调整所述送风系统的基本参数。
  8. 根据权利要求6所述的装置,其中,所述设计参数包括送风通道入口截面平均速度、送风路径某截面处平均速度和送风通道某截面处各点速度的标准差。
  9. 根据权利要求8所述的装置,其中,所述运算模块包括:
    第一运算模块,设置为将所述送风通道入口截面平均速度与所述送风路径某截面处平均速度的差值除以所述送风通道入口截面平均速度,获得一送风速度衰减系数;
    第二运算模块,设置为将所述送风通道某截面处各点速度的标准差除以所述送风路径某截面处平均速度,获得一送风速度均匀系数;
    第三运算模块,将所述送风速度衰减系数和所述送风速度均匀系数代入预设的A=mα+nβ,以得一评价指标参数,A表示所述评价指标参数,α表示所述送风速度衰减系数,β表示所述送风速度均匀系数,m、n表示权重系数。
  10. 根据权利要求6-9所述的装置,其中,所述评价指标参数为送风平稳性参数。
PCT/CN2017/087613 2016-07-12 2017-06-08 一种送风系统的评判方法和装置 WO2018010506A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610545629.3A CN107609204B (zh) 2016-07-12 2016-07-12 一种送风系统的评判方法和装置
CN201610545629.3 2016-07-12

Publications (1)

Publication Number Publication Date
WO2018010506A1 true WO2018010506A1 (zh) 2018-01-18

Family

ID=60952762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087613 WO2018010506A1 (zh) 2016-07-12 2017-06-08 一种送风系统的评判方法和装置

Country Status (2)

Country Link
CN (1) CN107609204B (zh)
WO (1) WO2018010506A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020075991A (ja) * 2018-11-07 2020-05-21 下田 一喜 保冷剤、保冷具、貨物、輸送機器、輸送方法及び保冷方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6956901B2 (ja) * 2018-12-11 2021-11-02 三菱電機株式会社 空気調和機及び制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201812187U (zh) * 2010-03-05 2011-04-27 姜永东 基于云计算的电子信息系统机房能源管理控制系统
US20120197444A1 (en) * 2011-01-28 2012-08-02 Zhikui Wang Manipulating environmental conditions in an infrastructure
CN104061664A (zh) * 2013-03-22 2014-09-24 中国移动通信集团上海有限公司 通信机房的空调监控系统、方法及装置
CN104598667A (zh) * 2014-12-09 2015-05-06 柳州职业技术学院 一种基于cfd技术的室内通风效率检测模拟分析方法
CN105444346A (zh) * 2015-11-13 2016-03-30 上海斐讯数据通信技术有限公司 一种数据中心机房管控系统及方法
CN205227675U (zh) * 2015-11-30 2016-05-11 南京工业大学 一种数据机房热环境的动态预测控制系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2458406C (en) * 2001-08-30 2008-04-29 Integrated Marine Systems, Inc. Continuous throughput blast freezer
US7251951B2 (en) * 2004-04-16 2007-08-07 Honeywell International, Inc. Heated sub-freezing airflow diverter
CN100570499C (zh) * 2005-12-15 2009-12-16 株式会社理光 成像装置与成像方法
CN101430126A (zh) * 2008-12-08 2009-05-13 江苏盛虹化纤有限公司 一种空调机组冷冻水使用操作方法
CN101634480B (zh) * 2009-08-05 2011-12-14 于郡东 控制机房内下送风空调风机装置的系统和方法
CN102033992A (zh) * 2010-11-24 2011-04-27 海信(山东)空调有限公司 一种空调室内机安装位置计算方法
CN102183080B (zh) * 2011-05-11 2013-10-23 西安建筑科技大学 一种适用于胶囊旅馆的顶部水平贴附式送风方法
CN103438508B (zh) * 2013-08-27 2016-02-10 上海理工大学 变风量地板送风末端系统及其风量控制方法
JP2015167930A (ja) * 2014-03-10 2015-09-28 宇部興産機械株式会社 竪型粉砕機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201812187U (zh) * 2010-03-05 2011-04-27 姜永东 基于云计算的电子信息系统机房能源管理控制系统
US20120197444A1 (en) * 2011-01-28 2012-08-02 Zhikui Wang Manipulating environmental conditions in an infrastructure
CN104061664A (zh) * 2013-03-22 2014-09-24 中国移动通信集团上海有限公司 通信机房的空调监控系统、方法及装置
CN104598667A (zh) * 2014-12-09 2015-05-06 柳州职业技术学院 一种基于cfd技术的室内通风效率检测模拟分析方法
CN105444346A (zh) * 2015-11-13 2016-03-30 上海斐讯数据通信技术有限公司 一种数据中心机房管控系统及方法
CN205227675U (zh) * 2015-11-30 2016-05-11 南京工业大学 一种数据机房热环境的动态预测控制系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020075991A (ja) * 2018-11-07 2020-05-21 下田 一喜 保冷剤、保冷具、貨物、輸送機器、輸送方法及び保冷方法
JP7217878B2 (ja) 2018-11-07 2023-02-06 一喜 下田 保冷具、貨物、輸送機器、輸送方法及び保冷方法

Also Published As

Publication number Publication date
CN107609204A (zh) 2018-01-19
CN107609204B (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
US8914155B1 (en) Controlling fluid flow in a data center
JP5872509B2 (ja) 自然空気を利用したサーバルーム冷却装置および方法
CN106895555A (zh) 一种立式空调器防冷风的控制方法、控制器及立式空调器
CN109595761B (zh) 空调器的控制方法、装置及具有其的空调器
WO2018010506A1 (zh) 一种送风系统的评判方法和装置
Guan et al. Geometric optimization on active chilled beam terminal unit to achieve high entrainment efficiency
JP2013167933A (ja) システム制御装置およびシステム制御方法
JP5695492B2 (ja) 空調制御装置および方法
CN110332677A (zh) 空调器送风的控制方法及装置、存储介质及处理器
WO2024021761A1 (zh) 电梯空调的控制方法、设备及存储介质
CN108917088A (zh) 一种体感风量调节方法、装置及空调器
JP5549619B2 (ja) 空調システム及び空調方法
KR102368592B1 (ko) 데이터센터 서버룸의 온도 시뮬레이션 모델링 방법 및 모델링 장치
CN110345614B (zh) 一种基于室内人员分布检测的温度动态控制系统及方法
JP5997671B2 (ja) 空調制御方法および空調制御システム
JP2015055467A (ja) 空気調和制御システム、空気調和制御装置、空気調和制御方法及びプログラム
JP2015190670A (ja) Vav空調システムの制御方法
Jaszczak et al. A model of the refinishing spray booth as a plant of automatic control
CN113819592A (zh) 空调系统控制方法、装置、电子设备、存储介质及系统
JP6023683B2 (ja) 床面の吹出し口の面積を決定する方法
Guan et al. Numerical investigation of geometry parameters for designing efficient terminal units in active chilled beam
CN114110824A (zh) 一种恒湿机智能控制方法及装置
TWI499171B (zh) 空氣流場控制方法
TW201322907A (zh) 貨櫃式數據中心及其降噪方法
Eisenhower et al. Uncertainty-weighted meta-model optimization in building energy models

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17826845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17826845

Country of ref document: EP

Kind code of ref document: A1