WO2018008619A1 - タッチパネル付き表示装置 - Google Patents

タッチパネル付き表示装置 Download PDF

Info

Publication number
WO2018008619A1
WO2018008619A1 PCT/JP2017/024432 JP2017024432W WO2018008619A1 WO 2018008619 A1 WO2018008619 A1 WO 2018008619A1 JP 2017024432 W JP2017024432 W JP 2017024432W WO 2018008619 A1 WO2018008619 A1 WO 2018008619A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
active matrix
display device
touch
Prior art date
Application number
PCT/JP2017/024432
Other languages
English (en)
French (fr)
Inventor
冨永 真克
義仁 原
吉田 昌弘
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/314,617 priority Critical patent/US20190324309A1/en
Priority to JP2018526386A priority patent/JPWO2018008619A1/ja
Priority to CN201780038901.1A priority patent/CN109416493A/zh
Publication of WO2018008619A1 publication Critical patent/WO2018008619A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • G02F1/13685Top gates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads

Definitions

  • the present invention relates to a display device with a touch panel.
  • Japanese Patent Application Laid-Open No. 2015-122057 discloses a display device integrated with a touch screen panel including a panel serving as both a display and a touch screen.
  • a plurality of pixels are formed on the panel, and each pixel is provided with a pixel electrode and a transistor connected to the pixel electrode.
  • a plurality of electrodes are arranged on the panel so as to face the pixel electrodes.
  • the plurality of electrodes function as a common electrode that forms a horizontal electric field (horizontal electric field) with the pixel electrode in the display drive mode, and as a touch electrode that forms a capacitance with a finger or the like in the touch drive mode.
  • At least one signal line substantially parallel to the data line is connected to each of the plurality of electrodes, and a touch drive signal or a common voltage signal is supplied via the signal line.
  • the common electrode may be used depending on the time constant of the signal line.
  • the potential of the plurality of electrodes may be different for each electrode. In this case, even if the same voltage signal is supplied to each data line, the voltage applied to the liquid crystal layer in each segment provided with a plurality of electrodes is different, resulting in a luminance difference between the segments.
  • writing of image data and detection of a touch position must be performed separately in one vertical period. Therefore, as the number of pixels increases, the time for writing image data and the time for detecting the touch position are likely to be insufficient.
  • An object of the present invention is to provide a display device with a touch panel that can improve display quality and touch position detection accuracy.
  • a display device with a touch panel includes an active matrix substrate, a counter substrate provided to face the active matrix substrate, and a liquid crystal layer provided between the active matrix substrate and the counter substrate.
  • a plurality of touch detection electrodes for detecting contact with the touch surface and a plurality of signal lines connected to each of the plurality of touch detection electrodes; and the plurality of pixel electrodes, the common electrode, and the The plurality of touch detection electrodes are arranged to overlap in plan view, and the plurality of touch detection electrodes are Than the number of pixel electrodes and the common electrode is provided at a position closer to the substrate.
  • FIG. 1 is a cross-sectional view of a display device with a touch panel according to the first embodiment.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the active matrix substrate shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an example of the arrangement of the touch detection electrodes.
  • FIG. 4 is an enlarged schematic view of a part of the active matrix substrate shown in FIG.
  • FIG. 5 is a schematic cross-sectional view of the TFT region of the active matrix substrate shown in FIG. 6 is a schematic cross-sectional view of a non-TFT region of the active matrix substrate shown in FIG.
  • FIG. 7 is a schematic cross-sectional view of the counter substrate shown in FIG. FIG.
  • FIG. 8A is a cross-sectional view showing a manufacturing process of a TFT region and a non-TFT region of the active matrix substrate shown in FIG.
  • FIG. 8B is a cross-sectional view showing a step of forming a touch detection electrode on the glass substrate shown in FIG. 8A.
  • FIG. 8C is a cross-sectional view showing a step of forming a first insulating film on the glass substrate shown in FIG. 8B.
  • FIG. 8D is a cross-sectional view illustrating a process of forming a signal line on the first insulating film illustrated in FIG. 8C.
  • FIG. 8E is a cross-sectional view illustrating a process of forming a color filter on the first insulating film illustrated in FIG. 8D.
  • FIG. 8F is a cross-sectional view illustrating a process of forming a second insulating film on the color filter illustrated in FIG. 8E.
  • 8G is a cross-sectional view illustrating a process of forming a source electrode, a drain electrode, and a data line on the second insulating film illustrated in FIG. 8F.
  • FIG. 8H is a cross-sectional view illustrating a process of forming a semiconductor film overlapping with the source electrode and the drain electrode illustrated in FIG. 8G.
  • FIG. 8I is a cross-sectional view illustrating a process of forming a gate insulating film from the state illustrated in FIG. 8H.
  • 8J is a cross-sectional view illustrating a process of forming a gate electrode on the gate insulating film illustrated in FIG. 8I.
  • 8K is a cross-sectional view illustrating a process of forming an organic insulating film from the state illustrated in FIG. 8J.
  • FIG. 8L is a cross-sectional view illustrating a process of forming a common electrode on the organic insulating film illustrated in FIG. 8K.
  • FIG. 8M is a cross-sectional view illustrating a process of forming a contact hole and a third insulating film that penetrate the gate insulating film from the state illustrated in FIG. 8L.
  • 8N is a cross-sectional view illustrating a process of forming a pixel electrode on the third insulating film illustrated in FIG.
  • FIG. 9A is a cross-sectional view of the non-TFT region of the active matrix substrate in the second embodiment.
  • FIG. 9B is a cross-sectional view of the counter substrate in the second embodiment.
  • FIG. 10 is a cross-sectional view showing another configuration example of the active matrix substrate of the second embodiment.
  • FIG. 11A is a cross-sectional view of a TFT region in the active matrix substrate of the third embodiment.
  • FIG. 11B is a cross-sectional view of a non-TFT region in the active matrix substrate of the third embodiment.
  • FIG. 11C is a cross-sectional view of the counter substrate of the third embodiment.
  • FIG. 12A is a schematic cross-sectional view of the TFT region of the active matrix substrate in Modification 5.
  • FIG. 12B is a schematic cross-sectional view of the non-TFT region of the active matrix substrate in Modification 5.
  • a display device with a touch panel includes an active matrix substrate, a counter substrate provided to face the active matrix substrate, and a liquid crystal provided between the active matrix substrate and the counter substrate.
  • a display device with a touch panel having a touch surface on the active matrix substrate side, wherein the active matrix substrate includes a substrate, a plurality of pixel electrodes on the liquid crystal layer side of the substrate, and a common electrode
  • a plurality of touch detection electrodes for detecting contact with the touch surface and a plurality of signal lines connected to each of the plurality of touch detection electrodes; and the plurality of pixel electrodes and the common electrode;
  • the plurality of touch detection electrodes are arranged so as to overlap with each other in plan view, and the plurality of touch detection electrodes are arranged in the plurality of touch detection electrodes.
  • Than the pixel electrode and the common electrode is provided at a position closer to the substrate (first configuration).
  • the display device with a touch panel has a touch surface on the active matrix substrate side, and on the liquid crystal layer side of the active matrix substrate, a plurality of pixel electrodes, a common electrode, and a plurality of touch detection devices. Electrodes and signal lines are provided. The common electrode and the touch detection electrode are provided independently. The common electrode is used to display an image, and the touch detection electrode detects contact with the touch surface. For this reason, the potential of the common electrode does not change due to the difference in the time constant of the signal line, and the difference in the voltage applied to the liquid crystal layer hardly occurs. In addition, since the common electrode and the touch detection electrode are provided independently, display control and touch detection control can be performed in parallel. Therefore, even if the active matrix substrate has a high definition, the display control time and the detection control time can be ensured, and the decrease in pixel luminance and the decrease in detection sensitivity can be suppressed.
  • the plurality of pixel electrodes, the common electrode, and the touch detection electrode are arranged so as to overlap in a plan view. That is, the display area and the detection area overlap. Therefore, the aperture ratio can be improved as compared with the case where the plurality of pixel electrodes and the common electrode do not overlap with the touch detection electrode.
  • the touch detection electrode is provided at a position closer to the substrate than the plurality of pixel electrodes and the common electrode. That is, since the pixel electrode and the common electrode are not arranged between the substrate and the touch detection electrode, the contact detection accuracy can be improved.
  • the active matrix substrate may further include a light-shielding portion between the pixel electrode and the substrate (second configuration).
  • the light shielding portion may be a black resin (third configuration).
  • the third configuration it is possible to reduce the leakage current due to the touch detection electrode as compared with the case where a metal material is used for the light shielding portion.
  • the light shielding portion may be provided at a position not overlapping the pixel electrode (fourth configuration).
  • the aperture ratio of the pixel can be improved.
  • the light shielding portion may be provided at a position that does not overlap the touch detection electrode (fifth configuration).
  • the fifth configuration it is possible to suppress a decrease in touch detection accuracy as compared with the case where the light shielding portion overlaps the touch detection electrode.
  • the active matrix substrate may further include a color filter at a position overlapping the pixel electrode (sixth configuration).
  • the sixth configuration as compared with the case where a color filter is provided on the counter substrate, it is not necessary to adjust the size of the pixel electrode or the like in consideration of the shift when the active matrix substrate and the counter substrate are bonded to each other.
  • the aperture ratio can be secured.
  • the counter substrate may further include a color filter provided at a position overlapping the pixel electrode (seventh configuration).
  • the plurality of touch detection electrodes are disposed in contact with the substrate, and between the plurality of touch detection electrodes and the common electrode, and between the common electrode and the plurality of electrodes.
  • Each pixel electrode may include at least one insulating film (eighth configuration).
  • the contact detection sensitivity can be improved.
  • the active matrix substrate further includes a plurality of gate lines and a plurality of data lines
  • the plurality of touch detection electrodes include the plurality of gate lines and the plurality of gate lines. It is good also as arrange
  • a capacitance is formed between the user's finger or the like and the gate line or the data line as compared with the case where the touch detection electrode is disposed farther from the substrate than the gate line or the data line. It is difficult to suppress a decrease in touch detection accuracy.
  • the plurality of signal lines and the plurality of touch detection electrodes may be provided in different layers (tenth configuration).
  • the tenth configuration it is possible to suppress a short circuit between the signal line and another touch detection electrode to which the signal line is not connected.
  • the signal line and the plurality of touch detection electrodes are provided in the same layer, and the plurality of touch detection electrodes are provided between the substrate and the plurality of touch detection electrodes.
  • at least one insulating film may be provided between the common electrode and between the common electrode and the plurality of pixel electrodes (11th configuration).
  • the step of forming a contact hole for connecting the signal line and the touch detection electrode can be reduced.
  • the active matrix substrate further includes a plurality of switching elements including a source electrode, a drain electrode, a semiconductor film, and a gate electrode, and the gate electrode is formed on the semiconductor film.
  • the gate electrode is formed on the semiconductor film.
  • it may be provided on the liquid crystal layer side (a twelfth configuration).
  • the gate electrode is provided on the liquid crystal layer side with respect to the semiconductor film, light from the counter substrate side incident on the channel region of the switching element can be shielded.
  • the active matrix substrate further includes a plurality of switching elements including a source electrode, a drain electrode, a semiconductor film, and a gate electrode, and the gate electrode is formed on the semiconductor film.
  • the gate electrode is formed on the semiconductor film.
  • it may be provided on the substrate side (a thirteenth configuration).
  • the gate electrode is provided on the substrate side with respect to the semiconductor film, light from the substrate side incident on the channel region of the switching element can be shielded.
  • the counter substrate may further include a transparent electrode layer provided on the surface opposite to the liquid crystal layer so as to overlap the pixel electrode (first). 14 configuration).
  • the fourteenth configuration by providing the transparent electrode layer on the counter substrate, it is possible to suppress alignment failure of the liquid crystal layer due to an external electric field from the counter substrate side.
  • FIG. 1 is a cross-sectional view of a display device 10 with a touch panel in the present embodiment.
  • the display device with a touch panel 10 in this embodiment includes an active matrix substrate 1, a counter substrate 2, a liquid crystal layer 3 sandwiched between the active matrix substrate 1 and the counter substrate 2, and a pair of polarizing plates 4A and 4B. And a backlight 5.
  • the display device with a touch panel 10 has a function of displaying an image, and a position where a finger of a user touches the touch surface on the displayed image, that is, on the polarizing plate 4A on the active matrix substrate 1 side. It has a function of detecting (touch position).
  • the display device with a touch panel 10 is a so-called in-cell touch panel display device in which elements necessary for detecting a touch position are provided on the active matrix substrate 1.
  • the driving method of the liquid crystal molecules included in the liquid crystal layer 3 is a horizontal electric field driving method.
  • a pixel electrode and a common electrode for forming an electric field are formed on the active matrix substrate 1.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the active matrix substrate 1.
  • the active matrix substrate 1 has a plurality of gate lines 21 and a plurality of data lines 22 on the surface on the liquid crystal layer 3 side.
  • the active matrix substrate 1 has a plurality of pixels partitioned by gate lines 21 and data lines 22, and a region where the plurality of pixels are formed becomes a display region R of the active matrix substrate 1.
  • Each pixel is provided with a pixel electrode and a switching element.
  • a thin film transistor is used as the switching element.
  • the active matrix substrate 1 has a source driver 30 and a gate driver 40 in a region (frame region) outside the display region R.
  • the source driver 30 is connected to each data line 22 and supplies a voltage signal corresponding to the image data to each data line 22.
  • the gate driver 40 is connected to each gate line 21 and sequentially supplies a voltage signal to each gate line 21 to scan the gate line 21.
  • FIG. 3 is a schematic diagram showing an example of the arrangement of touch detection electrodes for detecting a touch position.
  • the touch detection electrode 23 is formed on the surface of the active matrix substrate 1 on the liquid crystal layer 3 side. As shown in FIG. 3, the touch detection electrodes 23 have a rectangular shape, and a plurality of electrodes are arranged on the active matrix substrate 1 in a matrix. Each of the touch detection electrodes 23 is, for example, a substantially square having a side of several millimeters.
  • the active matrix substrate 1 is provided with a controller 50.
  • the controller 50 performs touch position detection control for detecting the touch position.
  • the controller 50 and each touch detection electrode 23 are connected by a signal line 24 extending in the Y-axis direction. That is, the same number of signal lines 24 as the number of touch detection electrodes 23 are formed on the active matrix substrate 1.
  • the touch detection electrode 23 has a parasitic capacitance formed between the touch detection electrode 23 and the like adjacent to each other. However, when a human finger or the like touches the display screen, a capacitance is formed between the touch detection electrode 23 or the like. As a result, the capacitance increases.
  • the controller 50 supplies a touch drive signal for detecting the touch position to the touch detection electrode 23 via the signal line 24 and receives the touch detection signal via the signal line 24. .
  • the signal line 24 functions as a line for transmitting and receiving a touch drive signal and a touch detection signal.
  • FIG. 4 is a schematic diagram in which a part of the active matrix substrate 1 is enlarged. As shown in FIG. 4, the plurality of pixel electrodes 25 are arranged in a matrix. Although not shown in FIG. 4, TFTs (thin film transistors), which are switching elements, are arranged in a matrix corresponding to the pixel electrodes 25.
  • the pixel electrode 25 is provided in a region partitioned by the gate line 21 and the data line 22.
  • the gate electrode of the TFT is connected to the gate line 21, one of the source electrode and the drain electrode is connected to the data line 22, and the other is connected to the pixel electrode 25.
  • a common electrode is arranged over the entire display area.
  • the touch detection electrode 23, the pixel electrode 25, and the common electrode are arranged so as to overlap in a plan view.
  • the signal line 24 extending in the Y-axis direction is arranged so as to partially overlap the data line 22 extending in the Y-axis direction in the normal direction of the active matrix substrate 1. Yes. Specifically, the signal line 24 is provided on the positive side of the Z axis with respect to the data line 22, and the signal line 24 and the data line 22 partially overlap in plan view.
  • white circles 35 indicate locations where the touch detection electrodes 23 and the signal lines 24 are connected.
  • FIG. 5 is a schematic cross-sectional view of an AA cross section of the active matrix substrate 1 shown in FIG. 4, that is, a region (TFT region) where TFTs are arranged.
  • FIG. 6 is a schematic cross-sectional view taken along the line BB of the active matrix substrate 1 shown in FIG. 4, that is, a region where no TFT is disposed (non-TFT region).
  • the touch detection electrode 23 and the black matrix 60 are arranged on one surface of the glass substrate 100. As shown in FIGS. 5 and 6, the black matrix 60 is disposed apart from the touch detection electrode 23.
  • the black matrix 60 is preferably made of a material having a low reflectance in order to suppress a decrease in contrast due to reflection (reflection) of external light and fluctuations in TFT characteristics due to internal reflection of backlight light.
  • the black matrix 60 is preferably made of a material having a higher resistance than the TFT semiconductor film.
  • the volume resistivity is 10 10 to 10 14 ⁇ ⁇ cm, and it is preferable to use a photosensitive resin such as a photoresist colored in black.
  • the black matrix 60 and the touch detection electrode 23 are not necessarily separated from each other. For example, if the black matrix 60 has a sufficiently high resistance to the semiconductor film, the touch detection electrode 23 and the black matrix 60 May touch or overlap.
  • the touch detection electrode 23 is a transparent electrode, for example, ITO (In-Tin-TO), ZnO (Zn-O), IZO (In-Zn-O), IGZO (In-Ga-Zn-O), It is made of a material such as ITZO (In-Tin-Zn-O).
  • the first insulating film 102 is disposed on one surface of the glass substrate 100 so as to cover the black matrix 60 and the touch detection electrode 23.
  • the first insulating film 102 is made of, for example, silicon nitride (SiNx) or silicon dioxide (SiO 2 ).
  • the signal line 24 is disposed on the surface of the first insulating film 102 so as to overlap the black matrix 60.
  • the signal line 24 is, for example, one of copper (Cu), titanium (Ti), molybdenum (Mo), aluminum (Al), magnesium (Mg), cobalt (Co), chromium (Cr), tungsten (W), or It consists of these mixtures.
  • the color filter 103 is disposed so as to cover the first insulating film 102 and the signal line 24.
  • the color filter 103 is composed of coloring materials in which red (R), green (G), and blue (B) colors are colored.
  • a second insulating film 104 is formed on the surface of the color filter 103.
  • the second insulating film 104 is made of, for example, silicon nitride (SiNx) or silicon dioxide (SiO 2 ).
  • a TFT 70 is formed on the surface of the second insulating film 104 in the TFT region.
  • the TFT 70 includes a source electrode 70a, a drain electrode 70b, a semiconductor film 70c, and a gate electrode 70d.
  • the source electrode 70 a and the drain electrode 70 b are arranged in contact with the second insulating film 104.
  • the data line 22 is disposed on the surface of the second insulating film 104 in the non-TFT region.
  • the source electrode 70a, the drain electrode 70b, and the data line 22 are formed of a laminated film of, for example, titanium (Ti) and copper (Cu).
  • the semiconductor film 70c is disposed so as to overlap with part of the source electrode 70a and the drain electrode 70b.
  • the semiconductor film 70c is an oxide semiconductor film, for example, and may include at least one metal element among In, Ga, and Zn.
  • the semiconductor film 70c includes, for example, an In—Ga—Zn—O based semiconductor.
  • a gate insulating film 71 is formed so as to overlap the source electrode 70a, the drain electrode 70b, and the semiconductor film 70c in the TFT region, and to overlap the data line 22 in the non-TFT region.
  • the gate insulating film 71 is made of, for example, silicon nitride (SiNx) or silicon dioxide (SiO 2 ).
  • a gate electrode 70d is formed so as to overlap the gate insulating film 71.
  • the gate electrode 70d is disposed on the lower side (Z-axis negative direction side) of the semiconductor film 70c, that is, on the liquid crystal layer 3 side.
  • the gate electrode 70d is formed of, for example, a laminated film of titanium (Ti) and copper (Cu).
  • an organic insulating film (planarization film) 105 is disposed in the TFT region and the non-TFT region so as to cover the gate electrode 70d and the gate insulating film 71.
  • the organic insulating film 105 is made of an acrylic organic resin material such as polymethyl methacrylate resin (PMMA).
  • the common electrode 26 is disposed on the surface of the organic insulating film 105 in the TFT region and the non-TFT region.
  • a third insulating film 106 is disposed so as to cover the common electrode 26.
  • the common electrode 26 is a transparent electrode and is made of, for example, a material such as ITO, ZnO, IZO, IGZO, or ITZO.
  • the third insulating film 106 is made of, for example, silicon nitride (SiNx) or silicon dioxide (SiO 2 ).
  • a contact hole CH penetrating the gate insulating film 71, the organic insulating film 105, and the third insulating film 106 is provided in the TFT region.
  • a pixel electrode 25 is disposed on the surface of the third insulating film 106. The pixel electrode 25 is in contact with the drain electrode 70b through the contact hole CH.
  • a slit 25 a is formed between the pixel electrode 25 and the pixel electrode 25.
  • FIG. 7 is a schematic cross-sectional view of the counter substrate 2.
  • the counter substrate 2 has an overcoat layer 201 disposed so as to cover one surface of the glass substrate 200, that is, the surface on the liquid crystal layer 3 (see FIG. 1) side (Z-axis positive direction).
  • the shield electrode 202 is provided so that the other surface in the glass substrate 200, ie, the surface of the polarizing plate 4B (see FIG. 1) side (Z-axis negative direction) may be covered.
  • the shield electrode 202 is a transparent electrode film, and is made of a material such as ITO, ZnO, IZO, IGZO, ITZO, for example.
  • 8A to 8N are cross-sectional views showing manufacturing steps of the TFT region and the non-TFT region in the active matrix substrate 1. The manufacturing process will be described below with reference to FIGS. 8A to 8N.
  • a black resist is applied on one surface of the glass substrate 100, and the black resist is patterned by a photolithography method. Thereby, a black matrix 60 is formed in the TFT region and the non-TFT region (see FIG. 8A).
  • a transparent electrode film is formed so as to cover the black matrix 60 on the glass substrate 100, and the transparent electrode film is patterned by performing photolithography and wet etching. As a result, the touch detection electrode 23 is formed at a position not overlapping the black matrix 60 (see FIG. 8B).
  • SiNx silicon nitride
  • a metal film made of, for example, copper (Cu) is formed on the first insulating film 102, and the metal film is patterned by photolithography and wet etching. Thereby, the signal line 24 is formed at a position overlapping the black matrix 60 in the non-TFT region (see FIG. 8D).
  • a coloring material is applied on the first insulating film 102, and pre-baking, photolithography, and post-baking are performed to pattern the coloring material. This is repeated for the three color (R, G, B) colorants. As a result, three color (R, G, B) color filters 103 are formed in the TFT region and the non-TFT region (see FIG. 8E).
  • a second insulating film 104 made of, for example, silicon oxide (SiOx) is formed on the color filter 103 so as to cover the color filter 103 (see FIG. 8F).
  • titanium (Ti) and copper (Cu) are sequentially formed on the second insulating film 104, photolithography and wet etching are performed, and a laminated metal film of titanium (Ti) and copper (Cu) is formed. Pattern. Thereby, the source electrode 70a and the drain electrode 70b are formed on the second insulating film 104 in the TFT region. Further, the data line 22 is formed on the second insulating film 104 in the non-TFT region at a position overlapping the signal line 24 (see FIG. 8G).
  • a semiconductor film containing, for example, In, Ga, Zn, and O is formed over the second insulating film 104 so as to cover the source electrode 70a and the drain electrode 70b in the TFT region, and photolithography and wet processing are performed. Etching is performed to pattern the semiconductor film.
  • the semiconductor film 70c is formed so as to overlap with part of the source electrode 70a and the drain electrode 70b in the TFT region (see FIG. 8H).
  • a gate insulating film 71 made of, for example, silicon oxide (SiOx) is formed so as to cover the source electrode 70a, the drain electrode 70b, and the semiconductor film 70c in the TFT region and to cover the data line 22 in the non-TFT region ( See FIG. 8I).
  • a laminated metal film in which, for example, titanium (Ti) and copper (Cu) are sequentially laminated is formed on the gate insulating film 71, and photolithography and wet etching are performed to pattern the laminated metal film.
  • the gate electrode 70d overlapping the source electrode 70a, the drain electrode 70b, and the semiconductor film 70c is formed in the TFT region (see FIG. 8J).
  • an organic insulating film is formed so as to cover the gate electrode 70d and the gate insulating film 71 in the TFT region and to cover the gate insulating film 71 in the non-TFT region. Then, the organic insulating film is patterned by photolithography. As a result, an organic insulating film 105 having an opening 105a is formed at a position overlapping the drain electrode 70b in the TFT region (see FIG. 8K).
  • a transparent electrode film made of, for example, ITO is formed on the organic insulating film 105, and photolithography and wet etching are performed to pattern the transparent electrode film.
  • the common electrode 26 is formed on the organic insulating film 105 in the TFT region and the non-TFT region (see FIG. 8L).
  • a third insulating film made of, for example, silicon nitride (SiNx) is formed so as to cover the common electrode 26 and the organic insulating film 105 in the TFT region and cover the common electrode 26 in the non-TFT region.
  • photolithography and dry etching are performed to pattern the third insulating film and the gate insulating film 71.
  • a contact hole CH penetrating the gate insulating film 71 is formed in the TFT region.
  • the third insulating film 106 is formed in a region other than the contact hole CH (see FIG. 8M).
  • a transparent electrode film made of, for example, ITO is formed so as to cover the third insulating film 106, and photolithography and wet etching are performed to pattern the transparent electrode film.
  • the pixel electrode 25 is formed on the third insulating film 106 in the TFT region and the non-TFT region.
  • the pixel electrode 25 is in contact with the drain electrode 70b in the TFT region and has a slit 25a (see FIG. 8N).
  • the touch detection electrode 23 and the common electrode 26 are arranged independently.
  • the common electrode 26 is formed over the entire display area in the active matrix substrate 1 and is not arranged in a matrix like the touch detection electrode 23. Therefore, the potential of the common electrode 26 does not change due to the difference in the time constant of the signal line 24, and the difference in the applied voltage of the liquid crystal layer 3 in each pixel is small, so that display defects are unlikely to occur.
  • the touch detection electrode 23 and the common electrode 26 are arranged independently, the charge time of the pixels for displaying an image and the detection time for performing touch detection are separated in one vertical period. Can be done at the same time. Therefore, even if the definition becomes higher, the charging time and the detection time can be secured, and the decrease in luminance and the decrease in detection sensitivity can be suppressed.
  • the touch detection electrode 23 and the pixel electrode 25 are arranged to overlap in the active matrix substrate 1 (see FIGS. 4 to 6). That is, in the active matrix substrate 1, since the display area and the detection area overlap, the aperture ratio can be improved as compared with the case where the detection area is provided separately from the display area.
  • the display device 10 with a touch panel in the first embodiment is configured to touch the active matrix substrate 1 side. That is, since a liquid crystal layer, a color filter, or the like is not provided between the user's finger and the touch detection electrode 23, detection sensitivity can be improved.
  • the shield electrode 202 is provided only on the counter substrate 2.
  • the shield electrode is provided for the purpose of suppressing alignment failure of the liquid crystal layer 3 due to an external electric field.
  • the touch detection electrode 23 is provided so as to be in contact with the glass substrate 100, and the touch detection electrode 23 and the common electrode 26 function as a shield electrode. Therefore, it is necessary to provide the active matrix substrate 1 with a shield electrode. There is no. That is, since the shield electrode is not provided on the substrate on the side on which the user's finger or the like is contacted, a decrease in detection accuracy can be suppressed as compared with the case where the shield electrode is provided.
  • the shield electrode 202 on the counter substrate 2, it is possible to suppress poor alignment of the liquid crystal layer 3 due to an external electric field from the counter substrate 2 side.
  • the display device 10 with a touch panel is thin (for example, the thickness is 0.3 to 0.6 mm)
  • the display device 10 with a touch panel may bend.
  • the capacitance of the touch detection electrode 23 changes due to a change in the distance between the member on the back side of the display device with a touch panel 10 and the touch detection electrode 23, and the touch detection sensitivity is increased by the change in the capacitance. descend.
  • the bending of the display apparatus 10 with a touch panel is suppressed by providing the shield electrode 202 in the counter substrate 2 side, and it can suppress that a touch detection sensitivity falls.
  • the TFT 70 provided on the active matrix substrate 1 has a top gate structure in which the gate electrode 70d is disposed on the liquid crystal layer 3 side with respect to the semiconductor film 70c. Therefore, it is not necessary to separately provide a light shielding film for shielding light from the backlight 5 (see FIG. 1) in the channel region of the TFT 70. Note that light incident on the active matrix substrate 1 from the user side is blocked by the black matrix 60 provided on the active matrix substrate 1.
  • the color filter 103 by providing the color filter 103 on the active matrix substrate 1, parasitic capacitance between the touch detection electrode 23 or the signal line 24 and the gate line 21 or the data line 22 can be reduced. In addition, the signal line 24 and the data line 22 are not easily short-circuited. Furthermore, as compared with the case where the color filter 103 is provided on the counter substrate 2, defects such as color mixing due to a shift in bonding the active matrix substrate 1 and the counter substrate 2 are less likely to occur. For this reason, it is not necessary to increase the black matrix 60 or to reduce the pixel electrode 25 in consideration of a shift in bonding the active matrix substrate 1 and the counter substrate 2, and it is easy to ensure a desired aperture ratio. .
  • the TFT provided in the pixel is mainly described, but the gate driver 40 is also configured by using a plurality of TFTs. These TFTs also have the same structure as the TFT 70 provided in the pixel.
  • FIG. 9A is a cross-sectional view of a non-TFT region of the active matrix substrate in the present embodiment.
  • FIG. 9B is a cross-sectional view of the counter substrate in the present embodiment.
  • 9A and 9B the same reference numerals as those in the first embodiment are assigned to the same configurations as those in the first embodiment.
  • a configuration different from the first embodiment will be described.
  • the active matrix substrate 1A in the present embodiment is not provided with a color filter so as to be in contact with the first insulating film 102.
  • the counter substrate 2 ⁇ / b> A in the present embodiment is provided with a color filter 103 between the overcoat layer 201 and the glass substrate 200. That is, this embodiment is different from the first embodiment in that the color filter 103 is provided on the counter substrate 2A.
  • the overcoat layer 201 is provided to planarize a step between the color filters 103 corresponding to different colors, but may be omitted.
  • a first insulating film 102, a gate insulating film 71, and an organic insulating film 105 are provided between the glass substrate 100 and the touch detection electrode 23, and the touch detection electrode 23 and A second insulating film 104 is provided between the common electrodes 26. That is, in the present embodiment, the touch detection electrode 23 is provided at a position closer to the common electrode 26 than in the first embodiment.
  • the signal line 24 is provided in the same layer as the touch detection electrode 23.
  • the signal line 24 is, for example, a laminate in which a transparent electrode film made of the same material as the touch detection electrode 23 is disposed so as to be in contact with the organic insulating film 105 and a metal film is disposed on the transparent electrode film. You may be comprised with the film
  • the second embodiment cannot improve the detection accuracy as compared with the first embodiment.
  • the second embodiment also has the same effect as the first embodiment.
  • the potential of the common electrode 26 does not change due to the time constant of the signal line 24. Display defects are less likely to occur.
  • the charging time and the detection time can be simultaneously performed in one vertical period, it is possible to suppress a decrease in luminance and a decrease in detection sensitivity.
  • the shield electrode is provided only on the counter substrate 2A, compared with the case where the shield electrode is provided on the substrate on the side where the user's finger contacts, A decrease in detection accuracy can be suppressed.
  • the touch detection electrodes 23 and the pixel electrodes 25 are arranged so as to overlap each other (see FIG. 9A), the display area and the detection area overlap, and a detection area is provided separately from the display area.
  • the aperture ratio can be improved compared to the case.
  • the touch detection electrodes 23 and the signal lines 24 are formed in the same layer.
  • the touch detection electrode 23 and the signal line 24 are formed in different layers as in the first embodiment, it is necessary to form a contact hole for connecting the touch detection electrode 23 and the signal line 24.
  • the second embodiment since it is formed in the same layer, it is not necessary to form a contact hole. Therefore, it is possible to reduce the step of forming a contact hole for connecting the touch detection electrode 23 and the signal line 24. Further, in the contact hole, it is possible to reduce touch detection failure caused by contact failure or the like between the touch detection electrode 23 and the signal line 24.
  • the color filter 103 is provided on the counter substrate 2A. Therefore, the manufacturing process of the active matrix substrate 1A can be reduced as compared with the case where the color filter 103 is provided on the active matrix substrate 1A.
  • each pixel is also provided with a TFT 70 having a top gate structure, as in the first embodiment. Therefore, it is not necessary to separately provide a light shielding film for shielding light from the backlight 5 (see FIG. 1) in the channel region of the TFT 70.
  • the signal line 24A is constituted by a laminated film in which a transparent electrode film 241 and a metal film 242 made of the same material as the common electrode 26 are laminated.
  • At least one signal line 24A is connected to one touch detection electrode 23. Therefore, a contact hole that penetrates the second insulating film 104 is provided at a location where the touch detection electrode 23 and the signal line 24A are connected, and the touch detection electrode 23 and the signal line 24A are connected to each other through the contact hole. Is connected.
  • a common electrode wiring 261 connected to the common electrode 26 is disposed as shown in FIG.
  • the common electrode wiring 261 is a wiring for supplying a voltage signal to the common electrode 26.
  • the common electrode wiring 261 is formed of a metal film made of the same material as the metal film 242 of the signal line 24A.
  • the common electrode wiring 261 can be formed together with the signal line 24A, and the resistance of the common electrode 26 can be reduced without adding a process for forming the common electrode wiring 261.
  • FIG. 11A is a cross-sectional view of the TFT region in the active matrix substrate of the present embodiment.
  • FIG. 11B is a cross-sectional view of a non-TFT region in the active matrix substrate of this embodiment.
  • 11A and 11B the same reference numerals as those in the first embodiment are assigned to the same configurations as those in the first embodiment.
  • a configuration different from the first embodiment will be mainly described.
  • the active matrix substrate 1 ⁇ / b> C in this embodiment is provided with an inorganic insulating film 107 on the first insulating film 102 instead of the color filter 103.
  • the inorganic insulating film 107 covers the first insulating film 102 in the TFT region, and covers the signal line 24 and the first insulating film 102 in the non-TFT region.
  • the gate electrode 70d of the TFT 70A in this embodiment is provided in contact with the inorganic insulating film 107.
  • the gate insulating film 71 covers the gate electrode 70d in the TFT region and the inorganic insulating film 107 in the non-TFT region.
  • the source electrode 70a and the drain electrode 70b of the TFT 70A are provided in contact with the gate insulating film 71.
  • the data line 22 is provided in contact with the gate insulating film 71.
  • the semiconductor film 70c of the TFT 70A is provided on the gate insulating film 71.
  • the source electrode 70a and the drain electrode 70b are formed on the gate insulating film 71 so as to overlap with part of the semiconductor film 70c.
  • the second insulating film 104 is provided on the gate insulating film 71 and covers the source electrode 70a, the drain electrode 70b, and the semiconductor film 70c in the TFT region, and the data line in the non-TFT region. 22 is covered.
  • a contact hole CH1 penetrating the second insulating film 104, the organic insulating film 105, and the third insulating film 106 is provided, and the pixel electrode 25 is connected to the drain of the TFT 70A through the contact hole CH1. It is connected to the electrode 70b.
  • FIG. 11C is a cross-sectional view of the counter substrate in the present embodiment.
  • symbol as 1st Embodiment is attached
  • the counter substrate 2B in the present embodiment is provided with a black matrix 211 on the surface of the glass substrate 200 on the liquid crystal layer 3 side.
  • a color filter 103 is provided so as to cover the black matrix 211.
  • the black matrix 211 is provided in a portion necessary for shielding the light of the backlight 5 to the channel region of the TFT 70A.
  • an overcoat layer 201 similar to that of the second embodiment may be provided on the color filter 103.
  • the black matrix 60 is provided in the active matrix substrate 1C in the present embodiment, the black matrix 60 is not an essential configuration.
  • the TFT 70A has a bottom gate structure in which the gate electrode 70d is provided on the glass substrate 100 side with respect to the semiconductor film 70c. Therefore, external light that enters the channel region of the TFT 70A from the glass substrate 100 is blocked by the gate electrode 70d. That is, the gate electrode 70d functions as a light shielding film. Therefore, the black matrix 60 is not necessarily provided in the active matrix substrate 1C.
  • a cover glass provided with a light shielding film is provided on the surface in contact with the user in order to suppress reflection (reflection) of external light in the frame area. It may be provided.
  • the third embodiment since the TFT 70A has a bottom gate structure, the black matrix 211 for shielding the backlight light is required in the counter substrate 2B.
  • the third embodiment has the same effects as the first embodiment.
  • the common electrode 26 and the touch detection electrode 23 are provided independently, the potential of the common electrode 26 changes due to the difference in the time constant of the signal line 24. Therefore, display defects are unlikely to occur.
  • the charging time and the detection time can be simultaneously performed in one vertical period, it is possible to suppress a decrease in luminance and a decrease in detection sensitivity.
  • the shield electrode 202 (see FIG. 11C) is provided only on the counter substrate 2B, a reduction in detection accuracy is suppressed as compared with the case where the shield electrode is provided on the substrate on the side where the user's finger contacts. Can do.
  • the touch detection electrodes 23 and the pixel electrodes 25 are arranged so as to overlap each other (see FIGS. 11A and 11B), the display area and the detection area overlap, and the detection area is separated from the display area. The aperture ratio can be improved as compared with the case of providing.
  • the display device with a touch panel according to the present invention is not limited to the configuration of the above-described embodiment, and can be variously modified configurations. Hereinafter, the modification is demonstrated.
  • the semiconductor film 70c is not limited to an oxide semiconductor film, and may be an amorphous silicon film.
  • the display device with a touch panel has been described as an example including an active matrix substrate, a counter substrate, a liquid crystal layer, a polarizing plate, and a backlight. It only needs to include a substrate and a liquid crystal layer.
  • the color filter 103 is provided on the active matrix substrate 1, but the color filter 103 may be provided on the counter substrate 2 as in the second embodiment. That is, the active matrix substrate 1D in the present modification example is not provided with the color filter 103 in the TFT region and the non-TFT region, as shown in FIGS. 12A and 12B.
  • the gate electrode 70d has a top gate structure in which the gate electrode 70d is disposed on the liquid crystal layer 3 side with respect to the semiconductor film 70c has been described.
  • the gate electrode 70d may have a bottom gate structure provided on the glass substrate 100 side with respect to the semiconductor film 70c.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Human Computer Interaction (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

タッチパネル付き表示装置は、アクティブマトリクス基板1と、対向基板と、アクティブマトリクス基板1と対向基板との間に設けられた液晶層とを備え、アクティブマトリクス基板1側にタッチ面を有する。アクティブマトリクス基板1は、基板100と、基板100の液晶層側に、複数の画素電極25と、共通電極26と、タッチ面に対する接触を検知する複数のタッチ検出用電極23と、複数のタッチ検出用電極23のそれぞれと接続された複数の信号線24と、を備える。複数の画素電極25と共通電極26と複数のタッチ検出用電極23は平面視において重なるように配置され、複数のタッチ検出用電極23は、複数の画素電極25及び共通電極26よりも基板100に近い位置に設けられる。

Description

タッチパネル付き表示装置
 本発明は、タッチパネル付き表示装置に関する。
 特開2015-122057号公報には、ディスプレイ用とタッチスクリーン用の両方の役割を果たすパネルを備えるタッチスクリーンパネル一体型表示装置が開示されている。パネルには、複数の画素が形成され、各画素には、画素電極、及び画素電極に接続されたトランジスタとが設けられる。また、パネルには、画素電極に対向して複数の電極が離間して配置される。複数の電極は、ディスプレイ駆動モードでは画素電極との間に横電界(水平電界)を形成する共通電極として機能し、タッチ駆動モードでは、指等との間に静電容量を形成するタッチ電極として機能する。複数の電極にはそれぞれ、データ線と略平行な少なくとも1つの信号ラインが接続され、タッチ駆動信号又は共通電圧信号が信号ラインを介して供給される。
 特開2015-122057号公報のように、画素電極に対向して配置された複数の電極が共通電極とタッチ電極の両方の機能を備える場合、信号ラインの時定数の違いによって、共通電極としての複数の電極の電位が電極ごとに異なる場合がある。この場合、各データ線に同じ電圧信号が供給されても、複数の電極が設けられた各セグメントにおける液晶層に印加される電圧が異なり、セグメント間で輝度差が生じる。また、複数の電極を共通電極とタッチ電極とに利用するため、一垂直期間に、画像データの書き込みと、タッチ位置の検出とを分けて行わなければならない。そのため、画素数が多くなるほど、画像データの書き込み時間とタッチ位置の検出時間とが不足しやすい。
 本発明は、表示品位及びタッチ位置の検出精度を向上させ得るタッチパネル付き表示装置を提供することを目的とする。
 本発明の一実施形態におけるタッチパネル付き表示装置は、アクティブマトリクス基板と、前記アクティブマトリクス基板に対向して設けられた対向基板と、前記アクティブマトリクス基板と前記対向基板との間に設けられた液晶層と、を備え、前記アクティブマトリクス基板側にタッチ面を有するタッチパネル付き表示装置であって、前記アクティブマトリクス基板は、基板と、前記基板の前記液晶層側に、複数の画素電極と、共通電極と、前記タッチ面に対する接触を検知する複数のタッチ検出用電極と、前記複数のタッチ検出用電極のそれぞれと接続された複数の信号線と、を備え、前記複数の画素電極と前記共通電極と前記複数のタッチ検出用電極とは平面視において重なるように配置され、前記複数のタッチ検出用電極は、前記複数の画素電極及び前記共通電極よりも前記基板に近い位置に設けられる。
 本発明によれば、表示品位及びタッチ位置の検出精度を向上させることができる。
図1は、第1実施形態におけるタッチパネル付き表示装置の断面図である。 図2は、図1に示すアクティブマトリクス基板の概略構成を示す模式図である。 図3は、タッチ検出用電極の配置の一例を示す模式図である。 図4は、図1に示すアクティブマトリクス基板の一部の領域を拡大した模式図である。 図5は、図4に示すアクティブマトリクス基板のTFT領域の概略断面図である。 図6は、図4に示すアクティブマトリクス基板の非TFT領域の概略断面図である。 図7は、図1に示す対向基板の概略断面図である。 図8Aは、図1に示すアクティブマトリクス基板のTFT領域と非TFT領域の製造工程を示す断面図であって、ガラス基板上にブラックマトリクスを形成する工程を示す断面図である。 図8Bは、図8Aに示すガラス基板上にタッチ検出用電極を形成する工程を示す断面図である。 図8Cは、図8Bに示すガラス基板上に第1の絶縁膜を形成する工程を示す断面図である。 図8Dは、図8Cに示す第1の絶縁膜の上に信号線を形成する工程を表す断面図である。 図8Eは、図8Dに示す第1の絶縁膜の上にカラーフィルタを形成する工程を表す断面図である。 図8Fは、図8Eに示すカラーフィルタの上に第2の絶縁膜を成膜する工程を表す断面図である。 図8Gは、図8Fに示す第2の絶縁膜の上にソース電極、ドレイン電極、データ線を形成する工程を表す断面図である。 図8Hは、図8Gに示すソース電極とドレイン電極に重なる半導体膜を形成する工程を表す断面図である。 図8Iは、図8Hに示す状態からゲート絶縁膜を成膜する工程を表す断面図である。 図8Jは、図8Iに示すゲート絶縁膜上にゲート電極を形成する工程を表す断面図である。 図8Kは、図8Jに示す状態から有機絶縁膜を成膜する工程を表す断面図である。 図8Lは、図8Kに示す有機絶縁膜の上に共通電極を形成する工程を表す断面図である。 図8Mは、図8Lに示す状態からゲート絶縁膜を貫通するコンタクトホールと第3の絶縁膜とを形成する工程を表す断面図である。 図8Nは、図8Mに示す第3の絶縁膜の上に画素電極を形成する工程を表す断面図である。 図9Aは、第2実施形態におけるアクティブマトリクス基板の非TFT領域の断面図である。 図9Bは、第2実施形態における対向基板の断面図である。 図10は、第2実施形態のアクティブマトリクス基板の他の構成例を示す断面図である。 図11Aは、第3実施形態のアクティブマトリクス基板におけるTFT領域の断面図である。 図11Bは、第3実施形態のアクティブマトリクス基板における非TFT領域の断面図である。 図11Cは、第3実施形態の対向基板の断面図である。 図12Aは、変形例5におけるアクティブマトリクス基板のTFT領域の概略断面図である。 図12Bは、変形例5におけるアクティブマトリクス基板の非TFT領域の概略断面図である。
 本発明の一実施形態に係るタッチパネル付き表示装置は、アクティブマトリクス基板と、前記アクティブマトリクス基板に対向して設けられた対向基板と、前記アクティブマトリクス基板と前記対向基板との間に設けられた液晶層と、を備え、前記アクティブマトリクス基板側にタッチ面を有するタッチパネル付き表示装置であって、前記アクティブマトリクス基板は、基板と、前記基板の前記液晶層側に、複数の画素電極と、共通電極と、前記タッチ面に対する接触を検知する複数のタッチ検出用電極と、前記複数のタッチ検出用電極のそれぞれと接続された複数の信号線と、を備え、前記複数の画素電極と前記共通電極と前記複数のタッチ検出用電極とは平面視において重なるように配置され、前記複数のタッチ検出用電極は、前記複数の画素電極及び前記共通電極よりも前記基板に近い位置に設けられる(第1の構成)。
 第1の構成によれば、タッチパネル付き表示装置は、アクティブマトリクス基板側にタッチ面を有し、アクティブマトリクス基板の液晶層側には、複数の画素電極と、共通電極と、複数のタッチ検出用電極と、信号線とが設けられている。共通電極とタッチ検出用電極とは独立して設けられている。共通電極は、画像を表示するために用いられ、タッチ検出用電極は、タッチ面に対する接触を検知する。そのため、信号線の時定数の違いによる共通電極の電位の変化が生じず、液晶層への印加電圧の差が生じにくい。また、共通電極とタッチ検出用電極とが独立して設けられるため、表示制御とタッチ検出制御とを並行して行うことができる。そのため、アクティブマトリクス基板が高精細なものであっても、表示制御時間と検出制御時間とを確保することができ、画素の輝度低下や検出感度の低下を抑制できる。
 また、複数の画素電極と共通電極とタッチ検出用電極とが平面視で重なるように配置されている。つまり、表示領域と検出領域とが重なっている。そのため、複数の画素電極及び共通電極とタッチ検出用電極とが重なっていない場合と比べ、開口率を向上させることができる。また、タッチ検出用電極は、複数の画素電極と共通電極よりも基板に近い位置に設けられている。つまり、基板からタッチ検出用電極までの間に画素電極や共通電極が配置されていないため、接触の検出精度を向上させることができる。
 第1の構成において、前記アクティブマトリクス基板は、さらに、前記画素電極と前記基板との間に遮光部を備えることとしてもよい(第2の構成)。
 第2の構成によれば、基板の液晶層と反対側の面からの外光を遮光することができる。
 第2の構成において、前記遮光部は、黒色の樹脂であることとしてもよい(第3の構成)。
 第3の構成によれば、遮光部に金属材料を用いる場合と比べ、タッチ検出用電極によるリーク電流を低減することができる。
 第2又は第3の構成において、前記遮光部は、前記画素電極と重ならない位置に設けられていることとしてもよい(第4の構成)。
 第4の構成によれば、遮光部が画素電極と重なならないため、画素の開口率を向上させることができる。
 第2から第4のいずれかの構成において、前記遮光部は、前記タッチ検出用電極と重ならない位置に設けられていることとしてもよい(第5の構成)。
 第5の構成によれば、遮光部がタッチ検出用電極と重なる場合と比べ、タッチ検出精度の低下を抑制することができる。
 第1から第5のいずれかの構成において、前記アクティブマトリクス基板は、さらに、前記画素電極と重なる位置にカラーフィルタを備えることとしてもよい(第6の構成)。
 第6の構成によれば、対向基板にカラーフィルタを設ける場合と比べ、アクティブマトリクス基板と対向基板とを貼り合わせる際のずれを考慮しての画素電極等のサイズを調整する必要がなく、所望の開口率を確保できる。
 第1から第5のいずれかの構成において、前記対向基板は、前記画素電極と重なる位置に設けられたカラーフィルタをさらに備えることとしてもよい(第7の構成)。
 第1から第7のいずれかの構成において、前記複数のタッチ検出用電極は、前記基板に接して配置され、前記複数のタッチ検出用電極と前記共通電極の間、及び前記共通電極と前記複数の画素電極の間にそれぞれ、少なくとも1つの絶縁膜を備えることとしてもよい(第8の構成)。
 第8の構成によれば、タッチ検出用電極は基板に接して設けられているため、接触の検出感度を向上させることができる。
 第1から第8のいずれかの構成において、前記アクティブマトリクス基板は、さらに、複数のゲート線と、複数のデータ線とを備え、前記複数のタッチ検出用電極は、前記複数のゲート線と前記複数のデータ線よりも前記基板に近い位置に配置されることとしてもよい(第9の構成)。
 第9の構成によれば、タッチ検出用電極をゲート線やデータ線よりも基板から遠い位置に配置する場合と比べ、使用者の指等とゲート線やデータ線との間で容量が形成されにくく、タッチ検出精度の低下を抑制できる。
 第1から第9のいずれかの構成において、前記複数の信号線と前記複数のタッチ検出用電極は、互いに異なる層に設けられることとしてもよい(第10の構成)。
 第10の構成によれば、信号線と、その信号線が接続されていない他のタッチ検出用電極との間での短絡を抑制することができる。
 第1から第9のいずれかの構成において、前記信号線と前記複数のタッチ検出用電極は同層に設けられ、前記基板と前記複数のタッチ検出用電極の間、前記複数のタッチ検出用電極と前記共通電極の間、及び前記共通電極と前記複数の画素電極の間にそれぞれ、少なくとも1つの絶縁膜を備えることとしてもよい(第11の構成)。
 第11の構成によれば、信号線とタッチ検出用電極とを接続するためのコンタクトホールを形成する工程を削減できる。
 第1から第11のいずれかの構成において、前記アクティブマトリクス基板は、さらに、ソース電極、ドレイン電極、半導体膜、及びゲート電極を含む複数のスイッチング素子を備え、前記ゲート電極は、前記半導体膜に対して前記液晶層側に設けられることとしてもよい(第12の構成)。
 第12の構成によれば、ゲート電極が、半導体膜に対して液晶層側に設けられるため、スイッチング素子のチャネル領域に入射する対向基板側からの光を遮光することができる。
 第1から第11のいずれかの構成において、前記アクティブマトリクス基板は、さらに、ソース電極、ドレイン電極、半導体膜、及びゲート電極を含む複数のスイッチング素子を備え、前記ゲート電極は、前記半導体膜に対して前記基板側に設けられることとしてもよい(第13の構成)。
 第13の構成によれば、ゲート電極が、半導体膜に対して基板側に設けられるため、スイッチング素子のチャネル領域に入射する基板側からの光を遮光することができる。
 第1から第13のいずれかの構成において、前記対向基板は、さらに、前記液晶層と反対側の面に、前記画素電極と重なるように設けられた透明電極層を備えることとしてもよい(第14の構成)。
 第14の構成によれば、対向基板に透明電極層が設けられることにより、対向基板側からの外部の電界による液晶層の配向不良を抑制できる。
 [第1実施形態]
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
 図1は、本実施形態におけるタッチパネル付き表示装置10の断面図である。本実施形態におけるタッチパネル付き表示装置10は、アクティブマトリクス基板1と、対向基板2と、アクティブマトリクス基板1と対向基板2との間に挟持された液晶層3と、一対の偏光板4A、4Bと、バックライト5とを備える。
 タッチパネル付き表示装置10は、画像を表示する機能を有するとともに、その表示された画像の上、すなわち、アクティブマトリクス基板1側の偏光板4Aの上のタッチ面を使用者の指等が接触した位置(タッチ位置)を検出する機能を有する。
 このタッチパネル付き表示装置10は、タッチ位置を検出するために必要な素子がアクティブマトリクス基板1に設けられた、いわゆるインセル型タッチパネル表示装置である。また、タッチパネル付き表示装置10は、液晶層3に含まれる液晶分子の駆動方式が横電界駆動方式である。横電界駆動方式を実現するため、電界を形成するための画素電極及び共通電極は、アクティブマトリクス基板1に形成されている。
 図2は、アクティブマトリクス基板1の概略構成を示す模式図である。アクティブマトリクス基板1は、液晶層3側の面に、複数のゲート線21と複数のデータ線22とを有する。アクティブマトリクス基板1は、ゲート線21とデータ線22とで区画された複数の画素を有し、複数の画素が形成された領域は、アクティブマトリクス基板1の表示領域Rとなる。
 各画素には、画素電極と、スイッチング素子とが配置されている。スイッチング素子は、例えば、薄膜トランジスタが用いられる。
 アクティブマトリクス基板1は、表示領域Rの外側の領域(額縁領域)に、ソースドライバ30とゲートドライバ40とを有する。ソースドライバ30は、各データ線22と接続され、各データ線22に画像データに応じた電圧信号を供給する。ゲートドライバ40は、各ゲート線21と接続され、各ゲート線21に電圧信号を順次供給してゲート線21を走査する。
 図3は、タッチ位置を検出するためのタッチ検出用電極の配置の一例を示す模式図である。タッチ検出用電極23は、アクティブマトリクス基板1の液晶層3側の面に形成されている。図3に示すように、タッチ検出用電極23は矩形形状であり、アクティブマトリクス基板1上に、マトリクス状に複数配置されている。タッチ検出用電極23はそれぞれ、例えば1辺が数mmの略正方形である。
 アクティブマトリクス基板1には、コントローラ50が設けられている。コントローラ50はタッチ位置を検出するためのタッチ位置検出制御を行う。
 コントローラ50と、各タッチ検出用電極23との間は、Y軸方向に延びる信号線24によって接続されている。すなわち、タッチ検出用電極23の数と同じ数の信号線24がアクティブマトリクス基板1上に形成されている。
 タッチ検出用電極23は、隣接するタッチ検出用電極23等との間に寄生容量が形成されているが、人の指等が表示画面に触れると、人の指等との間で容量が形成されるため、静電容量が増加する。タッチ位置検出制御の際、コントローラ50は、信号線24を介して、タッチ位置を検出するためのタッチ駆動信号をタッチ検出用電極23に供給し、信号線24を介してタッチ検出信号を受信する。これにより、タッチ検出用電極23の位置における静電容量の変化を検出して、タッチ位置を検出する。すなわち、信号線24は、タッチ駆動信号及びタッチ検出信号の送受信用の線として機能する。
 図4は、アクティブマトリクス基板1の一部の領域を拡大した模式図である。図4に示すように、複数の画素電極25は、マトリクス状に配置されている。また、図4では図示を省略しているが、スイッチング素子である、TFT(Thin Film Transistor:薄膜トランジスタ)が、画素電極25と対応してマトリクス状に配置されている。
 画素電極25は、ゲート線21及びデータ線22によって区画された領域に設けられている。上記TFTのゲート電極はゲート線21に接続されており、ソース電極とドレイン電極の一方はデータ線22と接続されており、他方は画素電極25と接続されている。
 また、図4では図示を省略しているが、表示領域全体に共通電極が配置されている。タッチ検出用電極23と画素電極25と共通電極とは平面視で重なるように配置されている。
 図4に示すように、Y軸方向に延びている信号線24は、アクティブマトリクス基板1の法線方向において、Y軸方向に延びているデータ線22と一部が重畳するように配置されている。具体的には、信号線24は、データ線22よりもZ軸正方向側に設けられており、平面視で信号線24とデータ線22は一部が重畳している。
 なお、図4において、白丸35は、タッチ検出用電極23と信号線24とが接続されている箇所を示している。
 図5は、図4に示すアクティブマトリクス基板1のA-A断面、すなわち、TFTが配置された領域(TFT領域)の概略断面図である。また、図6は、図4に示すアクティブマトリクス基板1のB-B断面、すなわち、TFTが配置されていない領域(非TFT領域)の概略断面図である。
 図5及び図6に示すように、ガラス基板100の一方の面には、タッチ検出用電極23と、ブラックマトリクス60が配置されている。ブラックマトリクス60は、図5、6に示すように、タッチ検出用電極23と離間して配置されている。ブラックマトリクス60は、外光の反射(写りこみ)よるコントラストの低下や、バックライト光の内部反射によるTFTの特性変動を抑制するため、反射率が低い材料であることが好ましい。また、隣接するタッチ検出用電極23のリーク電流を抑制するため、ブラックマトリクス60は、TFTの半導体膜よりも高抵抗の材料が好ましい。例えば、半導体膜がアモルファスシリコン膜の場合、体積抵抗率は1010~1014Ω・cmであり、黒色に着色されたフォトレジストなどの感光性樹脂などを用いることが好ましい。なお、ブラックマトリクス60とタッチ検出用電極23とは、必ずしも離間する必要はなく、例えば、ブラックマトリクス60が半導体膜に対して十分に高抵抗であれば、タッチ検出用電極23とブラックマトリクス60とが接触したり、重畳していてもよい。
 タッチ検出用電極23は、透明電極であって、例えばITO(In-Tin- O)、ZnO(Zn-O)、IZO(In-Zn-O)、IGZO(In-Ga-Zn-O)、ITZO(In-Tin-Zn-O)等の材料からなる。
 また、図5及び図6に示すように、ガラス基板100の一方の面には、ブラックマトリクス60及びタッチ検出用電極23を覆うように第1の絶縁膜102が配置されている。第1の絶縁膜102は、例えば窒化ケイ素(SiNx)や二酸化ケイ素(SiO)からなる。
 そして、図6に示すように、第1の絶縁膜102の面上には、ブラックマトリクス60と重なるように信号線24が配置されている。信号線24は、例えば銅(Cu)、チタン(Ti)、モリブデン(Mo)、アルミニウム(Al)、マグネシウム(Mg)、コバルト(Co)、クロム(Cr)、タングステン(W)のいずれか、またはこれらの混合物からなる。
 図5及び図6に示すように、第1の絶縁膜102及び信号線24を覆うようにカラーフィルタ103が配置されている。カラーフィルタ103は、赤(R)、緑(G)、青(B)の色がそれぞれ着色された着色材で構成される。
 カラーフィルタ103の面上には第2の絶縁膜104が形成されている。第2の絶縁膜104は、例えば窒化ケイ素(SiNx)や二酸化ケイ素(SiO)からなる。
 図5に示すように、TFT領域には、第2の絶縁膜104の面上にTFT70が形成されている。TFT70は、ソース電極70a、ドレイン電極70b、半導体膜70c、及びゲート電極70dを含む。
 図5に示すように、ソース電極70aとドレイン電極70bは、第2の絶縁膜104に接して配置されている。また、図6に示すように、非TFT領域には、第2の絶縁膜104の面上にデータ線22が配置されている。ソース電極70a及びドレイン電極70bとデータ線22は、例えばチタン(Ti)及び銅(Cu)の積層膜により形成されている。
 図5に示すように、半導体膜70cは、ソース電極70a及びドレイン電極70bの一部とそれぞれ重なるように配置されている。半導体膜70cは、例えば酸化物半導体膜であり、In、Ga及びZnのうち少なくとも1種の金属元素を含んでもよい。本実施形態では、半導体膜70cは、例えば、In-Ga-Zn-O系の半導体を含む。ここで、In-Ga-Zn-O系の半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、Ga及びZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。
 図5及び図6に示すように、TFT領域において、ソース電極70a、ドレイン電極70b、及び半導体膜70cと重なり、非TFT領域において、データ線22と重なるようにゲート絶縁膜71が形成されている。ゲート絶縁膜71は、例えば窒化ケイ素(SiNx)や二酸化ケイ素(SiO)からなる。
 TFT領域において、ゲート絶縁膜71と重なるようにゲート電極70dが形成されている。ゲート電極70dは、半導体膜70cの下側(Z軸負方向側)、すなわち、液晶層3側に配置されている。ゲート電極70dは、例えばチタン(Ti)及び銅(Cu)の積層膜により形成されている。
 図5及び図6に示すように、TFT領域及び非TFT領域には、ゲート電極70d及びゲート絶縁膜71を覆うように、有機絶縁膜(平坦化膜)105が配置されている。有機絶縁膜105は、例えばポリメタクリル酸メチル樹脂(PMMA)などのアクリル系有機樹脂材料などからなる。
 また、TFT領域及び非TFT領域には、有機絶縁膜105の面上に共通電極26が配置されている。そして、共通電極26を覆うように、第3の絶縁膜106が配置されている。共通電極26は、透明電極であって、例えばITO、ZnO、IZO、IGZO、ITZO等の材料からなる。第3の絶縁膜106は、例えば窒化ケイ素(SiNx)や二酸化ケイ素(SiO)からなる。
 図5及び図6に示すように、TFT領域には、ゲート絶縁膜71、有機絶縁膜105、及び第3の絶縁膜106を貫通するコンタクトホールCHが設けられている。第3の絶縁膜106の面上には画素電極25が配置されている。画素電極25は、コンタクトホールCHを介して、ドレイン電極70bと接する。画素電極25と画素電極25の間にはスリット25aが形成されている。
 次に、対向基板2の構成について説明する。図7は、対向基板2の概略断面図である。図7に示すように、対向基板2は、ガラス基板200における一方の面、すなわち、液晶層3(図1参照)側(Z軸正方向)の面を覆うようにオーバーコート層201が配置されている。また、ガラス基板200における他方の面、すなわち、偏光板4B(図1参照)側(Z軸負方向)の面を覆うようにシールド電極202が設けられている。シールド電極202は、透明電極膜であって、例えばITO、ZnO、IZO、IGZO、ITZO等の材料からなる。
 次に、アクティブマトリクス基板1の製造方法について説明する。図8A~8Nは、アクティブマトリクス基板1におけるTFT領域と非TFT領域の製造工程を示す断面図である。以下、図8A~8Nを用いて製造工程を説明する。
 まず、ガラス基板100の一方の面上において、ブラックレジストを塗布し、フォトリソグラフィ法によりブラックレジストをパターニングする。これにより、TFT領域と非TFT領域にブラックマトリクス60が形成される(図8A参照)。
 次に、ガラス基板100上のブラックマトリクス60を覆うように、透明電極膜を成膜し、フォトリソグラフィ及びウェットエッチングを行って透明電極膜をパターニングする。これにより、ブラックマトリクス60と重ならない位置に、タッチ検出用電極23が形成される(図8B参照)。
 続いて、ガラス基板100上のブラックマトリクス60及びタッチ検出用電極23を覆うように、例えば窒化ケイ素(SiNx)からなる第1の絶縁膜102を成膜する(図8C参照)。
 そして、第1の絶縁膜102の上に、例えば銅(Cu)からなる金属膜を成膜し、フォトリソグラフィ及びウェットエッチングを行って金属膜をパターニングする。これにより、非TFT領域において、ブラックマトリクス60と重なる位置に信号線24が形成される(図8D参照)。
 次に、第1の絶縁膜102の上に着色材を塗布してプレベーク、フォトリソグラフィ、及びポストベークを行い、着色材をパターニングする。これを、3色(R,G,B)の着色材について繰り返し行う。これにより、TFT領域及び非TFT領域に3色(R,G,B)のカラーフィルタ103が形成される(図8E参照)。
 続いて、カラーフィルタ103を覆うように、例えば酸化ケイ素(SiOx)からなる第2の絶縁膜104をカラーフィルタ103の上に成膜する(図8F参照)。
 そして、第2の絶縁膜104の上に、例えばチタン(Ti)及び銅(Cu)を順に成膜してフォトリソグラフィ及びウェットエッチングを行い、チタン(Ti)及び銅(Cu)の積層金属膜をパターニングする。これにより、TFT領域における第2の絶縁膜104の上にソース電極70a及びドレイン電極70bが形成される。また、非TFT領域における第2の絶縁膜104の上において信号線24と重なる位置に、データ線22が形成される(図8G参照)。
 次に、第2の絶縁膜104の上において、TFT領域におけるソース電極70a及びドレイン電極70bを覆うように、例えば、In、Ga、Zn、Oを含む半導体膜を成膜し、フォトリソグラフィ及びウェットエッチングを行い、半導体膜をパターニングする。これにより、TFT領域において、ソース電極70a及びドレイン電極70bの一部と重なるように半導体膜70cが形成される(図8H参照)。
 続いて、TFT領域におけるソース電極70a、ドレイン電極70b、及び半導体膜70cを覆い、非TFT領域におけるデータ線22を覆うように、例えば酸化ケイ素(SiOx)からなるゲート絶縁膜71を成膜する(図8I参照)。
 そして、ゲート絶縁膜71の上に、例えばチタン(Ti)及び銅(Cu)を順に積層した積層金属膜を成膜し、フォトリソグラフィ及びウェットエッチングを行い、積層金属膜をパターニングする。これにより、TFT領域において、ソース電極70a、ドレイン電極70b、及び半導体膜70cと重なるゲート電極70dが形成される(図8J参照)。
 次に、TFT領域におけるゲート電極70d及びゲート絶縁膜71を覆い、非TFT領域におけるゲート絶縁膜71を覆うように有機絶縁膜を成膜する。そして、フォトリソグラフィ法により有機絶縁膜をパターニングする。これにより、TFT領域においてドレイン電極70bと重なる位置に開口部105aを有する有機絶縁膜105が形成される(図8K参照)。
 続いて、有機絶縁膜105の上に、例えばITOからなる透明電極膜を成膜し、フォトリソグラフィ及びウェットエッチングを行い、透明電極膜をパターニングする。これにより、TFT領域及び非TFT領域における有機絶縁膜105の上に共通電極26が形成される(図8L参照)。
 そして、TFT領域における共通電極26と有機絶縁膜105を覆い、非TFT領域における共通電極26を覆うように、例えば窒化ケイ素(SiNx)からなる第3の絶縁膜を成膜する。そして、フォトリソグラフィ及びドライエッチングを行い、第3の絶縁膜とゲート絶縁膜71とをパターニングする。これにより、TFT領域においてゲート絶縁膜71を貫通するコンタクトホールCHが形成される。また、コンタクトホールCH以外の領域に第3の絶縁膜106が形成される(図8M参照)。
 次に、第3の絶縁膜106を覆うように、例えばITOからなる透明電極膜を成膜し、フォトリソグラフィ及びウェットエッチングを行い、透明電極膜をパターニングする。これにより、TFT領域及び非TFT領域における第3の絶縁膜106の上に画素電極25が形成される。画素電極25は、TFT領域においてドレイン電極70bと接し、スリット25aを有する(図8N参照)。
 上述した第1実施形態では、タッチ検出用電極23と共通電極26とが独立して配置されている。共通電極26は、アクティブマトリクス基板1において表示領域全体に亘って形成されており、タッチ検出用電極23のようにマトリクス状に配置されていない。そのため、信号線24の時定数の違いによる共通電極26の電位の変化が生じず、各画素における液晶層3の印加電圧の差も小さいため、表示不良が生じにくい。
 また、タッチ検出用電極23と共通電極26とが独立して配置されているため、一垂直期間において、画像を表示するための画素の充電時間とタッチ検出を行うための検出時間とを分けることなく、同時に行うことができる。そのため、より高精細になっても、充電時間と検出時間とを確保することができ、輝度の低下や検出感度の低下を抑制することができる。
 また、第1実施形態では、アクティブマトリクス基板1において、タッチ検出用電極23と画素電極25とが重なって配置されている(図4~6参照)。つまり、アクティブマトリクス基板1において、表示領域と検出領域とが重なっているため、表示領域とは別に検出領域を設ける場合と比べて開口率を向上させることができる。
 また、第1実施形態におけるタッチパネル付き表示装置10は、アクティブマトリクス基板1の側をタッチする構成となっている。つまり、利用者の指と、タッチ検出用電極23との間に、液晶層やカラーフィルタなどが設けられていないため、検出感度を向上させることができる。
 また、第1実施形態では、対向基板2にのみシールド電極202が設けられている。横電界駆動方式において、シールド電極は、外部の電界による液晶層3の配向不良を抑制する目的で設けられる。第1実施形態では、ガラス基板100に接するようにタッチ検出用電極23が設けられ、タッチ検出用電極23や共通電極26がシールド電極として機能するため、アクティブマトリクス基板1にはシールド電極を設ける必要がない。つまり、利用者の指等が接触される側の基板にシールド電極が設けられていないため、シールド電極が設けられる場合と比べ、検出精度の低下を抑制することができる。また、対向基板2にシールド電極202が設けられることにより、対向基板2側からの外部の電界による液晶層3の配向不良を抑制することができる。特に、タッチパネル付き表示装置10が薄型(例えば厚みが0.3~0.6mm)の場合において、タッチパネル付き表示装置10の表面をタッチしたときに、タッチパネル付き表示装置10が撓むことがある。このとき、タッチパネル付き表示装置10の背面側の部材とタッチ検出用電極23との距離が変わることにより、タッチ検出用電極23の静電容量が変化し、静電容量の変化によってタッチ検出感度が低下する。第1実施形態では、対向基板2側にシールド電極202が設けられることにより、タッチパネル付き表示装置10の撓みが抑制され、タッチ検出感度が低下することを抑制できる。
 また、第1実施形態において、アクティブマトリクス基板1に設けられたTFT70は、ゲート電極70dが、半導体膜70cに対して液晶層3側に配置されたトップゲート構造を有する。そのため、TFT70のチャネル領域にバックライト5(図1参照)からの光を遮光するための遮光膜を別途設ける必要がない。なお、利用者側からアクティブマトリクス基板1に入射する光は、アクティブマトリクス基板1に設けられたブラックマトリクス60によって遮光される。
 また、第1実施形態において、アクティブマトリクス基板1にカラーフィルタ103を設けることにより、タッチ検出用電極23又は信号線24と、ゲート線21又はデータ線22との間の寄生容量を低減することができ、また、信号線24とデータ線22とが短絡しにくい。さらに、対向基板2にカラーフィルタ103を設ける場合と比べ、アクティブマトリクス基板1と対向基板2とを貼り合わせる際のずれによる混色等の不良が生じにくい。そのため、アクティブマトリクス基板1と対向基板2とを貼り合わせる際のずれを考慮して、ブラックマトリクス60を大きくしたり、画素電極25を小さくしたりする必要がなく、所望の開口率を確保しやすい。
 上述した第1実施形態では、画素に設けられたTFTを主として説明したが、ゲートドライバ40においても複数のTFTを用いて構成されている。これらTFTについても、画素に設けられたTFT70と同様の構造を有する。
[第2実施形態]
 図9Aは、本実施形態におけるアクティブマトリクス基板の非TFT領域の断面図である。また、図9Bは、本実施形態における対向基板の断面図である。図9A及び図9Bにおいて、第1実施形態と同様の構成には第1実施形態と同じ符号を付している。以下、第1実施形態と異なる構成について説明する。
 図9Aに示すように、本実施形態におけるアクティブマトリクス基板1Aは、第1の絶縁膜102と接するようにカラーフィルタが設けられていない。一方、本実施形態における対向基板2Aは、図9Bに示すように、オーバーコート層201とガラス基板200との間にカラーフィルタ103が設けられている。つまり、本実施形態では、カラーフィルタ103が対向基板2Aに設けられている点で第1実施形態と異なる。なお、オーバーコート層201は、異なる色に対応するカラーフィルタ103間の段差を平坦化するために設けるが、省略することもできる。
 また、図9Aに示すように、ガラス基板100とタッチ検出用電極23との間に、第1の絶縁膜102、ゲート絶縁膜71、及び有機絶縁膜105が設けられ、タッチ検出用電極23と共通電極26の間には第2の絶縁膜104が設けられている。つまり、本実施形態において、タッチ検出用電極23は、第1実施形態よりも共通電極26に近い位置に設けられている。また、信号線24は、タッチ検出用電極23と同層に設けられている。
 なお、この例において、信号線24は、例えば、タッチ検出用電極23と同じ材料からなる透明電極膜を有機絶縁膜105に接するように配置し、透明電極膜に重ねて金属膜を配置した積層膜で構成されていてもよい。このように構成することで、有機絶縁膜105に金属膜からなる信号線を配置する場合と比べ、有機絶縁膜105と信号線24との間の密着性を向上させることができる。
 このように、タッチ検出用電極23を、共通電極26に近い位置に設けることにより、第1実施形態と比べて、タッチ検出用電極23の位置は利用者から遠くなる。そのため、第2実施形態は、第1実施形態よりも検出精度を向上させることはできない。しかしながら、この点を除き、第2実施形態においても、第1実施形態と同様の効果を有する。具体的には、アクティブマトリクス基板1Aにおいて、タッチ検出用電極23と共通電極26とが独立して設けられているため、信号線24の時定数の違いによる共通電極26の電位の変化が生じず、表示不良が生じにくい。また、一垂直期間に充電時間と検出時間とを同時に行うことができるので、輝度の低下や検出感度の低下を抑制することができる。また、第2実施形態においても、第1実施形態と同様、対向基板2Aにのみシールド電極が設けられているため、利用者の指が接触する側の基板にシールド電極が設けられる場合と比べ、検出精度の低下を抑制することができる。
 また、アクティブマトリクス基板1Aにおいて、タッチ検出用電極23と画素電極25とが重なって配置されているため(図9A参照)、表示領域と検出領域とが重なり、表示領域とは別に検出領域を設ける場合と比べて開口率を向上させることができる。
 また、アクティブマトリクス基板1Aにおいて、タッチ検出用電極23と信号線24とが同層に形成されている。第1実施形態のようにタッチ検出用電極23と信号線24とが異なる層に形成される場合、タッチ検出用電極23と信号線24とを接続するためのコンタクトホールを形成する必要があるが、第2実施形態では、同層に形成されているため、コンタクトホールを形成する必要がない。そのため、タッチ検出用電極23と信号線24とを接続するためのコンタクトホールを形成する工程を削減することができる。また、コンタクトホールにおいて、タッチ検出用電極23と信号線24との間で接触不良等が生じることによるタッチ検出不良を軽減することができる。
 また、第2実施形態では、カラーフィルタ103が対向基板2Aに設けられている。そのため、アクティブマトリクス基板1Aにカラーフィルタ103を設ける場合と比べ、アクティブマトリクス基板1Aの製造工程を削減することができる。
 なお、第2実施形態においても、各画素には、第1実施形態と同様、トップゲート構造を有するTFT70が設けられる。そのため、バックライト5(図1参照)からの光を遮光するための遮光膜をTFT70のチャネル領域に別途設ける必要がない。
 (他の構成例)
 上述した第2実施形態のアクティブマトリクス基板1Aでは、タッチ検出用電極23とと信号線24とを同層に形成する例を説明したが、図10に示すように、信号線24Aを共通電極26と同層に形成してもよい。
 この場合、信号線24Aは、共通電極26と同じ材料からなる透明電極膜241と金属膜242とが積層された積層膜で構成される。
 1つのタッチ検出用電極23に対して少なくとも1つの信号線24Aが接続される。そのため、タッチ検出用電極23と信号線24Aとが接続される箇所には、第2の絶縁膜104を貫通するコンタクトホールが設けられ、コンタクトホールを介してタッチ検出用電極23と信号線24Aとが接続される。
 また、1つのタッチ検出用電極23に対して、少なくとも1つの信号線24Aが接続されていればよいため、信号線24Aが配置されない画素が存在する。このような画素には、図10に示すように、共通電極26と接続された共通電極配線261が配置される。共通電極配線261は、共通電極26に電圧信号を供給するための配線である。共通電極配線261は、信号線24Aの金属膜242と同じ材料からなる金属膜で形成される。信号線24Aとともに共通電極配線261が形成することができ、共通電極配線261を形成するための工程を追加することなく、共通電極26を低抵抗化することができる。
[第3実施形態]
 上述した第1実施形態では、カラーフィルタ103がアクティブマトリクス基板1に設けられ、トップゲート構造を有するTFT70がアクティブマトリクス基板1に設けられる例を説明した。本実施形態では、カラーフィルタ103が対向基板に配置され、ボトムゲート構造のTFTがアクティブマトリクス基板に配置される例について説明する。
 図11Aは、本実施形態のアクティブマトリクス基板におけるTFT領域の断面図である。図11Bは、本実施形態のアクティブマトリクス基板における非TFT領域の断面図である。図11A、11Bにおいて第1実施形態と同様の構成には第1実施形態と同じ符号が付されている。以下、第1実施形態と異なる構成を主として説明する。
 図11A、11Bに示すように、本実施形態におけるアクティブマトリクス基板1Cは、第1の絶縁膜102上に、カラーフィルタ103に替えて無機絶縁膜107が設けられている。無機絶縁膜107は、TFT領域において第1の絶縁膜102を覆い、非TFT領域において信号線24及び第1の絶縁膜102を覆う。
 図11Aに示すように、本実施形態におけるTFT70Aのゲート電極70dは、無機絶縁膜107に接して設けられている。
 図11A、11Bに示すように、ゲート絶縁膜71は、TFT領域においてゲート電極70dを覆い、非TFT領域において無機絶縁膜107を覆う。
 図11Aに示すように、TFT70Aのソース電極70aとドレイン電極70bは、ゲート絶縁膜71に接して設けられている。また、図11Bに示すように、データ線22は、ゲート絶縁膜71に接して設けられている。
 図11Aに示すように、TFT70Aの半導体膜70cは、ゲート絶縁膜71上に設けられている。ソース電極70a及びドレイン電極70bは、半導体膜70cの一部と重なるように、ゲート絶縁膜71上に形成されている。
 図11A、11Bに示すように、第2の絶縁膜104は、ゲート絶縁膜71上に設けられ、TFT領域においてソース電極70a、ドレイン電極70b、及び半導体膜70cを覆い、非TFT領域においてデータ線22を覆っている。
 図11Aに示すように、第2の絶縁膜104、有機絶縁膜105、及び第3の絶縁膜106を貫通するコンタクトホールCH1が設けられ、コンタクトホールCH1を介して、画素電極25はTFT70Aのドレイン電極70bと接続されている。
 図11Cは、本実施形態における対向基板の断面図である。図11Cにおいて、第1実施形態と同様の構成には第1実施形態と同じ符号が付されている。
 図11Cに示すように、本実施形態における対向基板2Bは、ガラス基板200の液晶層3側の面にブラックマトリクス211が設けられている。また、ブラックマトリクス211を覆うように、カラーフィルタ103が設けられている。ブラックマトリクス211は、TFT70Aのチャネル領域へのバックライト5の光を遮光するために必要な部分に設けられる。なお、カラーフィルタ103の上に、第2実施形態と同様のオーバーコート層201が設けられていてもよい。
 なお、本実施形態におけるアクティブマトリクス基板1Cにはブラックマトリクス60が設けられているが、ブラックマトリクス60は必須の構成ではない。本実施形態では、TFT70Aは、ゲート電極70dが半導体膜70cに対してガラス基板100側に設けられたボトムゲート構造を有する。そのため、ガラス基板100からTFT70Aのチャネル領域に入射する外光は、ゲート電極70dで遮光される。つまり、ゲート電極70dが遮光膜として機能する。よって、アクティブマトリクス基板1Cにおいてブラックマトリクス60は必ずしも設けられていなくてもよい。なお、アクティブマトリクス基板1Cにおいてブラックマトリクス60を設けない場合、額縁領域での外光の反射(写りこみ)を抑制するために、使用者が接する面に、例えば遮光膜が設けられたカバーガラスが設けられていてもよい。
 上述した第3実施形態では、TFT70Aはボトムゲート構造を有するため、対向基板2Bにおいて、バックライト光を遮光するためのブラックマトリクス211が必要となる。しかしながら、この点を除いて第3実施形態においても第1実施形態と同様の効果を奏する。具体的には、第3実施形態においても、共通電極26とタッチ検出用電極23とが独立して設けられているため、信号線24の時定数の違いによる共通電極26の電位の変化が生じず、表示不良が生じにくい。また、一垂直期間に充電時間と検出時間とを同時に行うことができるので、輝度の低下や検出感度の低下を抑制することができる。
 また、対向基板2Bにのみシールド電極202(図11C参照)が設けられているため、利用者の指が接触する側の基板にシールド電極が設けられる場合と比べ、検出精度の低下を抑制することができる。また、アクティブマトリクス基板1Cにおいて、タッチ検出用電極23と画素電極25とが重なって配置されているため(図11A、11B参照)、表示領域と検出領域とが重なり、表示領域とは別に検出領域を設ける場合と比べて開口率を向上させることができる。
 以上、本発明に係るタッチパネル付き表示装置の一例について説明したが、本発明に係るタッチパネル付き表示装置は、上述した実施形態の構成に限定されず、様々な変形構成とすることができる。以下、その変形例について説明する。
 [変形例1]
 上述した第2実施形態では、カラーフィルタを対向基板に設ける例を説明したが、カラーフィルタは、第1実施形態と同様、アクティブマトリクス基板1Aにおいて、第1の絶縁膜102と接するように設けられていてもよい。
 [変形例2]
 上述した第2実施形態における対向基板2Aと、第1実施形態のアクティブマトリクス基板1とを組み合わせてタッチパネル付き表示装置を構成してもよい。
 [変形例3]
 上述した実施形態及び変形例において、半導体膜70cは酸化物半導体膜に限らず、アモルファスシリコン膜であってもよい。
 [変形例4]
 上述した実施形態及び変形例では、タッチパネル付き表示装置は、アクティブマトリクス基板、対向基板、液晶層、偏光板、及びバックライトを備える例を説明したが、タッチパネル付き表示装置は、アクティブマトリクス基板、対向基板、液晶層を含んでいればよい。
 [変形例5]
 上述した第1実施形態において、カラーフィルタ103がアクティブマトリクス基板1に設けられていたが、カラーフィルタ103は、第2実施形態と同様、対向基板2に設けられていてもよい。つまり、本変形例におけるアクティブマトリクス基板1Dは、TFT領域及び非TFT領域において、図12A及び図12Bに示すように、カラーフィルタ103が設けられていない。
 [変形例6]
 上述した第1実施形態及び第2実施形態におけるTFTは、ゲート電極70dが、半導体膜70cに対して液晶層3側に配置されたトップゲート構造を有する例を説明したが、第3実施形態のように、ゲート電極70dが半導体膜70cに対してガラス基板100側に設けられたボトムゲート構造を有するものであってもよい。

Claims (14)

  1.  アクティブマトリクス基板と、前記アクティブマトリクス基板に対向して設けられた対向基板と、前記アクティブマトリクス基板と前記対向基板との間に設けられた液晶層と、を備え、前記アクティブマトリクス基板側にタッチ面を有するタッチパネル付き表示装置であって、
     前記アクティブマトリクス基板は、
     基板と、
     前記基板の前記液晶層側に、複数の画素電極と、共通電極と、前記タッチ面に対する接触を検知する複数のタッチ検出用電極と、前記複数のタッチ検出用電極のそれぞれと接続された複数の信号線と、を備え、
     前記複数の画素電極と前記共通電極と前記複数のタッチ検出用電極とは平面視において重なるように配置され、前記複数のタッチ検出用電極は、前記複数の画素電極及び前記共通電極よりも前記基板に近い位置に設けられる、タッチパネル付き表示装置。
  2.  前記アクティブマトリクス基板は、さらに、
     前記画素電極と前記基板との間に遮光部を備える、請求項1に記載のタッチパネル付き表示装置。
  3.  前記遮光部は、黒色の樹脂である、請求項2に記載のタッチパネル付き表示装置。
  4.  前記遮光部は、前記画素電極と重ならない位置に設けられている、請求項2又は3に記載のタッチパネル付き表示装置。
  5.  前記遮光部は、前記タッチ検出用電極と重ならない位置に設けられている、請求項2から4のいずれか一項に記載のタッチパネル付き表示装置。
  6.  前記アクティブマトリクス基板は、さらに、前記画素電極と重なる位置にカラーフィルタを備える、請求項1から5のいずれかに記載のタッチパネル付き表示装置。
  7.  前記対向基板は、前記画素電極と重なる位置に設けられたカラーフィルタをさらに備える、請求項1から5のいずれか一項に記載のタッチパネル付き表示装置。
  8.  前記複数のタッチ検出用電極は、前記基板に接して配置され、
     前記複数のタッチ検出用電極と前記共通電極の間、及び前記共通電極と前記複数の画素電極の間にそれぞれ、少なくとも1つの絶縁膜を備える、請求項1から7のいずれか一項に記載のタッチパネル付き表示装置。
  9.  前記アクティブマトリクス基板は、さらに、複数のゲート線と、複数のデータ線とを備え、
     前記複数のタッチ検出用電極は、前記複数のゲート線と前記複数のデータ線よりも前記基板に近い位置に配置される、請求項1から8のいずれか一項に記載のタッチパネル付き表示装置。
  10.  前記複数の信号線と前記複数のタッチ検出用電極は、互いに異なる層に設けられる、請求項1から9のいずれか一項に記載のタッチパネル付き表示装置。
  11.  前記信号線と前記複数のタッチ検出用電極は同層に設けられ、
     前記基板と前記複数のタッチ検出用電極の間、前記複数のタッチ検出用電極と前記共通電極の間、及び前記共通電極と前記複数の画素電極の間にそれぞれ、少なくとも1つの絶縁膜を備える、請求項1から9のいずれか一項に記載のタッチパネル付き表示装置。
  12.  前記アクティブマトリクス基板は、さらに、ソース電極、ドレイン電極、半導体膜、及びゲート電極を含む複数のスイッチング素子を備え、
     前記ゲート電極は、前記半導体膜に対して前記液晶層側に設けられる、請求項1から11のいずれか一項に記載のタッチパネル付き表示装置。
  13.  前記アクティブマトリクス基板は、さらに、ソース電極、ドレイン電極、半導体膜、及びゲート電極を含む複数のスイッチング素子を備え、
     前記ゲート電極は、前記半導体膜に対して前記基板側に設けられる、請求項1から11のいずれか一項に記載のタッチパネル付き表示装置。
  14.  前記対向基板は、さらに、前記液晶層と反対側の面に、前記画素電極と重なるように設けられた透明電極層を備える、請求項1から13のいずれか一項に記載のタッチパネル付き表示装置。
     
PCT/JP2017/024432 2016-07-06 2017-07-04 タッチパネル付き表示装置 WO2018008619A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/314,617 US20190324309A1 (en) 2016-07-06 2017-07-04 Touch-panel-equipped display device
JP2018526386A JPWO2018008619A1 (ja) 2016-07-06 2017-07-04 タッチパネル付き表示装置
CN201780038901.1A CN109416493A (zh) 2016-07-06 2017-07-04 带触摸面板的显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016134182 2016-07-06
JP2016-134182 2016-07-06

Publications (1)

Publication Number Publication Date
WO2018008619A1 true WO2018008619A1 (ja) 2018-01-11

Family

ID=60912716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024432 WO2018008619A1 (ja) 2016-07-06 2017-07-04 タッチパネル付き表示装置

Country Status (4)

Country Link
US (1) US20190324309A1 (ja)
JP (1) JPWO2018008619A1 (ja)
CN (1) CN109416493A (ja)
WO (1) WO2018008619A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111493817A (zh) * 2019-01-31 2020-08-07 周冠谦 具延展性的柔性感测装置
US11625114B2 (en) 2020-10-30 2023-04-11 Sharp Kabushiki Kaisha Array substrate and display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190378878A1 (en) * 2018-06-11 2019-12-12 Cyberswarm, Inc. Synapse array
GB2590428A (en) * 2019-12-17 2021-06-30 Flexanable Ltd Semiconductor devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013222202A (ja) * 2012-04-12 2013-10-28 Samsung Display Co Ltd 表示装置及びその製造方法
JP2013246289A (ja) * 2012-05-25 2013-12-09 Panasonic Liquid Crystal Display Co Ltd 液晶表示装置
JP2014177552A (ja) * 2013-03-14 2014-09-25 Hitachi Maxell Ltd 透明導電性コーティング組成物、透明導電性膜及びタッチパネル機能内蔵型横電界方式液晶表示パネル
CN104698709A (zh) * 2015-04-01 2015-06-10 上海天马微电子有限公司 一种阵列基板和液晶显示面板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008877A (en) * 1996-11-28 1999-12-28 Sharp Kabushiki Kaisha Liquid crystal display having multilayered electrodes with a layer adhesive to a substrate formed of indium tin oxide
KR101001520B1 (ko) * 2003-10-09 2010-12-14 엘지디스플레이 주식회사 횡전계 방식 액정 표시 장치 및 그 제조 방법
KR20180124158A (ko) * 2010-09-15 2018-11-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치 및 그 제작 방법
WO2013145958A1 (ja) * 2012-03-26 2013-10-03 シャープ株式会社 タッチパネル基板、表示パネル、および表示装置
CN103268045B (zh) * 2012-09-24 2016-08-10 厦门天马微电子有限公司 Tft阵列基板及其制作方法、液晶显示设备
US10416504B2 (en) * 2013-05-21 2019-09-17 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9098161B2 (en) * 2013-12-20 2015-08-04 Lg Display Co., Ltd. Display device integrated with touch screen panel and method of driving the same
KR20160053262A (ko) * 2014-10-31 2016-05-13 삼성디스플레이 주식회사 표시 기판 및 이의 제조 방법
JP6514593B2 (ja) * 2015-07-17 2019-05-15 パナソニック液晶ディスプレイ株式会社 タッチ検出機能付表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013222202A (ja) * 2012-04-12 2013-10-28 Samsung Display Co Ltd 表示装置及びその製造方法
JP2013246289A (ja) * 2012-05-25 2013-12-09 Panasonic Liquid Crystal Display Co Ltd 液晶表示装置
JP2014177552A (ja) * 2013-03-14 2014-09-25 Hitachi Maxell Ltd 透明導電性コーティング組成物、透明導電性膜及びタッチパネル機能内蔵型横電界方式液晶表示パネル
CN104698709A (zh) * 2015-04-01 2015-06-10 上海天马微电子有限公司 一种阵列基板和液晶显示面板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111493817A (zh) * 2019-01-31 2020-08-07 周冠谦 具延展性的柔性感测装置
CN111493817B (zh) * 2019-01-31 2023-10-10 周冠谦 具延展性的柔性感测装置
US11625114B2 (en) 2020-10-30 2023-04-11 Sharp Kabushiki Kaisha Array substrate and display device

Also Published As

Publication number Publication date
JPWO2018008619A1 (ja) 2019-05-23
US20190324309A1 (en) 2019-10-24
CN109416493A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
CN106605169B (zh) 液晶显示装置以及显示装置用基板
US11402956B2 (en) Display device including position input function
US11947760B2 (en) Display device with position input function
WO2017077994A1 (ja) 表示基板及び表示装置
WO2018008619A1 (ja) タッチパネル付き表示装置
US10520761B2 (en) Method of producing substrate having alignment mark
WO2014054569A1 (ja) 半導体装置及び表示装置
US10795225B2 (en) Display device and method for producing same
US10797082B2 (en) Thin film transistor array substrate and method of producing the same
WO2016084728A1 (ja) 位置入力装置、及び位置入力機能付き表示装置
WO2017179622A1 (ja) タッチパネル付き表示装置
WO2014054558A1 (ja) 半導体装置及び表示装置
WO2014054563A1 (ja) 半導体装置及び表示装置
WO2018190214A1 (ja) 表示基板及び表示装置
US10203808B2 (en) Position input device and display device having position input function
JP6637183B2 (ja) タッチパネル付き表示装置
JP6963003B2 (ja) 液晶表示装置
US11018164B2 (en) Thin-film transistor substrate, display panel, and display device
WO2018163988A1 (ja) 表示基板及び表示装置
WO2018225645A1 (ja) 液晶表示装置
KR20150030907A (ko) 표시 기판의 제조 방법, 표시 패널 및 이를 포함하는 표시 장치
US10928691B2 (en) Active matrix substrate comprising a first contact hole that overlaps with a counter electrode control line and passes through a flattening film and liquid crystal display with the same
US12008203B2 (en) Display device including position input function
US20240192812A1 (en) Display device with position input function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018526386

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824222

Country of ref document: EP

Kind code of ref document: A1