WO2018008519A1 - 冷却システム及び冷却システムの制御装置 - Google Patents
冷却システム及び冷却システムの制御装置 Download PDFInfo
- Publication number
- WO2018008519A1 WO2018008519A1 PCT/JP2017/023971 JP2017023971W WO2018008519A1 WO 2018008519 A1 WO2018008519 A1 WO 2018008519A1 JP 2017023971 W JP2017023971 W JP 2017023971W WO 2018008519 A1 WO2018008519 A1 WO 2018008519A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- passage
- exhaust
- cooling system
- warm
- valve
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 160
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 48
- 239000003507 refrigerant Substances 0.000 claims description 91
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 74
- 238000002485 combustion reaction Methods 0.000 claims description 67
- 239000003054 catalyst Substances 0.000 claims description 51
- 238000010992 reflux Methods 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 23
- 238000011084 recovery Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- 239000002826 coolant Substances 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 238000010792 warming Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/08—Other arrangements or adaptations of exhaust conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N5/00—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
- F01N5/02—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/14—Indicating devices; Other safety devices
- F01P11/16—Indicating devices; Other safety devices concerning coolant temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/20—Cooling circuits not specific to a single part of engine or machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/14—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
- F02M26/25—Layout, e.g. schematics with coolers having bypasses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/52—Systems for actuating EGR valves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present disclosure relates to a cooling system for cooling an internal combustion engine and a control device for the cooling system.
- the heat receiving portion of the exhaust heat recovery device is arranged on the most downstream side of the exhaust passage.
- the exhaust gas from the internal combustion engine passes through the catalyst provided in the exhaust passage and then reaches the heat receiving portion to exchange heat. Since the exhaust gas radiates heat in the catalyst and the exhaust passage and reaches the heat receiving part, the temperature is lower than that immediately after it is discharged from the internal combustion engine, and as a result, the exhaust heat recovery amount is reduced.
- This disclosure is intended to provide a cooling system and a control device for the cooling system capable of achieving both early warm-up of the internal combustion engine without reducing the exhaust heat recovery amount.
- the present disclosure is a cooling system for cooling an internal combustion engine, which is connected to an upstream connection portion (201) of a main exhaust passage (20) through which exhaust gas discharged from the internal combustion engine (1) passes, and at least meets an EGR request.
- a recirculation passage (26) that recirculates a corresponding amount of exhaust gas to the intake passage (10) to the internal combustion engine, and heat exchange between the refrigerant that is provided in the recirculation passage and circulates through the internal combustion engine and the exhaust gas.
- a sub exhaust passage (28) connected to the downstream connection portion (202) downstream of the upstream connection portion of the main exhaust passage and returning the exhaust gas having passed through the cooling device from the recirculation passage to the main exhaust passage. ) Is provided.
- an exhaust valve (21) for adjusting the flow rate of the exhaust gas flowing into the recirculation passage is provided between the upstream connection portion and the downstream connection portion.
- a cooling device is provided in the recirculation passage, and exhaust heat recovery is performed by exchanging heat between the exhaust gas and the refrigerant. Therefore, exhaust heat recovery is performed rather than exhaust heat recovery at the downstream end side of the exhaust passage. The amount collected can be increased. Since the sub exhaust passage for returning the exhaust gas that has passed through the cooling device to the main exhaust passage is provided, the exhaust gas can be passed through the cooling device even when there is no EGR request. Regardless of the presence or absence of the EGR request, heat exchange between the exhaust gas and the refrigerant can be performed in the cooling device. It becomes possible to supply the heated refrigerant to the internal combustion engine, and early warm-up of the internal combustion engine can be realized.
- FIG. 1 is a configuration diagram illustrating a cooling system according to the first embodiment.
- FIG. 2 is a diagram illustrating a configuration of an ECU used in the cooling system according to the first embodiment.
- FIG. 3 is a flowchart for explaining the operation of the cooling system according to the first embodiment.
- FIG. 4 is a flowchart for explaining the operation of the cooling system according to the first embodiment.
- FIG. 5 is a configuration diagram illustrating a cooling system according to the second embodiment.
- FIG. 6 is a diagram illustrating a configuration of an ECU used in the cooling system according to the second embodiment.
- FIG. 7 is a flowchart for explaining the operation of the cooling system according to the second embodiment.
- FIG. 8 is a flowchart for explaining the operation of the cooling system according to the second embodiment.
- FIG. 1 is a configuration diagram illustrating a cooling system according to the first embodiment.
- FIG. 2 is a diagram illustrating a configuration of an ECU used in the cooling system according to the first embodiment.
- FIG. 9 is a configuration diagram illustrating a cooling system according to the third embodiment.
- FIG. 10 is a diagram illustrating a configuration of an ECU used in the cooling system according to the third embodiment.
- FIG. 11 is a flowchart for explaining the operation of the cooling system according to the third embodiment.
- FIG. 12 is a flowchart for explaining the operation of the cooling system according to the third embodiment.
- FIG. 13 is a flowchart for explaining the operation of the cooling system according to the third embodiment.
- FIG. 14 is a configuration diagram illustrating a cooling system according to the fourth embodiment.
- FIG. 15 is a diagram illustrating a specific configuration example of the cooling system according to the first embodiment.
- FIG. 16 is a diagram illustrating a specific configuration example of the cooling system according to the second embodiment.
- FIG. 17 is a view showing the XVII-XVII cross section of FIG. 15 and FIG.
- FIG. 18 is a view showing a modification of the cross section shown in FIG.
- FIG. 19 is a view showing a modification of the cooling device shown in FIGS. 15 and 16.
- 20 is a view showing a XX-XX cross section of FIG.
- the cooling system 100 is a system for cooling the internal combustion engine 1.
- An intake passage 10 and a main exhaust passage 20 are connected to the internal combustion engine 1.
- the intake passage 10 is a passage for supplying air to the internal combustion engine 1.
- An air cleaner 36 is provided at the intake port of the intake passage 10.
- a throttle 11, an intake pressure sensor 12, and an injector 13 are provided in order from the air cleaner 36 side.
- the throttle 11 is a device that controls the flow rate of air by changing the cross-sectional area of the intake passage 10.
- the intake pressure sensor 12 is a sensor that measures the pressure in the intake passage 10.
- the injector 13 injects fuel into the air flowing through the intake passage 10. A mixture of fuel and air supplied from the intake passage 10 is supplied to the internal combustion engine 1. In the internal combustion engine 1, the air-fuel mixture burns, and the exhaust gas is discharged to the main exhaust passage 20.
- the main exhaust passage 20 is a passage for discharging exhaust gas discharged from the internal combustion engine 1 to the outside.
- an upstream catalyst 24, an exhaust valve 21, and a downstream catalyst 25 are provided in order from the internal combustion engine 1 side.
- the upstream catalyst 24 is a so-called start catalyst (also referred to as S / C).
- the downstream catalyst 25 is a so-called underfloor catalyst (also referred to as UFC).
- the exhaust valve 21 is a valve for adjusting a ratio of distributing the exhaust gas to the main exhaust passage 20 and the recirculation passage 26.
- a recirculation passage 26 is provided so as to connect the main exhaust passage 20 and the intake passage 10.
- the recirculation passage 26 is connected to the main exhaust passage 20 at the upstream connection portion 201 between the upstream catalyst 24 and the downstream catalyst 25.
- the recirculation passage 26 is connected to the intake passage 10 between the throttle 11 and the injector 13.
- a cooling device 27 for cooling the exhaust gas is provided in the recirculation passage 26, a cooling device 27 for cooling the exhaust gas is provided.
- a refrigerant circulation passage 34 is connected to the cooling device 27.
- the cooling device 27 is configured to exchange heat between the refrigerant flowing through the refrigerant circulation passage 34 and the exhaust gas flowing through the recirculation passage 26.
- the exhaust gas that has passed through the cooling device 27 is supplied to the intake passage 10 with the temperature lowered.
- the refrigerant that has passed through the cooling device 27 is supplied to the internal combustion engine 1 with its temperature raised.
- an EGR valve 23 is provided in the recirculation passage 26, an EGR valve 23 is provided.
- the EGR valve 23 is a valve for adjusting the amount of exhaust gas recirculated to the intake passage 10.
- the EGR valve 23 is provided between the cooling device 27 and the intake passage 10.
- a sub exhaust passage 28 is provided so as to connect the recirculation passage 26 and the main exhaust passage 20.
- the auxiliary exhaust passage 28 is connected to the recirculation passage 26 at a return connection portion 261 between the cooling device 27 and the EGR valve 23.
- the sub exhaust passage 28 is connected to the main exhaust passage 20 at a downstream connection portion 202 between the exhaust valve 21 and the downstream catalyst 25.
- a refrigerant circulation passage 29 and a refrigerant circulation passage 34 are provided as passages through which a refrigerant for cooling the internal combustion engine 1 circulates.
- a water pump 30, a radiator 31, and a thermostat 32 are provided in the refrigerant circulation passage 29.
- a water pump 30, a water temperature sensor 14, a heater core 33, and a cooling device 27 are provided in the refrigerant circulation passage 34. Therefore, the refrigerant circulation passage 29 and the refrigerant circulation passage 34 share the water pump 30 and merge at a portion passing through the water pump 30.
- the thermostat 32 In the initial startup of the internal combustion engine 1, the thermostat 32 is in a substantially closed state because the temperature of the refrigerant is low.
- the refrigerant mainly flows through the refrigerant circulation passage 34.
- the refrigerant flowing through the refrigerant circulation passage 34 exchanges heat with the high-temperature exhaust gas in the cooling device 27 and rises in temperature, and flows into the internal combustion engine 1.
- the thermostat 32 When the internal combustion engine 1 is warmed up, the thermostat 32 is opened and the refrigerant begins to flow into the refrigerant circulation passage 29 as well.
- the water temperature sensor 14 constantly detects the refrigerant temperature. The operation control of the internal combustion engine 1 is performed and the cooling system 100 is controlled according to the detected refrigerant temperature.
- an ECU (Electronic Control Unit) 40 that is a control device used in the cooling system 100 will be described with reference to FIG.
- a temperature detection signal output from the water temperature sensor 14 is input to the ECU 40.
- the ECU 40 outputs drive signals to the exhaust valve 21 and the EGR valve 23.
- the ECU 40 includes a refrigerant temperature acquisition unit 401, a warm-up determination unit 402, and a valve adjustment unit 403 as functional components.
- the refrigerant temperature acquisition unit 401 is a part that receives a temperature detection signal output from the water temperature sensor 14.
- the refrigerant temperature acquisition unit 401 outputs refrigerant temperature information to the warm-up determination unit 402.
- the warm-up determination unit 402 is a part that determines whether or not the internal combustion engine 1 has been warmed up. Warm-up determination unit 402 outputs a determination result as to whether or not the warm-up has been completed to valve adjustment unit 403. The valve adjustment unit 403 outputs a drive signal for driving the exhaust valve 21 and the EGR valve 23 based on the preset valve drive logic and the determination result of the warm-up determination unit 402.
- step S101 of FIG. 3 the valve adjustment unit 403 outputs a drive signal for fully opening the exhaust valve 21.
- the exhaust valve 21 is fully opened in response to this drive signal.
- the exhaust valve 21 is fully opened, the exhaust gas flowing through the main exhaust passage 20 is discharged through the main exhaust passage 20 while hardly flowing through the recirculation passage 26.
- step S102 the refrigerant temperature acquisition unit 401 detects the coolant water temperature Tw.
- step S103 the warm-up determination unit 402 determines whether the detected water temperature Tw is higher than the warm-up completion water temperature Th. If the detected water temperature Tw is higher than the warm-up completion water temperature Th, the warm-up determination is terminated, and if the detected water temperature Tw is not higher than the warm-up completion water temperature Th, the process proceeds to step S104.
- step S104 warm-up promotion processing is executed.
- the warm-up promotion process will be described with reference to FIG.
- the valve adjustment unit 403 detects an EGR request.
- the EGR request may be output from another functional block in the ECU 40 or may be output from another ECU.
- step S202 following step S201 the valve adjustment unit 403 outputs a drive signal for adjusting the opening degree of the exhaust valve 21 and the EGR valve 23.
- the opening degree of the exhaust valve 21 is adjusted so that at least an amount of exhaust gas that satisfies the EGR request flows through the recirculation passage 26.
- the opening degree of the EGR valve 23 is adjusted so that an amount of exhaust gas that satisfies the EGR request flows into the intake passage 10.
- step S202 Since the exhaust gas flows through the recirculation passage 26 by the process of step S202, heat exchange is performed between the refrigerant flowing through the cooling device 27 and the exhaust gas, and the temperature of the refrigerant circulating through the internal combustion engine 1 rises. As the temperature of the refrigerant rises, warming up of the internal combustion engine 1 is promoted.
- step S203 the refrigerant temperature acquisition unit 401 detects the coolant water temperature Tw.
- step S204 the warm-up determination unit 402 determines whether the detected water temperature Tw is higher than the warm-up completion water temperature Th. If the detected water temperature Tw is higher than the warm-up completion water temperature Th, the warm-up determination is terminated, and if the detected water temperature Tw is not higher than the warm-up completion water temperature Th, the process returns to step S201.
- the cooling system 100 is a cooling system that cools the internal combustion engine 1 and includes the recirculation passage 26 and the cooling device 27.
- the recirculation passage 26 is connected to the upstream side connection portion 201 of the main exhaust passage 20 through which the exhaust gas discharged from the internal combustion engine 1 passes, and at least the exhaust gas amount corresponding to the EGR request is recirculated to the intake passage 10 to the internal combustion engine 1.
- the cooling device 27 is provided in the recirculation passage 26 and performs heat exchange between the refrigerant circulating in the internal combustion engine 1 and the exhaust gas.
- the cooling system 100 is further connected to a downstream connection portion 202 downstream of the upstream connection portion 201 of the main exhaust passage 20, and the exhaust gas that has passed through the cooling device 27 is returned from the recirculation passage 26 to the main exhaust passage 20.
- a sub exhaust passage 28 is provided.
- the cooling system 100 is further provided with an EGR valve 23 for adjusting the flow rate of the exhaust gas flowing into the intake passage 10 in the recirculation passage 26 closer to the intake passage 10 than the return connection portion 261 to which the auxiliary exhaust passage is connected. ing.
- the cooling system 100 further includes an exhaust valve 21 that adjusts the flow rate of the exhaust gas flowing into the recirculation passage 26 between the upstream connection portion 201 and the downstream connection portion 202 in the main exhaust passage 20.
- the cooling device 27 is provided in the recirculation passage 26 and the exhaust heat recovery is performed by exchanging heat between the exhaust gas and the refrigerant. Therefore, the exhaust heat recovery is performed on the downstream end side of the exhaust passage. Also, the amount of exhaust heat recovery can be increased. Since the auxiliary exhaust passage 28 for returning the exhaust gas that has passed through the cooling device 27 to the main exhaust passage 20 is provided, the exhaust gas can be passed through the cooling device 27 even when there is no EGR request. Therefore, the heat exchange between the exhaust gas and the refrigerant can be performed in the cooling device 27 regardless of whether or not there is an EGR request. It becomes possible to supply the heated refrigerant to the internal combustion engine 1, and early warm-up of the internal combustion engine 1 can be realized.
- the upstream catalyst 24 is provided on the upstream side of the main exhaust passage 20 with the upstream connection portion 201 and the downstream connection portion 202 interposed therebetween, and the downstream side of the main exhaust passage 20 is downstream.
- a side catalyst 25 is provided.
- the upstream catalyst 24 is disposed upstream of the upstream connection portion 201 and the downstream connection portion 202, the exhaust gas can be passed through the upstream catalyst 24 regardless of whether the exhaust valve 21 is opened or closed. Since exhaust gas always passes through the upstream catalyst 24, the upstream catalyst 24 can be operated from the start of the internal combustion engine 1.
- the cooling system 100 of the present embodiment further includes an ECU 40 that is a control device that adjusts the opening degree of the EGR valve 23 and the exhaust valve 21.
- the ECU 40 includes a refrigerant temperature acquisition unit 401 that acquires the temperature of the refrigerant, a warm-up determination unit 402 that determines the warm-up state of the internal combustion engine 1 based on the temperature acquired by the refrigerant temperature acquisition unit 401, and a warm-up determination unit 402. And a valve adjusting unit 403 that adjusts the opening degree of at least one of the EGR valve 23 and the exhaust valve 21 based on the warm-up state determined by the above.
- the valve adjustment unit 403 adjusts the opening degree of the EGR valve 23 and the exhaust valve 21, so that heat exchange with the refrigerant can be performed to the exhaust gas cooling device 27 in accordance with the warm-up state of the internal combustion engine 1. The amount of inflow can be adjusted.
- the cooling system 100A is configured by additionally arranging a sub exhaust valve 22 in the cooling system 100 of the first embodiment.
- the sub exhaust valve 22 is provided in the sub exhaust passage 28.
- the configuration of the cooling system 100A is the same as the configuration of the cooling system 100 except for the arrangement of the auxiliary exhaust valve 22, and thus the description thereof is omitted.
- the ECU 40A which is a control device used in the cooling system 100A, will be described with reference to FIG.
- a temperature detection signal output from the water temperature sensor 14 is input to the ECU 40A.
- the ECU 40A outputs drive signals to the exhaust valve 21, the sub exhaust valve 22, and the EGR valve 23.
- the ECU 40A includes a refrigerant temperature acquisition unit 401A, a warm-up determination unit 402A, and a valve adjustment unit 403A as functional components.
- the refrigerant temperature acquisition unit 401 ⁇ / b> A is a part that receives a temperature detection signal output from the water temperature sensor 14.
- the refrigerant temperature acquisition unit 401A outputs refrigerant temperature information to the warm-up determination unit 402A.
- the warm-up determination unit 402A is a part that determines whether or not the internal combustion engine 1 has been warmed up. Warm-up determination unit 402A outputs a determination result as to whether or not the warm-up is completed to valve adjustment unit 403A.
- the valve adjustment unit 403A outputs a drive signal for driving the exhaust valve 21, the auxiliary exhaust valve 22, and the EGR valve 23 based on the preset valve drive logic and the determination result of the warm-up determination unit 402A.
- step S301 of FIG. 7 the valve adjustment unit 403A outputs a drive signal for fully opening the exhaust valve 21 and fully closing the sub exhaust valve 22.
- the exhaust valve 21 is fully opened in response to this drive signal.
- the sub exhaust valve 22 is fully closed in response to this drive signal.
- step S302 the refrigerant temperature acquisition unit 401A detects the coolant water temperature Tw.
- step S303 the warm-up determination unit 402A determines whether the detected water temperature Tw is higher than the warm-up completion water temperature Th. If the detected water temperature Tw is higher than the warm-up completion water temperature Th, the warm-up determination is terminated. If the detected water temperature Tw is not higher than the warm-up completion water temperature Th, the process proceeds to step S304.
- step S304 warm-up promotion processing is executed.
- the warm-up promotion process will be described with reference to FIG.
- the valve adjustment unit 403A detects an EGR request.
- the EGR request may be output from another functional block in the ECU 40A or may be output from another ECU.
- step S402 the valve adjustment unit 403A outputs a drive signal for adjusting the opening degree of the exhaust valve 21 and the EGR valve 23 and a drive signal for fully opening the sub exhaust valve 22.
- the opening degree of the exhaust valve 21 is adjusted so that at least an amount of exhaust gas that satisfies the EGR request flows through the recirculation passage 26.
- the opening degree of the EGR valve 23 is adjusted so that an amount of exhaust gas that satisfies the EGR request flows into the intake passage 10.
- the sub exhaust valve 22 flows the remaining exhaust gas that has flowed into the recirculation passage 26 but does not flow into the intake passage 10.
- step S402 Since the exhaust gas flows through the recirculation passage 26 by the process of step S402, heat exchange is performed between the refrigerant flowing through the cooling device 27 and the exhaust gas, and the temperature of the refrigerant circulating through the internal combustion engine 1 rises. As the temperature of the refrigerant rises, warming up of the internal combustion engine 1 is promoted.
- step S403 the refrigerant temperature acquisition unit 401A detects the coolant water temperature Tw.
- step S404 the warm-up determination unit 402A determines whether the detected water temperature Tw is higher than the warm-up completion water temperature Th. If the detected water temperature Tw is higher than the warm-up completion water temperature Th, the warm-up determination is terminated, and if the detected water temperature Tw is not higher than the warm-up completion water temperature Th, the process returns to step S201.
- the cooling system 100A according to the present embodiment has the same effects as the cooling system 100 described above unless there is a technical contradiction.
- the auxiliary exhaust passage 28 is provided with the auxiliary exhaust valve 22 that adjusts the flow rate of the exhaust gas flowing into the auxiliary exhaust passage 28. By configuring in this way, the amount of exhaust gas flowing through the recirculation passage 26 flowing into the sub exhaust passage 28 can be adjusted.
- the cooling system 100A of the present embodiment includes an ECU 40A that is a control device that adjusts the opening degree of the EGR valve 23, the exhaust valve 21, and the sub exhaust valve 22.
- the ECU 40A includes a refrigerant temperature acquisition unit 401A that acquires the temperature of the refrigerant, a warm-up determination unit 402A that determines a warm-up state of the internal combustion engine 1 based on the temperature acquired by the refrigerant temperature acquisition unit 401A, and a warm-up determination unit 402A.
- a valve adjusting unit 403A that adjusts at least one opening degree of the EGR valve 23, the exhaust valve 21, and the auxiliary exhaust valve 22 based on the warm-up state determined by the above.
- valve adjustment unit 403A adjusts the opening degree of the EGR valve 23 and the exhaust valve 21 so that heat exchange with the refrigerant is possible according to the warm-up state of the internal combustion engine 1. The amount of inflow can be adjusted. Further, since the valve adjustment unit 403A adjusts the opening degree of the sub exhaust valve 22, it is possible to prevent the exhaust gas flowing through the recirculation passage 26 from flowing into the sub exhaust passage 28 more than necessary.
- the cooling system 100B is obtained by additionally arranging a sub exhaust valve 22 in the cooling system 100 of the first embodiment.
- the sub exhaust valve 22 is provided in the sub exhaust passage 28.
- the upstream catalyst 24 and the downstream catalyst 25 are further arranged on the downstream side of the downstream connection portion 202.
- An exhaust temperature sensor 50 is additionally arranged in the cooling system 100B.
- the exhaust temperature sensor 50 is provided upstream of the exhaust valve 21 in the main exhaust passage 20.
- the other configuration of the cooling system 100B is the same as the configuration of the cooling system 100, and a description thereof will be omitted.
- a temperature detection signal output from the water temperature sensor 14 is input to the ECU 40B.
- a temperature detection signal output from the exhaust temperature sensor 50 is input to the ECU 40B.
- the ECU 40B outputs drive signals to the exhaust valve 21, the auxiliary exhaust valve 22, and the EGR valve 23.
- the ECU 40B includes a temperature acquisition unit 401B, a warm-up determination unit 402B, and a valve adjustment unit 403B as functional components.
- the temperature acquisition unit 401 ⁇ / b> B is a part that receives temperature detection signals output from the water temperature sensor 14 and the exhaust temperature sensor 50.
- the temperature acquisition unit 401B outputs refrigerant temperature information and exhaust gas temperature information to the warm-up determination unit 402B.
- the warm-up determination unit 402B is a part that determines whether or not the warm-up of the internal combustion engine 1 has been completed and whether or not the upstream catalyst 24 and the downstream catalyst 25 have been warmed up. Warm-up determination unit 402B outputs a determination result as to whether or not the warm-up is completed to valve adjustment unit 403B.
- the valve adjustment unit 403B outputs a drive signal for driving the exhaust valve 21, the sub exhaust valve 22, and the EGR valve 23 based on the valve drive logic set in advance and the determination result of the warm-up determination unit 402B.
- step S501 of FIG. 11 the valve adjustment unit 403B outputs a drive signal for fully opening the exhaust valve 21 and fully closing the sub exhaust valve 22.
- the exhaust valve 21 is fully opened in response to this drive signal.
- the sub exhaust valve 22 is fully closed in response to this drive signal.
- step S502 the temperature acquisition unit 401B acquires a catalyst warm-up request.
- step S503 the temperature acquisition unit 401B determines whether or not there is a catalyst warm-up request. If there is a catalyst warm-up request, the process returns to step S501, and if there is no catalyst warm-up request, the process proceeds to step S504.
- exhaust gas can flow through the upstream catalyst 24 and the downstream catalyst 25, and catalyst warm-up can be promoted.
- step S504 the temperature acquisition unit 401B detects the coolant water temperature Tw.
- step S505 the warm-up determination unit 402B determines whether the detected water temperature Tw is higher than the warm-up completion water temperature Th. If the detected water temperature Tw is higher than the warm-up completion water temperature Th, the warm-up determination is terminated, and if the detected water temperature Tw is not higher than the warm-up completion water temperature Th, the process proceeds to step S506.
- step S506 warm-up promotion processing is executed.
- the warm-up promotion process will be described with reference to FIG.
- the valve adjustment unit 403B detects an EGR request.
- the EGR request may be output from another functional block in the ECU 40B or may be output from another ECU.
- step S602 the valve adjustment unit 403B outputs a drive signal for adjusting the opening degree of the exhaust valve 21 and the EGR valve 23 and a drive signal for fully opening the sub exhaust valve 22.
- the opening degree of the exhaust valve 21 is adjusted so that at least an amount of exhaust gas that satisfies the EGR request flows through the recirculation passage 26.
- the opening degree of the EGR valve 23 is adjusted so that an amount of exhaust gas that satisfies the EGR request flows into the intake passage 10.
- the sub exhaust valve 22 flows the remaining exhaust gas that has flowed into the recirculation passage 26 but does not flow into the intake passage 10.
- step S602 Since the exhaust gas flows through the recirculation passage 26 by the process of step S602, heat exchange is performed between the refrigerant flowing through the cooling device 27 and the exhaust gas, and the temperature of the refrigerant circulating through the internal combustion engine 1 rises. As the temperature of the refrigerant rises, warming up of the internal combustion engine 1 is promoted.
- step S603 the temperature acquisition unit 401B detects the coolant temperature Tw.
- step S604 the warm-up determination unit 402B determines whether the detected water temperature Tw is higher than the warm-up completion water temperature Th. If the detected water temperature Tw is higher than the warm-up completion water temperature Th, the process proceeds to step S605. If the detected water temperature Tw is not higher than the warm-up completion water temperature Th, the process returns to step S601.
- the valve adjustment unit 403B outputs a drive signal for fully closing the auxiliary exhaust valve 22. The sub exhaust valve 22 is fully closed in response to this drive signal.
- step S701 the valve adjustment unit 403B outputs a drive signal that fully opens the exhaust valve 21 and fully closes the sub exhaust valve 22.
- the exhaust valve 21 is fully opened in response to this drive signal.
- the sub exhaust valve 22 is fully closed in response to this drive signal.
- step S702 the temperature acquisition unit 401B acquires a catalyst warm-up request.
- step S703 the temperature acquisition unit 401B determines whether or not there has been a catalyst warm-up request. If there is a catalyst warm-up request, the process returns to step S701, and if there is no catalyst warm-up request, the process proceeds to step S704.
- exhaust gas can flow through the upstream catalyst 24 and the downstream catalyst 25, and catalyst warm-up can be promoted.
- step S704 the temperature acquisition unit 401B detects the coolant water temperature Tw.
- step S705 the warm-up determination unit 402B determines whether the detected water temperature Tw is higher than the warm-up completion water temperature Th. If the detected water temperature Tw is higher than the warm-up completion water temperature Th, the warm-up determination is terminated, and if the detected water temperature Tw is not higher than the warm-up completion water temperature Th, the process proceeds to step S706.
- step S706 warm-up promotion processing is executed.
- the warm-up promotion process is the same as that described with reference to FIG.
- the temperature acquisition unit 401B detects the exhaust gas temperature Tex of the exhaust gas.
- the warm-up determination unit 402B determines whether the detected exhaust temperature Tex exceeds the upper limit exhaust temperature Tex_max. If the detected exhaust temperature Tex exceeds the upper limit exhaust temperature Tex_max, the process proceeds to step S709. If the detected exhaust temperature Tex does not exceed the upper limit exhaust temperature Tex_max, the process returns to step S707.
- step S709 the valve adjustment unit 403B adjusts the opening degree of the exhaust valve 21 and outputs a drive signal for fully opening the sub exhaust valve 22.
- the exhaust valve 21 is in a state in which the opening degree is adjusted according to this drive signal.
- the sub exhaust valve 22 is fully opened in response to this drive signal.
- the cooling system 100B according to the present embodiment has the same effects as the cooling system 100 and the cooling system 100A described above unless there is a technical contradiction.
- the upstream side catalyst 24 and the downstream side catalyst 25 are provided in the main exhaust passage 20 on the downstream side of the upstream side connection part 201 and the downstream side connection part 202. Since exhaust gas can be guided to the recirculation passage 26 from the upstream side of the upstream catalyst 24, higher temperature exhaust gas can be supplied to the cooling device 27. Therefore, since the temperature of the refrigerant circulating in the internal combustion engine 1 can be further increased, it is possible to warm up earlier.
- the cooling system 100B of the present embodiment includes an ECU 40B as a control device that adjusts the opening degree of the EGR valve 23, the exhaust valve 21, and the sub exhaust valve 22.
- the ECU 40B determines whether the upstream catalyst 24 and the downstream catalyst 25 are warmed up, based on the warming up determination unit 402B and the warming up state determined by the warming up determination unit 402B.
- a valve adjusting unit 403B that adjusts at least one opening of the sub exhaust valve 22.
- valve adjustment unit 403A adjusts the opening degree of the EGR valve 23 and the exhaust valve 21, the amount of exhaust gas flowing through the main exhaust passage 20 is adjusted according to the warm-up state of the upstream catalyst 24 and the downstream catalyst 25. be able to.
- the ECU 40B further includes a temperature acquisition unit 401B that is a gas temperature acquisition unit that acquires the temperature of the exhaust gas.
- Warm-up determination unit 402B determines the warm-up state based on the temperature acquired by temperature acquisition unit 401B.
- the exhaust gas temperature sensor 50 is provided, and the temperature acquisition unit 401B receives the output signal to acquire the temperature of the exhaust gas.
- the exhaust gas temperature acquisition mode is not limited thereto.
- the temperature of the exhaust gas can be acquired by using an estimated value from the operating state of the internal combustion engine 1 such as a map of the rotational speed and load of the internal combustion engine 1.
- the cooling system 100C is obtained by additionally arranging a sub exhaust valve 22 in the cooling system 100 of the first embodiment.
- the sub exhaust valve 22 is provided in the sub exhaust passage 28.
- the cooling system 100C is further provided with a bypass circulation passage 37 and a water pump 35.
- the bypass circulation passage 37 is provided in the refrigerant circulation passage 34.
- the bypass circulation passage 37 is provided so as to bypass the internal combustion engine 1 so that the refrigerant flowing through the cooling device 27 and the heater core 33 does not flow into the internal combustion engine 1.
- the water pump 35 is provided in the bypass circulation passage 37.
- the cooling system 100C has the same effects as the cooling system 100, the cooling system 100A, and the cooling system 100B described above unless there is a technical contradiction.
- the cooling system 100 ⁇ / b> C of the present embodiment includes a refrigerant circulation passage 34 that circulates refrigerant between the internal combustion engine 1 and the cooling device 27.
- the refrigerant circulation passage 34 is provided with a bypass circulation passage 37 that circulates the refrigerant to the cooling device 27 without passing through the internal combustion engine 1.
- a water pump 35 is provided in the bypass circulation passage 37. By stopping the water pump 30 and driving the water pump 35, the refrigerant can be circulated to the cooling device 27 without being circulated to the internal combustion engine 1.
- the refrigerant having a high temperature in the cooling device 27 can be heated by being circulated through the heater core 33, for example.
- the refrigerant circulation passage 34 is preferably provided with a valve for closing during such operation.
- the auxiliary exhaust passage 28 is provided so as to include a portion from the return connection portion 261 to the upstream connection portion 201 of the recirculation passage 26 and the cooling device 27 and to be located outside. ing.
- the exhaust gas flowing through the main exhaust passage 20 flows into the recirculation passage 26 from the upstream connection portion 201 in accordance with the opening state of the exhaust valve 21.
- the exhaust gas flowing through the recirculation passage 26 flows toward the return connection portion 261 while exchanging heat with water as a refrigerant in the cooling device 27.
- the exhaust gas flowing through the recirculation passage 26 flows into the sub exhaust passage 28 from the opening provided in the return connection portion 261.
- the exhaust gas flowing into the auxiliary exhaust passage 28 flows along the outside of the recirculation passage 26 and the cooling device 27 and reaches the downstream side connection portion 202.
- the auxiliary exhaust passage 28 includes a portion extending from the portion closer to the cooling device 17 to the upstream connection portion 201 than the return connection portion 261 of the recirculation passage 26, and the cooling device 27. It is provided so that it may be located outside.
- the exhaust gas flowing through the main exhaust passage 20 flows into the recirculation passage 26 from the upstream connection portion 201 in accordance with the opening state of the exhaust valve 21.
- the exhaust gas flowing through the recirculation passage 26 flows toward the return connection portion 261 while exchanging heat with water as a refrigerant in the cooling device 27.
- the exhaust gas flowing through the recirculation passage 26 flows into the auxiliary exhaust passage 28 from the connection passage 281 connected to the return connection portion 261.
- the exhaust gas flowing into the auxiliary exhaust passage 28 flows along the outside of the recirculation passage 26 and the cooling device 27 and reaches the downstream side connection portion 202.
- a circular tubular secondary exhaust passage 28 surrounds the circular tubular cooling device 27.
- a refrigerant passage portion 271 forming a water passage and an exhaust gas passage portion 272 forming an exhaust gas passage are formed.
- the exhaust gas passage portion 272 is provided so as to be located in the middle of the recirculation passage 26.
- the refrigerant passage part 271 has a plurality of tubes through which water passes and fins provided between the plurality of tubes.
- the refrigerant passage portion 271 is provided so as to be located in the middle of the refrigerant circulation passage 34.
- a rectangular tubular secondary exhaust passage 28D surrounds the rectangular tubular cooling device 27D.
- a refrigerant passage portion 271D that forms a water passage and an exhaust gas passage portion 272D that forms an exhaust gas passage are formed inside the cooling device 27D. Since the cross-sectional shape is the same as that described with reference to FIG. 17 except that the cross-sectional shape is not a circle but a rectangle, the description thereof is omitted.
- the rectangular tubular cooling device 27E can be surrounded by a rectangular tubular secondary exhaust passage 28E.
- the cooling device 27E includes a refrigerant passage portion 271E that forms a water passage and an exhaust gas passage portion 272E that forms an exhaust gas passage.
- the exhaust gas passage portion 272 ⁇ / b> E is configured by a plurality of pipes, and is provided in the middle of the recirculation passage 26.
- the refrigerant passage portion 271E is configured such that water flows around the exhaust gas passage portion 272E.
- auxiliary exhaust passage 28 outside so as to include at least a part of the cooling device 27 and the recirculation passage 26, heat dissipation of the exhaust gas flowing through the recirculation passage 26 is suppressed, and the high temperature state is maintained.
- the cooling device 27 can be supplied. Since the temperature of the refrigerant that exchanges heat with the exhaust gas in the cooling device 27 can be increased, early warm-up of the internal combustion engine 1 can be realized.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Silencers (AREA)
Abstract
主排気通路(20)の上流側接続部(201)よりも下流側の下流側接続部(202)に接続され、冷却装置(27)を通過した排ガスを再循環通路(26)から主排気通路(20)に戻す副排気通路(28)が設けられている。主排気通路(20)において、上流側接続部(201)と下流側接続部(202)との間に、再循環通路(26)へ流れる排ガスの流量を調整する排気バルブ(21)が設けられている。
Description
本出願は、2016年7月4日に出願された日本国特許出願2016-132555号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。
本開示は、内燃機関を冷却する冷却システム、及び冷却システムの制御装置に関する。
内燃機関を冷却する冷却システムに排気熱回収器を用いたものとして、下記特許文献1に記載のものが知られている。下記特許文献1に記載の冷却システムでは、内燃機関の排気通路に排気熱回収装置を設けている。この排気熱回収装置により、触媒の昇温促進処理と、内燃機関の冷却水の昇温促進処理と、を必要に応じて切り替えて実行するように構成されている。
特許文献1では、排気熱回収器の受熱部が排気通路の最下流に配置されている。内燃機関の排ガスは、排気通路に設けられた触媒を通過していてから受熱部に至り、熱交換を行っている。排ガスは、触媒や排気通路で放熱してから受熱部に至るので、内燃機関から排出した直後よりも温度が低下し、結果として排気熱回収量が低下する。
本開示は、排気熱回収量を低下させずに内燃機関の早期暖機を両立させることができる冷却システム及び冷却システムの制御装置を提供することを目的とする。
本開示は、内燃機関を冷却する冷却システムであって、前記内燃機関(1)から排出される排ガスが通る主排気通路(20)の上流側接続部(201)に接続され、少なくともEGR要求に応じた排ガス量を前記内燃機関への吸気通路(10)に還流させる再循環通路(26)と、前記再循環通路に設けられ、前記内燃機関を循環する冷媒と排ガスとの間で熱交換を行う冷却装置(27)と、を備えている。前記主排気通路の前記上流側接続部よりも下流側の下流側接続部(202)に接続され、前記冷却装置を通過した排ガスを前記再循環通路から前記主排気通路に戻す副排気通路(28)が設けられている。更に、前記再循環通路において、前記副排気通路が接続されている戻り接続部(261)よりも前記吸気通路側に、前記吸気通路へ流れる排ガスの流量を調整するEGRバルブ(23)と、前記主排気通路において、前記上流側接続部と前記下流側接続部との間に、前記再循環通路へ流れる排ガスの流量を調整する排気バルブ(21)と、が設けられている。
本開示によれば、再循環通路に冷却装置を設け、排ガスと冷媒とを熱交換させることで排気熱回収を行っているので、排気通路の下流端側で排気熱回収を行うよりも排気熱回収量を増やすことができる。冷却装置を通った排ガスを主排気通路に戻すための副排気通路が設けられているので、EGR要求が無い場合であっても排ガスを冷却装置に通すことができる。EGR要求の有無にかかわらず、冷却装置において排ガスと冷媒との熱交換を行うことができる。内燃機関に昇温された冷媒を供給することが可能となり、内燃機関の早期暖機を実現することができる。
尚、「発明の概要」及び「請求の範囲」に記載した括弧内の符号は、後述する「発明を実施するための形態」との対応関係を示すものであって、「発明の概要」及び「請求の範囲」が、後述する「発明を実施するための形態」に限定されることを示すものではない。
以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
第1実施形態である冷却システム100について、図1を参照しながら説明する。冷却システム100は、内燃機関1を冷却するためのシステムである。内燃機関1には、吸気通路10と主排気通路20とが繋がれている。
吸気通路10は、内燃機関1に空気を供給するための通路である。吸気通路10の吸気口には、エアクリーナ36が設けられている。吸気通路10には、エアクリーナ36側から順に、スロットル11と、吸気圧センサ12と、インジェクタ13と、が設けられている。
スロットル11は、吸気通路10の通路断面積を変化させて、空気の流量を制御する装置である。吸気圧センサ12は、吸気通路10の圧力を計測するセンサである。インジェクタ13は、吸気通路10を流れる空気に燃料を噴射するものである。吸気通路10から供給される燃料と空気との混合気は内燃機関1に供給される。内燃機関1において混合気は燃焼し、排ガスが主排気通路20に排出される。
主排気通路20は、内燃機関1から排出される排ガスを外部に排出するための通路である。主排気通路20には、内燃機関1側から順に、上流側触媒24と、排気バルブ21と、下流側触媒25と、が設けられている。
上流側触媒24は、いわゆるスタートキャタリスト(S/Cとも称される)と呼ばれるものである。下流側触媒25は、いわゆるアンダーフロアキャタリスト(UFCとも称される)と呼ばれるものである。排気バルブ21は、排ガスを、主排気通路20と再循環通路26とに分配する比率を調整するためのバルブである。
主排気通路20と吸気通路10とを繋ぐように、再循環通路26が設けられている。再循環通路26は、上流側触媒24と下流側触媒25との間における上流側接続部201において主排気通路20と繋がれている。再循環通路26は、スロットル11とインジェクタ13との間において吸気通路10と繋がれている。
再循環通路26には、排ガスを冷却するための冷却装置27が設けられている。冷却装置27には、冷媒循環通路34が繋がれている。冷却装置27では、冷媒循環通路34を流れる冷媒と、再循環通路26を流れる排ガスとが熱交換するように構成されている。冷却装置27を通過した排ガスは、温度が低下させられた状態で吸気通路10に供給される。冷却装置27を通過した冷媒は、温度が上昇させられた状態で内燃機関1に供給される。
再循環通路26には、EGRバルブ23が設けられている。EGRバルブ23は、吸気通路10に還流する排ガスの量を調整するためのバルブである。EGRバルブ23は、冷却装置27と吸気通路10との間に設けられている。
再循環通路26と主排気通路20とを繋ぐように、副排気通路28が設けられている。副排気通路28は、冷却装置27とEGRバルブ23との間における戻り接続部261において再循環通路26と繋がれている。副排気通路28は、排気バルブ21と下流側触媒25との間における下流側接続部202において主排気通路20と繋がれている。
内燃機関1を冷却するための冷媒が循環する通路として、冷媒循環通路29と冷媒循環通路34とが設けられている。冷媒循環通路29には、ウォーターポンプ30と、ラジエータ31と、サーモスタット32と、が設けられている。冷媒循環通路34には、ウォーターポンプ30と、水温センサ14と、ヒータコア33と、冷却装置27と、が設けられている。従って、冷媒循環通路29と冷媒循環通路34とはウォーターポンプ30を共有しており、ウォーターポンプ30を通る部分において合流している。
内燃機関1の起動初期においては、冷媒の温度が低いため、サーモスタット32は略閉じた状態となっている。ウォーターポンプ30を駆動すると、冷媒は主に冷媒循環通路34を流れる。冷媒循環通路34を流れる冷媒は、冷却装置27において高温の排ガスと熱交換して温度が上昇し、内燃機関1に流入する。
内燃機関1の暖機が進むと、サーモスタット32が開かれていき、冷媒循環通路29にも冷媒が流れ始める。尚、水温センサ14は冷媒の温度を常時検出している。検出された冷媒の温度に応じて、内燃機関1の運転制御がなされると共に、冷却システム100が制御される。
続いて、図2を参照しながら、冷却システム100に用いられる制御装置であるECU(Electronic Control Unit)40について説明する。ECU40には、水温センサ14から出力される温度検出信号が入力される。ECU40は、排気バルブ21及びEGRバルブ23に駆動信号を出力する。
ECU40は、機能的な構成要素として、冷媒温度取得部401と、暖機判断部402と、バルブ調整部403と、を備えている。冷媒温度取得部401は、水温センサ14から出力される温度検出信号を受け取る部分である。冷媒温度取得部401は、冷媒の温度情報を暖機判断部402に出力する。
暖機判断部402は、内燃機関1の暖機が完了した否かを判断する部分である。暖機判断部402は、暖機が完了したか否かの判断結果をバルブ調整部403に出力する。バルブ調整部403は、予め設定されたバルブ駆動ロジック及び暖機判断部402の判断結果に基づいて、排気バルブ21及びEGRバルブ23を駆動する駆動信号を出力する。
図3及び図4を参照しながら、ECU40の動作について説明する。図3のステップS101では、バルブ調整部403が排気バルブ21を全開する駆動信号を出力する。排気バルブ21は、この駆動信号に応じて全開状態となる。排気バルブ21が全開状態となると、主排気通路20を流れる排ガスは再循環通路26にはほとんど流れずに、主排気通路20を通って排出される。
ステップS101に続くステップS102では、冷媒温度取得部401が冷媒の水温Twを検出する。ステップS102に続くステップS103では、暖機判断部402が、検出した水温Twが暖機完了水温Thを上回っているか判断する。検出した水温Twが暖機完了水温Thを上回っていれば暖機判定を終了し、検出した水温Twが暖機完了水温Thを上回っていなければステップS104の処理に進む。
ステップS104では、暖機促進処理を実行する。暖機促進処理については、図4を参照しながら説明する。ステップS201では、バルブ調整部403がEGR要求を検出する。EGR要求は、ECU40内の別の機能ブロックから出力されてもよく、他のECUから出力されてもよい。
ステップS201に続くステップS202では、バルブ調整部403が、排気バルブ21及びEGRバルブ23の開度を調整する駆動信号を出力する。排気バルブ21は、少なくともEGR要求を満たす量の排ガスが再循環通路26に流れるように開度調整される。EGRバルブ23は、EGR要求を満たす量の排ガスが吸気通路10に流れるように開度調整される。
ステップS202の処理により再循環通路26に排ガスが流れるので、冷却装置27を流れる冷媒と排ガスとの間で熱交換が行われ、内燃機関1を循環する冷媒の温度が上昇する。冷媒の温度が上昇することによって、内燃機関1の暖機が促進される。
ステップS202に続くステップS203では、冷媒温度取得部401が冷媒の水温Twを検出する。ステップS203に続くステップS204では、暖機判断部402が、検出した水温Twが暖機完了水温Thを上回っているか判断する。検出した水温Twが暖機完了水温Thを上回っていれば暖機判定を終了し、検出した水温Twが暖機完了水温Thを上回っていなければステップS201の処理に戻る。
上記したように第1実施形態の冷却システム100は、内燃機関1を冷却する冷却システムであって、再循環通路26と、冷却装置27とを備えている。再循環通路26は、内燃機関1から排出される排ガスが通る主排気通路20の上流側接続部201に接続され、少なくともEGR要求に応じた排ガス量を内燃機関1への吸気通路10に還流させる。冷却装置27は、再循環通路26に設けられ、内燃機関1を循環する冷媒と排ガスとの間で熱交換を行う。冷却システム100には更に、主排気通路20の上流側接続部201よりも下流側の下流側接続部202に接続され、冷却装置27を通過した排ガスを再循環通路26から主排気通路20に戻す副排気通路28が設けられている。冷却システム100には更に、再循環通路26において、副排気通路が接続されている戻り接続部261よりも吸気通路10側に、吸気通路10へ流れる排ガスの流量を調整するEGRバルブ23が設けられている。冷却システム100には更に、主排気通路20において、上流側接続部201と下流側接続部202との間に、再循環通路26へ流れる排ガスの流量を調整する排気バルブ21が設けられている。
本実施形態によれば、再循環通路26に冷却装置27を設け、排ガスと冷媒とを熱交換させることで排気熱回収を行っているので、排気通路の下流端側で排気熱回収を行うよりも排気熱回収量を増やすことができる。冷却装置27を通った排ガスを主排気通路20に戻すための副排気通路28が設けられているので、EGR要求が無い場合であっても排ガスを冷却装置27に通すことができる。従って、EGR要求の有無にかかわらず、冷却装置27において排ガスと冷媒との熱交換を行うことができる。内燃機関1に昇温された冷媒を供給することが可能となり、内燃機関1の早期暖機を実現することができる。
また本実施形態の冷却システム100では、上流側接続部201及び下流側接続部202を挟んで、主排気通路20の上流側に上流側触媒24が設けられ、主排気通路20の下流側に下流側触媒25が設けられている。
上流側接続部201及び下流側接続部202よりも上流側に上流側触媒24が配置されているので、排気バルブ21の開閉状態によらずに上流側触媒24に排ガスを通すことができる。上流側触媒24に必ず排ガスが通るので、上流側触媒24を内燃機関1の起動初期から作用させることができる。
また本実施形態の冷却システム100では、更に、EGRバルブ23及び排気バルブ21の開度を調整する制御装置であるECU40を備えている。ECU40は、冷媒の温度を取得する冷媒温度取得部401と、冷媒温度取得部401が取得した温度に基づいて内燃機関1の暖機状態を判断する暖機判断部402と、暖機判断部402が判断した暖機状態に基づいて、EGRバルブ23及び排気バルブ21の少なくとも一方の開度を調整するバルブ調整部403と、を備える。
バルブ調整部403は、EGRバルブ23及び排気バルブ21の開度を調整するので、内燃機関1の暖機状態に応じて冷媒との熱交換が可能となるように、排ガスの冷却装置27への流入量を調整することができる。
続いて、第2実施形態である冷却システム100Aについて、図5を参照しながら説明する。冷却システム100Aは、第1実施形態の冷却システム100に、副排気バルブ22を追加配置したものである。副排気バルブ22は、副排気通路28に設けられている。冷却システム100Aの構成は、副排気バルブ22の配置以外は冷却システム100の構成と同様であるので、その説明を省略する。
続いて、図6を参照しながら、冷却システム100Aに用いられる制御装置であるECU40Aについて説明する。ECU40Aには、水温センサ14から出力される温度検出信号が入力される。ECU40Aは、排気バルブ21、副排気バルブ22及びEGRバルブ23に駆動信号を出力する。
ECU40Aは、機能的な構成要素として、冷媒温度取得部401Aと、暖機判断部402Aと、バルブ調整部403Aと、を備えている。冷媒温度取得部401Aは、水温センサ14から出力される温度検出信号を受け取る部分である。冷媒温度取得部401Aは、冷媒の温度情報を暖機判断部402Aに出力する。
暖機判断部402Aは、内燃機関1の暖機が完了したか否かを判断する部分である。暖機判断部402Aは、暖機が完了したか否かの判断結果をバルブ調整部403Aに出力する。バルブ調整部403Aは、予め設定されたバルブ駆動ロジック及び暖機判断部402Aの判断結果に基づいて、排気バルブ21、副排気バルブ22及びEGRバルブ23を駆動する駆動信号を出力する。
図7及び図8を参照しながら、ECU40Aの動作について説明する。図7のステップS301では、バルブ調整部403Aが、排気バルブ21を全開し副排気バルブ22を全閉する駆動信号を出力する。排気バルブ21は、この駆動信号に応じて全開状態となる。副排気バルブ22は、この駆動信号に応じて全閉状態となる。排気バルブ21が全開状態となると、主排気通路20を流れる排ガスは再循環通路26にはほとんど流れずに、主排気通路20を通って排出される。
ステップS301に続くステップS302では、冷媒温度取得部401Aが冷媒の水温Twを検出する。ステップS302に続くステップS303では、暖機判断部402Aが、検出した水温Twが暖機完了水温Thを上回っているか判断する。検出した水温Twが暖機完了水温Thを上回っていれば暖機判定を終了し、検出した水温Twが暖機完了水温Thを上回っていなければステップS304の処理に進む。
ステップS304では、暖機促進処理を実行する。暖機促進処理については、図8を参照しながら説明する。図8のステップS401では、バルブ調整部403AがEGR要求を検出する。EGR要求は、ECU40A内の別の機能ブロックから出力されてもよく、他のECUから出力されてもよい。
ステップS401に続くステップS402では、バルブ調整部403Aが、排気バルブ21及びEGRバルブ23の開度を調整する駆動信号と、副排気バルブ22を全開する駆動信号とを出力する。排気バルブ21は、少なくともEGR要求を満たす量の排ガスが再循環通路26に流れるように開度調整される。EGRバルブ23は、EGR要求を満たす量の排ガスが吸気通路10に流れるように開度調整される。副排気バルブ22は、再循環通路26に流入したものの吸気通路10には流れない残余の排ガスを流す。
ステップS402の処理により再循環通路26に排ガスが流れるので、冷却装置27を流れる冷媒と排ガスとの間で熱交換が行われ、内燃機関1を循環する冷媒の温度が上昇する。冷媒の温度が上昇することによって、内燃機関1の暖機が促進される。
ステップS402に続くステップS403では、冷媒温度取得部401Aが冷媒の水温Twを検出する。ステップS403に続くステップS404では、暖機判断部402Aが、検出した水温Twが暖機完了水温Thを上回っているか判断する。検出した水温Twが暖機完了水温Thを上回っていれば暖機判定を終了し、検出した水温Twが暖機完了水温Thを上回っていなければステップS201の処理に戻る。
本実施形態である冷却システム100Aは、技術的に矛盾しない限り、上述した冷却システム100と同様の作用効果を奏する。
更に本実施形態の冷却システム100Aでは、副排気通路28に、副排気通路28へ流れる排ガスの流量を調整する副排気バルブ22を備えている。このように構成することで、再循環通路26を流れる排ガスが副排気通路28に流れ込む量を調整することができる。
更に本実施形態の冷却システム100Aでは、EGRバルブ23、排気バルブ21、及び副排気バルブ22の開度を調整する制御装置であるECU40Aを備えている。ECU40Aは、冷媒の温度を取得する冷媒温度取得部401Aと、冷媒温度取得部401Aが取得した温度に基づいて内燃機関1の暖機状態を判断する暖機判断部402Aと、暖機判断部402Aが判断した暖機状態に基づいて、EGRバルブ23、排気バルブ21、及び副排気バルブ22の少なくとも一つの開度を調整するバルブ調整部403Aと、を備えている。
バルブ調整部403Aは、EGRバルブ23及び排気バルブ21の開度を調整するので、内燃機関1の暖機状態に応じて冷媒との熱交換が可能となるように、排ガスの冷却装置27への流入量を調整することができる。更に、バルブ調整部403Aは、副排気バルブ22の開度を調整するので、再循環通路26を流れる排ガスが必要以上に副排気通路28に流れ込むことを抑制することができる。
続いて、第3実施形態である冷却システム100Bについて、図9を参照しながら説明する。冷却システム100Bは、第1実施形態の冷却システム100に、副排気バルブ22を追加配置したものである。副排気バルブ22は、副排気通路28に設けられている。冷却システム100Bでは更に、上流側触媒24及び下流側触媒25を、下流側接続部202よりも下流側に配置している。冷却システム100Bには更に、排気温センサ50が追加配置されている。排気温センサ50は、主排気通路20の排気バルブ21よりも上流側に設けられている。その他の冷却システム100Bの構成は、冷却システム100の構成と同様であるので説明を省略する。
続いて、図10を参照しながら、冷却システム100Bに用いられる制御装置であるECU40Bについて説明する。ECU40Bには、水温センサ14から出力される温度検出信号が入力される。ECU40Bには、排気温センサ50から出力される温度検出信号が入力される。ECU40Bは、排気バルブ21、副排気バルブ22及びEGRバルブ23に駆動信号を出力する。
ECU40Bは、機能的な構成要素として、温度取得部401Bと、暖機判断部402Bと、バルブ調整部403Bと、を備えている。温度取得部401Bは、水温センサ14及び排気温センサ50から出力される温度検出信号を受け取る部分である。温度取得部401Bは、冷媒の温度情報及び排ガスの温度情報を暖機判断部402Bに出力する。
暖機判断部402Bは、内燃機関1の暖機が完了したか否かと、上流側触媒24及び下流側触媒25の暖機が完了したか否かと、を判断する部分である。暖機判断部402Bは、暖機が完了したか否かの判断結果をバルブ調整部403Bに出力する。バルブ調整部403Bは、予め設定されたバルブ駆動ロジック及び暖機判断部402Bの判断結果に基づいて、排気バルブ21、副排気バルブ22及びEGRバルブ23を駆動する駆動信号を出力する。
図11及び図12を参照しながら、ECU40Bの動作について説明する。図11のステップS501では、バルブ調整部403Bが、排気バルブ21を全開し副排気バルブ22を全閉する駆動信号を出力する。排気バルブ21は、この駆動信号に応じて全開状態となる。副排気バルブ22は、この駆動信号に応じて全閉状態となる。排気バルブ21が全開状態となると、主排気通路20を流れる排ガスは再循環通路26にはほとんど流れずに、主排気通路20を通って排出される。
ステップS501に続くステップS502では、温度取得部401Bが触媒暖機要求を取得する。ステップS502に続くステップS503では、温度取得部401Bが、触媒暖機要求があったか否かを判断する。触媒暖機要求があればステップS501の処理に戻り、触媒暖機要求がなければステップS504の処理に進む。触媒暖機要求がある間はステップS501の状態を維持することで、上流側触媒24及び下流側触媒25に排ガスを流すことができ、触媒暖機を促進することができる。
ステップS504では、温度取得部401Bが冷媒の水温Twを検出する。ステップS504に続くステップS505では、暖機判断部402Bが、検出した水温Twが暖機完了水温Thを上回っているか判断する。検出した水温Twが暖機完了水温Thを上回っていれば暖機判定を終了し、検出した水温Twが暖機完了水温Thを上回っていなければステップS506の処理に進む。
ステップS506では、暖機促進処理を実行する。暖機促進処理については、図12を参照しながら説明する。図12のステップS601では、バルブ調整部403BがEGR要求を検出する。EGR要求は、ECU40B内の別の機能ブロックから出力されてもよく、他のECUから出力されてもよい。
ステップS601に続くステップS602では、バルブ調整部403Bが、排気バルブ21及びEGRバルブ23の開度を調整する駆動信号と、副排気バルブ22を全開する駆動信号とを出力する。排気バルブ21は、少なくともEGR要求を満たす量の排ガスが再循環通路26に流れるように開度調整される。EGRバルブ23は、EGR要求を満たす量の排ガスが吸気通路10に流れるように開度調整される。副排気バルブ22は、再循環通路26に流入したものの吸気通路10には流れない残余の排ガスを流す。
ステップS602の処理により再循環通路26に排ガスが流れるので、冷却装置27を流れる冷媒と排ガスとの間で熱交換が行われ、内燃機関1を循環する冷媒の温度が上昇する。冷媒の温度が上昇することによって、内燃機関1の暖機が促進される。
ステップS602に続くステップS603では、温度取得部401Bが冷媒の水温Twを検出する。ステップS603に続くステップS604では、暖機判断部402Bが、検出した水温Twが暖機完了水温Thを上回っているか判断する。検出した水温Twが暖機完了水温Thを上回っていればステップS605の処理に進み、検出した水温Twが暖機完了水温Thを上回っていなければステップS601の処理に戻る。ステップS605では、バルブ調整部403Bが、副排気バルブ22を全閉する駆動信号を出力する。副排気バルブ22は、この駆動信号に応じて全閉状態となる。
続いて、図13を参照しながら、ECU40Bの別の動作について説明する。ステップS701では、バルブ調整部403Bが、排気バルブ21を全開し副排気バルブ22を全閉する駆動信号を出力する。排気バルブ21は、この駆動信号に応じて全開状態となる。副排気バルブ22は、この駆動信号に応じて全閉状態となる。排気バルブ21が全開状態となると、主排気通路20を流れる排ガスは再循環通路26にはほとんど流れずに、主排気通路20を通って排出される。
ステップS701に続くステップS702では、温度取得部401Bが触媒暖機要求を取得する。ステップS702に続くステップS703では、温度取得部401Bが、触媒暖機要求があったか否かを判断する。触媒暖機要求があればステップS701の処理に戻り、触媒暖機要求がなければステップS704の処理に進む。触媒暖機要求がある間はステップS701の状態を維持することで、上流側触媒24及び下流側触媒25に排ガスを流すことができ、触媒暖機を促進することができる。
ステップS704では、温度取得部401Bが冷媒の水温Twを検出する。ステップS704に続くステップS705では、暖機判断部402Bが、検出した水温Twが暖機完了水温Thを上回っているか判断する。検出した水温Twが暖機完了水温Thを上回っていれば暖機判定を終了し、検出した水温Twが暖機完了水温Thを上回っていなければステップS706の処理に進む。
ステップS706では、暖機促進処理を実行する。暖機促進処理については、図12を参照しながら説明した内容と同じであるので説明を省略する。ステップS706に続くステップS707では、温度取得部401Bが排ガスの排気温Texを検出する。ステップS707に続くステップS708では、暖機判断部402Bが、検出した排気温Texが上限排気温Tex_maxを上回っているか判断する。検出した排気温Texが上限排気温Tex_maxを上回っていればステップS709の処理に進み、検出した排気温Texが上限排気温Tex_maxを上回っていなければステップS707の処理に戻る。ステップS709では、バルブ調整部403Bが、排気バルブ21の開度を調整し副排気バルブ22を全開する駆動信号を出力する。排気バルブ21は、この駆動信号に応じて開度が調整された状態となる。副排気バルブ22は、この駆動信号に応じて全開状態となる。
本実施形態である冷却システム100Bは、技術的に矛盾しない限り、上述した冷却システム100及び冷却システム100Aと同様の作用効果を奏する。
更に本実施形態の冷却システム100Bでは、上流側接続部201及び下流側接続部202よりも下流側において、主排気通路20に上流側触媒24及び下流側触媒25が設けられている。上流側触媒24よりも上流側から排ガスを再循環通路26に導くことができるので、より高温の排ガスを冷却装置27に供給することができる。従って、内燃機関1を循環する冷媒の温度をより上昇させることができるので、より早期の暖機が可能となる。
更に本実施形態の冷却システム100Bでは、EGRバルブ23、排気バルブ21、及び副排気バルブ22の開度を調整する制御装置としてのECU40Bを備えている。ECU40Bは、上流側触媒24及び下流側触媒25の暖機状態を判断する暖機判断部402Bと、暖機判断部402Bが判断した暖機状態に基づいて、EGRバルブ23、排気バルブ21、及び副排気バルブ22の少なくとも一つの開度を調整するバルブ調整部403Bと、を備えている。
バルブ調整部403Aは、EGRバルブ23及び排気バルブ21の開度を調整するので、上流側触媒24及び下流側触媒25の暖機状態に応じて、主排気通路20に流れる排ガスの量を調整することができる。
更に本実施形態の冷却システム100Bでは、ECU40Bは、更に、排ガスの温度を取得するガス温度取得部である温度取得部401Bを備えている。暖機判断部402Bは、温度取得部401Bが取得した温度に基づいて暖機状態を判断する。本実施形態では、排気温センサ50を設け、その出力信号を温度取得部401Bが受信することで排ガスの温度を取得していたが、排ガスの温度取得態様としてはこれに限られない。例えば、内燃機関1の回転数と負荷のマップといった、内燃機関1の運転状態からの推定値を用いることで排ガスの温度を取得することもできる。
続いて、第4実施形態である冷却システム100Cについて、図14を参照しながら説明する。冷却システム100Cは、第1実施形態の冷却システム100に、副排気バルブ22を追加配置したものである。副排気バルブ22は、副排気通路28に設けられている。冷却システム100Cには更に、バイパス循環通路37及びウォーターポンプ35が設けられている。バイパス循環通路37は、冷媒循環通路34に設けられている。バイパス循環通路37は、冷却装置27及びヒータコア33を流れる冷媒が内燃機関1に流れ込まないように、内燃機関1をバイパスするように設けられている。ウォーターポンプ35は、バイパス循環通路37に設けられている。
本実施形態である冷却システム100Cは、技術的に矛盾しない限り、上述した冷却システム100、冷却システム100A、及び冷却システム100Bと同様の作用効果を奏する。
更に本実施形態の冷却システム100Cでは、内燃機関1と冷却装置27との間で冷媒を循環させる冷媒循環通路34を備えている。冷媒循環通路34には、内燃機関1を通さずに冷却装置27に冷媒を循環させるバイパス循環通路37が設けられている。バイパス循環通路37には、ウォーターポンプ35が設けられている。ウォーターポンプ30を停止し、ウォーターポンプ35を駆動することで、冷媒を内燃機関1に循環させずに冷却装置27に循環させることができる。冷却装置27において高温となった冷媒は、例えばヒータコア33に循環させることで暖房を行うことができる。また、冷媒循環通路34には、このような運転時に閉止するためのバルブを設けることが好ましい。
続いて、図15を参照しながら、第1実施形態である冷却システム100の具体的構成例について説明する。図15に示されるように、副排気通路28は、再循環通路26の戻り接続部261から上流側接続部201までに至る部分と、冷却装置27とを内包し外側に位置するように設けられている。
主排気通路20を流れる排ガスは、排気バルブ21の開度状況に応じて、上流側接続部201から再循環通路26に流れ込む。再循環通路26を流れる排ガスは、冷却装置27において冷媒である水と熱交換しながら戻り接続部261に向かって流れる。再循環通路26を流れる排ガスは、戻り接続部261に設けられた開口部分から副排気通路28に流入する。副排気通路28に流れこんだ排ガスは、再循環通路26及び冷却装置27の外側に沿って流れ、下流側接続部202に至る。
続いて、図16を参照しながら、第2実施形態である冷却システム100Aの具体的構成例について説明する。図16に示されるように、副排気通路28は、再循環通路26の戻り接続部261よりも冷却装置17寄りの部分から上流側接続部201までに至る部分と、冷却装置27とを内包し外側に位置するように設けられている。
主排気通路20を流れる排ガスは、排気バルブ21の開度状況に応じて、上流側接続部201から再循環通路26に流れ込む。再循環通路26を流れる排ガスは、冷却装置27において冷媒である水と熱交換しながら戻り接続部261に向かって流れる。再循環通路26を流れる排ガスは、戻り接続部261に繋がれた接続通路281から副排気通路28に流入する。副排気通路28に流れこんだ排ガスは、再循環通路26及び冷却装置27の外側に沿って流れ、下流側接続部202に至る。
図17に示されるように、図15及び図16のXVII-XVII断面では、円形管状の冷却装置27の周囲を円形管状の副排気通路28が囲んでいる。冷却装置27の内部においては、水の通路を形成する冷媒通路部271と、排ガスの通路を形成する排ガス通路部272が形成されている。排ガス通路部272は、再循環通路26の途上に位置するように設けられている。冷媒通路部271は、水が通る複数のチューブと、複数のチューブ間に設けられたフィンとを有している。冷媒通路部271は、冷媒循環通路34の途上に位置するように設けられている。
図18に示されるように、図15及び図16のXVII-XVII断面の変形例では、矩形管状の冷却装置27Dの周囲を矩形管状の副排気通路28Dが囲んでいる。冷却装置27Dの内部においては、水の通路を形成する冷媒通路部271Dと、排ガスの通路を形成する排ガス通路部272Dが形成されている。断面形状が円形ではなく矩形であること以外は図17を参照しながら説明した内容と同じであるので、その説明を省略する。
図19及び図20に示されるように、矩形管状の冷却装置27Eの周囲を矩形管状の副排気通路28Eが囲むように構成することもできる。冷却装置27Eは、水の通路を形成する冷媒通路部271Eと、排ガスの通路を形成する排ガス通路部272Eが形成されている。排ガス通路部272Eは、複数の管路によって構成されており、再循環通路26の途上に位置するように設けられている。冷媒通路部271Eは、排ガス通路部272Eの周囲を水が流れるように構成されている。
図15から図20を参照しながら説明した具体例は、技術的に矛盾しないかぎり、第1実施形態から第4実施形態に適用することができる。
このように、副排気通路28を、冷却装置27及び再循環通路26の少なくとも一部を内包するように外側に設けることで、再循環通路26を流れる排ガスの放熱を抑制し、高温状態のまま冷却装置27に供給することができる。冷却装置27において排ガスと熱交換する冷媒の温度を高めることができるので、内燃機関1の早期暖機を実現することができる。
以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。
Claims (11)
- 内燃機関を冷却する冷却システムであって、
前記内燃機関(1)から排出される排ガスが通る主排気通路(20)の上流側接続部(201)に接続され、少なくともEGR要求に応じた排ガス量を前記内燃機関への吸気通路(10)に還流させる再循環通路(26)と、
前記再循環通路に設けられ、前記内燃機関を循環する冷媒と排ガスとの間で熱交換を行う冷却装置(27)と、を備え、
前記主排気通路の前記上流側接続部よりも下流側の下流側接続部(202)に接続され、前記冷却装置を通過した排ガスを前記再循環通路から前記主排気通路に戻す副排気通路(28)が設けられており、
更に、前記再循環通路において、前記副排気通路が接続されている戻り接続部(261)よりも前記吸気通路側に、前記吸気通路へ流れる排ガスの流量を調整するEGRバルブ(23)と、
前記主排気通路において、前記上流側接続部と前記下流側接続部との間に、前記再循環通路へ流れる排ガスの流量を調整する排気バルブ(21)と、が設けられている、冷却システム。 - 請求項1に記載の冷却システムであって、
前記上流側接続部及び前記下流側接続部を挟んで、前記主排気通路の上流側に上流側触媒(24)が設けられ、前記主排気通路の下流側に下流側触媒(25)が設けられている、冷却システム。 - 請求項1又は2に記載の冷却システムであって、
更に、前記副排気通路に、前記副排気通路へ流れる排ガスの流量を調整する副排気バルブ(22)を備える、冷却システム。 - 請求項1又は2に記載の冷却システムであって、
更に、前記EGRバルブ及び前記排気バルブの開度を調整する制御装置(40)を備え、
前記制御装置は、
前記冷媒の温度を取得する冷媒温度取得部(401)と、
前記冷媒温度取得部が取得した温度に基づいて前記内燃機関の暖機状態を判断する暖機判断部(402)と、
前記暖機判断部が判断した暖機状態に基づいて、前記EGRバルブ及び前記排気バルブの少なくとも一方の開度を調整するバルブ調整部(403)と、を備える、冷却システム。 - 請求項3に記載の冷却システムであって、
更に、前記EGRバルブ、前記排気バルブ、及び前記副排気バルブの開度を調整する制御装置(40A)を備え、
前記制御装置は、
前記冷媒の温度を取得する冷媒温度取得部(401A)と、
前記冷媒温度取得部が取得した温度に基づいて前記内燃機関の暖機状態を判断する暖機判断部(402A)と、
前記暖機判断部が判断した暖機状態に基づいて、前記EGRバルブ、前記排気バルブ、及び前記副排気バルブの少なくとも一つの開度を調整するバルブ調整部(403A)と、を備える、冷却システム。 - 請求項1に記載の冷却システムであって、
前記上流側接続部及び前記下流側接続部よりも下流側において、前記主排気通路に上流側触媒及び下流側触媒が設けられている、冷却システム。 - 請求項6に記載の冷却システムであって、
更に、前記副排気通路に、前記副排気通路へ流れる排ガスの流量を調整する副排気バルブ(22)と、
前記EGRバルブ、前記排気バルブ、及び前記副排気バルブの開度を調整する制御装置(40B)を備え、
前記制御装置は、
前記上流側触媒及び前記下流側触媒の暖機状態を判断する暖機判断部(402B)と、
前記暖機判断部が判断した暖機状態に基づいて、前記EGRバルブ、前記排気バルブ、及び前記副排気バルブの少なくとも一つの開度を調整するバルブ調整部(403B)と、を備える、冷却システム。 - 請求項7に記載の冷却システムであって、
前記制御装置は、更に、前記排ガスの温度を取得するガス温度取得部(401B)を備え、
前記暖機判断部は、前記ガス温度取得部が取得した温度に基づいて暖機状態を判断する、冷却システム。 - 請求項1から8のいずれか1項に記載の冷却システムであって、
更に、前記内燃機関と前記冷却装置との間で冷媒を循環させる冷媒循環通路34を備え、
前記冷媒循環通路には、前記内燃機関を通さずに前記冷却装置に冷媒を循環させるバイパス循環通路が設けられ、
前記バイパス循環通路には、ウォーターポンプ(35)が設けられている、冷却システム。 - 請求項1から9のいずれか1項に記載の冷却システムであって、
前記副排気通路は、前記冷却装置及び前記再循環通路の少なくとも一部を内包するように外側に設けられている、冷却システム。 - 内燃機関を冷却する冷却システムの制御装置であって、
温度取得部と、暖機判断部と、バルブ調整部と、を備え、
前記冷却システムは、
前記内燃機関(1)から排出される排ガスが通る主排気通路(20)の上流側接続部に接続され、少なくともEGR要求に応じた排ガス量を前記内燃機関への吸気通路(10)に還流させる再循環通路(26)と、
前記再循環通路に設けられ、前記内燃機関を循環する冷媒と排ガスとの間で熱交換を行う冷却装置(27)と、を備え、
前記主排気通路の前記上流側接続部よりも下流側の下流側接続部に接続され、前記冷却装置を通過した排ガスを前記再循環通路から前記主排気通路に戻す副排気通路(28)が設けられており、
更に、前記再循環通路において、前記副排気通路が接続されている戻り接続部よりも前記吸気通路側に、前記吸気通路へ流れる排ガスの流量を調整するEGRバルブ(23)と、
前記主排気通路において、前記上流側接続部と前記下流側接続部との間に、前記再循環通路へ流れる排ガスの流量を調整する排気バルブ(21)と、が設けられているものであり、
前記温度取得部は、前記冷媒の温度を取得し、
前記暖機判断部は、前記温度取得部が取得した温度に基づいて前記内燃機関の暖機状態を判断し、
前記バルブ調整部は、前記暖機判断部が判断した暖機状態に基づいて前記EGRバルブ及び前記排気バルブの少なくとも一方の開度を調整する、制御装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-132555 | 2016-07-04 | ||
JP2016132555A JP2018003719A (ja) | 2016-07-04 | 2016-07-04 | 冷却システム及び冷却システムの制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018008519A1 true WO2018008519A1 (ja) | 2018-01-11 |
Family
ID=60912749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/023971 WO2018008519A1 (ja) | 2016-07-04 | 2017-06-29 | 冷却システム及び冷却システムの制御装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018003719A (ja) |
WO (1) | WO2018008519A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109519261A (zh) * | 2018-11-26 | 2019-03-26 | 燕山大学 | 一种基于回路热管的汽车尾气余热回收装置 |
WO2021209778A1 (ja) * | 2020-04-14 | 2021-10-21 | 日産自動車株式会社 | 熱交換システム制御方法及び熱交換システム制御装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005113761A (ja) * | 2003-10-07 | 2005-04-28 | Toyota Motor Corp | 内燃機関の冷却装置 |
JP2005528554A (ja) * | 2002-06-04 | 2005-09-22 | ヴァレオ テルミーク モツール | 排気の熱制御装置を含む内燃エンジンの排気ライン |
JP2008121617A (ja) * | 2006-11-15 | 2008-05-29 | Toyota Motor Corp | 内燃機関の排気還流装置 |
JP2011047305A (ja) * | 2009-08-26 | 2011-03-10 | Toyota Motor Corp | 内燃機関 |
JP2012219777A (ja) * | 2011-04-13 | 2012-11-12 | Nippon Soken Inc | 内燃機関の排気再循環装置 |
WO2014148584A1 (ja) * | 2013-03-22 | 2014-09-25 | 日本碍子株式会社 | 熱交換器 |
US20150121848A1 (en) * | 2013-11-05 | 2015-05-07 | Ford Global Technologies, Llc | Exhaust throttling for cabin heating |
-
2016
- 2016-07-04 JP JP2016132555A patent/JP2018003719A/ja active Pending
-
2017
- 2017-06-29 WO PCT/JP2017/023971 patent/WO2018008519A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005528554A (ja) * | 2002-06-04 | 2005-09-22 | ヴァレオ テルミーク モツール | 排気の熱制御装置を含む内燃エンジンの排気ライン |
JP2005113761A (ja) * | 2003-10-07 | 2005-04-28 | Toyota Motor Corp | 内燃機関の冷却装置 |
JP2008121617A (ja) * | 2006-11-15 | 2008-05-29 | Toyota Motor Corp | 内燃機関の排気還流装置 |
JP2011047305A (ja) * | 2009-08-26 | 2011-03-10 | Toyota Motor Corp | 内燃機関 |
JP2012219777A (ja) * | 2011-04-13 | 2012-11-12 | Nippon Soken Inc | 内燃機関の排気再循環装置 |
WO2014148584A1 (ja) * | 2013-03-22 | 2014-09-25 | 日本碍子株式会社 | 熱交換器 |
US20150121848A1 (en) * | 2013-11-05 | 2015-05-07 | Ford Global Technologies, Llc | Exhaust throttling for cabin heating |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109519261A (zh) * | 2018-11-26 | 2019-03-26 | 燕山大学 | 一种基于回路热管的汽车尾气余热回收装置 |
CN109519261B (zh) * | 2018-11-26 | 2021-06-08 | 燕山大学 | 一种基于回路热管的汽车尾气余热回收装置 |
WO2021209778A1 (ja) * | 2020-04-14 | 2021-10-21 | 日産自動車株式会社 | 熱交換システム制御方法及び熱交換システム制御装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2018003719A (ja) | 2018-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6266393B2 (ja) | 内燃機関の冷却装置 | |
US9903259B2 (en) | Cooling apparatus for internal combustion engine | |
JP6272094B2 (ja) | 内燃機関の冷却装置 | |
JP6378055B2 (ja) | 内燃機関の冷却制御装置 | |
US10161361B2 (en) | Method for operating a coolant circuit | |
US20160363038A1 (en) | Heat exchange apparatus of vehicle | |
WO2017217462A1 (ja) | 車両用内燃機関の冷却装置及び冷却装置の制御方法 | |
KR101637779B1 (ko) | 차량의 배기열 회수 장치 및 방법 | |
JP6246623B2 (ja) | 内燃機関の冷却装置 | |
BR102015031167B1 (pt) | Dispositivo de controle para motor de combustão interna | |
WO2018008519A1 (ja) | 冷却システム及び冷却システムの制御装置 | |
WO2016043229A1 (ja) | 冷却システムの制御装置及び冷却システムの制御方法 | |
US20150053777A1 (en) | Water-cooling apparatus for engine | |
JP5341713B2 (ja) | エンジンの冷却系システムおよびその制御方法 | |
JP5490987B2 (ja) | エンジンの冷却装置 | |
KR102261380B1 (ko) | 통합유량제어 밸브를 적용한 차량 열관리 시스템 및 냉각회로 제어 방법 | |
JP2005003134A (ja) | 暖機制御装置 | |
US20130306004A1 (en) | Cooling system | |
JP6658495B2 (ja) | エンジンの排気還流装置 | |
JP2013124546A (ja) | 車両の冷却装置 | |
JP2019127836A (ja) | 冷却システム及び冷却システムの制御方法 | |
WO2022184021A1 (zh) | 车辆及其发动机 | |
JP6443728B2 (ja) | エンジンの排熱回収システム | |
JP6518757B2 (ja) | 内燃機関の冷却装置 | |
JP2016008588A (ja) | 車両用内燃機関の冷却装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17824124 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17824124 Country of ref document: EP Kind code of ref document: A1 |