WO2018006873A1 - 一种电磁炉的电磁加热控制系统及其控制方法 - Google Patents

一种电磁炉的电磁加热控制系统及其控制方法 Download PDF

Info

Publication number
WO2018006873A1
WO2018006873A1 PCT/CN2017/092260 CN2017092260W WO2018006873A1 WO 2018006873 A1 WO2018006873 A1 WO 2018006873A1 CN 2017092260 W CN2017092260 W CN 2017092260W WO 2018006873 A1 WO2018006873 A1 WO 2018006873A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic heating
heating coil
heating
electromagnetic
value
Prior art date
Application number
PCT/CN2017/092260
Other languages
English (en)
French (fr)
Inventor
廖哲
Original Assignee
肇庆市天宇进出口贸易有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肇庆市天宇进出口贸易有限公司 filed Critical 肇庆市天宇进出口贸易有限公司
Publication of WO2018006873A1 publication Critical patent/WO2018006873A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/08Arrangement or mounting of control or safety devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices

Definitions

  • the invention relates to the technical field of kitchen utensils, and more particularly to a heating control system for an induction cooker, and to a control method for heating the electromagnetic oven.
  • the induction cooker structure generally includes a casing, a panel disposed on the casing, and an electromagnetic heating coil and a control circuit board disposed between the casing and the panel.
  • the induction cooker of the general structure is sufficient for heating. The need, after the induction cooker is turned on, the electromagnetic heating coil is energized and generates heat, which is transmitted through the panel to the appliance to be heated, such as a pot.
  • the ordinary induction cooker cannot realize the control of the temperature.
  • the induction cooker When the induction cooker is turned on, it will always be in a heating state, and the heating temperature cannot be controlled within a reasonable range.
  • some induction cookers are provided with a temperature sensor, and the temperature sensor is generally set. In the position close to the panel, the temperature of the panel can be detected by the temperature sensor, and then the panel temperature is controlled within a certain range by circuit control.
  • this method can control the temperature, there are still many deficiencies, for example, the temperature sensor pair The temperature detection has a certain hysteresis, so its temperature control accuracy is low.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide an induction heating control system and a control method capable of accurately controlling temperature.
  • the technical solution adopted by the present invention is:
  • An electromagnetic heating control system for an induction cooker comprising:
  • a detection and analysis module connected to the electromagnetic heating coil for detecting electrical parameters in the electromagnetic heating coil
  • control module wherein the input end of the control module is connected to the output end of the detection and analysis module for controlling the heating power or heating time of the electromagnetic heating coil;
  • An IGBT driving module the input end of which is connected to the output end of the control module;
  • IGBT C terminal of IGBT is connected with electromagnetic heating coil, G terminal of IGBT and IGBT drive Dynamic module connection;
  • the induction heating control system further includes a human-computer interaction interface, and the human-computer interaction interface is connected to the detection and analysis module.
  • the human-computer interaction interface is connected to the control module and transmits the temperature value input by the user to the control module.
  • the induction cooker comprises a temperature control layer capable of sensing an electromagnetic signal generated by an electromagnetic heating coil.
  • the temperature control layer is usually made of ferromagnetic or ferrimagnetic material, such as permalloy, precision alloy, and its magnetic permeability will suddenly drop to zero or close to zero when at the Curie point, the temperature control layer
  • the magnetic permeability is 2,000 to 200,000 H/m, and the specific temperature of the temperature control layer is 30 to 130 ⁇ cm.
  • the temperature control layer is disposed above the electromagnetic heating coil.
  • the induction cooker includes a panel, the temperature control layer is disposed on the panel, or a cooker is disposed above the induction cooker, and the temperature control layer is disposed on the cookware.
  • the temperature control layer is made of a permalloy material or a precision alloy material.
  • the Permalloy material or the precision alloy material has a Curie point temperature of between 30 degrees Celsius and 500 degrees Celsius. It is preferably between 70 degrees Celsius and 400 degrees Celsius, and further preferably between 180 degrees Celsius and 350 degrees Celsius.
  • the temperature of the temperature control layer reaches the Curie point of the temperature control layer, the magnetic permeability of the temperature control layer will suddenly decrease to near zero, and its temperature will stop rising.
  • the precision alloy material is a material having a Curie point temperature between 180 degrees Celsius and 230 degrees Celsius.
  • precision alloy 4J36 manufactured by Shanghai Kaiye Metal Products Co., Ltd.
  • precision alloy 4J32 manufactured by Shanghai Kaiye Metal Products Co., Ltd.
  • Precision Alloy 4J36 is a special low expansion iron-nickel alloy with ultra-low expansion coefficient, its Curie point is 230 degrees Celsius
  • precision alloy 4J32 alloy also known as Super-Invar alloy, has a Curie point temperature of 220 degrees Celsius.
  • the precision alloy materials that can be applied to this patent are preferably the following alloy materials listed in the standard numbers GB/T15018-94, YB/T5239-2005, YB/T5262-93, YB/T5254-2011, among which the standard No. GB/T15018-94 refers to the "National Standard Precision Alloy Grade of the People's Republic of China", and the standard number YB/T5254-2011 refers to the "Black Metallurgical Industry Standard of the People's Republic of China”.
  • the chemical composition of the elastic alloy 3J53 in the table includes:
  • the content of C element is not more than 0.05%
  • the content of the S element is not more than 0.020%
  • the content of P element is not more than 0.020%
  • the content of Mn element is not more than 0.80%;
  • the content of Si element is not more than 0.80%;
  • Ni element The content of Ni element is 41.5% to 43.0%;
  • the content of Cr element is 5.2% to 5.8%;
  • the content of Ti element is 2.3% to 2.7%;
  • the content of Al element is 0.5% to 0.8%;
  • the balance is Fe element.
  • the chemical composition of the elastic alloy 3J58 includes:
  • the content of C element is not more than 0.05%
  • the content of the S element is not more than 0.020%
  • the content of P element is not more than 0.020%
  • the content of Mn element is not more than 0.80%;
  • the content of Si element is not more than 0.80%;
  • Ni element The content of Ni element is 43.0% to 43.6%;
  • the content of Cr element is 5.2% to 5.6%
  • the content of Ti element is 2.3% to 2.7%;
  • the content of Al element is 0.5% to 0.8%;
  • the balance is Fe element.
  • the chemical composition of precision alloy 4J32 includes:
  • the content of C element is not more than 0.05%
  • the content of the S element is not more than 0.020%
  • the content of P element is not more than 0.020%
  • the content of the Mn element is 0.20% to 0.60%;
  • the content of Si element is not more than 0.20%;
  • Ni element is 31.5% to 33.0%;
  • the content of Co element is 3.2% to 4.2%;
  • the content of Cu element is 0.4% to 0.8%;
  • the balance is Fe element.
  • the chemical composition of precision alloy 4J36 includes:
  • the content of C element is not more than 0.05%
  • the content of the S element is not more than 0.020%
  • the content of P element is not more than 0.020%
  • the content of the Mn element is 0.20% to 0.60%;
  • the content of Si element is not more than 0.30%;
  • Ni element is 35.0% to 37.0%;
  • the balance is Fe element.
  • the above alloy materials can be supplied by Shanghai Kaiye Metal Products Co., Ltd. or through other public sales channels.
  • the content of iron in the permalloy is 35 to 70%, and the content of nickel is 30 to 65%.
  • the content of iron in the permalloy is 35 to 70%, and the content of nickel is 30 to 65%.
  • the invention also provides a heating control method for an electromagnetic oven, which further comprises the following steps on the basis of providing the above electromagnetic heating control system:
  • S1 sets a temperature value of electromagnetic heating or an electric parameter value corresponding to the temperature value, which is denoted as T 0 , and the temperature value is particularly preferably a temperature value of the temperature control layer;
  • S2 detects the electrical parameter value in the electromagnetic heating coil, and records it as the electrical parameter detection value P 1 , converts the detected value of the electrical parameter into a corresponding detected temperature value T 1 , or sets the set temperature value T 0 in step I) Converted to the corresponding electrical parameter value, recorded as the electrical parameter set value P 0 ;
  • S3 compares T 1 with T 0 + ⁇ t.
  • T 1 ⁇ T 0 + ⁇ t the electromagnetic heating coil continues to heat, and when T 1 ⁇ T 0 + ⁇ t, the electromagnetic heating coil stops heating or reduces the heating power;
  • the invention detects the electric parameter value in the electromagnetic heating coil as the basis for judging the temperature, and eliminates additional components such as a temperature sensor.
  • the control method can be used together with the temperature control layer, the temperature control layer and the electromagnetic heating coil. Being able to sense each other, at this time, the electrical parameter value in the electromagnetic heating coil can more accurately reflect the temperature of the temperature control layer, that is, by detecting the change of the electrical parameter of the electromagnetic heating coil, the heating temperature value of the measured object can be accurately detected. This allows precise control of the temperature.
  • the value of 0 ⁇ t ⁇ 5°C is increased by a threshold range for the set temperature value T 0 , and the frequency of temperature detection can be minimized.
  • the electromagnetic parameter is a current, a voltage, a resistance parameter or a pulse signal.
  • the electrical parameter is a current parameter
  • the value is 0 ⁇ p ⁇ 0.5A
  • the electrical parameter is a voltage parameter
  • the electrical parameter is a resistance parameter
  • the value is 0 ⁇ ⁇ p ⁇ 5 ⁇
  • the electrical parameter is a pulse signal, the 0 ⁇ ⁇ p ⁇ 3.
  • the induction cooker is further provided with a timing module, and the electromagnetic heating coil starts heating while starting the timing module timing.
  • the timing time is M1
  • steps S2 and S3 are performed, and according to the comparison result of step S3, if the electromagnetic heating coil satisfies the continuation The heating condition, which continues the heating time to M2, is then repeated steps S2 and S3, and if the electromagnetic heating coil again satisfies the continuing heating condition, it continues to heat for M2, and the above steps are repeated.
  • step S2 the electromagnetic heating coil stops heating.
  • the M1 ⁇ M2 specifically, 0.1 second ⁇ M1 ⁇ 600 seconds, 0.1 second ⁇ M2 ⁇ 300 seconds.
  • the induction cooker can be heated centrally for a period of time after the opening, and then the temperature is detected after heating to a certain extent, which can greatly improve the heating efficiency.
  • the heating control method of the induction cooker further comprises the step of detecting the pan.
  • the invention detects the electric parameter value in the electromagnetic heating coil as the basis for judging the temperature, and eliminates additional components such as a temperature sensor.
  • the control method can be used together with the temperature control layer, the temperature control layer and the electromagnetic heating coil. Being able to sense each other, at this time, the electrical parameter value in the electromagnetic heating coil can more accurately reflect the temperature of the temperature control layer, that is, by detecting the change of the electrical parameter of the electromagnetic heating coil, the heating temperature value of the measured object can be accurately detected. This allows precise control of the temperature.
  • the patent preferably uses a temperature control layer material having a Curie point temperature between 30 degrees Celsius and 500 degrees Celsius, and can further control the temperature of the temperature control layer in the range of 30 degrees Celsius to 500 degrees Celsius.
  • This control method changes the traditional manual method.
  • the control method realizes the effect of automatic temperature control.
  • Figure 1 is a logic frame diagram of an electromagnetic heating control system of the present invention
  • 3 is a schematic diagram showing another correspondence relationship between the number of pulses of the electromagnetic heating coil and the temperature value of the temperature control layer;
  • Figure 4 is a schematic diagram of a temperature control method of the present invention.
  • FIG. 5 is a schematic diagram of another temperature control method of the present invention.
  • the present invention relates to a heating control system for an induction cooker, comprising:
  • a detection and analysis module connected to the electromagnetic heating coil for detecting electrical parameters in the electromagnetic heating coil
  • control module wherein the input end of the control module is connected to the output end of the detection and analysis module for controlling the heating power or heating time of the electromagnetic heating coil;
  • An IGBT driving module the input end of which is connected to the output end of the control module;
  • IGBT C terminal of IGBT is connected with electromagnetic heating coil, G terminal of IGBT and IGBT drive Dynamic module connection;
  • the induction heating control system further includes a human-computer interaction interface, and the human-computer interaction interface is connected to the detection and analysis module.
  • the human-computer interaction interface is connected to the control module and transmits the temperature value input by the user to the control module.
  • the induction cooker is further provided with a timing module.
  • the heating control system of the induction cooker further includes a temperature control layer capable of sensing an electromagnetic signal generated by the electromagnetic heating coil, and the temperature control layer is disposed above the electromagnetic heating coil.
  • the temperature control layer may be disposed at On the panel of the induction cooker, the panel is disposed above the electromagnetic heating coil, and the temperature control layer may also be disposed on the pot, such as the bottom of the pot or the body of the pot. When heating is required, the pot is placed on the panel of the induction cooker. on.
  • the temperature control layer is made of ferromagnetic or ferrimagnetic material, such as permalloy and precision alloy, and its magnetic permeability will suddenly drop to zero or close to zero at the Curie point.
  • the so-called permalloy is iron nickel. alloy.
  • the temperature control layer has a magnetic permeability of 2,000 to 200,000 H/m, and the temperature control layer has a specific resistance of 30 to 130 ⁇ cm.
  • the precision alloy material is preferably a precision alloy 4J36 (manufactured by Shanghai Kaiye Metal Products Co., Ltd.) or a precision alloy 4J32 (manufactured by Shanghai Kaiye Metal Products Co., Ltd.), and the thickness of the temperature control layer is preferably 0.1. Up to 3 mm, this embodiment is 1.5 mm.
  • the temperature control layer can be made into a whole pot or a part of the pot, and is combined with the pot body by riveting, welding, spraying, printing, and the like. Together.
  • the temperature control layer may be located on the upper surface of the panel or on the lower surface of the panel.
  • the temperature control layer may also be disposed on the panel. Between the lower surfaces.
  • the permalloy or precision alloy material preferably used in this embodiment has a Curie point temperature of between 30 degrees Celsius and 500 degrees Celsius, and further preferably has a Curie point temperature of between 70 degrees Celsius and 400 degrees Celsius or 150 degrees Celsius to 350 degrees Celsius.
  • the precision alloy material between, in terms of the kind of precision alloy material, the following alloy materials are preferably used in the present embodiment:
  • the temperature control layer can also be made of powdered or granular precision alloy material or permalloy material, and attached to the panel, that is, the precision alloy material or the permalloy material is made into powder or granules. Shaped and then composited on the panel by existing processes.
  • the permalloy is also called an iron-nickel alloy, and the content of iron is 35 to 70%, more preferably 63 to 67%, and the content of nickel is 30 to 65%, and more preferably 37 to 58%.
  • Iron-nickel alloys have high magnetic permeability and will collapse to near vacuum permeability at the Curie point.
  • the invention also relates to a heating control method for an induction cooker, comprising the following steps:
  • S1 sets the temperature value of electromagnetic heating, which is denoted as T 0 , and the temperature value is particularly preferably the temperature value of the temperature control layer; since there is a specific correspondence between the temperature value and the current value under the action of temperature control, The temperature value corresponds to a specific current value. Similarly, a certain current value also corresponds to a specific temperature value. Therefore, there is an equivalent replacement relationship between the temperature value and the current value, and the temperature value can be reflected in the temperature value regardless of the set temperature value or the current value. on;
  • S2 detects the electrical parameter value in the electromagnetic heating coil, and records it as the electrical parameter detection value P 1 , converts the detected value of the electrical parameter into a corresponding detected temperature value T 1 , or sets the set temperature value T 0 in step I) Converted to the corresponding electrical parameter value, recorded as the electrical parameter set value P 0 ;
  • S3 compares T 1 with T 0 + ⁇ t.
  • T 1 ⁇ T 0 + ⁇ t the electromagnetic heating coil continues to heat, and when T 1 ⁇ T 0 + ⁇ t, the electromagnetic heating coil stops heating or reduces the heating power;
  • step S3 the value 0 ⁇ ⁇ t ⁇ 5.
  • the electromagnetic parameter is a current, a voltage, a resistance parameter or a pulse signal.
  • the electrical parameter is a current parameter
  • the value is 0 ⁇ p ⁇ 0.5A
  • the electrical parameter is a voltage parameter
  • the electrical parameter is a resistance parameter
  • the value is 0 ⁇ ⁇ p ⁇ 5 ⁇
  • the electrical parameter is a pulse signal, the 0 ⁇ ⁇ p ⁇ 3.
  • the induction cooker is further provided with a timing module, and the electromagnetic heating coil starts heating while starting the timing module timing.
  • the timing time is M1
  • steps S2 and S3 are performed, and according to the comparison result of step S3, if the electromagnetic heating coil satisfies the continuation The heating condition, which continues the heating time to M2, is then repeated steps S2 and S3, and if the electromagnetic heating coil again satisfies the continuing heating condition, it continues to heat for M2, and the above steps are repeated.
  • the induction cooker can concentrate heating to increase the heating efficiency.
  • the heating control method of the induction cooker further comprises the step of detecting the pan.
  • the electromagnetic heating coil stops heating, that is, the detection and heating may be performed simultaneously or separately, as shown in FIGS. 4 and 5.
  • the electromagnetic heating coil After the induction cooker starts, the electromagnetic heating coil generates an electromagnetic signal and starts heating the temperature control layer, the electromagnetic signal acts on the temperature control layer and is attenuated by the temperature control layer, and the electrical parameter in the electromagnetic heating coil is controlled.
  • the temperature of the temperature layer changes and forms a specific correspondence.
  • the electrical parameters include the number of pulses, pulse width, pulse amplitude, voltage, current or resistance parameters, such as the linear relationship between the number of pulses and the temperature of the temperature control layer.
  • the detection and analysis module detects the electrical parameter value in the electromagnetic heating coil, converts it into a corresponding temperature value, and performs the set temperature value T 0 set by the user through the human-machine interaction interface.
  • the electromagnetic heating coil will continue to heat, that is, the electromagnetic heating coil can maintain the original power and can also increase the power for heating, if the current detected temperature value T 1 Above or equal to the set temperature value T 0 , the electromagnetic heating coil will stop heating or reduce the heating power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

一种电磁炉的电磁加热控制系统,包括电磁加热线圈、检测分析模块、控制模块、IGBT驱动模块、IGBT和人机交互界面。检测分析模块与电磁加热线圈连接,用以检测电磁加热线圈中的电参数。控制模块的输入端与检测分析模块的输出端连接用以控制电磁加热线圈的加热功率或加热时间。IGBT驱动模块输入端与控制模块的输出端连接,IGBT的C端与电磁加热线圈连接,IGBT的G端与IGBT驱动模块连接。人机交互界面与检测分析模块、控制模块连接,并将用户输入的温度值传输给控制模块。该系统能够实现对温度的精确控制。

Description

一种电磁炉的电磁加热控制系统及其控制方法 技术领域
本发明涉及厨具技术领域,更具体地,涉及一种电磁炉的加热控制系统,同时还涉及一种电磁炉加热的控制方法。
背景技术
烹饪器具比如电磁炉等已经普遍应用于家庭,电磁炉结构一般包括外壳、设于外壳上的面板、以及设于外壳和面板之间的电磁加热线圈和控制线路板,这种普通结构的电磁炉足以满足加热的需要,电磁炉开启后,电磁加热线圈通电并产生热量,通过面板传递给待加热的器具,比如锅具等。
但普通的电磁炉无法实现对温度的控制,当开启电磁炉后将一直处于加热状态,无法将加热温度控制在一个合理的范围内,为此,有些电磁炉上设置了温度传感器,所述温度传感器一般设置在靠近面板的位置,通过温度传感器可以检测面板温度,然后通过电路控制,将面板温度控制在一定范围内,这种方法虽然能够实现对温度的控制,但仍然存在很多不足,比如,温度传感器对温度的检测具有一定的滞后性,因此,其对温度的控制精度较低。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种能够精确控制温度的电磁炉加热控制系统和控制方法。
为了解决上述技术问题,本发明采用的技术方案是:
一种电磁炉的电磁加热控制系统,包括:
电磁加热线圈;
检测分析模块,与电磁加热线圈连接,用以检测电磁加热线圈中的电参数;
控制模块,控制模块的输入端与检测分析模块的输出端连接,用以控制电磁加热线圈的加热功率或加热时间;
IGBT驱动模块,其输入端与控制模块的输出端连接;
IGBT,IGBT的C端与电磁加热线圈连接,IGBT的G端与IGBT驱 动模块连接;
所述电磁炉加热控制系统还包括人机交互界面,所述人机交互界面与检测分析模块连接,
人机交互界面,与控制模块连接,并将用户输入的温度值传输给控制模块。
优选的,所述电磁炉包括能够感应电磁加热线圈所产生的电磁信号的控温层。所述控温层通常为铁磁性或亚铁磁性材料制成,比如坡莫合金、精密合金,其磁导率在居里点时,会突降至零或接近零,所述控温层的磁导率为2000~200000H/m,控温层的电阻率为30~130μΩ·cm。
优选的,所述控温层设于电磁加热线圈的上方。具体来说,所述电磁炉包括面板,所述控温层设于面板上,或者,所述电磁炉上方设有锅具,所述控温层设于锅具上。
优选的,所述控温层由坡莫合金材料或精密合金材料制成。
优选的,所述坡莫合金材料或精密合金材料的居里点温度在30摄氏度至500摄氏度之间。优选为70摄氏度至400摄氏度之间,进一步优选为180摄氏度至350摄氏度之间。当控温层温度达到控温层居里点时,控温层磁导率将突降至接近零,其温度将停止升高。
更进一步的,所述精密合金材料为居里点温度在180摄氏度至230摄氏度之间的材料。例如精密合金4J36(上海凯冶金属制品有限公司生产)或精密合金4J32(上海凯冶金属制品有限公司生产)。精密合金4J36是一种具有超低膨胀系数的特殊的低膨胀铁镍合金,其居里点为230摄氏度;精密合金4J32合金又称超因瓦(Super-Invar)合金,其居里点温度为220摄氏度。
经研究验证,能够适用于本专利的精密合金材料优选为标准号为GB/T15018-94、YB/T5239-2005、YB/T5262-93、YB/T5254-2011所列举的如下合金材料,其中标准号GB/T15018-94是指《中华人民共和国国家标准精密合金牌号》,标准号YB/T5254-2011是指《中华人民共和国黑色冶金行业标准》。
合金类型 合金牌号 居里点
铁锰合金 4J59 70
恒弹性合金 3J53 110
恒弹性合金 3J53Y 110
弹性合金 Ni44MoTiAl 120
恒弹性合金 3J58 130
弹性合金 3J54 130
弹性合金 3J58 130
弹性合金 3J59 150
非晶态软磁合金 (FeNiCo)78(SiB)22 150
弹性合金 3J53 155
弹性合金 3J61 160
弹性合金 3J62 165
精密合金 4J36 230
精密合金 4J32 220
表中弹性合金3J53的化学成分包括:
C元素含量不大于0.05%;
S元素的含量不大于0.020%;
P元素的含量不大于0.020%;
Mn元素的含量不大于0.80%;
Si元素的含量不大于0.80%;
Ni元素的含量为41.5%~43.0%;
Cr元素的含量为5.2%~5.8%;
Ti元素的含量为2.3%~2.7%;
Al元素的含量为0.5%~0.8%;
余量为Fe元素。
弹性合金3J58的化学成分包括:
C元素含量不大于0.05%;
S元素的含量不大于0.020%;
P元素的含量不大于0.020%;
Mn元素的含量不大于0.80%;
Si元素的含量不大于0.80%;
Ni元素的含量为43.0%~43.6%;
Cr元素的含量为5.2%~5.6%;
Ti元素的含量为2.3%~2.7%;
Al元素的含量为0.5%~0.8%;
余量为Fe元素。
精密合金4J32的化学成分包括:
C元素含量不大于0.05%;
S元素的含量不大于0.020%;
P元素的含量不大于0.020%;
Mn元素的的含量为0.20%~0.60%;
Si元素的含量不大于0.20%;
Ni元素的含量为31.5%~33.0%;
Co元素的含量为3.2%~4.2%;
Cu元素的含量为0.4%~0.8%;
余量为Fe元素。
精密合金4J36的化学成分包括:
C元素含量不大于0.05%;
S元素的含量不大于0.020%;
P元素的含量不大于0.020%;
Mn元素的的含量为0.20%~0.60%;
Si元素的含量不大于0.30%;
Ni元素的含量为35.0%~37.0%;
余量为Fe元素。
以上合金材料可由上海凯冶金属制品有限公司生产提供或通过其他公共销售渠道获得。
除此之外,所述坡莫合金中铁的含量为35~70%,镍的含量30~65%。
坡莫合金中铁的含量为35~70%,镍的含量30~65%。
本发明还提供了一种电磁炉的加热控制方法,在提供上述电磁加热控制系统的基础上,还包括如下步骤:
S1设定电磁加热的温度值或与温度值对应的电参数值,记为T0,所述温度值尤其优选为控温层的温度值;
S2检测电磁加热线圈中的电参数值,记为电参数检测值P1,将电参数的检测值转换为对应的检测温度值T1,或者,将步骤I)中的设定温度值T0转换为对应的电参数值,记为电参数设定值P0
S3将T1与T0+Δt进行比较,当T1<T0+Δt时,电磁加热线圈继续加热,当T1≥T0+Δt时,电磁加热线圈停止加热或降低加热功率;或者
将P1与P0+Δp进行比较,
S11当电参数值与温度值呈正比例关系且P1<P0+Δp时,电磁加热线圈继续加热,当P1≥P0+Δp时,电磁加热线圈停止加热或降低加热功率;
S12当电参数值与温度值呈反比例关系且P1>P0+Δp时,电磁加热线圈继续加热,当P1≤P0+Δp时,电磁加热线圈停止加热或降低加热功率。
本发明通过检测电磁加热线圈中的电参数值来作为判断温度大小的依据,省去了温度传感器等额外部件,另外,该控制方法能够和控温层一起配合使用,控温层和电磁加热线圈能够相互感应,此时电磁加热线圈中的电参数值更能够精确地反应控温层的温度,也就是说,通过检测电磁加热线圈的电参数变化能够精确地检测被测物体的加热温度值,从而可以实现对温度的精确控制。
优选的,所述0≤Δt≤5℃,给设定温度值T0增加一个阈值范围,能够尽量减少温度检测的频率。
优选的,所述电磁参数为电流、电压、电阻参数或脉冲信号,当所述电参数为电流参数时,所述0≤Δp≤0.5A,当所述电参数为电压参数时,所述0≤Δp≤50V,当所述电参数为电阻参数时,所述0≤Δp≤5Ω,当所述电参数为脉冲信号时,所述0≤Δp≤3。
优选的,所述电磁炉还设有计时模块,电磁加热线圈开始加热的同时启动计时模块计时,当计时时间为M1时,执行步骤S2和S3,根据步骤S3的比较结果,如果电磁加热线圈满足继续加热条件,其继续加热时间为M2,然后重复执行步骤S2和S3,如果电磁加热线圈再次满足继续加热条件,其继续加热时间为M2,并重复以上步骤。
优选的,执行步骤S2时,电磁加热线圈停止加热。
优选的,所述M1≥M2,具体来说,0.1秒≤M1≤600秒,0.1秒≤M2≤300秒。电磁炉在开启后的一段时间内可以集中加热,当加热到一定程度后再进行温度检测,这种方式可以大大提高加热的效率。
优选的,所述电磁炉的加热控制方法还包括检测锅具的步骤。
与现有技术相比,本发明的有益效果是:
本发明通过检测电磁加热线圈中的电参数值来作为判断温度大小的依据,省去了温度传感器等额外部件,另外,该控制方法能够和控温层一起配合使用,控温层和电磁加热线圈能够相互感应,此时电磁加热线圈中的电参数值更能够精确地反应控温层的温度,也就是说,通过检测电磁加热线圈的电参数变化能够精确地检测被测物体的加热温度值,从而可以实现对温度的精确控制。
本专利优选使用居里点温度在30摄氏度至500摄氏度之间的控温层材料,能够进一步在30摄氏度至500摄氏度范围内实现对控温层温度的控制,这种控制方法改变了传统的手动控制方式,实现了自动控温的效果。
附图说明
图1为本发明电磁加热控制系统的逻辑框架图;
图2为本发明电磁加热线圈脉冲数与控温层温度值对应关系原 理图;
图3为本发明电磁加热线圈脉冲数与控温层温度值另一种对应关系原理图;
图4为本发明一种温度控制方法的原理图;
图5是本发明另一种温度控制方法的原理图。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本专利的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
如图1所示,本发明涉及一种电磁炉的加热控制系统,包括:
电磁加热线圈;
检测分析模块,与电磁加热线圈连接,用以检测电磁加热线圈中的电参数;
控制模块,控制模块的输入端与检测分析模块的输出端连接,用以控制电磁加热线圈的加热功率或加热时间;
IGBT驱动模块,其输入端与控制模块的输出端连接;
IGBT,IGBT的C端与电磁加热线圈连接,IGBT的G端与IGBT驱 动模块连接;
所述电磁炉加热控制系统还包括人机交互界面,所述人机交互界面与检测分析模块连接,
人机交互界面,与控制模块连接,并将用户输入的温度值传输给控制模块。
优选的,所述电磁炉还设有计时模块。
所述电磁炉的加热控制系统还包括能够感应电磁加热线圈所产生的电磁信号的控温层,所述控温层设于电磁加热线圈的上方,具体来说,所述控温层既可以设于电磁炉的面板上,所述面板设于电磁加热线圈的上方,所述控温层也可以设于锅具上,比如锅底或锅身上,当需要加热时,将所述锅具放于电磁炉面板上。
所述控温层为铁磁性或亚铁磁性材料制成,比如坡莫合金、精密合金,其磁导率在居里点时,会突降至零或接近零,所谓坡莫合金即铁镍合金。所述控温层的磁导率为2000~200000H/m,控温层的电阻率为30~130μΩ·cm。
就本实施例而言,该精密合金材料优选为精密合金4J36(上海凯冶金属制品有限公司生产)或精密合金4J32(上海凯冶金属制品有限公司生产),所述控温层厚度优选为0.1至3毫米,本实施例为1.5毫米。当控温层设于锅具上时,所述控温层既可以做成锅具整体,也可以作为锅具的一部分,通过铆接、焊接、熔射、印刷等方法使其与锅具主体复合在一起。当控温层设于电磁炉面板上时,所述控温层既可以位于面板上表面,也可以位于面板下表面,当面板为复合式结构时,所述控温层也可以设于面板上、下表面之间。
本实施例优选使用的坡莫合金或精密合金材料的居里点温度在30摄氏度至500摄氏度之间精密合金材料,进一步优选居里点温度在70摄氏度至400摄氏度之间或者150摄氏度至350摄氏度之间的精密合金材料,就精密合金材料的种类而言,本实施优选使用如下合金材料:
Figure PCTCN2017092260-appb-000001
Figure PCTCN2017092260-appb-000002
控温层除了片状结构外,也可以由粉末状或颗粒状的精密合金材料或坡莫合金材料制成,并附着在面板上,即将精密合金材料或坡莫合金材料制作成粉末状或颗粒状,然后通过现有工艺复合在面板上。
所谓坡莫合金又称铁镍合金,其中铁的含量为35~70%,进一步优选为63~67%,镍的含量30~65%,进一步优选为37~58%。铁镍合金具有高磁导率,且在居里点会突降至接近真空磁导率。
本发明还涉及一种电磁炉的加热控制方法,包括如下步骤:
S1设定电磁加热的温度值,记为T0,该温度值尤其优选为控温层的温度值;由于在控温的作用下,温度值与电流值之间存在特定的对应关系,某一温度值对应特定的电流值,同理,某一电流值也对应特定的温度值,因此,温度值和电流值存在等同替换关系,无论设定温度值还是电流值,最终都能够反映在温度值上;
S2检测电磁加热线圈中的电参数值,记为电参数检测值P1,将电参数的检测值转换为对应的检测温度值T1,或者,将步骤I)中的设定 温度值T0转换为对应的电参数值,记为电参数设定值P0
S3将T1与T0+Δt进行比较,当T1<T0+Δt时,电磁加热线圈继续加热,当T1≥T0+Δt时,电磁加热线圈停止加热或降低加热功率;或者
将P1与P0+Δp进行比较,
S11当电参数值与温度值呈正比例关系且P1<P0+Δp时,电磁加热线圈继续加热,当P1≥P0+Δp时,电磁加热线圈停止加热或降低加热功率;
S12当电参数值与温度值呈反比例关系且P1>P0+Δp时,电磁加热线圈继续加热,当P1≤P0+Δp时,电磁加热线圈停止加热或降低加热功率。
优选的,步骤S3中,所述0≤Δt≤5。
优选的,所述电磁参数为电流、电压、电阻参数或脉冲信号,当所述电参数为电流参数时,所述0≤Δp≤0.5A,当所述电参数为电压参数时,所述0≤Δp≤50V,当所述电参数为电阻参数时,所述0≤Δp≤5Ω,当所述电参数为脉冲信号时,所述0≤Δp≤3。
优选的,所述电磁炉还设有计时模块,电磁加热线圈开始加热的同时启动计时模块计时,当计时时间为M1时,执行步骤S2和S3,根据步骤S3的比较结果,如果电磁加热线圈满足继续加热条件,其继续加热时间为M2,然后重复执行步骤S2和S3,如果电磁加热线圈再次满足继续加热条件,其继续加热时间为M2,并重复以上步骤。
优选的,所述M1≥M2,比如,0.1秒≤M1≤600秒,0.1秒≤M2≤300秒,更具体的,比如,M1=600秒,M2=300秒。
这样在加热的开始阶段,所述电磁炉可以集中加热提高加热效率。
优选的,所述电磁炉的加热控制方法还包括检测锅具的步骤。
优选的,执行步骤S2时,电磁加热线圈停止加热,即检测和加热既可以同时进行,也可以分别进行,如图4、5所示。
具体来说,电磁炉开始启动后,电磁加热线圈产生电磁信号并开 始对控温层进行加热,所述电磁信号与控温层作用并被控温层损耗衰减,电磁加热线圈中的电参数随控温层温度的变化而变化,并形成特定对应关系,该电参数包括脉冲数量、脉冲宽度、脉冲幅度、电压、电流或电阻参数等,比如脉冲数与控温层温度之间所形成的线性关系,如图2、3所示,检测分析模块检测到电磁加热线圈中的电参数值,将其转换成对应的温度值,并与用户通过人机交互界面设定的设定温度值T0进行比较,如果当前检测温度值T1未超过设定温度值T0,电磁加热线圈将继续加热,即,电磁加热线圈可以保持原有的功率也可以提高功率进行加热,如果当前检测温度值T1大于或等于设定温度值T0,电磁加热线圈将停止加热或降低加热功率。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (16)

  1. 一种电磁炉的电磁加热控制系统,包括:
    电磁加热线圈;
    检测分析模块,与电磁加热线圈连接,用以检测电磁加热线圈中的电参数;
    控制模块,控制模块的输入端与检测分析模块的输出端连接,用以控制电磁加热线圈的加热功率或加热时间;
    IGBT驱动模块,其输入端与控制模块的输出端连接;
    IGBT,IGBT的C端与电磁加热线圈连接,IGBT的G端与IGBT驱动模块连接;
    所述电磁炉加热控制系统还包括人机交互界面,所述人机交互界面与检测分析模块连接,
    人机交互界面,与控制模块连接,并将用户输入的温度值传输给控制模块。
  2. 根据权利要求1所述的电磁加热控制系统,其特征在于,所述电磁炉还包括能够感应电磁加热线圈所产生的电磁信号的控温层。
  3. 根据权利要求2所述的电磁加热控制系统,其特征在于,所述控温层设于电磁加热线圈的上方。
  4. 根据权利要求3所述的电磁加热控制系统,其特征在于,所述电磁炉包括面板,所述控温层设于面板上,或者,所述电磁炉上方设有锅具,所述控温层设于锅具上。
  5. 根据权利要求2所述的电磁加热控制系统,其特征在于,所述控温层由坡莫合金或精密合金材料制成。
  6. 根据权利要求2所述的电磁加热控制系统,其特征在于,所述坡莫合金或精密合金材料的居里点温度在30摄氏度至500摄氏度之间。
  7. 根据权利要求6所述电磁炉的加热控制方法,其特征在于,所述精密合金材料为精密合金4J36、精密合金4J32、铁锰合金4J59、恒弹性合金3J53、恒弹性合金3J53Y、恒弹性合金3J58、弹性合金3J54、弹性合金3J58、弹性合金3J59、弹性合金3J53、弹性合金3J61、弹 性合金3J62、弹性合金Ni44MoTiAl、精密合金4J36、精密合金4J32或非晶态软磁合金(FeNiCo)78(SiB)22
  8. 根据权利要求2所述的电磁加热控制系统,其特征在于,坡莫合金中铁的含量为35~70%,镍的含量30~65%。
  9. 一种电磁炉的加热控制方法,其特征在于,提供如权利要求1至8任一所述的电磁加热控制系统,还包括如下步骤:
    S1设定电磁加热的温度值或与温度值对应的电参数值,记为T0
    S2检测电磁加热线圈中的电参数值,记为电参数检测值P1,将电参数的检测值转换为对应的检测温度值T1,或者,将步骤I)中的设定温度值T0转换为对应的电参数值,记为电参数设定值P0
    S3将T1与T0+Δt进行比较,当T1<T0+Δt时,电磁加热线圈继续加热,当T1≥T0+Δt时,电磁加热线圈停止加热或降低加热功率;或者
    将P1与P0+Δp进行比较,
    S11当电参数值与温度值呈正比例关系且P1<P0+Δp时,电磁加热线圈继续加热,当P1≥P0+Δp时,电磁加热线圈停止加热或降低加热功率;
    S12当电参数值与温度值呈反比例关系且P1>P0+Δp时,电磁加热线圈继续加热,当P1≤P0+Δp时,电磁加热线圈停止加热或降低加热功率。
  10. 根据权利要求9所述电磁炉的加热控制方法,其特征在于,所述0≤Δt≤5℃。
  11. 根据权利要求9所述电磁炉的加热控制方法,其特征在于,所述电磁参数为电流、电压、电阻参数或脉冲信号,当所述电参数为电流参数时,所述0≤Δp≤0.5A,当所述电参数为电压参数时,所述0≤Δp≤50V,当所述电参数为电阻参数时,所述0≤Δp≤5Ω,当所述电参数为脉冲信号时,所述0≤Δp≤3。
  12. 根据权利要求9所述电磁炉的加热控制方法,其特征在于,所述电磁炉还设有计时模块,电磁加热线圈开始加热的同时启动计时模块 计时,当计时时间为M1时,执行步骤S2和S3,根据步骤S3的比较结果,如果电磁加热线圈满足继续加热条件,其继续加热时间为M2,然后重复执行步骤S2和S3,如果电磁加热线圈再次满足继续加热条件,其继续加热时间为M2,并重复以上步骤。
  13. 根据权利要求12所述电磁炉的加热控制方法,其特征在于,执行步骤S2时,电磁加热线圈停止加热。
  14. 根据权利要求12所述电磁炉的加热控制方法,其特征在于,所述M1≥M2。
  15. 根据权利要求14所述电磁炉的加热控制方法,其特征在于,0.1秒≤M1≤600秒,0.1秒≤M2≤300秒。
  16. 根据权利要求9所述电磁炉的加热控制方法,其特征在于,所述电磁炉的加热控制方法还包括检测锅具的步骤。
PCT/CN2017/092260 2016-07-08 2017-07-07 一种电磁炉的电磁加热控制系统及其控制方法 WO2018006873A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610535341 2016-07-08
CN201610535341.8 2016-07-08
CN201610759180 2016-08-30
CN201610759180.0 2016-08-30

Publications (1)

Publication Number Publication Date
WO2018006873A1 true WO2018006873A1 (zh) 2018-01-11

Family

ID=60912330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092260 WO2018006873A1 (zh) 2016-07-08 2017-07-07 一种电磁炉的电磁加热控制系统及其控制方法

Country Status (1)

Country Link
WO (1) WO2018006873A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111550835A (zh) * 2019-02-12 2020-08-18 陈景超 一种带有测温电路的加热装置及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982466A (ja) * 1995-09-07 1997-03-28 Matsushita Electric Ind Co Ltd 誘導加熱装置
JP2003045634A (ja) * 2001-08-03 2003-02-14 Matsushita Electric Ind Co Ltd 圧力調理用電磁調理器
CN102207299A (zh) * 2010-03-31 2011-10-05 叶小舟 一种自动控温燃气灶及控温方法
CN102235701A (zh) * 2010-03-31 2011-11-09 叶小舟 一种非接触式测温的电磁炉及测温方法
CN204520273U (zh) * 2015-04-07 2015-08-05 佛山市顺德区美的电热电器制造有限公司 烹饪器具及用于烹饪器具的电加热装置
CN204995183U (zh) * 2015-09-15 2016-01-27 新兴县粤兴华不锈钢制品有限公司 电磁炉加热自动恒温锅具
CN105326403A (zh) * 2015-09-25 2016-02-17 佛山市顺德区美的电热电器制造有限公司 一种锅具、电磁加热系统的控温方法及家用电器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982466A (ja) * 1995-09-07 1997-03-28 Matsushita Electric Ind Co Ltd 誘導加熱装置
JP2003045634A (ja) * 2001-08-03 2003-02-14 Matsushita Electric Ind Co Ltd 圧力調理用電磁調理器
CN102207299A (zh) * 2010-03-31 2011-10-05 叶小舟 一种自动控温燃气灶及控温方法
CN102235701A (zh) * 2010-03-31 2011-11-09 叶小舟 一种非接触式测温的电磁炉及测温方法
CN204520273U (zh) * 2015-04-07 2015-08-05 佛山市顺德区美的电热电器制造有限公司 烹饪器具及用于烹饪器具的电加热装置
CN204995183U (zh) * 2015-09-15 2016-01-27 新兴县粤兴华不锈钢制品有限公司 电磁炉加热自动恒温锅具
CN105326403A (zh) * 2015-09-25 2016-02-17 佛山市顺德区美的电热电器制造有限公司 一种锅具、电磁加热系统的控温方法及家用电器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111550835A (zh) * 2019-02-12 2020-08-18 陈景超 一种带有测温电路的加热装置及其控制方法

Similar Documents

Publication Publication Date Title
CN107592692B (zh) 一种电磁炉的电磁加热控制系统及其控制方法
CN102680128B (zh) 一种非接触式测温方法及利用该测温方法的装置
WO2009146663A1 (zh) 一种厨具的非接触式温度检测和控制方法及一种电磁炉
CN107436198B (zh) 锅具温度检测系统、方法和电磁炉
CN102207299B (zh) 一种自动控温燃气灶及控温方法
US9289090B2 (en) Cooktop appliances with intelligent response to cooktop audio
CN207527643U (zh) 一种燃气烹饪装置
CN102207411A (zh) 一种非接触式测温方法
CN108414110A (zh) 感应测温装置及测温方法、烹饪装置和电磁装置
CN207266323U (zh) 一种电磁炉的电磁加热系统
CN209014162U (zh) 电磁装置及带有该电磁装置的感应测量装置和烹饪装置
WO2018006873A1 (zh) 一种电磁炉的电磁加热控制系统及其控制方法
CN109219176A (zh) 一种电磁炉的电磁加热系统及其控制方法
WO2019006753A1 (zh) 一种电磁炉的电磁加热系统及其控制方法
WO2011120414A1 (zh) 一种非接触式测温方法及利用该测温方法的装置
CN110572893B (zh) 一种电磁加热装置及温度控制方法
CN209013240U (zh) 电磁装置及带有该电磁装置的感应测量装置和烹饪装置
CN208804723U (zh) 电磁装置及带有该电磁装置的感应测量装置和烹饪装置
CN208188611U (zh) 一种基于双线圈的测温电路及感应测温装置和烹饪装置
CN108534874A (zh) 一种称重装置、称重方法及电饭煲
CN110553284A (zh) 一种烹饪器具及控制温度的方法
WO2018006874A1 (zh) 一种燃气烹饪装置及控制火力大小的方法
CN111385925B (zh) 电磁烹饪器具及其控制方法
CN208300062U (zh) 电磁装置及带有该电磁装置的感应测温装置和烹饪装置
CN108626758B (zh) 一种锅具矫正装置及加热炉具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823685

Country of ref document: EP

Kind code of ref document: A1