WO2021209778A1 - 熱交換システム制御方法及び熱交換システム制御装置 - Google Patents

熱交換システム制御方法及び熱交換システム制御装置 Download PDF

Info

Publication number
WO2021209778A1
WO2021209778A1 PCT/IB2020/000343 IB2020000343W WO2021209778A1 WO 2021209778 A1 WO2021209778 A1 WO 2021209778A1 IB 2020000343 W IB2020000343 W IB 2020000343W WO 2021209778 A1 WO2021209778 A1 WO 2021209778A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
flow rate
passage
heat exchange
adjusting mechanism
Prior art date
Application number
PCT/IB2020/000343
Other languages
English (en)
French (fr)
Inventor
永井宏幸
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to PCT/IB2020/000343 priority Critical patent/WO2021209778A1/ja
Publication of WO2021209778A1 publication Critical patent/WO2021209778A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to the control of a heat exchange system used in an internal combustion engine.
  • An exhaust gas recirculation system that recirculates engine exhaust gas to the intake passage is known. Then, in WO2015 / 088224, a heat exchanger for lowering the temperature of the recirculated exhaust gas is used as an exhaust heat recovery device for recovering the heat of the exhaust gas by heat exchange between the exhaust gas and the engine cooling water. A heat exchange system that also uses is disclosed.
  • the controller uses a plurality of valves to adjust the flow path of the exhaust gas.
  • the operation requirement of the exhaust gas recirculation system is not taken into consideration when controlling the opening degree of a plurality of valves, that is, when changing the amount of exhaust gas flowing into the exhaust heat recovery device. ..
  • the pressure at the outlet of the heat exchanger fluctuates as the opening degree of a plurality of valves changes.
  • the exhaust gas recirculation rate may fluctuate. If the exhaust gas recirculation rate fluctuates, the combustion stability of the engine will decrease.
  • the exhaust heat recovery device in a heat exchange system in which a heat exchanger for lowering the temperature of the exhaust gas to be recirculated is also used as an exhaust heat recovery device, the exhaust heat recovery device can be used without lowering the combustion stability of the engine.
  • the purpose is to be able to change the flow rate of exhaust gas passing through.
  • the exhaust passage of the engine includes a heat exchange passage provided with a heat exchanger that exchanges heat between the exhaust and the liquid, a bypass passage that bypasses the heat exchanger, and a heat exchange passage and a bypass passage. It is equipped with a first flow rate adjusting mechanism that adjusts the exhaust flow rate of the engine, and further includes an exhaust recirculation passage that recirculates exhaust from the outlet side of the heat exchanger of the heat exchange passage to the intake passage of the engine, and an exhaust flow rate that passes through the exhaust recirculation passage.
  • a heat exchange system control method for controlling a heat exchange system including a second flow rate adjusting mechanism for adjusting the temperature, a first flow rate adjusting mechanism, and a control unit for controlling the second flow rate adjusting mechanism is provided.
  • the control unit when the exhaust flow rate flowing into the heat exchanger is changed, the control unit operates the first flow rate adjusting mechanism and causes the second flow rate adjusting mechanism to operate the exhaust gas accompanying the operation of the first flow rate adjusting mechanism. Operate in a direction that cancels changes in the exhaust flow rate passing through the return passage.
  • FIG. 1 is a schematic view showing a heat exchange system according to an embodiment of the present invention.
  • FIG. 2 is an operation mode map for warm-up operation.
  • FIG. 3 is an operation mode map for after warming up.
  • FIG. 4 is a diagram showing a state of each valve mechanism and an exhaust flow in the exhaust heat recovery region.
  • FIG. 5 is a diagram showing a state of each valve mechanism and an exhaust flow in the boundary region.
  • FIG. 6 is a diagram showing a state of each valve mechanism and an exhaust flow in the overlapping region.
  • FIG. 7 is a diagram showing a state of each valve mechanism and an exhaust flow in the non-EGR region.
  • FIG. 8 is a diagram showing a state of each valve mechanism and an exhaust flow in the EGR region.
  • FIG. 9 is a timing chart of the operating state from the start of the engine in the cold state to the end of warming up of the engine.
  • FIG. 10 is a diagram showing the relationship between the heat exchanger outlet pressure and the opening degree of the first valve mechanism.
  • FIG. 11 is a diagram showing the relationship between the EGR rate and the opening degree of the first valve mechanism.
  • FIG. 12 is a flowchart showing an opening degree control routine of the first valve mechanism and the second valve mechanism.
  • FIG. 13 is a first timing chart when the control routine of FIG. 12 is executed.
  • FIG. 14 is a second timing chart when the control routine of FIG. 12 is executed.
  • FIG. 1 is a schematic view showing a heat exchange system 100 according to an embodiment of the present invention.
  • the heat exchange system 100 is a system applied to a vehicle.
  • the heat exchange system 100 heat exchanges with a heat exchange passage 14 provided with a heat exchanger 13 for heat exchange between exhaust and liquid on the upstream side of the main catalyst 12 as an underfloor catalyst in the exhaust passage 11 of the engine 10.
  • a bypass passage 15 that bypasses the passage 14 is provided.
  • the heat exchange system 100 is connected to the downstream side of the heat exchanger 13 in the heat exchange passage 14, and returns a part of the exhaust to the intake passage 16 from the outlet side of the heat exchanger 13 in the heat exchange passage 14.
  • a passage 17 is provided.
  • the liquid is cooling water.
  • the cooling water here means a liquid refrigerant that cools the engine.
  • the engine 10 in this embodiment is used as a drive source for a series hybrid vehicle. That is, the output generated by the engine 10 is used to drive a generator (not shown), and the electric power generated by the generator is charged into a battery (not shown).
  • the heat exchanger 13 has a configuration in which an exhaust gas flow path through which exhaust gas passes (not shown) and a cooling water flow path through which cooling water of the engine 10 passes (not shown) are adjacent to each other. Heat exchange is performed between the exhaust gas flowing through the gas flow path and the cooling water flowing through the cooling water flow path.
  • the main catalyst 12 is composed of any one of a NOx storage reduction catalyst, an oxidation catalyst, and a three-way catalyst, or a combination thereof.
  • the sub-catalyst 18 is provided near the engine 10 in the exhaust passage 11, but the sub-catalyst 18 does not necessarily have to be provided. Further, when there is a sub-catalyst 18, the main catalyst 12 does not necessarily have to be provided.
  • a first valve mechanism 22 as a first flow rate adjusting mechanism is provided at the confluence of the heat exchange passage 14 and the bypass passage 15.
  • the first valve mechanism 22 in this embodiment is a three-way valve.
  • the first valve mechanism 22 may be composed of two valves, a valve that opens and closes the bypass passage 15 and a valve that opens and closes the heat exchange passage 14. In this case, if the opening degree of one valve is increased, the opening degree of the other valve is decreased to achieve the same effect as in the case of the three-way valve.
  • An exhaust recirculation valve 21 is arranged in the exhaust recirculation passage 17 as a second flow rate adjusting mechanism for adjusting the flow rate of the exhaust gas passing through the exhaust recirculation passage 17.
  • the exhaust recirculation valve 21 is referred to as a second valve mechanism 21.
  • the second valve mechanism 21 in this embodiment is a butterfly valve. A valve of another type may be used as the second valve mechanism 21.
  • the second flow rate adjusting mechanism may be a differential pressure generation valve 25 arranged on the upstream side of the intake flow from the confluence of the exhaust return passage 17 and the intake passage 16 instead of the exhaust return valve 21.
  • the intake passage 16 is provided with a turbocharger 23 on the downstream side of the confluence with the exhaust / return passage 17, and a throttle chamber 24 is provided on the downstream side of the turbocharger 23.
  • the flow rate of the exhaust flowing through the heat exchange passage 14, the bypass passage 15, and the exhaust return passage 17 can be adjusted by the valve mechanisms 21 and 22, respectively.
  • the heat exchange system 100 includes a controller 30 that controls the operation of the valve mechanisms 21 and 22 and the throttle chamber 24.
  • the controller 30 of the present embodiment is configured to control the operation of the engine 10 in addition to the heat exchange system 100.
  • a controller that controls the heat exchange system 100 and a controller that controls the engine 10 may be provided separately.
  • the controller 30 is composed of a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an entry / exit interface, a bus connecting these, and the like. It is also possible to configure the controller 30 with a plurality of microcomputers.
  • the controller 30 controls the heat exchange system 100 by the CPU reading and executing the program stored in the ROM.
  • the controller 30 detects a signal from the temperature sensor 20 that detects the temperature of the cooling water flowing into the heat exchanger 13 (hereinafter, also referred to as the heat exchanger inlet water temperature) and the cooling water temperature immediately after the engine 10 exits. A signal or the like from the temperature sensor 19 is input.
  • the heat exchange system 100 is configured as described above, and is controlled by the controller 30 so as to operate in an operation mode according to the state of the vehicle.
  • FIG. 2 is an operation mode map during warm-up operation after the engine 10 is cold-started.
  • the vertical axis is the net mean effective pressure BMEP corresponding to the engine load, and the horizontal axis is the engine speed Ne.
  • an exhaust heat recovery region (region A in the figure) is set in a region having a low medium rotation speed and a low medium load.
  • the waste heat recovery region the heat of the exhaust is recovered to the liquid by exchanging heat between the exhaust and the cooling water in the heat exchanger 13. The purpose of recovering the waste heat is to promote the temperature rise of the cooling water.
  • EGR region region D in the figure
  • EGR is an abbreviation for Exhaust Gas Recirculation. The purpose of executing EGR is to suppress an increase in the combustion temperature in the cylinder of the engine 10, reduce pumping loss, and the like.
  • the low to medium rotation speed and low load region of the EGR region D overlaps with the exhaust heat recovery region A (region C in the figure). This area C is referred to as an overlapping area C.
  • the region other than the EGR region D is referred to as a non-EGR region E, and the boundary between the heat recovery region A and the region where heat recovery is not performed is referred to as a boundary region B.
  • FIG. 3 is an operation mode map after the warm-up operation of the engine 10 is completed.
  • the vertical axis and the horizontal axis are the same as those in FIG.
  • the difference from FIG. 2 is that there is no exhaust heat recovery region A. This is because it is not necessary to raise the temperature of the cooling water until the heat is recovered from the exhaust gas of the engine 10 after the warm-up operation is completed.
  • 4 to 8 are diagrams for explaining the operation of the first valve mechanism 22 and the second valve mechanism 21 in each operating region shown in FIGS. 2 and 3.
  • the arrows indicate the exhaust flow.
  • FIG. 4 shows the states of the valve mechanisms 21 and 22 and the exhaust flow in the exhaust heat recovery region A.
  • the controller 30 controls the first valve mechanism 22 so that the communication between the bypass passage 15 and the main catalyst 12 is cut off and the heat exchange passage 14 and the main catalyst 12 are in communication with each other. This state is referred to as a state in which the first valve mechanism 22 is closed. Further, the controller 30 controls the second valve mechanism 21 so as to block the flow path of the exhaust / return passage 17. This state is referred to as a state in which the second valve mechanism 21 is closed.
  • FIG. 5 shows the states of the valve mechanisms 21 and 22 and the exhaust flow in the boundary region B.
  • the controller 30 controls the first valve mechanism 22 at an intermediate opening degree and the second valve mechanism 21 at a closed state.
  • the temperature drops due to heat exchange with the cooling water. Therefore, as shown in FIG. 5, when a part of the exhaust gas flows into the main catalyst 12 through the bypass passage 15, the temperature of the exhaust gas flowing into the main catalyst 12 becomes higher than that in the state of FIG. 4, and the main catalyst The temperature rise of 12 is promoted.
  • FIG. 6 shows the states of the valve mechanisms 21 and 22 and the exhaust flow in the overlapping region C.
  • the controller 30 controls the first valve mechanism 22 with the intermediate opening degree and the second valve mechanism 21 with the second valve mechanism 21 open.
  • EGR can be executed while performing exhaust heat recovery.
  • FIG. 7 shows the states of the valve mechanisms 21 and 22 and the exhaust flow in the non-EGR region E.
  • the controller 30 controls the first valve mechanism 22 in the open state and the second valve mechanism 21 in the closed state.
  • the exhaust does not flow through the heat exchange passage 14 and the exhaust return passage 17, but flows through the bypass passage 15.
  • FIG. 8 shows the states of the valve mechanisms 21 and 22 and the exhaust flow in the EGR region D.
  • the controller 30 controls the first valve mechanism 22 and the second valve mechanism 21 in an open state.
  • a part of the exhaust flows into the heat exchanger 13, exchanges heat with the cooling water, and then returns to the intake passage 16.
  • the heat exchanger 13 functions as an EGR cooler for cooling the exhaust gas.
  • the controller 30 starts the engine 10. At this time, the controller 30 controls the first valve mechanism 22 and the second valve mechanism 21 in the state shown in FIG. This is to avoid a decrease in the exhaust temperature due to exhaust heat recovery and to quickly raise the temperature of the main catalyst 12.
  • the engine speed after starting is maintained at the required exhaust speed.
  • the exhaust required rotation speed is the engine rotation speed for warming up the main catalyst 12.
  • the required exhaust rotation speed is set in consideration of the exhaust purification function and the time until the active state is reached. Generally, the required exhaust rotation speed is lower than the engine rotation speed determined from the fuel efficiency performance and the exhaust performance after activation.
  • the cooling water temperature referred to here is the temperature immediately after the engine 10 is discharged.
  • the exhaust temperature referred to here is the temperature of the exhaust gas at the confluence of the heat exchange passage 14 and the bypass passage 15 downstream of the heat exchanger 13.
  • the controller 30 controls the engine rotation speed to an engine rotation speed that satisfies the requirements for fuel consumption and emission. Further, the controller 30 controls the first valve mechanism 22 and the second valve mechanism 21 to the state shown in FIG. This is because the temperature of the cooling water is raised by recovering the exhaust heat while raising the temperature of the main catalyst 12.
  • the controller 30 controls the first valve mechanism 22 and the second valve mechanism 21 to the state shown in FIG. 6 to start the EGR.
  • the friction is larger than in the warm state, so that when EGR is performed, combustion may become unstable. Therefore, normally, whether or not to permit the execution of EGR should be determined based on the temperature of the engine 10, but in the present embodiment, it is based on the cooling water temperature that correlates with the temperature of the engine 10. to decide.
  • the controller 30 controls the first valve mechanism 22 and the second valve mechanism 21 to the state shown in FIG. After the timing T3, the controller 30 intermittently operates the engine 10 according to the state of charge of the battery or the like. Along with this, the cooling water temperature and the exhaust temperature are increased or maintained while the engine 10 is operating, and are decreased or maintained when the engine 10 is stopped.
  • FIG. 10 shows the relationship between the pressure at the outlet of the heat exchanger 13 (heat exchanger outlet pressure in the figure) and the opening degree of the first valve mechanism 22 (valve opening degree in the drawing).
  • FIG. 11 shows the relationship between the EGR rate and the opening degree of the first valve mechanism 22 (valve opening degree in the drawing) when the opening degree of the second valve mechanism 21 is constant.
  • the larger the opening degree of the first valve mechanism 22 in other words, the larger the opening area of the flow path from the outlet of the heat exchanger 13 to the main catalyst 12, the higher the heat exchanger outlet pressure.
  • the larger the opening degree of the first valve mechanism 22 the larger the exhaust flow rate passing through the heat exchanger 13.
  • the higher the heat exchanger outlet pressure the larger the differential pressure from the intake passage 16, so that the exhaust flow rate passing through the second valve mechanism 21 also increases.
  • the larger the opening degree of the first valve mechanism 22 the higher the EGR rate. Due to the above characteristics, when the opening degree of the first valve mechanism 22 is changed, the EGR rate changes even if the opening degree of the second valve mechanism 21 is constant.
  • the controller 30 sets the first valve mechanism 22 and the second valve mechanism 21 below in order to accurately control the EGR rate and the exhaust heat recovery amount. Control as explained in.
  • FIG. 12 is a flowchart showing an opening degree control routine of the first valve mechanism 22 and the second valve mechanism 21 executed by the controller 30. This control routine is pre-programmed in the controller 30.
  • step S10 the controller 30 determines whether or not there is an EGR request, executes the process of step S20 if there is a request, and executes the process of step S50 if there is no request.
  • the controller 30 determines that an EGR request is made when the operating point of the engine 10 is in the overlapping region C or the EGR region D in FIG. 2 and the cooling water temperature is equal to or higher than the EGR permitted temperature.
  • step S20 the controller 30 determines whether or not there is a request for an increase in the amount of exhaust heat recovered by the heat exchanger 13, and if there is a request for an increase, the process of step S30 is executed, and if not, the process of step S50 is executed. For example, when it is necessary to raise the cooling water temperature further or when it is necessary to lower the exhaust temperature, it is determined that there is a demand for increasing the exhaust heat recovery amount. Even if there is a request to start the exhaust heat recovery in a state where the exhaust heat recovery is not performed, it is judged that there is an increase request.
  • step S30 the controller 30 reduces the opening degree of the first valve mechanism 22.
  • the exhaust flow rate passing through the heat exchanger 13 increases.
  • the target opening degree of the first valve mechanism 22 is set based on the target exhaust heat recovery amount, and the first valve mechanism 22 is driven toward the target opening degree. This is done by operating the actuator.
  • step S40 the controller 30 reduces the opening degree of the second valve mechanism 21. At this time, the opening degree of the differential pressure generation valve 25 is not changed.
  • the controller 30 increases the opening degree of the differential pressure generating valve 25. That is, here, the second valve mechanism 21 is controlled in a direction in which the exhaust gas is less likely to be returned to the intake passage 16. This is because the heat exchanger outlet pressure increases due to the process of step S30 and the exhaust gas is likely to be recirculated. Therefore, in order to suppress the change in the EGR rate, the exhaust gas does not easily flow through the second valve mechanism 21. This is because it is necessary to control. At this time, the opening degree of the exhaust return valve is not changed.
  • the opening degree of the second valve mechanism 21 is feedback-controlled so that the EGR rate maintains the target value, for example, in response to a change in the opening degree of the first valve mechanism 22.
  • the EGR ratio is the ratio of the amount of exhaust gas recirculated as EGR gas to the amount of fresh air taken into the engine 10.
  • the amount of EGR gas can be calculated based on the difference in pressure between the upstream and downstream of the second valve mechanism 21 (also referred to as the differential pressure) and the opening area of the second valve mechanism 21.
  • step S50 the controller 30 determines whether or not there is a request to reduce the exhaust heat recovery amount, executes the process of step S60 if there is a request for reduction, and ends this routine if not. For example, when it is necessary to suppress an increase in the cooling water temperature or when it is necessary to increase the exhaust temperature, it is determined that there is a request for an increase in the amount of exhaust heat recovered.
  • step S60 the controller 30 increases the opening degree of the first valve mechanism 22. As a result, the exhaust flow rate passing through the heat exchanger 13 is reduced.
  • the opening degree control of the first valve mechanism 22 is the same as in step S30.
  • step S70 the controller 30 increases the opening degree of the second valve mechanism 21.
  • the controller 30 reduces the opening degree of the differential pressure generating valve 25. That is, here, the second valve mechanism 21 is controlled in a direction in which the exhaust gas is easily returned to the intake passage 16. This is because the heat exchanger outlet pressure is lowered by the process of step S60 and the exhaust gas is difficult to recirculate. Therefore, in order to suppress the change in the EGR rate, the exhaust gas easily flows through the second valve mechanism 21. This is because it is necessary to control the direction.
  • the control of the opening degree of the second valve mechanism 21 is the same as in step S40.
  • step S80 the controller 30 determines whether or not there is a request for increasing the EGR rate, executes the process of step S90 if there is an increase request, and executes the process of step S110 if there is no request for increase.
  • the amount of exhaust gas that can be introduced as EGR gas increases as the cooling water temperature increases. Therefore, for example, when the cooling water temperature rises and the amount of exhaust gas that can be introduced increases, the controller 30 determines that there is a request for an increase in the EGR rate.
  • the opening degree of the second valve mechanism 21 is increased in step S90, and the opening degree of the first valve mechanism 22 is increased in step S100.
  • the threshold value here is, for example, the active temperature.
  • the opening degree of the second valve mechanism 21 is controlled to an opening degree according to the target EGR rate based on the relationship between the opening degree and the EGR rate.
  • the opening degree of the first valve mechanism 22 is controlled with the opening degree, which is the amount of exhaust heat recovered according to the increased EGR rate, as a target value.
  • step S110 the controller 30 determines whether or not there is a request for reduction of the EGR rate, executes the process of step S120 if there is a request for reduction, and ends this routine if not. For example, when the amount of exhaust gas that can be introduced decreases due to a decrease in the cooling water temperature, the controller 30 determines that there is a request for a decrease in the EGR rate.
  • the opening degree of the second valve mechanism 21 is reduced in step S120, and the opening degree of the first valve mechanism 22 is reduced in step S130. This is because when the EGR rate is reduced, the temperature of the exhaust gas discharged from the engine 10 rises, so that the amount of exhaust heat recovered is increased to maintain the temperature of the exhaust gas flowing into the main catalyst 12.
  • the control of the opening degree of the first valve mechanism 22 and the second valve mechanism 21 is the same as when there is a request to increase the EGR rate.
  • FIG. 13 and 14 are timing charts when the above-mentioned control is executed.
  • FIG. 13 shows a pattern in which the amount of exhaust heat recovered is increased or decreased while the EGR rate is constant
  • FIG. 14 shows a pattern in which the EGR rate is increased or decreased while recovering exhaust heat.
  • the timing T20 in FIG. 13 corresponds to the timing T2 in FIG. In FIG. 13, the EGR rate and the operating point of the engine 10 are constant. That is, the temperature of the exhaust discharged from the engine 10 and flowing into the heat exchange system (heat exchange system inlet gas temperature) and the exhaust flow rate also flowing into the heat exchange system (heat exchange system inlet gas flow rate) are constant.
  • the opening degree of the first valve mechanism 22 begins to decrease.
  • the exhaust flow rate (heat exchanger gas flow rate) of the heat exchange passage 14 increases, and as a result, the heat exchange amount in the heat exchanger 13 increases.
  • the temperature of the exhaust flowing into the main catalyst 12 heat exchange system outlet gas temperature
  • the pressure at the outlet of the heat exchanger 13 rises.
  • the exhaust gas easily flows into the exhaust gas return passage 17.
  • the opening degree of the second valve mechanism 21 is reduced according to the decrease in the opening degree of the first valve mechanism 22, the exhaust flow rate passing through the second valve mechanism 21 (second valve mechanism gas flow rate). Is kept constant, so that the EGR rate is kept constant.
  • the opening degree of the first valve mechanism 22 begins to increase.
  • the flow rate of the heat exchanger outlet gas increases, and as a result, the amount of heat exchange in the heat exchanger 13 decreases.
  • the amount of heat exchanged by the heat exchanger 13 decreases, the temperature of the gas at the outlet of the heat exchange system rises.
  • the heat exchanger outlet pressure decreases.
  • the gas flow rate of the second valve mechanism is kept constant, and as a result, the EGR rate is constant. Is maintained at.
  • the timing T30 in FIG. 14 corresponds to the timing T2 in FIG. 9 or the timing T24 in FIG.
  • the opening degree of the second valve mechanism 21 increases, which increases the flow rate of the gas passing through the second valve mechanism and increases the EGR rate.
  • the exhaust temperature decreases and the heat exchange system inlet gas temperature begins to decrease.
  • the heat exchanger gas flow rate is increased by decreasing the opening degree of the first valve mechanism 22.
  • the opening degree of the second valve mechanism 21 is reduced, whereby the flow rate of the gas passing through the second valve mechanism is reduced and the EGR rate is lowered.
  • the EGR rate decreases, the exhaust temperature rises, so that the temperature of the gas at the inlet of the heat exchange system begins to rise.
  • the temperature of the gas at the inlet of the heat exchange system rises, the amount of waste heat recovered becomes excessive if the gas flow rate of the heat exchanger remains constant. Therefore, in the present embodiment, when there is a request to reduce the EGR rate, the heat exchanger gas flow rate is reduced by increasing the opening degree of the first valve mechanism 22. As a result, although the temperature of the gas at the inlet of the heat exchange system rises, the flow rate of the heat exchanger gas decreases, so that an excessive increase in the amount of waste heat recovered can be suppressed.
  • the exhaust passage 11 of the engine 10 includes a heat exchange passage 14 provided with a heat exchanger 13 for exchanging heat between the exhaust and the liquid, a bypass passage 15 bypassing the heat exchanger 13, and heat.
  • a first flow rate adjusting mechanism 22 for adjusting the exhaust flow rate of the exchange passage 14 and the bypass passage 15 is provided, and exhaust is returned from the outlet side of the heat exchanger 13 of the heat exchange passage 14 to the intake passage 16 of the engine 10.
  • a heat exchange system control method for controlling the heat exchange system 100 including the above is provided.
  • the controller 30 when the exhaust flow rate flowing into the heat exchanger 13 is changed, the controller 30 operates the first flow rate adjusting mechanism 22 while operating the second flow rate adjusting mechanism 21 and the first flow rate adjusting mechanism. The operation is performed in a direction that cancels the change in the exhaust flow rate passing through the exhaust return passage 17 accompanying the operation of the 22. Thereby, when the exhaust heat is recovered while executing the EGR, the exhaust flow rate passing through the exhaust heat recovery device can be changed without lowering the combustion stability of the engine.
  • the controller 30 when the exhaust flow rate flowing into the heat exchanger 13 is changed while the exhaust gas is flowing through the exhaust recirculation passage 17, the controller 30 operates the first flow rate adjusting mechanism 22 to operate the heat exchanger. At the same time as changing the exhaust flow rate flowing into 13, the second flow rate adjusting mechanism 21 is operated to suppress the change in the exhaust flow rate passing through the exhaust return passage 17. As a result, when the amount of exhaust heat recovered is changed, the change in the EGR rate can be suppressed.
  • the controller 30 is either an exhaust recirculation valve 21 arranged in the exhaust recirculation passage 17 or a differential pressure generation valve 25 arranged upstream of the confluence portion of the intake passage 16 with the exhaust long flow passage 17. Operates as the second flow rate adjusting mechanism 21. As described above, the second valve mechanism 21 may be either the exhaust recirculation valve 21 or the differential pressure generation valve 25.
  • the controller 30 sets the 22 opening degree of the first flow rate adjusting mechanism to the main catalyst (exhaust purification catalyst) arranged in the exhaust passage 11 downstream from the confluence of the heat exchange passage 14 and the bypass passage 15.
  • the temperature of 12 is controlled within a range that does not fall below a preset threshold value. As a result, deterioration of emissions due to an excessive decrease in the temperature of the main catalyst 12 can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

熱交換システム制御方法は、エンジンの排気通路に排気と液体の熱交換を行なう熱交換器を備える熱交換通路と、熱交換器をバイパスするバイパス通路と、熱交換通路及びバイパス通路の排気流量を調節する第1流量調節機構と、を備え、さらに、熱交換通路の熱交換器の出口側からエンジンの吸気通路へ排気を還流させる排気還流通路と、排気還流通路を通過する排気流量を調節する第2流量調節機構と、第1流量調節機構及び第2流量調節機構を制御する制御部と、を備える熱交換システムを制御する。この制御方法において、熱交換器に流入する排気流量を変更する場合に、制御部は、第1流量調節機構を作動させつつ、第2流量調節機構を、第1流量調節機構の作動に伴う排気還流通路を通過する排気流量の変化を打ち消す方向に作動させる。

Description

熱交換システム制御方法及び熱交換システム制御装置
 本発明は、内燃機関に用いる熱交換システムの制御に関する。
 エンジンの排気ガスを吸気通路へ再循環させる排気再循環システムが知られている。そして、WO2015/088224号公報には、再循環させる排気ガスの温度を低下させるための熱交換器を、排気ガスとエンジン冷却水との熱交換により排気ガスの熱を回収する排熱回収器としても用いる熱交換システムが開示されている。
 上記文献では、コントローラが複数のバルブを用いて排気ガスの流動経路を調節している。しかし、上記文献に記載の制御では、複数のバルブの開度を制御する際、つまり排熱回収器に流入する排気ガス量を変更する際に、排気再循環システムの作動要求が考慮されていない。
 そのため、上記文献に記載の熱交換システムにおいて、排気再循環を実行しながら排熱回収量を変更しようとすると、複数のバルブの開度の変化に伴って熱交換器の出口の圧力が変動し、その結果、排気再循環率が変動するおそれがある。そして、排気再循環率が変動すると、エンジンの燃焼安定度の低下を招くこととなる。
 そこで本発明は、再循環させる排気ガスの温度を低下させるための熱交換器を、排熱回収器としても用いる熱交換システムにおいて、エンジンの燃焼安定度を低下させることなく、排熱回収器を通過する排気流量を変更し得ることを目的とする。
 本発明のある態様によれば、エンジンの排気通路に、排気と液体との熱交換を行なう熱交換器を備える熱交換通路と、熱交換器をバイパスするバイパス通路と、熱交換通路及びバイパス通路の排気流量を調節する第1流量調節機構とを備え、さらに、熱交換通路の熱交換器の出口側からエンジンの吸気通路へ排気を還流させる排気還流通路と、排気還流通路を通過する排気流量を調節する第2流量調節機構と、第1流量調節機構及び第2流量調節機構を制御する制御部と、を備える熱交換システムを制御する熱交換システム制御方法が提供される。当該制御方法において、熱交換器に流入する排気流量を変更する場合に、制御部は、第1流量調節機構を作動させつつ、第2流量調節機構を、第1流量調節機構の作動に伴う排気還流通路を通過する排気流量の変化を打ち消す方向に作動させる。
図1は、本発明の実施形態に係る熱交換システムを示す概略図である。 図2は、暖機運転中用の運転モードマップである。 図3は、暖気終了後用の運転モードマップである。 図4は、排熱回収領域における各バルブ機構の状態と排気の流れを示す図である。 図5は、境界領域における各バルブ機構の状態と排気の流れを示す図である。 図6は、重複領域における各バルブ機構の状態と排気の流れを示す図である。 図7は、非EGR領域における各バルブ機構の状態と排気の流れを示す図である。 図8は、EGR領域における各バルブ機構の状態と排気の流れを示す図である。 図9は、冷機状態でのエンジン始動からエンジンの暖機終了後にかけての運転状態についてのタイミングチャートである。 図10は、熱交換器出口圧力と第1バルブ機構の開度との関係を示す図である。 図11は、EGR率と第1バルブ機構の開度との関係を示す図である。 図12は、第1バルブ機構及び第2バルブ機構の開度制御ルーチンを示すフローチャートである。 図13は、図12の制御ルーチンを実行した場合の第1のタイミングチャートである。 図14は、図12の制御ルーチンを実行した場合の第2のタイミングチャートである。
 以下、図面を参照して、本発明の実施形態について説明する。
 図1は、本発明の実施形態に係る熱交換システム100を示す概略図である。
 熱交換システム100は、車両に適用されるシステムである。熱交換システム100は、エンジン10の排気通路11における床下触媒としてのメイン触媒12の上流側に、排気と液体との熱交換を行う熱交換器13が設けられた熱交換通路14と、熱交換通路14をバイパスするバイパス通路15と、を備える。また、熱交換システム100は、熱交換通路14における熱交換器13よりも下流側に接続され熱交換通路14の熱交換器13の出口側から吸気通路16に排気の一部を還流させる排気還流通路17を備える。本実施形態では、液体は冷却水である。ここでいう冷却水とは、エンジンを冷却する液状の冷媒を意味する。
 なお、本実施形態におけるエンジン10は、シリーズハイブリッド車両の駆動源として用いられる。つまり、エンジン10で発生する出力は、図示しない発電機を駆動するために使用され、発電機で発電した電力は図示しないバッテリに充電される。
 熱交換器13は、排気が通過する排気ガス流路(図示せず)と、エンジン10の冷却水が通過する冷却水流路(図示せず)とが隣り合う構成となっており、これにより排気ガス流路を流れる排気と冷却水流路を流れる冷却水との間で熱交換を行う。
 メイン触媒12は、NOx吸蔵還元触媒、酸化触媒、及び三元触媒のいずれか、又はこれらの組み合わせで構成される。本実施形態では、排気通路11におけるエンジン10の近くにサブ触媒18が設けられているが、サブ触媒18は必ずしも設けなくてもよい。また、サブ触媒18がある場合は、メイン触媒12は必ずしも設けなくてもよい。
 熱交換通路14とバイパス通路15との合流部には、第1流量調節機構としての第1バルブ機構22が設けられる。本実施形態における第1バルブ機構22は、三方弁である。
 なお、第1バルブ機構22を、バイパス通路15を開閉するバルブと熱交換通路14を開閉するバルブの2つのバルブで構成しても構わない。この場合、一方のバルブの開度を増大させたら、他方のバルブの開度を減少させることで、三方弁の場合と同様の作用を果たす。
 排気還流通路17には、排気還流通路17を通過する排気の流量を調節する第2流量調節機構としての排気還流弁21が配置される。本実施形態ではこの排気還流弁21を第2バルブ機構21と称する。本実施形態における第2バルブ機構21は、バタフライバルブである。なお、第2バルブ機構21として他の形式のバルブを用いても構わない。
 また、第2流量調節機構を、排気還流弁21ではなく、排気還流通路17と吸気通路16との合流部より吸気流れの上流側に配置される差圧生成弁25としてもよい。
 吸気通路16は、排気還流通路17との合流部より下流側にターボ過給機23を備え、ターボ過給機23の下流にはスロットルチャンバ24を備える。
 熱交換通路14、バイパス通路15、及び排気還流通路17を流れる排気の流量は、各バルブ機構21、22によりそれぞれ調節可能となっている。
 また、熱交換システム100は、各バルブ機構21、22及びスロットルチャンバ24の作動を制御するコントローラ30を備える。本実施形態のコントローラ30は、熱交換システム100に加えて、エンジン10の作動も制御するように構成される。熱交換システム100の制御を行うコントローラとエンジン10の制御を行うコントローラとを別々に設けてもよい。
 コントローラ30は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入出インターフェース、これらを接続するバス等を含んだマイクロコンピュータで構成される。コントローラ30を複数のマイクロコンピュータで構成することも可能である。コントローラ30は、CPUがROMに記憶されたプログラムを読み出して実行することで熱交換システム100の制御を行う。
 コントローラ30には、熱交換器13に流入する冷却水の温度(以下、熱交換器入口水温ともいう)を検出する温度センサ20からの信号と、エンジン10から出た直後の冷却水温を検出する温度センサ19からの信号等が入力される。
 熱交換システム100は上記のように構成されており、車両の状態に応じた運転モードで作動するように、コントローラ30よって制御される。
 図2は、エンジン10を冷機始動した後の暖機運転中における運転モードマップである。縦軸はエンジン負荷に相当する正味平均有効圧BMEPであり、横軸はエンジン回転速度Neである。図示する通り、低中回転速度かつ低中負荷の領域に排熱回収領域(図中の領域A)が設定されている。排熱回収領域では、熱交換器13において排気と冷却水との熱交換を行なうことにより、排気の熱を液体に回収する。排熱を回収する目的は、冷却水の温度上昇を促進させることである。
 また、図示する通り、エンジン10がWOT(Wide−Open Throttle)に近い領域と、正味平均有効圧BMEPがごく低い領域を除く領域に、排気還流通路17を介して吸気通路16に排気の一部を還流させるEGRを実行する領域(以下、EGR領域という)(図中の領域D)が設定されている。なお、EGRはExhaust Gas Recirculationの略である。EGRを実行する目的は、エンジン10のシリンダ内の燃焼温度の上昇の抑制、ポンピングロスの低下等である。
 EGR領域Dの低中回転速度かつ低負荷の領域は、排熱回収領域Aと重複する(図中の領域C)。この領域Cを重複領域Cと称する。
 また、EGR領域D以外の領域を非EGR領域E、熱回収領域Aと熱回収を行わない領域との境界を境界領域Bと称する。
 図3は、エンジン10の暖機運転が終了した後の運転モードマップである。縦軸及び横軸は図3と同様である。図2との相違点は、排熱回収領域Aがないことである。これは、暖機運転が終了すれば、エンジン10の排気ガスから熱を回収してまで冷却水の温度を高める必要がないからである。
 図4~図8は、図2及び図3に示した各運転領域における第1バルブ機構22及び第2バルブ機構21の動作を説明するための図である。各図において、矢印は排気の流れを示している。
 図4は、排熱回収領域Aにおける各バルブ機構21、22の状態と排気の流れを示している。排熱回収領域Aにおいてコントローラ30は、バイパス通路15とメイン触媒12との連通が遮断され、熱交換通路14とメイン触媒12とが連通した状態になるよう第1バルブ機構22を制御する。この状態を第1バルブ機構22が閉じた状態という。また、コントローラ30は、第2バルブ機構21を排気還流通路17の流路を塞ぐ状態に制御する。この状態を第2バルブ機構21が閉じた状態という。
 上記のように第1バルブ機構22を閉じ、第2バルブ機構21も閉じることにより、排気は熱交換通路14を通ってメイン触媒12に流入する。これにより、排気の熱が冷却水に回収されることとなり、冷却水の温度上昇が促進される。
 図5は、境界領域Bにおける各バルブ機構21、22の状態と排気の流れを示している。境界領域Bにおいて、コントローラ30は第1バルブ機構22を中間開度に、第2バルブ機構21を閉じた状態に、それぞれ制御する。排気は、熱交換器13を通過すると冷却水と熱交換をしたことで温度が低下する。したがって、図5に示すように排気の一部を、バイパス通路15を介してメイン触媒12に流入させると、図4の状態に比べてメイン触媒12に流入する排気の温度が高くなり、メイン触媒12の昇温が促進される。
 図6は、重複領域Cにおける各バルブ機構21、22の状態と排気の流れを示している。重複領域Cにおいて、コントローラ30は第1バルブ機構22を中間開度に、第2バルブ機構21を開いた状態に、それぞれ制御する。これにより、排熱回収を実行しつつEGRを実行することができる。
 図7は、非EGR領域Eにおける各バルブ機構21、22の状態と排気の流れを示している。非EGR領域において、コントローラ30は第1バルブ機構22を開いた状態に、第2バルブ機構21を閉じた状態にそれぞれ制御する。これにより、排気は熱交換通路14及び排気還流通路17を流れずに、バイパス通路15を流れることになる。
 図8は、EGR領域Dにおける各バルブ機構21、22の状態と排気の流れを示している。EGR領域Dにおいて、コントローラ30は、第1バルブ機構22及び第2バルブ機構21を開いた状態に制御する。これにより、排気の一部が熱交換器13に流入し、冷却水と熱交換をした後に吸気通路16に還流することになる。この際、熱交換器13は排気を冷却するEGRクーラとして機能する。
 次に、冷機状態でのエンジン始動から、エンジンの暖機が終了した後の運転状態(通常運転状態ともいう)にかけての制御について、図9のタイミングチャートを参照して説明する。
 エンジン10が冷機状態のタイミングT0において、コントローラ30はエンジン10を始動する。このとき、コントローラ30は第1バルブ機構22及び第2バルブ機構21を図7に示す状態に制御する。これは、排熱回収による排気温度の低下を回避して、速やかにメイン触媒12を昇温させるためである。
 始動後のエンジン回転速度は、排気要求回転速度に維持される。排気要求回転速度とは、メイン触媒12の暖機用のエンジン回転速度である。排気浄化用触媒が非活性の状態だと、活性状態に比べて浄化できる排気ガス量が少ない。一方、排気浄化用触媒に流入する排気ガス量が少ないほど、活性状態になるまでに要する時間が長くなる。そこで、排気浄化機能と活性状態になるまでの時間を考慮して、排気要求回転速度を設定する。一般的に、排気要求回転速度は、活性化後における燃費性能及び排気性能から定まるエンジン回転速度より低くなる。
 エンジン10を排気要求回転速度で運転する間、冷却水温と排気温度が上昇し続け、タイミングT1において、排気温度が触媒活性温度(図中のTemp3)に到達する。ここでいう冷却水温は、エンジン10から出た直後の温度である。また、ここでいう排気温度とは、熱交換器13より下流の、熱交換通路14とバイパス通路15との合流部における排気の温度である。
 排気温度が触媒活性温度Temp3に達したら、コントローラ30は、エンジン回転速度を燃費及びエミッションの要求を満たすエンジン回転速度に制御する。また、コントローラ30は第1バルブ機構22及び第2バルブ機構21を図5の状態に制御する。これは、メイン触媒12を昇温させつつ、排熱回収により冷却水温を上昇させるためである。
 そして、タイミングT2で冷却水温がEGR許可温度(Temp2)に達したら、コントローラ30は第1バルブ機構22及び第2バルブ機構21を図6の状態に制御して、EGRを開始する。エンジン10が冷機状態だと、暖気状態に比べてフリクションが大きいため、EGRを行うと燃焼が不安定になるおそれがある。したがって、本来であれば、EGRの実行を許可するか否かはエンジン10の温度に基づいて判断すべきことであるが、本実施形態では、エンジン10の温度と相関のある冷却水温に基づいて判断する。
 タイミングT3で冷却水温が暖機終了温度(図中のTemp1)に達したら、コントローラ30は第1バルブ機構22及び第2バルブ機構21を図7の状態に制御する。タイミングT3以降は、コントローラ30はエンジン10をバッテリの充電状態等に応じて断続的に作動させる。これに伴い、冷却水温及び排気温度は、エンジン10の作動中は上昇または維持され、停止中は低下または維持される。
 上記のタイミングT2からタイミングT3の間は、排熱回収を行いつつEGRを行うこととなる。この状況においては、EGR率を一定に維持しつつ排熱回収量を増大させる場合(第1パターン)、EGR率を一定に維持しつつ排熱回収量を減少させる場合(第2パターン)、及び排熱回収をしながらEGR率を変化させる場合(第3パターン)がある。これらのパターンにおいて、第1バルブ機構22または第2バルブ機構21の動かし方によっては、エンジン10の燃焼が不安定になるおそれがある。例えば、第1パターンにおいて、EGR率は一定ということで第2バルブ機構21の開度を変更せずに、排熱回収量を増大させるために第1バルブ機構22の開度を減少させて熱交換器13の出口からメイン触媒12への流路の開口面積を広げると、EGR率が上昇する。第2パターンでは、第1パターンと逆に第1バルブ機構22の開度を増大させることで、ECR率が低下する。
 上記のEGR率が変動する理由について、図10及び図11を参照して説明する。
 図10は、熱交換器13の出口における圧力(図中の熱交換器出口圧力)と第1バルブ機構22の開度(図中のバルブ開度)との関係を示している。図11は、第2バルブ機構21の開度を一定とした場合に、EGR率と第1バルブ機構22の開度(図中のバルブ開度)との関係を示している。
 図10に示す通り、第1バルブ機構22の開度が大きいほど、換言すると熱交換器13の出口からメイン触媒12への流路の開口面積が大きいほど、熱交換器出口圧力は高い。これは、第1バルブ機構22の開度が大きいほど、熱交換器13を通過する排気流量が多いためである。そして、熱交換器出口圧力が高いほど、吸気通路16との差圧は大きいので、第2バルブ機構21を通過する排気流量も多い。その結果、図11に示す通り、第1バルブ機構22の開度が大きいほど、EGR率が高い。上記の特性があることで、第1バルブ機構22の開度を変化させると、第2バルブ機構21の開度が一定でもEGR率が変化する。
 そこで本実施形態では、第1パターン、第2パターン及び第3パターンにおいて、EGR率及び排熱回収量を精度よく制御するために、コントローラ30が第1バルブ機構22及び第2バルブ機構21を以下に説明する通り制御する。
 図12は、コントローラ30が実行する、第1バルブ機構22及び第2バルブ機構21の開度制御ルーチンを示すフローチャートである。この制御ルーチンはコントローラ30に予めプログラムされている。
 ステップS10で、コントローラ30はEGR要求の有無を判断し、要求がある場合はステップS20の処理を実行し、ない場合はステップS50の処理を実行する。コントローラ30は、エンジン10の運転点が図2における重複領域CまたはEGR領域Dにあり、かつ冷却水温がEGR許可温度以上の場合にEGR要求ありと判断する。
 ステップS20で、コントローラ30は熱交換器13による排熱回収量の増大要求の有無を判断し、増大要求がある場合はステップS30の処理を実行し、ない場合はステップS50の処理を実行する。例えば、冷却水温をより上昇させる必要がある場合や、排気温度をより低下させる必要がある場合に、排熱回収量の増大要求があると判断する。なお、排熱回収を行っていない状態において排熱回収を開始する要求がある場合も、増大要求があると判断する。
 ステップS30で、コントローラ30は第1バルブ機構22の開度を減少させる。これにより熱交換器13を通過する排気流量が増大する。第1バルブ機構22の開度制御は、例えば、目標とする排熱回収量に基づいて第1バルブ機構22の目標開度を設定し、目標開度に向けて第1バルブ機構22を駆動するアクチュエータを作動させることにより行う。
 ステップS40で、コントローラ30は第2バルブ機構21の開度を減少させる。このとき、差圧生成弁25の開度は変更しない。なお、第2バルブ機構21として差圧生成弁25を用いる場合には、コントローラ30は差圧生成弁25の開度を増大させる。つまり、ここでは第2バルブ機構21を、排気が吸気通路16へ還流されにくくなる方向へ制御する。これは、ステップS30の処理によって熱交換器出口圧力が増大して排気が還流されやすい状態になるので、EGR率の変化を抑制するためには、第2バルブ機構21を排気が流れにくくなる方向に制御する必要があるためである。なお、このとき排気還流弁の開度は変更しない。第2バルブ機構21の開度は、例えば第1バルブ機構22の開度変化に応じてEGR率が目標値を維持するようフィードバック制御される。EGR率はエンジン10に吸入される新気量に対する、EGRガスとして還流される排気の量の割合である。EGRガス量は、第2バルブ機構21の上下流の圧力の差(差圧ともいう)と、第2バルブ機構21の開口面積とに基づいて算出可能である。
 ステップS50で、コントローラ30は排熱回収量の減少要求があるか否かを判断し、減少要求がある場合はステップS60の処理を実行し、ない場合は本ルーチンを終了する。例えば、冷却水温の上昇を抑制する必要がある場合や、排気温度を上昇させる必要がある場合に、排熱回収量の増大要求があると判断する。
 ステップS60で、コントローラ30は第1バルブ機構22の開度を増大させる。これにより熱交換器13を通過する排気流量が減少する。第1バルブ機構22の開度制御についてはステップS30と同様である。
 ステップS70で、コントローラ30は第2バルブ機構21の開度を増大させる。なお、第2バルブ機構21として差圧生成弁25を用いる場合には、コントローラ30は差圧生成弁25の開度を減少させる。つまり、ここでは第2バルブ機構21を、排気が吸気通路16へ還流され易くなる方向へ制御する。これは、ステップS60の処理によって熱交換器出口圧力が低下して排気が還流さ難い状態になるので、EGR率の変化を抑制するためには、第2バルブ機構21を排気が流れに易くなる方向に制御する必要があるためである。第2バルブ機構21の開度の制御についてはステップS40と同様である。
 ステップS80で、コントローラ30はEGR率の増大要求の有無を判断し、増大要求がある場合はステップS90の処理を実行し、ない場合はステップS110の処理を実行する。EGRガスとして導入可能な排気の量は、冷却水温が高くなると多くなる。したがって、例えば冷却水温が上昇して導入可能な排気の量が増大した場合に、コントローラ30はEGR率の増大要求があると判断する。
 コントローラ30は、EGR率の増大要求があると判断した場合、ステップS90で第2バルブ機構21の開度を増大させ、ステップS100で第1バルブ機構22の開度を増大させる。これは、EGR率を増大させるとエンジン10から排出される排気の温度が低下するので、排熱回収量を減少させてメイン触媒12に流入する排気の温度を維持するため、換言すると、メイン触媒12の温度を予め設定した閾値以上に維持するため、である。ここでいう閾値は、例えば活性温度である。第2バルブ機構21の開度は、開度とEGR率との関係に基づいて、目標とするEGR率に応じた開度に制御される。第1バルブ機構22の開度は、増加後のEGR率に応じた排熱回収量となる開度を目標値として制御される。
 ステップS110で、コントローラ30はEGR率の減少要求があるか否かを判断し、減少要求がある場合はステップS120の処理を実行し、ない場合は本ルーチンを終了する。例えば冷却水温の低下により導入可能な排気の量が減少した場合に、コントローラ30はEGR率の減少要求があると判断する。
 コントローラ30はEGR率の減少要求があると判断した場合、ステップS120で第2バルブ機構21の開度を減少させ、ステップS130で第1バルブ機構22の開度を減少させる。これは、EGR率を減少させると、エンジン10から排出される排気の温度が上昇するので、排熱回収量を増大させてメイン触媒12に流入する排気の温度を維持するためである。第1バルブ機構22及び第2バルブ機構21の開度の制御は、EGR率の増大要求がある場合と同様である。
 図13、図14は、上述した制御を実行した場合のタイミングチャートである。図13は、EGR率は一定のまま排熱回収量を増減するパターンを、図14は排熱回収をしながらEGR率を増減するパターンを、それぞれ示している。
 図13のタイミングT20は、図9のタイミングT2に相当する。図13では、EGR率及びエンジン10の作動点は一定とする。すなわち、エンジン10から排出されて熱交換システムに流入する排気の温度(熱交換システム入口ガス温度)と、同じく熱交換システムに流入する排気流量(熱交換システム入口ガス流量)は一定である。
 タイミングT21で排熱回収量の増大要求があると判断されると、第1バルブ機構22の開度は減少し始める。第1バルブ機構22の開度が減少することで、熱交換通路14の排気流量(熱交換器ガス流量)が増大し、その結果、熱交換器13における熱交換量が増大する。一方、熱交換器13での熱交換量が増大することにより、メイン触媒12に流入する排気の温度(熱交換システム出口ガス温度)は低下する。
 また、熱交換器ガス流量が増大することで、熱交換器13の出口の圧力(熱交換器出口圧力)が上昇する。これにより排気還流通路17に排気が流れやすい状態となる。しかし本実施形態では、第1バルブ機構22の開度の減少に応じて第2バルブ機構21の開度を減少させるので、第2バルブ機構21を通過する排気流量(第2バルブ機構ガス流量)は一定に維持され、その結果EGR率は一定に維持される。
 タイミングT22で排熱回収量が目標値に到達したら、第1バルブ機構22及び第2バルブ機構21の開度はその状態に維持される。
 そして、タイミングT23で排熱回収量の減少要求があると判断されると、第1バルブ機構22の開度は増大し始める。第1バルブ機構22の開度が増大することで、熱交換器出口ガス流量は増大し、その結果、熱交換器13における熱交換量が減少する。一方、熱交換器13での熱交換量が減少することにより、熱交換システム出口ガス温度は上昇する。
 また、熱交換器ガス流量が減少することで、熱交換器出口圧力が低下する。これにより、排気還流通路17に排気が流れにくい状態となる。しかし本実施形態では、第1バルブ機構22の開度の増大に応じて第2バルブ機構21の開度を増大させるので、第2バルブ機構ガス流量は一定に維持され、その結果EGR率は一定に維持される。
 図14のタイミングT30は、図9のタイミングT2または図13のタイミングT24に相当する。
 タイミングT31でEGR率の増大要求があると判断されると、第2バルブ機構21の開度が増大し、これにより第2バルブ機構通過ガス流量が増大してEGR率が増大する。EGR率が増大すると、排気温度が低下するため、熱交換システム入口ガス温度が低下し始める。熱交換システム入口ガス温度が低下すると、熱交換器ガス流量が一定のままだと排熱回収量が減少する。そこで本実施形態では、EGR率の増大要求がある場合には、第1バルブ機構22の開度を減少させることにより、熱交換器ガス流量を増大させる。これにより、熱交換システム入口ガス温度は低下するものの、熱交換器ガス流量は増大するので、排熱回収量の減少を抑制することができる。
 また、タイミングT33においてEGR率の減少要求があると判断されると、第2バルブ機構21の開度が減少し、これにより第2バルブ機構通過ガス流量が減少してEGR率が低下する。EGR率が低下すると、排気温度が上昇するため、熱交換システム入口ガス温度が上昇し始める。熱交換システム入口ガス温度が上昇すると、熱交換器ガス流量が一定のままだと排熱回収量が過剰になる。そこで本実施形態では、EGR率の減少要求がある場合には、第1バルブ機構22の開度を増大させることにより、熱交換器ガス流量を減少させる。これにより、熱交換システム入口ガス温度は上昇するものの、熱交換器ガス流量は減少するので、排熱回収量の過剰な増大を抑制することができる。
 以上の通り本実施形態では、エンジン10の排気通路11に、排気と液体との熱交換を行なう熱交換器13を備える熱交換通路14と、熱交換器13をバイパスするバイパス通路15と、熱交換通路14及びバイパス通路15の排気流量を調節する第1流量調節機構22と、を備え、さらに、熱交換通路14の熱交換器13の出口側からエンジン10の吸気通路16へ排気を還流させる排気還流通路17と、排気還流通路17を通過する排気流量を調節する第2流量調節機構21と、第1流量調節機構22及び第2流量調節機構21を制御するコントローラ(制御部)30と、を備える熱交換システム100を制御する熱交換システム制御方法が提供される。熱交換システム制御方法では、熱交換器13に流入する排気流量を変更する場合に、コントローラ30は、第1流量調節機構22を作動させつつ、第2流量調節機構21を、第1流量調節機構22の作動に伴う排気還流通路17を通過する排気流量の変化を打ち消す方向に作動させる。これにより、EGRを実行しながら排熱回収を行う場合に、エンジンの燃焼安定度を低下させることなく、排熱回収器を通過する排気流量を変更し得る。
 本実施形態では、排気還流通路17に排気が流れている状態で熱交換器13に流入する排気流量を変更する場合には、コントローラ30は、第1流量調節機構22を作動させて熱交換器13に流入する排気流量を変化させると同時に、第2流量調節機構21を作動させて、排気還流通路17を通過する排気流量の変化を抑制する。これにより、排熱回収量を変化させる場合に、EGR率の変化を抑制することができる。
 本実施形態では、コントローラ30は、排気還流通路17に配置される排気還流弁21、または吸気通路16の排気遠流通路17との合流部よりも上流に配置される差圧生成弁25のいずれかを第2流量調節機構21として作動させる。このように、第2バルブ機構21は排気還流弁21または差圧生成弁25のいずれであっても構わない。
 本実施形態では、コントローラ30は、第1流量調節機構の22開度を、熱交換通路14とバイパス通路15との合流部より下流の排気通路11に配置されるメイン触媒(排気浄化用触媒)12の温度が予め設定した閾値を下回らない範囲で制御する。これにより、メイン触媒12の温度の過剰な低下によるエミッションの悪化を抑制できる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。

Claims (8)

  1.  エンジンの排気通路に、
     排気と液体との熱交換を行なう熱交換器を備える熱交換通路と、
     前記熱交換器をバイパスするバイパス通路と、
     前記熱交換通路及び前記バイパス通路の排気流量を調節する第1流量調節機構と、
    を備え、さらに、
     前記熱交換通路の前記熱交換器の出口側から前記エンジンの吸気通路へ前記排気を還流させる排気還流通路と、
     前記排気還流通路を通過する排気流量を調節する第2流量調節機構と、
     前記第1流量調節機構及び前記第2流量調節機構を制御する制御部と、
    を備える熱交換システムを制御する熱交換システム制御方法において、
     前記熱交換器に流入する排気流量を変更する場合に、
     前記制御部は、
     前記第1流量調節機構を作動させつつ、
     前記第2流量調節機構を、前記第1流量調節機構の作動に伴う前記排気還流通路を通過する排気流量の変化を打ち消す方向に作動させる、熱交換システム制御方法。
  2.  請求項1に記載の熱交換システム制御方法において、
     前記排気還流通路に排気が流れている状態で前記熱交換器に流入する排気流量を変更する場合には、
     前記制御部は、
     前記第1流量調節機構を作動させて前記熱交換器に流入する排気流量を変化させると同時に、
     前記第2流量調節機構を作動させて、前記排気還流通路を通過する排気流量の変化を抑制する、熱交換システム制御方法。
  3.  請求項2に記載の熱交換システム制御方法において、
     前記制御部は、
     前記排気還流通路に配置される排気還流弁を前記第2流量調節機構として作動させる、熱交換システム制御方法。
  4.  請求項2に記載の熱交換システム制御方法において、
     前記制御部は、
     前記吸気通路の前記排気還流通路との合流部よりも上流に配置される差圧生成弁を前記第2流量調節機構として作動させる、熱交換システム制御方法。
  5.  請求項2から4のいずれかに記載の熱交換システム制御方法において、
     前記制御部は、
     前記第1流量調節機構の開度を、前記熱交換通路と前記バイパス通路との合流部より下流の前記排気通路に配置される排気浄化用触媒の温度が予め設定した閾値を下回らない範囲で制御する、熱交換システム制御方法。
  6.  請求項3に記載の熱交換システム制御方法において、
     前記制御部は、
     前記排気還流通路に配置される前記排気還流弁を、閉じる方向に動作させ、前記第1流量調節機構の作動に伴う前記排気還流通路を通過する排気流量の変化を打ち消し、前記第2流量調節機構として作動させる、熱交換システム制御方法。
  7.  請求項4に記載の熱交換システム制御方法において、
     前記制御部は、
     前記吸気通路の前記排気還流通路との合流部よりも上流に配置される前記差圧生成弁を、開く方向に動作させ、前記第1流量調節機構の作動に伴う前記排気還流通路を通過する排気流量の変化を打ち消し、前記第2流量調節機構として作動させる、熱交換システム制御方法。
  8.  エンジンの排気通路に、
     排気と液体との熱交換を行なう熱交換器を備える熱交換通路と、
     前記熱交換器をバイパスするバイパス通路と、
     前記熱交換通路及び前記バイパス通路の排気流量を調節する第1流量調節機構と、
    を備え、さらに、
     前記熱交換通路の前記熱交換器の出口側から前記エンジンの吸気通路へ前記排気を還流させる排気還流通路と、
     前記排気還流通路を通過する排気流量を調節する第2流量調節機構と、
     前記第1流量調節機構及び前記第2流量調節機構を制御する制御部と、
    を備える熱交換システムを制御する熱交換システム制御装置において、
     前記熱交換器に流入する排気流量を変更する場合に、
     前記制御部は、
    前記第1流量調節機構を作動させて前記熱交換器に流入する排気流量を変化させると同時に、
     前記第2流量調節機構を作動させて、前記排気還流通路を通過する排気流量の変化を抑制する、熱交換システム制御装置。
PCT/IB2020/000343 2020-04-14 2020-04-14 熱交換システム制御方法及び熱交換システム制御装置 WO2021209778A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2020/000343 WO2021209778A1 (ja) 2020-04-14 2020-04-14 熱交換システム制御方法及び熱交換システム制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2020/000343 WO2021209778A1 (ja) 2020-04-14 2020-04-14 熱交換システム制御方法及び熱交換システム制御装置

Publications (1)

Publication Number Publication Date
WO2021209778A1 true WO2021209778A1 (ja) 2021-10-21

Family

ID=78083863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/000343 WO2021209778A1 (ja) 2020-04-14 2020-04-14 熱交換システム制御方法及び熱交換システム制御装置

Country Status (1)

Country Link
WO (1) WO2021209778A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193753A (ja) * 1997-10-31 1999-07-21 Valeo Thermique Moteur 自動車エンジン用の排気・ガス再循環ライン
JP2009138615A (ja) * 2007-12-06 2009-06-25 Toyota Motor Corp 内燃機関の制御装置
JP2017082706A (ja) * 2015-10-29 2017-05-18 フタバ産業株式会社 排気熱回収装置
WO2018008519A1 (ja) * 2016-07-04 2018-01-11 株式会社デンソー 冷却システム及び冷却システムの制御装置
JP2019132138A (ja) * 2018-01-29 2019-08-08 日産自動車株式会社 熱交換システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193753A (ja) * 1997-10-31 1999-07-21 Valeo Thermique Moteur 自動車エンジン用の排気・ガス再循環ライン
JP2009138615A (ja) * 2007-12-06 2009-06-25 Toyota Motor Corp 内燃機関の制御装置
JP2017082706A (ja) * 2015-10-29 2017-05-18 フタバ産業株式会社 排気熱回収装置
WO2018008519A1 (ja) * 2016-07-04 2018-01-11 株式会社デンソー 冷却システム及び冷却システムの制御装置
JP2019132138A (ja) * 2018-01-29 2019-08-08 日産自動車株式会社 熱交換システム

Similar Documents

Publication Publication Date Title
US6851256B2 (en) Exhaust emission control device
US20090229543A1 (en) Cooling device for engine
JP6939606B2 (ja) ハイブリッド車両
WO2007073331A1 (en) An arrangement and a method for recirculation of exhaust gases of an internal combustion engine
JP2011163323A (ja) エンジンの廃熱制御装置
WO2008152491A1 (en) Exhaust gas recirculation system for internal combustion engine and exhaust gas recirculation system control method
WO2021209778A1 (ja) 熱交換システム制御方法及び熱交換システム制御装置
ES2240884T3 (es) Procedimiento de diagnostico de anomalias para un sistema de control de recirculacion de gas de escape.
JP2009127513A (ja) 内燃機関の制御装置
JP4254363B2 (ja) 暖機制御装置
CN111255595B (zh) 具有低压egr的发动机系统及车辆
JP5625716B2 (ja) 内燃機関の冷却装置
JP3329123B2 (ja) ディーゼルエンジンの吸気温度制御装置
JP3680537B2 (ja) ディーゼルエンジン
US20220055451A1 (en) Cooling system
JP5573795B2 (ja) 内燃機関の排気浄化システム
JP6969412B2 (ja) 熱交換システム
JP4089380B2 (ja) エンジン冷却水回路
JP4218465B2 (ja) 内燃機関の燃料噴射量制御装置
KR20220012481A (ko) 엔진 시스템 제어방법
JP2020101103A (ja) 内燃機関の排気熱回収装置
JP7160182B2 (ja) 熱交換システム
JP7354875B2 (ja) 過給機付きエンジン
JP2021195940A (ja) 熱交換システム制御方法及び熱交換システム
JP2006037931A (ja) 内燃機関の吸気加熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP