WO2011120414A1 - 一种非接触式测温方法及利用该测温方法的装置 - Google Patents

一种非接触式测温方法及利用该测温方法的装置 Download PDF

Info

Publication number
WO2011120414A1
WO2011120414A1 PCT/CN2011/072223 CN2011072223W WO2011120414A1 WO 2011120414 A1 WO2011120414 A1 WO 2011120414A1 CN 2011072223 W CN2011072223 W CN 2011072223W WO 2011120414 A1 WO2011120414 A1 WO 2011120414A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
magnetic
coil
temperature sensing
sensing element
Prior art date
Application number
PCT/CN2011/072223
Other languages
English (en)
French (fr)
Inventor
叶小舟
彭霭钳
刘劲旋
林卫文
武炜
Original Assignee
Ye Xiaozhou
Peng Aiqian
Liu Jinxuan
Lin Weiwen
Wu Wei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201010136784.2A external-priority patent/CN102207411B/zh
Priority claimed from CN201110064550.6A external-priority patent/CN102680128B/zh
Application filed by Ye Xiaozhou, Peng Aiqian, Liu Jinxuan, Lin Weiwen, Wu Wei filed Critical Ye Xiaozhou
Publication of WO2011120414A1 publication Critical patent/WO2011120414A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/36Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils
    • G01K7/38Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils the variations of temperature influencing the magnetic permeability

Definitions

  • the present invention relates to a temperature measuring method, in particular to a non-contact temperature measuring method and a device using the same using magnetic permeability temperature characteristics of iron or ferrimagnetic. Background technique
  • the oil temperature of the fried food is about 160-170 ° C. If the food is to be fried, the oil temperature is about 190 ° C. Experience has shown that when the oil temperature is 50-90 ° C, there will be a small amount of bubbles, and the oil surface will be calm.
  • the bubble disappears, the oil level is calm; at 120-17 CTC, the oil temperature rises sharply, the oil level is still calm; to 170-210 ° C, there is a small amount of blue smoke, the oil surface has a little small ripple; Once it reaches 210-250 ° C, a large amount of blue smoke containing acrolein will be formed, and various chemicals such as hot polymer and polycyclic aromatic hydrocarbons will be produced. Therefore, temperature control during cooking with oil is necessary, and it is preferable.
  • the oil temperature is controlled at about 180 °C.
  • the rice cooker is another typical example of temperature control.
  • the temperature control method of the rice cooker in making the rice is quite different from the above oil temperature control, because the temperature control of the rice is only one point, that is, , at 103 ⁇ 2 °C, you can cook and keep warm.
  • the temperature limit switch used by the rice cooker is to manually press the lever to turn on the power to start cooking. After the rice is cooked, the temperature limit switch switches the heating state to the heat preservation state through the lever connection mechanism.
  • the dimensional deviation of each component is accumulated, combined with the improper assembly process, or the user's misoperation, etc., so that the rice cooker often has the phenomenon of raw rice, raw rice, and Jiao rice in the actual use of the user, and even the fire caused by the burning of the heating plate.
  • the temperature control of the food in the microwave oven is basically impossible to achieve or the cost is high.
  • the method of measuring fiber temperature and infrared temperature is extremely costly.
  • Temperature measurement under microwave field is still a technical problem due to the existence of strong electromagnetic fields.
  • a strong electromagnetic field when measuring temperature with a conventional temperature sensor such as a thermocouple or a thermal resistor, the temperature probe and the wire made of a metal material generate an induced current under a high-frequency electromagnetic field, and cause itself due to the skin effect and the eddy current effect. The temperature rises, causing serious interference with the temperature measurement, causing a large error in the temperature indication or a stable temperature measurement.
  • Optical fiber temperature measurement is still in the research and development stage.
  • Infrared temperature measurement is a non-contact measuring instrument used to measure the surface temperature of objects at different temperatures. It determines its temperature based on the intensity of the infrared radiation of the measured object. Due to its non-contact property, the temperature measurement of the measured object is not damaged during measurement, so it can also be used for microwave field temperature measurement. But its own limitations also limit its scope of application, for example, When the infrared thermometer is used for temperature measurement, it is affected by the emissivity of the object and the aerosol. The infrared thermometer is directly used for the microwave reactor to measure the temperature and is limited by the field of view. It is also not convenient to use.
  • the electronic igniter sends a high temperature signal to the temperature control valve through the wire, and the temperature control valve receives the high temperature signal to start working, and turns off the gas supply, so that the burning flame is self-extinguishing.
  • the disadvantages are: Because it is contact heat conduction, and the bottom of the pot usually has dirt, which affects the joint of the contact surface, so the thermal conductivity is poor. On the other hand, the spring is prone to failure due to long-term high temperature and compression, causing the temperature limiter. Can not be completely in contact with the bottom of the pot, the temperature at the bottom of the pot is difficult to ensure accurate and timely transmission to the temperature limiter, and the temperature around the temperature limiter will be high due to the combustion of the burner, which will often affect the temperature of the temperature limiter.
  • the Japanese Patent Application No. 59-167637 which is incorporated by reference to the Japanese Patent Application No. 59-167637, is a method of rapid degaussing of the Curie temperature by a temperature measuring unit mounted on a rotating platform. Achieve temperature measurement. At this time, the magnetic sensor outside the machine can detect the change of the magnetic body in the body without being affected by water mist or other factors.
  • the shortcomings are: Because of the existence of strong electromagnetic field when the microwave oven is working, when the microwave oven is working, its powerful magnetic field will interfere with the detection of the magnetic signal emitted by the magnetic sensitive sensor on the temperature-sensitive magnetic steel at the set temperature point.
  • the magnetic sensor is detected during the power-off of the magnetron, and after the detection is completed, the magnetron is re-energized, and the process continues until the magnetic sensor detects that the food is at a certain temperature point.
  • the signal that occurred is up. Therefore, the technical solution has the following defects: (1) In order to ensure the normal detection of the magnetic sensor, it is necessary to frequently disconnect the power supply of the magnetron, which is not conducive to the normal heating of the microwave oven; (2) setting the first magnetic disconnection during the heating process.
  • the time of the power supply of the electric tube varies depending on the amount of food to be heated. Therefore, it is difficult to set a suitable time point for all the cases. If the power-off time is set earlier, the number of power-offs will increase.
  • Japanese Patent Laid-Open No. Hei 10-125453 discloses a heated cooker for an electromagnetic induction heating cooker, in which the temperature sensing stainless steel is a material having a Curie temperature. Therefore, due to the Curie temperature, the magnetic properties change from a ferromagnetic body to a paramagnetic body. When the Curie temperature is exceeded, the magnetic metal material loses its magnetic properties, the magnetic permeability becomes low, and the calorific value of the heating element is Curie. The temperature changes greatly at the boundary, and as a result, the temperature can be controlled using the Curie temperature. For example, when temperature is controlled by a temperature-sensitive stainless steel having a Curie temperature of 220 ° C, the temperature of the oil is not under any conditions. Will exceed 220 ° C.
  • the Chinese patent publication CN1887150 discloses an electromagnetic pot capable of emitting a magnetic signal reflecting a temperature change, comprising a heating pot, and fixing at least one temperature-sensitive magnetic steel as a temperature signal generating element at the bottom of the heating pot, which can be based on the temperature-sensitive magnetic steel.
  • the Curie temperature is reached and a loss of ferromagnetic signal is emitted to the electromagnetic cooker.
  • the electromagnetic cooker converts the temperature control program according to the sensed signal, and changes the prior art electromagnetic cooker.
  • the condition of manual temperature control must be used to broaden the use of the induction cooker and the electromagnetic cooker.
  • the above prior art actually utilizes only a sudden change in the magnetic properties of the material before and after the Curie point of the material, i.e., a temperature point can be controlled by the Curie point.
  • An object of the present invention is to provide a non-contact temperature measuring method using magnetic permeability temperature characteristics of an iron or a ferrimagnetic body.
  • Another object of the present invention is to provide an apparatus using the non-contact temperature measuring method, which is a rice cooker, an induction cooker, a microwave oven, and a gas stove.
  • a non-contact temperature measuring method in which the method includes a component requiring temperature measurement, and at least a contact portion of the component requiring temperature measurement is disposed at least a magnetic temperature sensing element, a temperature measuring element corresponding to the position of the magnetic temperature sensing element, the temperature measuring element comprises a temperature measuring induction coil and an excitation coil, and further comprising a control circuit, wherein the magnetic temperature sensing element is a ferromagnetic body Or a ferromagnetic body, using the temperature characteristics of the magnetic permeability of the magnet, in combination with the excitation coil and the temperature measuring induction coil, in the operating temperature range, There is a continuously decreasing ⁇ ⁇ curve, that is, a magnetic permeability-temperature curve, the tangent of any point of the curve having an angle ⁇ with the lateral ⁇ axis, the angle ⁇ being an obtuse angle; or having a continuously rising ⁇ _ ⁇ a curve, the tangent of any
  • the excitation coil is energized to generate a sensing magnetic field of a certain intensity.
  • a sensing magnetic field passes through the magnetic temperature sensing element and the temperature sensing induction coil, an electrical signal is generated in the temperature sensing induction coil, and the temperature of the magnetic temperature sensing element is measured as needed.
  • the magnetic strength of the magnetic temperature sensing element changes, and the magnetic flux of the temperature sensing coil changes accordingly, thereby causing a change in the electrical signals at both ends of the temperature sensing coil, due to different temperature points of the magnetic temperature sensing element.
  • the magnetic intensity changes, and the temperature sensing detects a change in the electrical signal generated by the magnetic field, and the temperature of the component requiring temperature measurement is detected according to the electrical signal.
  • the different temperature points of the magnetic temperature sensing element correspond to the magnetic strength of different intensities, a corresponding electric signal is generated in the temperature measuring induction coil, and a plurality of temperature points are set according to different heating requirements, and the electric signals generated by the temperature sensing induction coil are The size determines the multi-point temperature change of the magnetic temperature sensing element, and realizes automatic temperature control.
  • Said ⁇ angle ranges from 100 to 170 degrees, preferably from 110 to 160 degrees, more preferably from 110 to 140 degrees; said ⁇ angle ranges from 10 to 80 degrees, preferably from 15 to 75 degrees, more It is preferably 25_70 degrees.
  • the non-contact according to the present invention means that there is no contact between the magnetic temperature sensing element and the temperature measuring induction coil.
  • the non-contact temperature measuring device is a rice cooker, and the outer casing of the rice cooker comprises an inner casing, an inner pot, a heating plate and a control circuit, and further comprises a magnetic temperature sensing element in close contact with the bottom of the inner pot,
  • the temperature measuring element corresponding to the position of the magnetic temperature sensing element, the temperature measuring element comprises a temperature measuring induction coil and an excitation coil, wherein the magnetic temperature sensing element is a ferromagnetic or ferrimagnetic body, and the temperature characteristic of the magnetic permeability of the magnet is used.
  • the excitation coil and the temperature measuring induction coil when the magnetic induction intensity of the magnetic temperature sensing element changes with temperature, the magnetic field generated changes, and the change is reflected in the temperature sensing induction coil to generate an electrical signal of a corresponding temperature , temperature detection and control through the control circuit.
  • the magnetic temperature sensing element is mounted on the inner pot bottom or on the upper surface of the bottom of the inner casing, at the center of the heating plate.
  • the control circuit includes a power supply circuit, an output control circuit, a current detection circuit, a temperature protection circuit, an output adjustment circuit, a display circuit and a protection circuit, and a temperature measurement circuit, wherein the temperature measurement circuit includes a temperature measurement sense
  • the coil and the electric signal discriminating circuit are connected, the temperature measuring induction coil is connected to the electric signal discriminating circuit, and the electric signal discriminating circuit is connected to the output control circuit.
  • the rice cooker is an ordinary heated rice cooker, and the heating plate is embedded with an electric heating tube.
  • the rice cooker is an electromagnetic rice cooker, wherein the heating plate is an electromagnetic heating coil, and the exciting coil is integrated with the electromagnetic heating coil, and the electromagnetic heating coil heats the inner pot prepared by the ferromagnetic material by applying an alternating magnetic field. At the same time, it also serves as the excitation coil of the magnetic temperature sensing element and the temperature measuring induction coil.
  • the non-contact temperature measuring device is an induction cooker, including an induction cooker housing, an induction cooktop, a heating coil under the induction cooktop, a control circuit, and a heating pot on the induction cooktop, and a bottom of the heating pot a magnetically sensitive element in close contact, a temperature measuring element disposed under the induction platen and corresponding to the position of the magnetic temperature sensing element, the temperature measuring element comprises a temperature sensing induction coil and an excitation coil, wherein the magnetic temperature sensing element is A ferromagnetic or ferrimagnetic magnet, which utilizes the temperature characteristic of the magnetic permeability of the magnet, cooperates with the exciting coil and the temperature measuring induction coil, and when the magnetic induction intensity of the magnetic temperature sensing element changes with temperature, the magnetic field generated changes, The change is reflected in the temperature sensing induction coil to generate an electrical signal of the corresponding temperature, and the temperature detection and control are realized by the control circuit.
  • the magnetic temperature sensing element is A ferromagnetic or ferrimagnetic magnet, which
  • the temperature sensing induction coil and the magnetic temperature sensing element are disposed within the range of the excitation coil; and the temperature sensing coil is disposed within a region capable of sensing the change of the magnetic field strength of the magnetic temperature sensing element.
  • the heating coil and the exciting coil are the same coil, and the temperature measuring induction coil is fixed under the induction plate by the support frame, corresponding to the position of the magnetic temperature sensing element, and the support frame is a stepped longitudinal section. Pallet.
  • the temperature sensing induction coil and the excitation coil are fixed together under the induction plate by the support frame, corresponding to the position of the magnetic temperature sensing element, and the support frame is a frame with a longitudinal section of a stepped shape, and the temperature sensing coil and the excitation coil are the same
  • the shaft is fixed to the plate frame.
  • the control circuit includes a power supply circuit, an output control circuit connected to the power supply circuit, an excitation circuit for controlling the excitation coil operation, and a display circuit for outputting display information, and a temperature measurement circuit connected to the output control circuit, the measurement
  • the temperature circuit includes a temperature measuring induction coil and an electric signal discriminating circuit, the temperature measuring induction coil is connected to the electric signal discriminating circuit, and the electric signal discriminating circuit is further connected with the output control circuit.
  • the temperature measuring circuit further includes a rectifying and filtering circuit, and the alternating electric signal generated by the temperature measuring induction coil is converted into a direct current electric signal by the rectifying and filtering circuit, and is output to the signal discriminating circuit.
  • the non-contact temperature measuring device is a microwave oven, comprising a casing, a heating chamber disposed inside the casing, a magnetron heating the heating chamber, a turntable located in the heating chamber, a motor driving the turntable, and a control circuit.
  • the turntable is provided with a vessel for holding food and microwaves to penetrate and heat, and a temperature measuring component is arranged under the turntable, including a temperature measuring induction coil and an excitation coil, and a magnetic induction intensity corresponding to the excitation coil is arranged at the bottom of the vessel according to temperature change.
  • variable magnetic temperature sensing element wherein the excitation coil excites the temperature sensing induction coil, and forms a temperature sensing magnetic field between the temperature sensing induction coil and the magnetic temperature sensing element for using the magnetic temperature sensing element at different temperatures
  • the generated magnetic signal is converted into an electrical signal and output to detect the temperature of the vessel.
  • the temperature sensing induction coil and the excitation coil are fixed together under the heating chamber by a bracket, corresponding to the center position of the vessel, and the bracket is a stepped frame with a longitudinal section, and the temperature measuring induction coil and the excitation coil are coaxially fixed on the plate frame. on.
  • the temperature sensing induction coil and the excitation coil are matched correspondingly, and are disposed in a position in the heating chamber and below the turntable near the center of the vessel, and the excitation coil is disposed beside the temperature measuring induction coil or coaxially with the temperature measuring induction coil.
  • the magnetic temperature sensing element is cast or embedded in the inner surface of the bottom of the vessel which is in direct contact with the food, and is located near the center of the vessel, corresponding to the position of the temperature sensing coil.
  • the control circuit includes a power supply circuit, an output control circuit connected to the power supply circuit, an excitation circuit for controlling the excitation coil operation, and a display circuit for outputting display information, and a temperature measurement circuit connected to the output control circuit, the measurement
  • the temperature circuit includes a temperature measuring induction coil and an electric signal discriminating circuit, the temperature measuring induction coil is connected to the electric signal discriminating circuit, and the electric signal discriminating circuit is further connected with the output control circuit.
  • the electric signal discriminating circuit is a voltage discriminating circuit or a current discriminating circuit, or a pulse width measuring circuit.
  • the temperature measuring circuit further includes a rectifying and filtering circuit, and the alternating electric signal generated by the temperature measuring induction coil is converted into a direct current electric signal by the rectifying and filtering circuit, and is output to the signal discriminating circuit.
  • the non-contact temperature measuring device is a gas stove, comprising a cooktop, a burner disposed on the cooktop, a tripod, and a cooking pot disposed on the stand, wherein the burner is located at a center position
  • the temperature measuring component comprises a temperature measuring induction coil and an excitation coil.
  • the bottom of the cooking pot is provided with a magnetic temperature sensing element whose magnetic induction intensity corresponding to the excitation coil changes according to a temperature change, and the excitation coil excites the temperature measuring induction coil.
  • a temperature sensing magnetic field is formed between the temperature sensing coil and the magnetic temperature sensing element for converting the magnetic signal generated by the magnetic temperature sensing element at different temperatures into an electrical signal and outputting to detect the temperature of the cooking pot.
  • the magnetic temperature sensing element is cast or embedded in the bottom of the cooking pot, and the outside of the temperature measuring component is provided with a heat shield, and the heat shield corresponds to the magnetic temperature sensing element to stick the flame to the bottom of the pot to make the temperature of the magnetic temperature sensing element The temperature of the food in the cooking pot is close.
  • the above-mentioned temperature measuring induction coil is matched with the excitation coil, and the excitation coil is arranged beside the temperature measuring induction coil or coaxially with the temperature measuring induction coil.
  • the temperature sensing induction coil and the excitation coil are matched correspondingly, and the coaxial sleeve is arranged on the bracket together, and a spring is arranged under the bracket to make the heat shield rise and fall, and fits correspondingly to the bottom of the cooking pot of different shapes, and the temperature is measured.
  • a heat insulating material is filled between the component and the heat shield.
  • the gas stove is provided with a control circuit, comprising a power supply circuit, an output control circuit connected to the power supply circuit, an output adjustment circuit connected to the output control circuit for controlling the size of the gas, an excitation drive circuit for controlling the operation of the excitation coil, and a display circuit for outputting display information.
  • the utility model further includes a temperature measuring circuit connected to the output control circuit, wherein the temperature measuring circuit comprises a temperature measuring induction coil and an electric signal discriminating circuit, the temperature measuring induction coil is connected with the electric signal discriminating circuit, the electric signal discriminating circuit and the output control circuit connection.
  • the electric signal discriminating circuit described above is a voltage discriminating circuit or a current discriminating circuit, or a pulse width measuring circuit.
  • the temperature measuring circuit further includes a rectifying and filtering circuit, and the alternating electric signal generated by the temperature measuring induction coil is converted into a direct current electric signal by the rectifying and filtering circuit, and is output to the signal discriminating circuit.
  • ⁇ - ⁇ curves are preset for different frequencies or powers, and the comparison object used for temperature measurement is converted to the same or the closest ⁇ - ⁇ curve.
  • the size, shape and quality of the inner pot or heating pot or vessel or cooking pot, as well as the size, shape and quality of the magnetic sensing element also have a great influence on the accuracy of the measured temperature.
  • a simple method is Corresponding to a device, the size, shape and quality of the inner pot or heating pot or vessel or cooking pot are also fixed, and the size, shape and quality of the magnetic sensing element are also fixed.
  • Another solution is to fix the relationship between the size, shape and quality of the magnetic temperature sensing element and the electromagnetic heating coil and the temperature measuring coil, while the inner pot or the heating pot or the utensil or the cooking pot is Use materials that have no effect on the magnetic field, and secondly use sizes, shapes, and qualities that have little impact.
  • a shielding coil with a high magnetic permeability is disposed between the heating coil, the temperature sensing coil, and the magnetic temperature sensing element to block or reduce the influence of the heating coil on the temperature sensing coil and the magnetic temperature sensing element.
  • the temperature sensing induction coil comprises an electromagnetic induction coil or a Hall coil or a Hall chip, or any combination thereof, that is, any two or three combinations, for example, a combination of an electromagnetic induction coil and a Hall coil; an electromagnetic induction coil Combination with Hall chip, etc.
  • the above magnetic temperature sensing element is a magnetic temperature sensing element of a ferrite material, or a temperature sensitive magnetic steel, or a magnetic temperature sensing element of an alloy material, or a magnetic temperature sensing element of a rare earth material.
  • the magnetic temperature sensing element is a ferromagnetic or ferrimagnetic body, and refers to any one of iron, nickel, cobalt, rhodium, ruthenium, or an alloy of any combination thereof, or ferrite, and any combination includes any two, Three, four combinations and five common combinations, for example, iron, nickel combination; nickel, cobalt, bismuth combination; iron, nickel, cobalt, bismuth combination and the like.
  • the invention has the following advantages:
  • the device of the invention uses a non-contact temperature measuring device to detect the temperature, which is different from the temperature detecting device in the prior art, and uses the excitation driving circuit to excite the temperature measuring induction coil, the temperature sensing coil and the magnetic temperature sensing.
  • a detecting magnetic field is formed between the components for converting the magnetic signal generated by the magnetic temperature sensing element at the set temperature point into an electrical signal and outputting the magnetic field, and generating an electrical signal when measuring the temperature sensing coil, only the electrical signal is needed According to the correspondence between the temperature and the electric signal in the cooking pot, the temperature can be detected indirectly, and the measurement is accurate, simple, practical and easy to implement.
  • the device of the present invention can use not only the Curie point temperature of the magnetic temperature sensing element as the detection temperature point but also the magnetic temperature sensing element characteristic curve segment as the detection temperature point setting. Program controlled temperature points to meet a wide range of cooking requirements.
  • the induction cooker according to the present invention can design an accurate automatic control program, which not only achieves the effect of automatic temperature control, but also realizes other cooking functions set, and further improves the automation degree of the induction cooker.
  • the rice cooker according to the present invention can realize continuous non-contact temperature measurement within the working range, and maximizes the adaptability range of the rice cooker in the working process.
  • the microwave oven of the present invention adopts a magnetic temperature sensing element of non-metal material, and does not produce a skin effect and a eddy current effect in the microwave field, so that its own temperature rises, no interference to temperature measurement, and can be effective and stable.
  • the non-contact temperature measurement method of the microwave oven according to the present invention has low cost and high reliability. It is not affected by the emissivity of the object and the aerosol, and the temperature measurement performance is stable.
  • the gas cooker according to the present invention adopts a non-contact temperature measuring method. Due to the protection of the heat insulating material and the non-contact design, the influence of the combustion of the burner on the temperature measuring device can be largely avoided.
  • FIG 1 is F e83 Nb 6 B u iT alloy schematic various specific temperature profile in the temperature range 370-66CTC;
  • FIG. 2 is a schematic view of a change Fe-Cu-Nb-Si- B alloy magnetic permeability versus temperature;
  • Figure 3 is a schematic diagram showing the relationship between the magnetization curve B-H and the ⁇ - ⁇ curve
  • Figure 4 is a schematic diagram of magnetic permeability versus temperature ⁇ - ⁇ curve
  • Figure 5 and Figure 6 are schematic diagrams showing the relationship between magnetic susceptibility and temperature, respectively;
  • FIG. 7 and 8 are schematic diagrams showing two relationships between magnetization and temperature, respectively;
  • 9 is a magnetic permeability-temperature graph of a ferromagnetic body according to the present invention, that is, a ⁇ ⁇ curve, wherein £ is a ferromagnetic body having a continuously decreasing ⁇ - ⁇ curve, and ⁇ is a point of the curve and a tangent at this point;
  • b is a ferromagnetic with a continuously rising ⁇ ⁇ curve, ⁇ is one of the curves and a tangent at that point;
  • Figure 10 is the magnetic field strength and electrical signal of the magnetic temperature sensing element of the present invention Relationship graph;
  • Figure 11 is a graph showing the relationship between temperature and electrical signal of the inner pot or the heating pot or the utensil or the cooking pot of the present invention (positive temperature coefficient);
  • Figure 12 is a graph showing the relationship between temperature and electrical signal of the inner pot or the heating pot or the vessel or the cooking pot of the present invention (negative temperature coefficient);
  • Figure 13 is a schematic view of an electromagnetic rice cooker according to the present invention.
  • Figure 14 is a schematic view showing the principle of the electromagnetic rice cooker control circuit of the present invention.
  • Figure 15 is a schematic view of the induction cooker according to the present invention.
  • Figure 16 is a schematic view showing the principle of the control circuit of the induction cooker according to the present invention.
  • Figure 17 is a schematic structural view of a microwave oven according to the present invention.
  • FIG. 18 is a block diagram showing the principle of the microwave oven control circuit of the present invention.
  • Figure 19 is a schematic structural view of a gas stove according to the present invention.
  • Figure 20 is a block diagram showing the principle of the gas stove control circuit of the present invention.
  • 21 is a schematic diagram of a temperature measuring circuit with a rectifying and filtering circuit of the present invention.
  • Figure 22 is a graph showing the relationship between the temperature and the DC voltage (current) of the inner pot or the heating pot or the vessel or the cooking pot when the apparatus of the present invention realizes the rice cooking, the heat preservation function and the automatic boil water function;
  • Figure 23 is a schematic diagram of an excitation circuit for forming an exciting coil by means of a temperature measuring induction coil tap of the present invention. Detailed ways
  • the invention utilizes the magnetic permeability temperature characteristics of iron or ferrimagnetic magnets to realize the non-contact temperature measurement method of the gas stove.
  • the magnetic permeability (or magnetic induction, magnetization) of ferromagnetic, ferrimagnetic or ferrite has a very complicated relationship with parameters such as temperature, which are affected by factors such as frequency, temperature, and magnetic characteristics before and after the Curie point. See the disclosure cited below for details.
  • the common magnetization characteristics of ferromagnets are: With the increase of enthalpy, the enthalpy increases slowly at the beginning, at which time ⁇ is small; then it increases sharply with the increase of enthalpy, ⁇ also increases rapidly; finally, as the enthalpy increases, ⁇ tends to be saturated, and the ⁇ value at this time decreases sharply after reaching the maximum value (the magnetic permeability increases as the magnetic field strength increases, when the applied magnetic field strength exceeds a certain limit value) The sharp decrease in magnetic permeability is called magnetic saturation, the material loses magnetic shielding, and the higher the magnetic permeability, the more saturated it is.) The figure also shows that the magnetic permeability ⁇ is a function of the magnetic field ⁇ .
  • the magnetic permeability ⁇ is also a function of temperature.
  • the ferromagnet changes from a ferromagnetic state to a paramagnetic state, and the temperature corresponding to the sudden change point of the curve is the Curie temperature. T c .
  • T e is the Curie temperature point, and the spontaneous magnetization drops sharply to zero, and turns into a paramagnetic body.
  • the paramagnetic Curie point is often close to the Curie point T c , generally ⁇ >T
  • the residence of pure iron The temperature is 770 V and the pure nickel is 350 °C.
  • Ferrimagnets susceptibility (see FIG. 6) of the magnetic susceptibility at temperatures below T e ferromagnetic not as big, it is not large spontaneous magnetization of ferromagnetic, ferrimagnetic material is typically a ferrite.
  • the paramagnetic Curie point is e ⁇ T c and is often negative.
  • the complexity of the magnetic permeability temperature relationship of ferromagnetic materials can be seen from the above literature.
  • Known research shows that magnetic media can be generally divided into ferromagnetic, paramagnetic and antimagnetic properties.
  • the magnetic permeability ⁇ which characterizes the physical quantity of the magnetic medium, is generally the relative magnetic permeability of the magnetic medium, which is defined as the magnetic permeability ⁇ and the vacuum magnetic permeability ⁇ .
  • the magnetic permeability actually represents the ease with which the magnetic material is magnetized; at different stages of magnetization, the magnetic permeability of the material is also different, and the magnetic permeability is called the maximum magnetic permeability at the highest point, at the magnetization starting point.
  • the magnetic permeability is called the initial magnetic permeability, the magnetization ⁇ , the physical quantity describing the magnetization state of the magnetic medium, and is a vector, which is defined as the vector sum of the molecular magnetic moments m per unit volume.
  • the magnetization occurs after the magnetic medium is magnetized.
  • the current is to generate an additional magnetic field.
  • the sum of the external magnetic field and the external magnetic field is the total magnetic field B.
  • H the paramagnetic mass is in the same direction as 8, H, for ferromagnet, and 8.
  • H the paramagnetic mass is in the same direction as 8, H, for ferromagnet, and 8.
  • the magnetizing current generated after the magnetization of the magnetic medium generates an additional magnetic field
  • the sum of the external magnetic field and the external magnetic field is the total magnetic field B
  • the paramagnetic mass is slightly larger than 1, almost close to ⁇ .
  • the ⁇ of the non-ferromagnetic substance is approximately equal to ⁇ Q .
  • Ferromagnetic materials have a high magnetic permeability, ⁇ » 0 , and therefore ferromagnetic and ferrimagnetic, including ferrite, are suitable.
  • the ferromagnet becomes paramagnetic after the temperature rises to the Curie point, and the ⁇ J of the paramagnetic mass is each greater than 1, almost close to ⁇ .
  • the temperature does not cause a large change in the magnetic induction, or the total magnetic field ,, so the change in magnetic permeability after the Curie point is not capable of achieving the object of the present invention.
  • the magnetic field in the medium is significantly enhanced, that is, after magnetization, it has a strong additional magnetic field in the same direction as the external magnetic field.
  • the appearance is that the magnetic field induces a strong attraction, and the force is paramagnetic.
  • the mass is about four or five thousand times, and the ferromagnet has a ⁇ >1, and its value is almost ⁇ . 10 3 _ 10 4 times, iron, nickel, cobalt, niobium, tantalum and their alloys and some non-metallic ferrites fall into this category.
  • the relative magnetic permeability of ferromagnetic material ⁇ ⁇ ⁇ / ⁇ Q such as cast iron is 200 ⁇ 400; silicon steel sheet is 7000 ⁇ 10000; Nickel-zinc ferrite is 10 ⁇ 1000 ; nickel-iron alloy is 2000; manganese-zinc ferrite is 300 ⁇ 5000 ; permalloy is 20000 ⁇ 20000.
  • the relative magnetic permeability of the air is 1. 00000004; the platinum is 1. 00026; the relative magnetic permeability of the diamagnetic substance, for example, mercury, silver, copper, carbon, and lead, is less than but close to 1.
  • this is a typical ⁇ ⁇ curve, even before the Curie point, the ⁇ ⁇ curve shows a complex change, for example, before the Curie point, the first curve in Figure 1 About 65 ° C, the second graph in Figure 1 is about 55 ° C, and the first graph in Figure 2 is about 280 ° C, showing a peak or valley, if using ⁇ with such characteristics
  • the material of the -T curve will have two identical magnetic permeability ⁇ at different temperatures, and when the signal is output to the signal discriminating circuit, it will be impossible to determine which temperature the magnetic permeability ⁇ corresponds to.
  • the researcher of the present invention uses the following method to implement the technical solution of the present invention, and selects a ferromagnetic or ferrimagnetic magnet whose ⁇ ⁇ curve exhibits a continuous rise in the operating temperature range or The process of continuous decline.
  • the working temperature means room temperature to 210 ° C, preferably 25 to 200 ° C, and more preferably 30 to 180 ° C.
  • the fourth, sixth, and eighth graphs in FIG. 1 exhibit a continuous decreasing process in the range of room temperature to about 500 ° C; and the second graph in FIG. 1 is at room temperature to about A continuous rising process is exhibited in the range of 55 ° C.
  • this process obviously does not satisfy the above operating temperature range; the fourth graph in Fig. 2 (annealing temperature 590 ° C) appears continuous below 10 CTC
  • the rising process has a good slope and continuity, but its upper limit of 10 CTC is obviously not able to meet the operating temperature.
  • the ferromagnetic or ferrimagnetic (including ferrite) of the magnetic temperature sensing element 2 suitable for use in the present invention should have the ⁇ -T curve as described in Figure 9, in which:
  • a is a ferromagnetic or ferrimagnetic magnet having a continuously decreasing ⁇ - ⁇ curve within the operating temperature range of the present invention, ⁇ is a point in the curve and a tangent at that point, A tangent and transverse T
  • the shaft has an included angle ⁇ , the angle ⁇ is an obtuse angle, and the range is 100-170 degrees, preferably 110-160 degrees, more preferably 110-140 degrees;
  • b is a ferromagnetic or ferrimagnetic body having a continuously rising ⁇ - ⁇ curve within the operating temperature range of the present invention
  • is a point in the curve and a tangent at the point, the tangent line and the transverse ⁇ axis
  • angle ⁇ is an acute angle, which ranges from 10 to 80 degrees, preferably from 15 to 75 degrees, and more preferably from 25 to 70 degrees.
  • the rice cooker according to the present invention comprises an inner casing 3a, an inner pot 9a, a heating plate 4a in the outer casing of the rice cooker, and a magnetic temperature sensing element in close contact with the bottom of the inner pot 9a. 10a.
  • the temperature measuring element comprises a temperature measuring induction coil 6a and an exciting coil.
  • the rice cooker is provided with a control circuit, comprising a power supply circuit, an output control circuit connected to the power supply circuit, an excitation circuit for controlling the excitation coil operation, and a display circuit for outputting display information, and a temperature measurement circuit connected to the output control circuit.
  • the temperature measuring circuit includes a temperature measuring induction coil and an electric signal discriminating circuit, and the temperature measuring induction coil is connected with the electric signal discriminating circuit, and the electric signal discriminating circuit is further connected with the output control circuit to make a corresponding change of the rice cooker control program.
  • the excitation circuit is mainly composed of an excitation coil, and the excitation circuit can excite the temperature measurement induction coil, and form a detection magnetic field between the temperature measurement induction coil and the magnetic temperature sensing element,
  • the magnetic temperature element generated by the magnetic temperature sensing element in the middle of the inner pot is converted into an electric signal and outputted at the set temperature point, so that the temperature of the inner pot can be detected.
  • the excitation coil is energized to generate an alternating magnetic field of a certain intensity, that is, a temperature sensing magnetic field.
  • an alternating magnetic field passes through the magnetic temperature sensing element and the temperature sensing induction coil, an alternating voltage and current are generated in the temperature sensing induction coil. , that is, an electrical signal is generated.
  • the temperature of the magnetic temperature sensing element changes with the temperature of the inner pot, the magnetic strength of the magnetic temperature sensing element changes, and the magnetic flux of the temperature measuring induction coil changes accordingly, thereby causing voltage or current and pulse width across the temperature measuring induction coil.
  • the isoelectric signal changes, and it can be seen that the magnitude of the alternating voltage, current, pulse width and other electrical signals of the temperature sensing coil is affected by the temperature of the inner pot body, and there is a temperature sensing detection in the vicinity of the exciting coil.
  • the area of the magnetic field Therefore, in the case of normal operation, by detecting the magnitude of the electrical signal generated by the temperature sensing coil, the temperature change of the magnetic temperature sensing element can be detected. Since the different temperature points of the magnetic temperature sensing element correspond to the magnetic strength of different strengths, and the corresponding electric signal is generated in the temperature measuring induction coil, a plurality of temperature points can also be set according to the requirements of different cooking programs of the rice cooker, and the detection is performed. The size of the electrical signal generated by the temperature induction coil determines the multi-point temperature change of the magnetic temperature sensing element, thereby realizing the automatic control of the rice cooker.
  • the induction cooker includes an induction cooker casing 2b, an induction cooktop platen 3b, a heating coil 4b under the induction cooktop platen, a control circuit, and a heating pot 9b on the induction cooktop platen, and further includes a heating unit.
  • a magnetic temperature sensing element 10b that is in close contact with the bottom of the pot, and a temperature measuring element disposed under the induction plate top plate corresponding to the position of the magnetic temperature sensing element.
  • the microwave oven according to the present invention includes a casing lc, a heating chamber 2c disposed inside the casing, a magnetron 9c for heating the heating chamber 2c, a turntable 8c located in the heating chamber, and a rotating turntable.
  • the turntable 1 is provided with a vessel 3c for holding food and microwaves capable of penetrating and heating, and a temperature measuring component is arranged below the turntable, including a temperature measuring induction coil 6c and an exciting coil 4c, and the bottom of the vessel 3c
  • the magnetic temperature sensing element 7c having a magnetic induction intensity corresponding to the exciting coil 4c that changes according to a temperature change is provided, and the food-carrying vessel 3c is generally an insulating material such as glass, ceramics, or plastic that can be penetrated by microwaves.
  • control circuit, working principle and method of the induction cooker and the microwave oven of the present invention are the same as the control circuit, working principle and method of the above rice cooker.
  • the temperature measuring induction coil of the present invention is located in the vicinity of the exciting coil and the magnetic temperature sensing element, and can generate the temperature sensing magnetic field in the region, because only in the region where the temperature sensing magnetic field is detected, the exciting coil, the temperature measuring induction coil and Magnetic temperature sensing elements can interact.
  • the magnetic temperature sensing element may be a magnetic temperature sensing element of a ferrite material; the magnetic temperature sensing element may also be a temperature sensitive magnetic steel, such as a temperature sensitive magnetic steel or a nanocrystalline material of an amorphous material.
  • the temperature sensitive magnetic steel; the magnetic temperature sensing element may also be a magnetic temperature sensing element of an alloy material, or a magnetic temperature sensing element of a rare earth material.
  • the electric signal discriminating circuit may be a voltage discriminating circuit or a current discriminating circuit, or other discriminating circuits such as a frequency and a pulse width, such as a voltage comparison circuit, an A/D circuit, a pulse width measuring circuit, and the like.
  • the invention can be improved as follows.
  • the temperature measuring circuit can further comprise a rectifying and filtering circuit, and the alternating electric signal generated by the temperature sensing coil can be converted into a direct current signal through the rectifying and filtering circuit, and output to the signal discriminating circuit.
  • the gas cooker according to the present invention includes a cooktop ld, a burner 2d disposed on the cooktop D1, a stand 9d, and a cooking pot 3d disposed on the stand.
  • the temperature measuring element is provided at a central position of the burner 2d, and includes a temperature measuring induction coil 6d and an exciting coil 4d.
  • the bottom of the cooking pot 3d is provided with a magnetic temperature sensing element 7d which changes in magnetic induction intensity corresponding to the exciting coil 4d according to a temperature change.
  • the temperature sensing induction coil is matched with the excitation coil, and the coaxial sleeve is disposed on the bracket 5d.
  • the spring 10d is arranged under the bracket 5d to make the heat shield l id rise and fall, corresponding to the bottom of the cooking pot of different shapes.
  • the heat insulating material 8d is filled between the temperature measuring element and the heat shield.
  • the magnetic temperature sensing element 7d is cast or embedded in the bottom of the cooking pot 3d, and the outside of the temperature measuring element is provided with a heat shield lld, and the heat shield corresponds to the magnetic sexy temperature element to stick the bottom of the pot to isolate the flame to make the magnetic sexy
  • the temperature of the temperature element is close to the temperature of the food in the cooking pot.
  • the gas stove is provided with a temperature control circuit, comprising a power supply circuit, an output control circuit connected to the power supply circuit, an output adjustment circuit connected to the output control circuit for controlling the size of the gas, an excitation drive circuit for controlling the operation of the excitation coil, and an output display information.
  • a display circuit further comprising a temperature measuring circuit connected to the output control circuit, the measuring temperature
  • the circuit comprises a temperature measuring induction coil and an electric signal discriminating circuit, the temperature measuring induction coil is connected with the electric signal discriminating circuit, and the electric signal discriminating circuit is further connected with the output control circuit.
  • the excitation driving circuit is mainly composed of an excitation coil, and the excitation driving circuit can excite the temperature sensing induction coil to form a detection magnetic field between the temperature sensing induction coil and the magnetic temperature sensing element.
  • the magnetic signal generated by the magnetic temperature sensing element in the middle of the cooking pot at the set temperature point is converted into an electrical signal and output, so that the temperature of the cooking pot can be detected.
  • the working principle is as follows: When the gas stove is ignited, the gas is burned, the excitation coil is energized, and an alternating magnetic field of a certain intensity is generated, that is, the temperature detecting magnetic field is detected. When the alternating magnetic field passes through the magnetic temperature sensing element and the temperature measuring induction coil, the temperature sensing is performed. An alternating voltage and current are generated in the coil, that is, an electrical signal is generated. When the temperature of the magnetic temperature sensing element changes with the temperature of the cooking pot, the magnetic strength of the magnetic sensing element changes, and the magnetic flux of the temperature measuring coil changes accordingly, thereby causing voltage or current and pulse at both ends of the temperature measuring coil. The width and other electrical signals are changed.
  • the magnitude of the alternating voltage, current, pulse width and other electrical signals of the temperature sensing coil is affected by the temperature of the cooking pot, and there is a temperature sensing near the exciting coil.
  • the alternating electric signal generated by the temperature measuring induction coil such as voltage or current
  • the direct current voltage or the direct current is input to the voltage or current discriminating circuit.
  • the voltage or current discrimination circuit can determine the magnitude of the DC voltage or current. Since the size of the electrical signal is affected by the magnetic strength of the magnetic sensing element, the stronger the magnetic, the larger the electrical signal, the weaker the magnetic, and the smaller the electrical signal (see Figure 10).
  • the magnetic strength of the magnetic temperature sensing element is affected by the temperature of the electromagnetic pot.
  • the magnetic induction temperature measuring circuit can determine the temperature of the inner pot, and the relationship between the temperature and the electric signal has a positive temperature coefficient relationship and a negative relationship.
  • Figure 12 shows the relationship of negative temperature coefficient. The higher the temperature, the weaker the electrical signal.
  • Figure 22 is a graph showing the relationship between the temperature and the DC voltage (current) of an inner pot or a heating pot or a vessel or a cooking pot, in which one embodiment of the present invention adopts a relationship of a negative temperature coefficient. When the measured temperature reaches a certain temperature, the voltage value changes to a certain voltage value X volts.
  • a certain temperature is 105 ° C
  • the temperature is the temperature at which the rice is cooked. Therefore, setting this temperature point can be used for automatic implementation.
  • the temperature measuring circuit can determine the change of multiple temperature points of the cooking pot, so that the control program makes corresponding changes to meet other cooking requirements.
  • Figures 10-12 and 22 The relationship curve shown can be a straight line or a curve.
  • the exciting coil may be disposed beside the temperature measuring induction coil; or may be coaxially sleeved with the temperature sensing induction coil; or may be formed by the temperature sensing induction coil tapping (refer to Fig. 23).
  • the rice cooker according to the embodiment is an ordinary rice cooker.
  • an inner casing 3a, an inner pot 9a, a heating plate 4a, and an electric heating tube are embedded in the heating plate.
  • a magnetic temperature sensing element 10a which is in constant contact with the inner pot 9a is disposed, and a temperature measuring induction coil 6a is disposed at a position corresponding to the magnetic temperature sensing element 10a at the center of the heating plate 4a.
  • a temperature measuring induction coil an exciting coil 2a, and a corresponding control circuit 8a.
  • the temperature measuring induction coil and the thermistor 7a are fixed by the bracket 5a below the bottom of the inner casing 3a, and the magnetic temperature sensing element 10a Centered on the upper surface of the bottom of the inner casing 3a.
  • the magnetic temperature sensing element 10a is in direct contact with the bottom of the inner pot 9a.
  • the rice cooker control circuit 8a includes a power supply circuit, an output control circuit, a current detection circuit, a temperature protection circuit, an output adjustment circuit, a display circuit, and a protection circuit, and further includes a temperature measurement circuit, and the temperature measurement circuit includes a temperature measurement induction coil and electricity.
  • the signal discriminating circuit, the temperature measuring induction coil is connected with the electric signal discriminating circuit, and the electric signal discriminating circuit is connected with the output control circuit to make the corresponding control of the rice cooker control program.
  • the non-contact temperature sensing method according to the present invention is implemented by the principle of electromagnetic induction, and the basic principle is that an induced electromotive force is generated due to a change in magnetic flux, that is, when the magnetic induction intensity of the magnetic temperature sensing element is When the temperature changes, the magnetic field generated changes, and the changed magnetic field cuts the magnetic force line of the temperature measuring induction coil, and a variable current or voltage signal is generated in the temperature measuring induction coil.
  • the heat generating tray 4a heats the inner pot 9a.
  • the alternating magnetic field generated by the exciting coil 2a acts on the magnetic temperature sensing element 10a and the temperature measuring induction coil at the same time.
  • the alternating magnetic field generated by the exciting coil 2a operates with a certain parameter, it acts alone on the temperature sensing induction.
  • the amplitude of the electrical signal generated by the coil and therein is fixed, regardless of the voltage and current signals collected, and a basic electrical signal is formed in the temperature sensing coil.
  • the temperature of the magnetic temperature sensing element 10a which is in contact with the inner pot 9a changes accordingly, and the magnetic induction intensity B excited by the exciting coil 2a changes accordingly, and the changed magnetic field is generated in the temperature measuring induction coil.
  • the electrical signal is superimposed with the basic electrical signal to form a changed real-time output electrical signal, and the real-time output electrical signal is discriminated in the electrical signal discriminating circuit, and the output control circuit realizes a conversion operation on the set temperature, thereby realizing Automatic control of the electromagnetic rice cooker working procedure.
  • the rice cooker in the first embodiment is an ordinary rice cooker, not an electromagnetic rice cooker.
  • an electromagnetic rice cooker is used.
  • the heating plate 4a is an electromagnetic heating coil
  • the magnetic temperature sensing element 10a is installed at the bottom of the inner pot 9a, and the inner shell 3a is under the bottom.
  • the excitation coil 2a is provided on the surface, or the electromagnetic heating coil is used as the excitation coil at the same time, that is, the electromagnetic heating coil heats the inner pot prepared by the ferromagnetic material while applying the alternating magnetic field, and also serves as the magnetic temperature sensing element 10a, and measures the temperature.
  • the excitation coil of the induction coil 6a, the inner pot 9a is made of a ferromagnetic material, the size, shape and quality of the inner pot, and the size, shape and quality of the magnetic temperature sensing element, and the various parameters between the temperature measuring induction coils are relatively fixed.
  • the other is the same as the first embodiment.
  • the electromagnetic heating coil 4 When the electromagnetic rice cooker is in operation, the electromagnetic heating coil 4 generates an alternating magnetic field of a certain intensity to heat the inner pot 9a.
  • the alternating magnetic field generated by the electromagnetic heating coil 4 acts on the magnetic temperature sensing element 10a and the temperature sensing induction coil at the same time.
  • the alternating magnetic field generated by the electromagnetic heating coil 4 operates with a certain parameter, it acts alone on the measurement.
  • the amplitude of the electrical signal generated by the temperature sensing coil and in it is fixed, regardless of the voltage and current signals collected, and a basic electrical signal is formed in the temperature sensing coil.
  • the temperature of the magnetic temperature sensing element 10a which is in contact with the inner pot 9a changes accordingly, and the magnetic induction intensity B excited by the exciting coil 2a changes accordingly, and the changed magnetic field is generated in the temperature measuring induction coil.
  • the electrical signal is superimposed with the basic electrical signal to form a changed real-time output electrical signal, and the real-time output electrical signal is discriminated in the electrical signal discriminating circuit, and the output control circuit realizes a conversion operation on the set temperature, thereby realizing Automatic control of the electromagnetic rice cooker cooking program.
  • the magnetic temperature sensing element 10a in the second embodiment is disposed in the middle of the heating plate 4a, in order to avoid or reduce the influence of the electromagnetic heating coil on the magnetic temperature sensing element 10a and the temperature sensing coil 6a.
  • a shielding coil of high magnetic permeability ferromagnetic body can be disposed between the electromagnetic heating coil and the temperature measuring induction coil 6a.
  • the influence of the electromagnetic heating coil on the magnetic temperature sensing element 10a can also be reduced.
  • the prior art method can be used, for example: "Difficulties in Electromagnetic Shielding - Magnetic Field Shielding" (Electronic Quality 2006 No.
  • a low frequency magnetic field (referring to an alternating magnetic field below 100 kHz, and a household electromagnetic rice cooker)
  • the operating frequency is within 20-30KHZ.
  • the shielding effect can be achieved by shunting the magnetic flux with a high permeability shield.
  • the magnetic induction inside the high permeability shielding body is much larger than the external magnetic induction intensity.
  • the external magnetic field lines Almost perpendicular to the surface of the ferromagnetic material, most of the low-frequency magnetic field energy is confined within the shield to provide shielding.
  • a more suitable method is the low-frequency magnetic field shielding method based on the bypass principle described in this paper, which improves the bypass efficiency, can make the shielding body as small as possible to make the magnetic circuit as short as possible, increase the cross-sectional area of the magnetic circuit and use high magnetic permeability. Rate of material.
  • improvements can be made in accordance with the requirements of the present invention, for example, such as mounting position changes, or partial exposure, for partial shielding.
  • the non-contact temperature measurement method according to the present invention is described by an induction cooker temperature measurement process, and reference is made to Figs.
  • the induction cooker includes: an induction cooker housing 2b, an induction cooktop platen 3b, a heating coil 4b, and a control circuit.
  • the control circuit includes a control board lb and a driving board 8b, and a center of the heating coil 4b is provided with a support frame 5b.
  • the support frame 5b is provided with a thermistor 7.
  • a temperature measuring induction coil 6b is further disposed under the induction cooker platen 3b, and the magnetic temperature sensing element 10b is fixed with the cooking heating pot 9b, and the magnetic field change generated at the corresponding temperature point is converted into an electric signal and output, and the temperature measuring induction coil is 6b is matched with the heating coil 4b (which also serves as the exciting coil of the magnetic temperature sensing element 10b) to generate an induced electrical signal.
  • the temperature measuring induction coil is located in the vicinity of the heating coil 4b (also serving as the exciting coil) and the magnetic temperature sensing element 10b, and can detect and clearly detect the magnetic field change of the magnetic temperature sensing element 10b.
  • the temperature sensing induction coil is The bracket 5b' is fixed to one side of the heating coil 4b.
  • the induction cooker control circuit comprises a power supply circuit, an output control circuit, a current detection circuit, a temperature protection circuit, an output adjustment circuit, a display circuit and a protection circuit, and the like, and a temperature measurement circuit, wherein the temperature measurement circuit comprises a temperature measurement induction coil and an electrical signal
  • the discriminating circuit, the temperature measuring induction coil is connected with the electric signal discriminating circuit, and the electric signal discriminating circuit is connected with the output control circuit to make the corresponding control of the induction cooker control program.
  • the non-contact temperature sensing method according to the present invention is implemented by the principle of electromagnetic induction, and the basic principle is that an induced electromotive force is generated due to a change in magnetic flux, that is, when the magnetic induction intensity of the magnetic temperature sensing element is When the temperature changes, the magnetic field generated changes, and the changed magnetic field cuts the magnetic force line of the temperature measuring induction coil, and a variable current or voltage signal is generated in the temperature measuring induction coil.
  • the heating coil 4b when the induction cooker is in operation, the heating coil 4b generates an alternating magnetic field of a certain intensity to heat the cooking heating pot 9b, and at the same time, the alternating magnetic field acts on the magnetic temperature sensing element 10b and the temperature measuring induction coil at the same time.
  • the amplitude of the electrical signal generated in the temperature sensing induction coil and generated therein is fixed, regardless of the voltage and current signals collected, and in the measurement A basic electrical signal is formed in the temperature induction coil.
  • the alternating magnetic field described herein refers to the heating coil 4b of the induction cooker (of course, an independent exciting coil can also be used).
  • the heating coil 4b is both a heating coil of the induction cooker and a magnetic temperature.
  • the component 10b and the excitation coil of the temperature measuring induction coil As the temperature of the cooking heating pot 9b changes, the temperature of the magnetic temperature sensing element 10b changes accordingly, and the magnetic induction intensity B excited by the exciting coil changes accordingly, and the electric field and basic electric energy generated by the changing magnetic field in the temperature measuring induction coil are changed.
  • the signals are superimposed to form a changed real-time output electrical signal, and the real-time output electrical signal is discriminated in the electrical signal discriminating circuit, and the output control circuit realizes a conversion operation on the set temperature, thereby realizing automatic cooking of the induction cooker control.
  • the other embodiment is the same as the fourth embodiment, except that the magnetic temperature sensing element 10b is embedded in the position on the table surface in contact with the cooking heating pot 9b, and the temperature measuring induction coil and its substantially right pair are placed under the table top.
  • An excitation coil is independently set, and the temperature is measured periodically when the heating coil is turned off.
  • the temperature sensing induction coil and the excitation coil are fixed together under the induction platen by the bracket 5b', corresponding to the position of the magnetic temperature sensing element, and the bracket 5b' is a stepped frame with a longitudinal section, the temperature measuring coil and the excitation The coil is coaxially fixed to the plate frame.
  • the embodiment shows that the induction cooker can also perform necessary shielding on the temperature measuring induction coil 6b if necessary, and the shielding can be performed in the prior art manner, which is the same as the third embodiment.
  • the bottom of the vessel 3c can be filled or embedded with the magnetic temperature sensing element 7c, and the temperature sensing coil 6c is located at the microwave oven turntable 8c.
  • the exciting coil 4c is located outside the temperature measuring induction coil 6c and the magnetic temperature sensing element 7c, and the magnetic temperature sensing element 7c is made of a heat-sensitive ferrite material.
  • the exciting coil is activated to generate an alternating magnetic field of a certain intensity.
  • the motor 11c of the microwave oven and the turntable 8c rotate to drive the vessel 3c on the turntable to rotate.
  • the temperature sensing coil 6c When the magnetic temperature sensing element 7c on the vessel 3c passes through the temperature sensing induction coil, the temperature sensing coil 6c is passed under the condition that the magnetic field strength is the same. The magnetic flux is the largest.
  • the temperature sensing coil 6c and the exciting coil 4c are fixed together by the holder 5c below the microwave oven turntable 8c.
  • the bracket 5c is a plate frame having a stepped longitudinal section, and the temperature measuring induction coil 6c and the exciting coil 4c are fixed to the plate frame.
  • the magnetic temperature sensing element 7c is located at the bottom of the fixed vessel 3c and corresponds to the position of the temperature sensing coil 6c. When the microwave oven is used, the magnetic temperature sensing element 7c is in direct contact with the food in the vessel 3c.
  • the magnetic induction temperature measuring circuit of the microwave oven further comprises a rectifying and filtering circuit, the input end of the rectifying and filtering circuit is connected with the temperature measuring induction coil 6c, and the output end is connected with the electric signal discriminating circuit.
  • the electric signal discriminating circuit in this embodiment is a voltage discriminating circuit such as an A/D circuit.
  • an excitation circuit capable of exciting the temperature measuring induction coil 6c is provided in the microwave oven control circuit, that is, an excitation coil 4c, a temperature sensing induction coil 6c and an excitation coil 4c are disposed beside the temperature measuring induction coil 6c. Matching, an induced electrical signal can be generated, and the exciting coil 4c can be powered by the output control circuit and excite the temperature measuring coil 6c. As shown in FIG. 18 and FIG. 21, when cooking in a microwave oven, the exciting coil is activated, and the temperature measuring coil 6c is excited, and a detecting magnetic field is formed between the temperature measuring coil 6c and the magnetic temperature sensing element 7c.
  • the temperature induction coil 6c can output a corresponding voltage according to the magnetic change of the magnetic temperature sensing element 7c, and the magnetron 9c operates the rice and water in the heating dish 3c.
  • the temperature of the rice reaches 105 ° C, and the temperature is measured.
  • the voltage value generated by the induction coil 6c changes to a certain voltage value X volts
  • the voltage discrimination circuit senses the X volt voltage value, referring to FIG. 21, the signal is immediately transmitted to the output control circuit, and the power of the microwave oven magnetron 9c is turned off. Then, the heating is stopped, thereby realizing the automatic temperature measurement function of the microwave cooking rice.
  • the voltage discriminating circuit senses the Y volt voltage value and immediately transmits a signal to the output control circuit.
  • the power of the microwave magnetron 9c is turned back on, the state of the microwave oven 9c is turned on, that is, the magnetron 9c is started to be energized (or intermittently energized), and when the temperature of the vessel 3c reaches the set upper temperature limit, the microwave oven is disconnected.
  • the power supply of the magnetron 9c is used to achieve the heat preservation function.
  • the gas stove provided with the magnetic induction temperature measuring device shown in FIG. 19 and FIG. 20 is an embodiment of the present invention.
  • the bottom of the cooking pot 3d can be filled or embedded with a magnetic temperature sensing element 7d, and the position of the middle portion of the gas stove burner is also A heat shield l id is provided, and a temperature measuring induction coil 6d and an excitation coil 4d are inside the heat shield l id, and a heat insulating material is filled between the temperature measuring induction coil 6d and the excitation coil 4d and the heat shield to prevent the burner from burning.
  • the temperature measuring induction coil 6d is located below the magnetic temperature sensing element 7d, the exciting coil 4d is located outside the temperature measuring induction coil 6d and the magnetic temperature sensing element 7d, and the magnetic temperature sensing element 7d is made of a heat sensitive ferrite material.
  • the excitation coil is activated to generate an alternating magnetic field of a certain intensity, and the magnetic temperature sensing element 7d at the bottom of the cooking pot 3d passes through the temperature sensing induction coil, and the temperature sensing coil 6d is passed under the condition of the same magnetic field strength.
  • the magnetic flux is the largest.
  • the temperature measuring induction coil 6d and the exciting coil 4d are fixed to the bottom of the cooktop base Id by the bracket 5d.
  • the bracket 5d is a plate frame having a stepped longitudinal section, and the temperature measuring induction coil 6d and the exciting coil 4d are fixed to the plate frame.
  • the magnetic temperature sensing element 7d fixes the bottom of the cooking pot 3d, corresponding to the position of the temperature sensing coil 6d. When the gas stove is used, the magnetic temperature sensing element 7d is in direct contact with the food in the pot through the cooking pot 3d.
  • the magnetic induction temperature measuring circuit of the gas stove further comprises a rectifying and filtering circuit, the input end of the rectifying and filtering circuit is connected with the temperature measuring induction coil 6d, and the output end is connected with the electric signal discriminating circuit.
  • the electric signal discriminating circuit in this embodiment is a voltage discriminating circuit such as an A/D circuit.
  • an excitation drive circuit capable of exciting the temperature measurement induction coil 6d is disposed in the gas stove control circuit, that is, an excitation coil 4d, a temperature measurement induction coil 6d and an excitation coil are disposed beside the temperature measurement induction coil 6d.
  • the 4d matching can generate an induced electrical signal, and the exciting coil 4d can be powered by the output control circuit and excite the temperature measuring coil 6d.
  • a detection magnetic field is formed between the temperature sensing coil 6d and the magnetic temperature sensing element 7d, and the temperature sensing coil 6d can output a corresponding voltage according to the magnetic change of the magnetic temperature sensing element 7d, and the gas stove burns and heats the cooking pot.
  • the rice and water in 3d when the rice is boiled and dried, when the temperature of the rice reaches 105 ° C, when the voltage value generated by the temperature measuring induction coil 6d changes to a certain voltage value X volts, the voltage discriminating circuit senses the X volt voltage value.
  • the gas stove 21 immediately send a signal to the output control circuit to reduce or turn off the firepower of the gas stove, then stop the heating, thereby realizing the automatic temperature measurement function of the gas stove.
  • the voltage discriminating circuit senses the Y volt voltage value and immediately transmits it to the output control circuit. The signal is re-ignited and enters a small fire state.
  • the gas stove turns off the firepower of the gas stove to achieve the heat preservation function.
  • a Hall element is used.
  • the Hall element prepared by the Hall effect is used as the non-contact temperature measurement method according to the present invention.
  • a temperature induction coil specifically: a rectangular sheet made of a uniform N-type semiconductor material, the sheet having a certain length, width, and thickness, and a voltage applied to both ends of the length direction, the Hall element The position is within the effective range of the magnetic field of the magnetic temperature sensing element.
  • a change in the magnetic field B substantially perpendicular to the wide face of the Hall element causes a potential difference between the ends of the width of the sheet of the Hall element, and then The potential difference is converted into an electrical signal and processed in the same manner as in the first embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Cookers (AREA)

Description

一种非接触式测温方法及利用该测温方法的装置 技术领域
本发明涉及一种测温方法, 尤其是利用铁或亚铁磁体的磁导率温度特性, 实现非 接触式的测温方法及利用该测温方法的装置。 背景技术
通常, 炸制食品的油温约 160-170°C, 如果要炸透食物, 油温约 190°C左右, 经验 表明, 当油温在 50-90°C, 会有少量气泡, 油面平静; 当在 90-120°C, 气泡消失, 油 面平静; 120-17CTC时, 油温急剧上升, 油面依旧平静; 到 170-210°C, 有少量青烟, 油表面有少许小波纹; 一旦到 210-250°C, 将形成大量含有丙烯醛的青烟, 还产生油 脂的热聚合物、 多环芳烃等多种毒物, 因此, 用油烹饪的过程中的控温是必要的, 优 选将油温控制在 180°C左右。
现有技术中, 电饭煲是另一种温度控制的典型例子, 但是, 电饭煲在做米饭的温 度控制方式, 和上述油温控制有着很大的不同, 因为, 米饭的温度控制只要一点即可, 即, 控制在 103 ± 2°C,即可实现煮饭以及保温。
电饭煲所使用的限温开关, 是通过人工将杠杆按下接通电源, 开始煮饭, 饭熟后 限温开关经杠杆连接机构将电路由加热状态切换到保温状态,由于连接机构环节过多, 各部件尺寸偏差积累, 加之组装工艺配合不当, 或用户误操作等因素, 使电饭煲在用 户实际使用中常出现生米、 夹生饭、 焦饭等现象, 甚至发生烧坏发热板造成火灾的惨 剧。
对微波炉内的食物的温度控制基本无法实现或实现的成本很高, 例如采用光纤测 温和红外测温的方式成本极高。 由于强电磁场的存在, 在微波场下的温度测量依然是 一个技术难题。 在强电磁场下, 当用常规温度传感器如热电偶、 热电阻等测温时, 金 属材料制作的测温探头及导线在高频电磁场下产生感应电流, 由于集肤效应和涡流效 应, 使其自身温度升高, 对温度测量造成严重干扰, 使温度示值产生很大误差或者无 法进行稳定的温度测量。 光纤测温目前仍处在研究发展阶段, 在许多方面优于热电偶 等常规测温传感器, 但由于产品稳定性较差, 造价高, 限制了它在微波场测温中的推 广应用。 红外测温是一种非接触测量仪表, 用于对不同温度物体的表面温度测量。 它 根据被测物的红外辐射强度确定其温度。 由于其非接触性, 测量时不破坏被测物的温 度测量, 所以也可用于微波场温度测量。但自身的局限性也限制了它的应用范围, 如, 红外测温仪测温时要受物体发射率、 气雾的影响, 红外测温仪直接用于微波反应器测 温受到视场小的局限, 使用起来也不太便捷。
在现有技术中, 有一些是采有接触式的方法来自动控制锅内温度的, 如已公开的 申请号为 200410027848. X的中国专利申请,利用燃气灶燃烧,使得煮饭用的锅体温度 升髙, 锅体热量通过置于锅体底下的限温器铝盖传导到感温软磁, 感温软磁再传导到 永久磁钢, 当热量上升到磁极所受的吸附力时, 限温器高斯的磁场消失, 内弹簧自动 分离两磁铁, 使得接驳于限温器下方的离合铜条向下接触电极触片, 电极触片感应到 燃气灶高温信号, 通过导线传输到电子点火器, 电子点火器将高温信号通过导线发送 至温控阀, 温控阀接收到高温信号开始工作, 关闭煤气供给, 使得正在燃烧的火焰自 行熄灭。
其不足之处是: 由于是接触性导热, 且锅底通常有赃物, 影响接触面的接合, 故 导热性差, 另一方面弹簧长期在高温和受压縮状态, 很容易失效, 引起限温器不能与 锅的底部完全接触, 锅底部的温度很难保证准确、 及时地传递给限温器, 且由于燃烧 器的燃烧使限温器周边的温度会很高,往往会影响限温器的温度与锅内的温度不一致, 也因为限温器是居里点失磁, 现有技术只能控制一个点的温度, 难以对多个的温度点 进行检测, 由于不同的烹饪程序要求控制不同的温度点, 即不是所有烹饪程序都要求 达到居里点才工作, 而此种检测方法只能检测到限温器居里点的温度, 而不能检测多 点温度, 因而无法对燃气灶烹饪过程中所要求的多点温度进行灵活、 准确地控制, 温 度检测仍然受到局限。
还有一些是采有非接触式测量温度的, 如已公开的申请号为昭 59-167637的日本 专利申请, 是通过安装在旋转平台上的温度测量单元装置以居里温度的快速消磁方法 来实现温度测量的。 此时, 机体外的磁性传感器可以检测到机体内磁性的变化情况, 而不受水雾或者其他因素的影响。 其不足之处是: 由于微波炉工作时有强电磁场的存 在, 当微波炉工作时, 其强大的磁场会干扰磁敏传感器对感温磁钢在设定的温度点上 所发出的磁信号的检测, 因此, 让磁敏传感器在磁电管断电期间进行检测, 检测工作 完成后, 磁电管再通电工作, 这个过程一直循环下去, 直到磁敏传感器检测到食物在 某一设定的温度点所发生的信号为止。 故该技术方案存在以下缺陷: (1)为了保证磁敏 传感器的正常检测, 要经常断开磁电管的电源, 不利于微波炉的正常加热工作; (2)在 加热过程中设置首次断开磁电管的电源的时间会因加热食物的分量不同而有所不同, 因此,难以针对所有的情况设置较为合适的时间点,对于断电时间点设定早了的情况, 断电次数会增多且检测时间过长, 会影响加热效率; ( 微波炉的大功率磁电管或功率 模块频繁开关动作对控制系统带来冲击, 会影响控制系统的使用寿命; (4)难以对多个 的温度点进行检测: 由于不同的烹饪程序要求控制不同的温度点, 即不是所有烹饪程 序都要求达到居里点才工作, 而此种检测方法只能检测到感温磁钢的居里点温度, 而 不能检测多点温度, 因而无法对微波炉烹饪过程中所要求的多点温度进行灵活、 准确 地控制, 温度检测仍然受到局限。
特开平 10-125453 的日本专利公开了一种电磁感应加热烹饪器用的被加热烹饪 器, 在该文献中, 感温不锈钢是具有居里温度的材料。 所以, 由于居里温度的作用, 其磁性会由强磁性体向顺磁性体变化, 当超过居里温度时, 由于磁性金属材料会丧失 磁性, 导磁率变低, 发热体的发热量以居里温度为边界发生很大的变化, 其结果便是 能够使用居里温度进行温度控制, 例如, 使用居里温度为 220°C的感温不锈钢控温时, 在任何条件下, 油的温度也不会超过 220°C。
公开号为 CN1887150的中国专利公开了一种能发出反映温度变化的磁信号的电磁 锅, 包括加热锅, 在加热锅底部固定至少一块感温磁钢作为温度信号发生元件, 可以 根据感温磁钢达到的居里温度而向电磁灶发出一个失去铁磁性信号, 在电磁灶同时有 一磁感应元件的情况下, 使电磁灶根据感应到的信号来进行温度控制程序的转换, 改 变了现有技术电磁灶必须人工控温的状况, 拓宽电磁灶和电磁锅的用途。
上述现有技术其实利用的仅仅是材料的居里点前后物质磁性的突变, 即通过所述 居里点可以控制一个温度点。
如何实现一个更宽的温度范围且连续的非接触式控温, 并从原理以及机理上加以 说明, 现有技术没有给出任何启示, 有鉴于此, 特提出本发明。 发明内容
本发明的目的是提供一种利用铁或亚铁磁体的磁导率温度特性, 实现非接触式的 测温方法。
本发明的另一目的在于提供一种采用该非接触式测温方法的装置, 该装置分别为 电饭煲、 电磁炉、 微波炉及燃气灶。
本发明的目的可以通过以下的技术方案来实现: 一种非接触式测温方法, 在所述 的方法中, 包括一个需要测温的部件, 在所述的需要测温的部件接触部位设置至少一 个磁性感温元件, 一与所述磁性感温元件位置相对应的测温元件, 测温元件包括测温 感应线圈和励磁线圈,还包括一控制电路,所述的磁性感温元件为铁磁体或亚铁磁体, 利用磁体磁导率的温度特性, 配合励磁线圈和测温感应线圈, 在工作温度范围内, 具 有连续下降的 μ _Τ 曲线, 即磁导率 -温度曲线, 所述曲线的任一点的切线与横向的 Τ 轴具有夹角 β, 所述的夹角 β 为钝角; 或具有连续上升的 μ _Τ曲线, 所述曲线的任 一点的切线与横向的 Τ轴具有夹角 α, 所述的夹角 α 为锐角; 在励磁线圈上施加一 个交变电场, 励磁线圈工作时, 在测温感应线圈中产生一个基本电信号, 同时对磁性 感温元件进行励磁, 当被测物体温度变化时, 磁性感温元件的磁感应强度发生变化, 所述的变化反映在测温感应线圈中就产生了相应温度的电信号, 通过控制电路实现温 度检测及控制。
励磁线圈通电, 产生一定强度的感温检测磁场, 感温检测磁场通过磁性感温元件 和测温感应线圈时, 在测温感应线圈中产生电信号, 当磁性感温元件的温度随需要测 温的部件温度变化时, 磁性感温元件的磁性强度发生变化, 则测温感应线圈的磁通量 相应发生变化, 进而导致测温感应线圈两端的电信号产生变化, 由于磁性感温元件的 不同温度点对应着不同强度的磁性,磁性强度变化, 感温检测磁场产生的电信号变化, 根据该电信号对应检测到需要测温的部件的温度。
由于磁性感温元件的不同温度点对应着不同强度的磁性, 同时测温感应线圈中会 产生相应的电信号, 根据不同加热要求设定多个温度点, 通过测温感应线圈产生的电 信号的大小判别出磁性感温元件的多点温度变化, 实现自动温度控制。
所述的 β 角的范围在 100-170度, 优选在 110-160度, 更加优选的是 110-140 度; 所述的 α 角的范围在 10-80度, 优选在 15-75度, 更加优选的是 25_70度。
本发明所述的非接触是指磁性感温元件与测温感应线圈之间不接触。
利用上述非接触式测温的装置为电饭煲, 在电饭煲的外壳中, 包括一内壳、 内锅、 发热盘及控制电路, 还包括一与内锅底部紧密接触的磁性感温元件、 一与所述磁性感 温元件位置相对应的测温元件, 测温元件包括测温感应线圈和励磁线圈, 所述的磁性 感温元件为铁磁体或亚铁磁体, 利用磁体磁导率的温度特性, 配合励磁线圈和测温感 应线圈, 当所述的磁性感温元件的磁感应强度随温度变化而变化时, 其产生的磁场发 生变化, 该变化反映在测温感应线圈中就产生了相应温度的电信号, 通过控制电路实 现温度检测及控制。
所述的磁性感温元件安装于内锅底或安装于内壳底部的上表面, 位于发热盘的中 心。
所述的控制电路包括电源电路、 输出控制电路、 电流检测电路、 温度保护电路、 输出调节电路、 显示电路和保护电路, 还包括测温电路, 所述的测温电路包括测温感 应线圈和电信号判别电路, 测温感应线圈与电信号判别电路相连, 电信号判别电路再 与输出控制电路连接。
所述的电饭煲为普通加热电饭煲, 所述的发热盘内嵌电发热管。
所述的电饭煲为电磁电饭煲, 所述的发热盘内为电磁加热线圈, 励磁线圈与电磁 加热线圈为一体, 所述的电磁加热线圈在施加交变磁场对铁磁体材料制备的内锅进行 加热的同时, 兼做磁性感温元件、 测温感应线圈的励磁线圈。
或者, 利用上述非接触式测温的装置为电磁炉, 包括电磁炉壳体、 电磁炉台板、 电磁炉台板下方的加热线圈、 控制电路及位于电磁炉台板上的加热锅, 还包括一与加 热锅底部紧密接触的磁性感温元件、 一设于电磁炉台板下方与所述磁性感温元件位置 相对应的测温元件, 测温元件包括测温感应线圈和励磁线圈, 所述的磁性感温元件为 铁磁体或亚铁磁体, 利用磁体磁导率的温度特性, 配合励磁线圈和测温感应线圈, 当 所述的磁性感温元件的磁感应强度随温度变化而变化时, 其产生的磁场发生变化, 该 变化反映在测温感应线圈中就产生了相应温度的电信号, 通过控制电路实现温度检测 及控制。
所述的测温感应线圈和磁性感温元件设置在励磁线圈的作用范围内; 测温感应线 圈设置在能够感知磁性感温元件磁场强度变化的区域范围内。
所述的加热线圈与所述的励磁线圈为同一线圈, 所述的测温感应线圈由支撑架固 定在电磁炉台板的下方, 对应磁性感温元件位置, 支撑架为一纵向截面为阶梯形的板 架。
所述的测温感应线圈、 励磁线圈一起由支撑架固定在电磁炉台板的下方, 对应磁 性感温元件位置, 支撑架为一纵向截面为阶梯形的板架, 测温感应线圈和励磁线圈同 轴固定在板架上。
所述的控制电路包括包括电源电路、 与电源电路连接的输出控制电路、 控制励磁 线圈工作的励磁电路及输出显示信息的显示电路, 还包括与输出控制电路连接的测温 电路, 所述的测温电路包括测温感应线圈和电信号判别电路, 测温感应线圈与电信号 判别电路相连, 电信号判别电路再与输出控制电路连接。
所述的测温电路还包括整流滤波电路, 测温感应线圈产生的交变电信号通过整流 滤波电路之后变成直流电信号, 输出到信号判别电路。
或者, 利用上述非接触式测温的装置为微波炉, 包括外壳、 设于外壳内部的加热 室、 为加热室加热的磁电管、位于加热室内的转盘、带动转盘转动的电机及控制电路, 转盘上设有用于盛放食物、 微波能够穿透加热的器皿, 转盘的下方设有测温元件, 包 括测温感应线圈和励磁线圈, 器皿底部设有与励磁线圈对应的磁感应强度根据温度变 化而变化的磁性感温元件, 所述的励磁线圈对测温感应线圈进行励磁, 在测温感应线 圈和磁性感温元件之间形成一个感温检测磁场, 用于将磁性感温元件在不同温度下产 生的磁信号转换为电信号并输出, 以检测器皿的温度。
所述的测温感应线圈、 励磁线圈一起由支架固定在加热室的下方, 对应器皿中心 位置, 支架为一纵向截面为阶梯形的板架, 测温感应线圈和励磁线圈同轴固定在板架 上。
或者所述的测温感应线圈与励磁线圈对应匹配, 设于加热室内、 转盘下方靠近器 皿中心的位置,励磁线圈设置在测温感应线圈旁边, 或与测温感应线圈同轴套在一起。
所述的磁性感温元件同铸或镶嵌于能与食物直接接触的器皿底部内表面, 位于靠 近器皿中心位置, 与测温感应线圈的位置相对应。
所述的控制电路包括包括电源电路、 与电源电路连接的输出控制电路、 控制励磁 线圈工作的励磁电路及输出显示信息的显示电路, 还包括与输出控制电路连接的测温 电路, 所述的测温电路包括测温感应线圈和电信号判别电路, 测温感应线圈与电信号 判别电路相连, 电信号判别电路再与输出控制电路连接。
所述的电信号判别电路为电压判别电路或电流判别电路, 或脉冲宽度测量电路。 所述的测温电路还包括整流滤波电路, 测温感应线圈产生的交变电信号通过整流 滤波电路之后变成直流电信号, 输出到信号判别电路。
或者, 利用上述非接触式测温的装置为燃气灶, 包括灶台座、 设于灶台座上的燃 烧器、 支脚架及设于支脚架上的煮食锅, 所述的燃烧器中心位置设有测温元件, 包括 测温感应线圈和励磁线圈, 煮食锅底部设有与励磁线圈对应的磁感应强度根据温度变 化而变化的磁性感温元件, 所述的励磁线圈对测温感应线圈进行励磁, 在测温感应线 圈和磁性感温元件之间形成一个感温检测磁场, 用于将磁性感温元件在不同温度下产 生的磁信号转换为电信号并输出, 以检测煮食锅的温度。
上述的磁性感温元件同铸或镶嵌于煮食锅底部, 测温元件的外部设有隔热罩, 隔 热罩对应磁性感温元件贴住锅底隔绝火焰以使得磁性感温元件的温度与煮食锅内食物 的温度接近。
上述的测温感应线圈与励磁线圈对应匹配, 励磁线圈设置在测温感应线圈旁边, 或与测温感应线圈同轴套在一起。 上述的测温感应线圈与励磁线圈对应匹配, 同轴套在一起设于托架上, 托架下方 设有弹簧以使得隔热罩升降, 与不同形状的煮食锅底部对应贴合, 测温元件与隔热罩 之间填充有隔热材料。
上述的燃气灶设有控制电路, 包括电源电路、 与电源电路连接的输出控制电路、 与输出控制电路连接控制燃气大小的输出调节电路、 控制励磁线圈工作的励磁驱动电 路及输出显示信息的显示电路, 还包括与输出控制电路连接的测温电路, 所述的测温 电路包括测温感应线圈和电信号判别电路, 测温感应线圈与电信号判别电路相连, 电 信号判别电路再与输出控制电路连接。
上述的电信号判别电路为电压判别电路或电流判别电路, 或脉冲宽度测量电路。 上述的测温电路还包括整流滤波电路, 测温感应线圈产生的交变电信号通过整流 滤波电路之后变成直流电信号, 输出到信号判别电路。
对应不同的频率或功率,预置多个 μ -τ曲线,测温时采用的比较对象和预置的等 同或者最为接近的 μ -τ曲线进行换算。
实际上, 内锅或加热锅或器皿或煮食锅的尺寸、 形状和质量, 以及磁性感温元件 尺寸、 形状和质量对所测温度精确性也有很大的影响, 一种简单的办法是, 对应一种 装置, 将其内锅或加热锅或器皿或煮食锅的尺寸、 形状和质量也固定下来, 同时, 磁 性感温元件尺寸、 形状和质量也固定下来。
另一种解决方法是, 所设置的磁性感温元件尺寸、 形状和质量和电磁加热线圈以 及测温感应线圈之间的关系固定下来, 而内锅或加热锅或器皿或煮食锅的一是采用对 磁场没有影响的材料, 二是采用影响很小的尺寸、 形状和质量。
在加热线圈、 测温感应线圈、 磁性感温元件之间设置高磁导率的屏蔽圈以阻断或 减少加热线圈对测温感应线圈、 磁性感温元件的影响。
所述的测温感应线圈包括电磁感应线圈或霍尔线圈或霍尔芯片, 或者他们的任意 组合, 即任意两种或三种组合, 例如, 电磁感应线圈和霍尔线圈的组合; 电磁感应线 圈和霍尔芯片的组合等。
上述的磁性感温元件是铁氧体材料的磁性感温元件, 或是感温磁钢, 或是合金材 料的磁性感温元件, 或者是稀土材料的磁性感温元件。
所述的磁性感温元件为铁磁体或亚铁磁体, 是指铁、 镍、 钴、 钆、 镝的任何一种, 或它们任意组合的合金, 或铁氧体, 任意组合包括任意两种、 三种、 四种组合及五种 共同组合, 例如, 铁、 镍组合; 镍、 钴、 钆组合; 铁、 镍、 钴、 钆组合等等。 本发明与现有技术相比具有以下的优点:
1.本发明的装置采用非接触式的测温装置检测温度, 不同于现有技术中测温装置 检测温度, 采用励磁驱动电路对测温感应线圈进行励磁, 在测温感应线圈和磁性感温 元件之间形成一个检测磁场, 用于将磁性感温元件在设定的温度点上产生的磁信号转 换为电信号并输出该磁场, 通过测温感应线圈时产生电信号, 只需要对电信号进行检 测即可, 根据煮食锅内的温度与电信号的对应关系可以间接实现对温度的检测, 测量 准确, 简单实用、 易于实现。
2.本发明的装置采用非接触式测温装置不仅可以利用磁性感温元件的居里点温度 作为检测温度点, 而且还可以利用磁性感温元件特性曲线段作为检测温度点设定的多 个程序控制的温度点, 从而满足更多样的烹饪要求。
3.本发明所述的电磁炉可以设计精确的自动控制程序, 不但能够达到自动控温的 效果, 还能实现设定的其它烹饪功能, 进一步提高了电磁炉的自动化程度。
4.本发明所述的电饭煲可以实现在工作范围内进行连续的非接触式的温度测量, 最大程度上拓宽了电饭煲在工作过程中的适应范围。
5.本发明所述的微波炉采用非金属材料的磁性感温元件, 在微波场下, 不会产生 集肤效应和涡流效应使其自身温度升高, 对温度测量无干扰, 能进行有效、 稳定的温
6.本发明所述的微波炉非接触式的测温方法成本低, 可靠性高。不受物体发射率、 气雾的影响, 测温性能稳定。
7.本发明所述的燃气灶采用非接触式测温方法, 由于有隔热材料的保护和非接触 式的设计, 可以大大避免了由于燃烧器燃烧对测温装置的影响。
下面结合附图对本发明的具体实施方式作进一步详细的描述。 附图说明
图 1是 Fe83Nb6Bu合金在 370-66CTC温度范围内各种特定温度的 i-T曲线示意图; 图 2是 Fe-Cu-Nb-Si-B合金磁导率与温度关系变化示意图;
图 3是磁化曲线 B-H和 μ -Η曲线关系示意图;
图 4是磁导率与温度关系 μ -Τ曲线示意图;
图 5和图 6分别是磁化率和温度之间的两种关系示意图;
图 7和图 8分别是磁化强度和温度之间的两种关系示意图; 图 9是本发明所述的铁磁体的磁导率-温度曲线图, 即 μ _Τ曲线图, 其中, £1是 具有连续下降的 μ -τ曲线的一种铁磁体, Α是曲线其中一点以及在该点的切线; b是 具有连续上升的 μ _Τ曲线的一种铁磁体, Β是曲线其中一点以及在该点的切线; 图 10是本发明的磁性感温元件的磁场性强度与电信号的关系曲线图;
图 11 是本发明的内锅或加热锅或器皿或煮食锅锅体温度与电信号的关系曲线图 (正温度系数) ;
图 12 是本发明的内锅或加热锅或器皿或煮食锅锅体温度与电信号的关系曲线图 (负温度系数) ;
图 13是本发明所述的电磁电饭煲的示意图;
图 14是本发明所述的电磁电饭煲控制电路原理示意图;
图 15是本发明所述的电磁炉的示意图;
图 16是本发明所述的电磁炉控制电路原理示意图;
图 17是本发明所述的微波炉的结构示意图;
图 18是本发明所述的微波炉控制电路原理框图;
图 19是本发明所述的燃气灶的结构示意图;
图 20是本发明所述的燃气灶控制电路原理框图;
图 21是本发明带有整流滤波电路的测温电路原理图;
图 22是本发明所述的装置实现煮饭、保温功能和自动煮开水功能时的内锅或加热 锅或器皿或煮食锅锅体内温度和直流电压 (电流) 的关系曲线图;
图 23是本发明采用测温感应线圈抽头的方式形成励磁线圈的励磁电路原理图。 具体实施方式
本发明利用铁或亚铁磁体的磁导率温度特性, 实现燃气灶非接触式测温方法。 铁 磁体、 亚铁磁体或铁氧体的磁导率 (或磁感应强度、 磁化强度) 与温度等参数有着非 常复杂关系, 它们受频率、 温度、 居里点前后的磁特性变换等因素的影响, 具体可参 见下面引用的公开内容。
《功能材料》增刊 2001第 10期公开了了一种 "Fe^NbiiBu合金磁导率随温度的变 化"的研究文章, 从该文献可以看出, 所述合金磁导率与温度形成复杂的关系, 甚至, 在不同的条件下, 它们的关系系数具有完全不同的趋势, 参见附图 1。
"Fe-Cu-Nb-Si-B合金磁导率与温度关系"(物理学报, 1997年 10月第 10期)公开 指出, 最具有代表性的 Fe73. 5CUlNb3Si 13. 5B9 合金在不同的退火温度下体现了迥然不同 的 i-T曲线, 并进一步指出, 随 T 的变化主要是由 Ms, K及 λ 8 的变化引起的。 参见附图 2。
周期性对称变化的交流磁化过程中磁感应强度也周期性对称地变化, 其磁滞回线 表现为动态特性, 如果磁化场的振幅不变情况而提高频率, 则磁滞回线逐渐变为椭圆 形, 可以看出, 外界磁场强度的变化以及外界磁场的频率对铁磁体的动态特性有很大 的影响。 图 3是典型的磁化曲线 Β-Η曲线, 铁磁体的共同磁化特点是: 随着 Η的增加, 开 始时 Β缓慢的增加, 此时 μ较小; 而后便随 Η的增加 Β急剧增大, μ也迅速增加; 最 后随 Η增加, Β趋向于饱和, 而此时的 μ值在到达最大值后又急剧减小 (磁导率随磁 场强度增加而升高, 当外加磁场强度超过某限值, 磁导率急剧下降称为磁饱和, 材料 失去磁屏蔽, 磁导率越高越易饱和) , 该附图也表明了磁导率 μ是磁场 Η的函数。
图 4中可看到, 磁导率 μ还是温度的函数, 当温度升高到某个值时, 铁磁体由铁 磁状态转变成顺磁状态, 在曲线突变点所对应的温度就是居里温度 Tc
Wei ss 的内场理论指出, 内场即分子场的大小与磁化强度 M成正比, 在温度很低 时, Ms随 T变化很小, 铁磁体 (参见图 5 ) 内部存在自发的磁化强度, 当温度越低自 发磁化强度越大。 同时, 铁磁体的磁化率是特别大的正数, 在某个临界温度 Tc以下, 即使没有外加磁场, 材料中也会产生自发的磁化强度。 当温度逐渐上升时, 热运动的 无序作用逐渐加强, 自发磁化强度 Ms逐渐减小, 当温度达到 Te时, Te为居里温度点, 自发磁化强度剧烈下降为零, 转变成顺磁体, 这时磁化率服从居里一外斯定律: Χ= μ oC/ ( T - 9 ) 0 顺磁居里点 Θ往往和居里点 Tc很接近, 一般 Θ >T 通常, 纯铁的居里温 度是 770 V , 纯镍是 350°C。
亚铁磁体 (参见图 6 ) 的磁化率在温度低于 Te时的磁化率不如铁磁体那么大, 它 的自发磁化强度也没有铁磁体的大,典型的亚铁磁体材料是铁氧体。顺磁居里点 e〈Tc, 且往往为负值。
"用差值法测定铁磁材料磁化强度-温度曲线及居里点"(《物理通报》, 19620630 ) 公开了几种铁氧体的磁化强度和温度的关系曲线, 其中, 图 7的样品是用某种软磁铁 氧体, 而图 8的样品是用一束镍。
铁磁材料的磁导率温度关系的复杂性从以上文献可见一斑, 已知的研究表明, 磁 介质一般可分为铁磁体、 顺磁质和抗磁质, 磁介质的磁化规律满足以下关系: Β= μ。 ( 1+Χ ) Η= μ r μ οΗ= μ Η, 其中, Β 是磁感应强度, Η是磁场强度, r是相对磁导率, 。是真空磁导率, μ是绝对磁导率, Xm是磁化率。 磁导率 μ,表征磁介质磁性的物理 量,通常使用的是磁介质的相对磁导率 ,其定义为磁导率 μ与真空磁导率 μ。之比; 磁导率实际上代表了磁性材料被磁化的容易程度; 在磁化的不同阶段, 材料的磁导率 也不同, 磁导率在最高点称为最大磁导率, 在磁化起始点的磁导率称为初始磁导率, 磁化强度 Μ, 描述磁介质磁化状态的物理量, 是矢量, 定义为单位体积内分子磁矩 m 的矢量和, 在外磁场作用下, 磁介质磁化后出现的磁化电流要产生附加磁场, 它与外 磁场之和为总磁场 B, 对于线性各向同性磁介质, 与8、 H成正比, 顺磁质的 与8、 H同方向, 对于铁磁体, 和8、 H之间有复杂的非线性关系, 构成磁滞回线。
为了实现本发明所述的非接触式磁感应温度检测方法, 需要清楚利用什么样的磁 介质特性, 才能唯一的得出可以利用的温度变化的电信号。
正如前述, 在外磁场作用下, 磁介质磁化后出现的磁化电流要产生附加磁场, 它 与外磁场之和为总磁场 B, 而总磁场和磁导率、 磁化率以及磁场强度之间的关系是, B= 。 (l+Xm ) Η= μ r μ οΗ= μ H, 如果在一个适当的温度变化范围内, 附加磁场, 或者, 总磁场 B能够随之有较大幅度的连续变化, 是实现本发明所述的目的的一个前提, 这 是因为, 如果总磁场或者磁感应强度 B随温度变化而变化的幅度较大, 就能够让感应 线圈、 霍尔线圈或者霍尔元件感受到到磁通量的变化, 就能够产生相应的电信号, 这 是本发明的基本思路之一。
μ。是真空磁导率等于 1, 如果固定磁场强度 Η, 选择一种或者数种在指定温度范 围内具有较大幅度变化的相对磁导率 r的磁介质,就可能实现发明,根据这样的研究 结论, 上述现有技术的文献中公开的多种磁介质就可以被利用。
从上述研究发现, 顺磁质的 略大于 1, 几乎接近 μ。 , 顺磁质 Β和 Η满足线性 关系, Β= μ Γ μ 0Η= μ Η ο非铁磁性物质的 μ 近似等于 μ Q。而铁磁性物质的磁导率很高, μ » 0, 因此, 铁磁体、 亚铁磁体, 包括铁氧体, 是适当的。
根据上述, 铁磁体在温度升至居里点后变为顺磁质, 而顺磁质的 μ J各大于 1, 几 乎接近 μ。, 温度对磁感应强度, 或者总磁场 Β不再引起较大的变化, 因此居里点后的 磁导率的变化是不能够实现本发明所述的目的。
铁磁体磁化后, 在介质内的磁场显著增强, 即磁化后具有很强的与外磁场同方向 的附加磁场, 其表象是引入磁场中感受到强吸引力的物质, 其所受力是顺磁质的约四 五千倍, 铁磁体的 μ 〉1,其数值几乎是 μ。的 103_ 104倍, 铁、 镍、 钴、 钆、 镝及其合 金和一些非金属的铁氧体都属于这一类。 铁磁性材料的相对磁导率 μ τ= μ / μ Q如铸铁为 200〜400;硅钢片为 7000〜 10000 ; 镍锌铁氧体为 10〜1000; 镍铁合金为 2000; 锰锌铁氧体为 300〜5000; 坡莫合金为 20000〜200000。空气的相对磁导率为 1. 00000004;铂为 1. 00026;抗磁性物质,例如, 汞、 银、 铜、 碳、 铅的相对磁导率都小于但接近于 1。 但是, 参见附图 4, 这是一个典型的 μ _Τ曲线图, 即使在居里点前, μ _Τ曲线也 呈现了复杂的变化, 例如, 居里点前, 附图 1中的第一曲线图约 65°C左右, 附图 1中 的第二曲线图约 55°C左右, 附图 2中的第一曲线图约 280°C左右, 呈现了一个峰值或 谷底, 如果利用具有如此特性的 μ -T曲线的材料,就会在不同温度下出现二个相同的 磁导率 μ, 其信号输出给信号判别电路时, 将无法判断所述的磁导率 μ对应的温度究 竟是哪一个。
因此, 本发明的研究人员, 采用如下的方式用在实现本发明的技术方案中, 选择 一种铁磁体或亚铁磁体, 其 μ _Τ曲线, 在工作温度范围内, 该曲线呈现一个连续上升 或者连续下降的过程。 所述的工作温度是指, 室温到 210°C, 优选是 25-200°C, 更加 优选是 30-180°C。
例如, 图 1 中的第四、 六、 八曲线图在室温至约 500°C的范围内, 就呈现出了一 种连续下降的过程; 而附图 1中的第二曲线图在室温至约 55°C的范围内呈现出了一个 连续上升的过程, 但是, 这个过程显然不能够满足上述的工作温度范围; 附图 2中的 第四曲线图(退火温度 590°C )在 10CTC以下呈现连续上升的过程, 其斜率和连续性都 较好, 但是, 其上限 10CTC显然也不能够满足所述的工作温度。
综上所述, 适合本发明的使用的磁性感温元件 2的铁磁体或亚铁磁体 (包括铁氧 体) 应该具有附图 9所述的 μ -T曲线, 所述的曲线中:
a是在本发明所述的工作温度范围内具有连续下降的 μ -Τ曲线的一种铁磁体或亚 铁磁体, Α是该曲线中的一点以及在该点的切线, A切线与横向的 T轴具有夹角 β, 所述的夹角 β为钝角,其范围在 100-170度,优选在 110-160度,更加优选的是 110-140 度;
b是在本发明所述工作温度范围内具有连续上升的 μ -Τ曲线的一种铁磁体或亚铁 磁体, Β是该曲线中的一点以及在该点的切线, Β切线与横向的 Τ轴具有夹角 α, 所 述的夹角 α 为锐角, 其范围在 10-80度, 优选在 15-75度, 更加优选的是 25_70度。
在设定了上述条件后, 励磁线圈工作时, 可以形成一个交变磁场, 同时对磁性感 温元件进行励磁, 在测温感应线圈和磁性感温元件之间形成一个感温检测磁场, 用于 将磁性感温元件在不同温度下产生的磁信号转换为电信号并输出, 当内锅或加热锅或 器皿或煮食锅温度变化时, 与其接触的磁性感温元件的温度随之变化, 其磁感应强度 随之发生变化, 所述的变化反映在感温检测磁场中就产生了相应温度的电信号, 通过 信号判别电路, 以及控制电路, 实现对内锅或加热锅或器皿或煮食锅的温度的控制。
如图 13、 14所示, 本发明所述的电饭煲, 在电饭煲的外壳中, 包括一内壳 3a、 内锅 9a、 发热盘 4a, 还包括一与内锅 9a底部紧密接触的磁性感温元件 10a、 一与所 述磁性感温元件 10a位置相对应的测温元件及控制电路, 测温元件包括测温感应线圈 6a和励磁线圈。
所述的电饭煲设有控制电路, 包括电源电路、 与电源电路连接的输出控制电路、 控制励磁线圈工作的励磁电路及输出显示信息的显示电路, 还包括与输出控制电路连 接的测温电路, 所述的测温电路包括测温感应线圈和电信号判别电路, 测温感应线圈 与电信号判别电路相连, 电信号判别电路再与输出控制电路连接, 使电饭煲的控制程 序作出相应的变换。 在本发明中, 所述的励磁电路主要由励磁线圈组成, 所述的励磁 电路可对测温感应线圈进行励磁, 在测温感应线圈和磁性感温元件之间形成一个检测 磁场, 用于将内锅中部的磁性感温元件在设定的温度点上产生的磁信号转换为电信号 并输出, 这样就可以检测到内锅的温度。
其工作原理是: 励磁线圈通电, 产生一定强度的交变磁场、 即感温检测磁场, 交 变磁场通过磁性感温元件和测温感应线圈时,在测温感应线圈中产生交变电压、 电流, 即产生电信号。 当磁性感温元件的温度随内锅温度变化时, 磁性感温元件的磁性强度 发生变化, 则测温感应线圈的磁通量就相应发生变化, 进而导致测温感应线圈两端的 电压或电流、 脉冲宽度等电信号产生变化, 由此可知, 测温感应线圈的交变电压或电 流、 脉冲宽度等电信号的大小会受内锅体温度的高低影响, 而在励磁线圈的附近会存 在一个感温检测磁场的区域。 因此, 在正常工作的情况下, 通过检测测温感应线圈产 生的电信号的大小, 就可以检测出磁性感温元件的温度变化。 由于磁性感温元件的不 同温度点对应着不同强度的磁性, 同时测温感应线圈中会产生相应的电信号, 所以还 可以根据电饭煲的不同烹饪程序的要求设定多个温度点, 通过检测测温感应线圈产生 的电信号的大小判别出磁性感温元件的多点温度变化, 从而实现电饭煲的自动控制。
如图 15、 16所示, 所述的电磁炉包括电磁炉壳体 2b、 电磁炉台板 3b、 电磁炉台 板下方的加热线圈 4b、控制电路及位于电磁炉台板上的加热锅 9b,还包括一与加热锅 底部紧密接触的磁性感温元件 10b、 一设于电磁炉台板下方与所述磁性感温元件位置 相对应的测温元件。
如图 17、 18所示, 本发明所述的微波炉, 包括外壳 lc、 设于外壳内部的加热室 2c、为加热室 2c加热的磁电管 9c、位于加热室内的转盘 8c、带动转盘转动的电机 11c 及控制电路 10c, 转盘 l ie上设有用于盛放食物、 微波能够穿透加热的器皿 3c, 转盘 l ie的下方设有测温元件, 包括测温感应线圈 6c和励磁线圈 4c, 器皿 3c底部设有与 励磁线圈 4c对应的磁感应强度根据温度变化而变化的磁性感温元件 7c, 装载食物的 器皿 3c—般为微波可以穿透的玻璃、 陶瓷、 塑料等绝缘材料。
本发明所述电磁炉、 微波炉的控制电路、 工作原理和方法与上述电饭煲的控制电 路、 工作原理和方法相同。
本发明所述的测温感应线圈位于励磁线圈和磁性感温元件附近, 能产生感温检测 磁场的区域内就可以, 因为只有在感温检测磁场的区域内, 励磁线圈、 测温感应线圈 和磁性感温元件才能相互作用。
本发明所述的磁性感温元件可以是铁氧体材料的磁性感温元件; 所述的磁性感温 元件还可以是感温磁钢, 如非晶材料的感温磁钢或纳米晶材料的感温磁钢; 所述的磁 性感温元件还可以是合金材料的磁性感温元件, 或者是稀土材料的磁性感温元件。
本发明所述的电信号判别电路可以为电压判别电路或电流判别电路, 或其他电信 号如频率、 脉冲宽度等判别电路, 如: 电压比较电路、 A/D 电路、 脉冲宽度测量电路 等。 本发明可以作以下改进, 所述的测温电路还可以包括整流滤波电路, 测温感应线 圈产生的交变电信号可以通过整流滤波电路之后变成直流电信号, 输出到信号判别电 路。
如图 19、 20所示, 本发明所述的燃气灶, 包括灶台座 ld、 设于灶台座 Id上的燃 烧器 2d、支脚架 9d及设于支脚架上的煮食锅 3d,所述的燃烧器 2d中心位置设有测温 元件, 包括测温感应线圈 6d和励磁线圈 4d, 煮食锅 3d底部设有与励磁线圈 4d对应 的磁感应强度根据温度变化而变化的磁性感温元件 7d, 所述的测温感应线圈与励磁线 圈对应匹配, 同轴套在一起设于托架 5d上, 托架 5d下方设有弹簧 10d以使得隔热罩 l id 升降, 与不同形状的煮食锅底部对应贴合, 测温元件与隔热罩之间填充有隔热材 料 8d。 所述的磁性感温元件 7d同铸或镶嵌于煮食锅 3d底部, 测温元件的外部设有隔 热罩 l ld, 隔热罩对应磁性感温元件贴住锅底隔绝火焰以使得磁性感温元件的温度与 煮食锅内食物的温度接近。
所述的燃气灶设有温控电路, 包括电源电路、 与电源电路连接的输出控制电路、 与输出控制电路连接控制燃气大小的输出调节电路、 控制励磁线圈工作的励磁驱动电 路及输出显示信息的显示电路, 还包括与输出控制电路连接的测温电路, 所述的测温 电路包括测温感应线圈和电信号判别电路, 测温感应线圈与电信号判别电路相连, 电 信号判别电路再与输出控制电路连接。 在本发明中, 所述的励磁驱动电路主要由励磁 线圈组成, 所述的励磁驱动电路可对测温感应线圈进行励磁, 在测温感应线圈和磁性 感温元件之间形成一个检测磁场, 用于将煮食锅中部的磁性感温元件在设定的温度点 上产生的磁信号转换为电信号并输出, 这样就可以检测到煮食锅的温度。
其工作原理是: 燃气灶点火时, 煤气燃烧, 励磁线圈通电, 产生一定强度的交变 磁场、 即感温检测磁场, 交变磁场通过磁性感温元件和测温感应线圈时, 在测温感应 线圈中产生交变电压、 电流, 即产生电信号。 当磁性感温元件的温度随煮食锅温度变 化时,磁性感温元件的磁性强度发生变化, 则测温感应线圈的磁通量就相应发生变化, 进而导致测温感应线圈两端的电压或电流、 脉冲宽度等电信号产生变化, 由此可知, 测温感应线圈的交变电压或电流、 脉冲宽度等电信号的大小会受煮食锅温度的高低影 响, 而在励磁线圈的附近会存在一个感温检测磁场的区域。 因此, 在正常工作的情况 下, 通过检测测温感应线圈产生的电信号的大小, 就可以检测出磁性感温元件的温度 变化。 由于磁性感温元件的不同温度点对应着不同强度的磁性, 同时测温感应线圈中 会产生相应的电信号,所以还可以根据燃气灶的不同烹饪程序的要求设定多个温度点, 通过检测测温感应线圈产生的电信号的大小判别出磁性感温元件的多点温度变化, 通 过自动阀门的作用, 调整火力的大小和熄火, 从而实现燃气灶的自动控制。
本发明上述装置工作时, 所述的测温感应线圈产生的交变电信号, 如电压或电流 经过整流滤波电路产生直流电压或直流电流, 直流电压或直流电流输入到电压或电流 判别电路后, 电压或电流判别电路便可以判别出直流电压或电流的大小。 由于电信号 的大小是受磁性感温元件的磁性强度大小的影响, 磁性越强, 电信号越大, 磁性越弱, 电信号越小 (参见图 10) 。 磁性感温元件的磁性强度大小又是受电磁锅的温度高低的 影响, 因此, 所述的磁感应测温电路可以判别出内锅温度的高低, 温度和电信号的关 系有正温度系数关系和负温度系数关系两种, 参见图 11和图 12, 其中, 图 11所示为 正温度系数关系的情况, 即温度越高, 电信号越强, 图 12所示为负温度系数关系的情 况, 即温度越高, 电信号越弱。 图 22所示的是本发明其中一个实施例采用负温度系数 关系的情况, 为内锅或加热锅或器皿或煮食锅锅体温度和直流电压 (电流) 的关系曲 线图, 可以看出, 被测温度达到某一温度时, 电压值变化到某一电压值 X伏, 如某一 温度为 105° C时, 该温度正是饭煮熟的温度, 因此, 设置此温度点可用于实现自动煮 饭测温功能。 同理, 所述的测温电路可以判别出煮食锅的多个温度点的变化, 使控制 程序作出相应的变换, 从而满足其它的烹饪要求。 要特别说明的是, 图 10-12和图 22 所示的关系曲线可以是直线, 也可以是曲线。
在本发明中, 所述的励磁线圈可以设置在测温感应线圈旁边; 也可以与测温感应 线圈同轴套在一起; 还可以由测温感应线圈抽头的方式形成 (参阅图 23)。
实施例一
如图 13、 14所示, 本实施例所述的电饭煲为普通电饭煲, 在电饭煲的外壳 la中, 包括一内壳 3a、 内锅 9a、 发热盘 4a, 发热盘内嵌电发热管, 在所述的内壳 3a底部设 置一与内锅 9a始终接触的磁性感温元件 10a, 在所述的磁性感温元件 10a相应的位置 位于发热盘 4a的中央设置一测温感应线圈 6a, 在本实施例中称之为测温感应线圈, 一励磁线圈 2a, 以及相应的控制电路 8a, 测温感应线圈与热敏电阻 7a—起由支架 5a 固定在内壳 3a底部的下方, 磁性感温元件 10a居中固定在内壳 3a底部的上表面。 当 内锅 9a使用时放入非金属内壳 3a中时,磁性感温元件 10a与内锅 9a的底部直接接触。
电饭煲控制电路 8a包括电源电路、输出控制电路、电流检测电路、温度保护电路、 输出调节电路、 显示电路和保护电路等, 还包括测温电路, 所述的测温电路包括测温 感应线圈和电信号判别电路, 测温感应线圈与电信号判别电路相连, 电信号判别电路 再与输出控制电路连接, 使电饭煲的控制程序作出相应的变换。
在本实施例中, 采用的电磁感应原理实现本发明所述的非接触式感温方法, 其基 本原理是, 因磁通量变化产生感应电动势, 即, 当所述的磁性感温元件的磁感应强度 随温度变化而变化时, 其产生的磁场发生变化, 变化的磁场对测温感应线圈做磁力线 切割, 测温感应线圈中就会产生变化的电流或电压信号。
具体的, 当电饭煲工作时, 发热盘 4a对内锅 9a进行加热。 需要测温时, 励磁线 圈 2a产生的交变磁场同时作用于磁性感温元件 10a和测温感应线圈, 当励磁线圈 2a 产生的交变磁场以一定的参数工作时, 其单独作用于测温感应线圈并在其中产生的电 信号的幅度是固定的, 无论采集的是电压、 电流信号, 并在所述的测温感应线圈中形 成了基本电信号。
随着内锅 9a的温度变化, 和内锅 9a接触的磁性感温元件 10a的温度随之变化, 其受励磁线圈 2a激励的磁感应强度 B随之变化,变化的磁场在测温感应线圈中产生的 电信号与基本电信号叠加形成变化的实时输出电信号, 所述的实时输出电信号在电信 号判别电路中被判别, 并由输出控制电路实现对所设定的温度做转换操作, 从而实现 对电磁电饭煲工作程序的自动控制。
实施例二 实施例一中的电饭煲为普通的电饭煲不是电磁电饭煲, 本实施例为电磁电饭煲, 所述的发热盘 4a内为电磁加热线圈, 磁性感温元件 10a安装于内锅 9a底部, 内壳 3a 底部下表面设一励磁线圈 2a, 或将电磁加热线圈同时作为励磁线圈使用, 即电磁加热 线圈在施加交变磁场对铁磁体材料制备的内锅进行加热的同时, 兼做磁性感温元件 10a、 测温感应线圈 6a的励磁线圈, 内锅 9a采用铁磁体材料制备, 内锅的尺寸、 形状 和质量, 以及磁性感温元件尺寸、 形状和质量, 以及测温感应线圈之间的各种参数相 对固定, 以减少铁磁体内锅对磁性感温元件和 /或测温感应线圈的影响,其它和实施例 一相同。
当电磁电饭煲工作时,电磁加热线圈 4产生一定强度的交变磁场对内锅 9a进行加 热。
需要测温时, 电磁加热线圈 4产生的交变磁场同时作用于磁性感温元件 10a和测 温感应线圈, 当电磁加热线圈 4产生的交变磁场以一定的参数工作时, 其单独作用于 测温感应线圈并在其中产生的电信号的幅度是固定的,无论采集的是电压、 电流信号, 并在所述的测温感应线圈中形成了基本电信号。
随着内锅 9a的温度变化, 和内锅 9a接触的磁性感温元件 10a的温度随之变化, 其受励磁线圈 2a激励的磁感应强度 B随之变化,变化的磁场在测温感应线圈中产生的 电信号与基本电信号叠加形成变化的实时输出电信号, 所述的实时输出电信号在电信 号判别电路中被判别, 并由输出控制电路实现对所设定的温度做转换操作, 从而实现 对电磁电饭煲烹饪程序的自动控制。
实施例三
其他和实施例二相同, 不同的是, 由于实施例二中的磁性感温元件 10a设置在发 热盘 4a中间, 为了避免或者减少电磁加热线圈对磁性感温元件 10a、测温感应线圈 6a 的影响, 可在电磁加热线圈和测温感应线圈 6a之间设置一个高磁导率铁磁体的屏蔽 圈, 同时, 这种方式也可以减少电磁加热线圈对磁性感温元件 10a的影响。 具体的, 可以采用现有技术的方式, 例如: "电磁屏蔽中的难题 -磁场屏蔽"(电子质量 2006第 10期) 公开了低频磁场 (指低于 100kHz 的交变磁场, 而家用电磁电饭煲的工作频率 在 20-30KHZ之内) 可以采用高磁导率屏蔽体对磁通进行分流而实现屏蔽的效果, 高 磁导率屏蔽体内部的磁感应强度远大于外部的磁感应强度, 同时, 外部的磁力线几乎 与铁磁体材料表面垂直, 大部分低频磁场能量被约束在屏蔽体内, 起到屏蔽作用。 更 加适用的方式是该文章所述的基于旁路原理的低频磁场屏蔽方式, 提高旁路效率, 可 以使屏蔽体尽可能小来使磁路尽量短, 增加磁路的截面积和使用高磁导率的材料。 当然, 可以按照本发明的要求进行改进, 例如, 如安装位置变更, 或部分敞口, 进行部分屏蔽。
实施例四
本实施例以电磁炉测温过程来说明本发明所述的非接触式测温方法, 参见附图 15、 16。
本实施例所述的电磁炉包括: 电磁炉壳体 2b、 电磁炉台板 3b、 加热线圈 4b和控 制电路, 所述的控制电路包括控制板 lb和驱动板 8b, 加热线圈 4b的中央设有支撑架 5b, 该支撑架 5b上装有热敏电阻 7。
电磁炉台板 3b下方还设有测温感应线圈 6b, 磁性感温元件 10b与烹饪加热锅 9b 固定在一起, 在相应的温度点上产生的磁场变化转换为电信号并输出, 该测温感应线 圈 6b与加热线圈 4b (在此兼作磁性感温元件 10b的励磁线圈) 匹配, 产生感应电信 号。 测温感应线圈位于加热线圈 4b (兼作励磁线圈) 和磁性感温元件 10b附近, 能感 知并明确检测磁性感温元件 10b的磁场变化的区域内, 在本实施例中, 测温感应线圈 由一支架 5b ' 固定在加热线圈 4b的一侧。
电磁炉控制电路包括电源电路、 输出控制电路、 电流检测电路、 温度保护电路、 输出调节电路、 显示电路和保护电路等, 还包括测温电路, 所述的测温电路包括测温 感应线圈和电信号判别电路, 测温感应线圈与电信号判别电路相连, 电信号判别电路 再与输出控制电路连接, 使电磁炉的控制程序作出相应的变换。
在本实施例中, 采用的电磁感应原理实现本发明所述的非接触式感温方法, 其基 本原理是, 因磁通量变化产生感应电动势, 即, 当所述的磁性感温元件的磁感应强度 随温度变化而变化时, 其产生的磁场发生变化, 变化的磁场对测温感应线圈做磁力线 切割, 测温感应线圈中就会产生变化的电流或电压信号,
具体的, 当电磁炉工作时, 加热线圈 4b 产生一定强度的交变磁场对烹饪加热锅 9b进行加热, 同时, 所述的交变磁场同时作用于磁性感温元件 10b和测温感应线圈。
当所述的交变磁场以一定的参数工作时, 其单独作用于测温感应线圈并在其中产 生的电信号的幅度是固定的, 无论采集的是电压、 电流信号, 并在所述的测温感应线 圈中形成了基本电信号。
在此所述的交变磁场是指电磁炉的加热线圈 4b产生的(当然也可以采用独立的励 磁线圈), 在本实施例中, 所述的加热线圈 4b既是电磁炉的加热线圈, 也是磁性感温 元件 10b和测温感应线圈的励磁线圈。 随着烹饪加热锅 9b的温度变化,磁性感温元件 10b的温度随之变化,其受励磁线 圈激励的磁感应强度 B随之变化, 变化的磁场在测温感应线圈中产生的电信号与基本 电信号叠加形成变化的实时输出电信号, 所述的实时输出电信号在电信号判别电路中 被判别, 并由输出控制电路实现对所设定的温度做转换操作, 从而实现对电磁炉烹饪 程序的自动控制。
实施例五
在本实施例中, 其他和实施例四相同, 不同的是, 磁性感温元件 10b嵌在台面上 与烹饪加热锅 9b接触的位置,测温感应线圈和其基本正对的放在台面下,独立设置一 个励磁线圈, 定期的在切断加热线圈时候, 进行温度测量。 所述的测温感应线圈、 励 磁线圈一起由支架 5b ' 固定在电磁炉台板的下方,对应磁性感温元件位置,支架 5b ' 为一纵向截面为阶梯形的板架, 测温感应线圈和励磁线圈同轴固定在板架上。
实施例六
本实施例说明的是, 必要时, 电磁炉也可对测温感应线圈 6b进行必要的屏蔽, 所 述的屏蔽可采用现有技术的方式, 同实施例三。
实施例七
如图 17至图 18所示, 本发明实施例所述的设有磁感应测温装置的微波炉, 器皿 3c 的底部可以同注或镶嵌有磁性感温元件 7c, 测温感应线圈 6c位于微波炉转盘 8c 的下方,励磁线圈 4c位于测温感应线圈 6c和磁性感温元件 7c的外部,磁性感温元件 7c采用热敏铁氧体材料, 微波炉工作时, 激活励磁线圈, 产生一定强度的交变磁场, 同时微波炉的电机 11c和转盘 8c转动, 带动转盘上的器皿 3c转动, 当器皿 3c上的磁 性感温元件 7c 经过测温感应线圈时, 在磁场强度相同的条件下, 通过测温感应线圈 6c的磁通量最大。 测温感应线圈 6c、 励磁线圈 4c一起由支架 5c固定在微波炉转盘 8c的下方。 支架 5c为一纵向截面为阶梯形的板架, 测温感应线圈 6c和励磁线圈 4c 固定在板架上。磁性感温元件 7c偏中固定器皿 3c的底部, 与测温感应线圈 6c的位置 相对应。 当使用微波炉时, 磁性感温元件 7c与器皿 3c内的食物直接接触。 微波炉的 磁感应测温电路还包括整流滤波电路, 整流滤波电路的输入端与测温感应线圈 6c 相 连, 输出端与电信号判别电路相连。 本实施例中的电信号判别电路为电压判别电路, 如 A/D电路。
在本实施例中,在微波炉控制电路中设置了可对测温感应线圈 6c进行励磁的励磁 电路, 即在测温感应线圈 6c旁边设置了励磁线圈 4c,测温感应线圈 6c与励磁线圈 4c 匹配, 能够产生感应电信号,励磁线圈 4c可由输出控制电路提供电源并对测温感应线 圈 6c进行励磁。 如图 18和图 21所示, 当使用微波炉煮饭时, 激活励磁线圈, 并对测 温感应线圈 6c进行励磁,在测温感应线圈 6c和磁性感温元件 7c之间形成一个检测磁 场, 测温感应线圈 6c可以根据磁性感温元件 7c的磁性变化, 输出相应的电压, 磁电 管 9c工作加热器皿 3c内的米和水, 当饭煮干之后, 饭的温度达到 105° C时, 测温感 应线圈 6c产生的电压值变化到某一电压值 X伏时,电压判别电路感受到该 X伏电压值 时, 参见图 21, 马上向输出控制电路传递信号, 断开微波炉磁电管 9c的电源, 则停 止加热, 从而实现微波炉的煮饭自动测温功能。当器皿 3c内的温度小于 70° C时,测温 感应线圈 6c产生的电压值变化到某一电压值 Y伏时,电压判别电路感受到该 Y伏电压 值, 马上向输出控制电路传递信号, 又重新开启微波炉磁电管 9c的电源, 则进入保温 状态, 即启动磁电管 9c小功率通电 (或间歇通电) , 当器皿 3c的温度达到所设定的 保温上限温度后, 微波炉又断开磁电管 9c的电源, 以实现保温功能。
实施例八
如图 19、 图 20所示的设有磁感应测温装置的燃气灶是本发明实施例, 煮食锅 3d 的底部可以同注或镶嵌有磁性感温元件 7d, 燃气灶燃烧器中部的位置还设置有隔热罩 l id, 隔热罩 l id内部有测温感应线圈 6d和励磁线圈 4d, 测温感应线圈 6d和励磁线 圈 4d与隔热罩之间填充有隔热材料, 防止燃烧器燃烧时的热量的影响,测温感应线圈 6d位于磁性感温元件 7d的下方, 励磁线圈 4d位于测温感应线圈 6d和磁性感温元件 7d的外部, 磁性感温元件 7d采用热敏铁氧体材料, 燃气灶工作时, 激活励磁线圈, 产生一定强度的交变磁场, 煮食锅 3d底部的磁性感温元件 7d经过测温感应线圈, 在 磁场强度相同的条件下, 通过测温感应线圈 6d的磁通量最大。 测温感应线圈 6d、 励 磁线圈 4d—起由支架 5d固定在灶台座 Id的底部。 支架 5d为一纵向截面为阶梯形的 板架, 测温感应线圈 6d和励磁线圈 4d固定在板架上。 磁性感温元件 7d固定煮食锅 3d的底部, 与测温感应线圈 6d的位置相对应。 当使用燃气灶时, 磁性感温元件 7d通 过煮食锅 3d与锅内的食物直接接触。 燃气灶的磁感应测温电路还包括整流滤波电路, 整流滤波电路的输入端与测温感应线圈 6d相连,输出端与电信号判别电路相连。本实 施例中的电信号判别电路为电压判别电路, 如 A/D电路。
在本实施例中,在燃气灶控制电路中设置了可对测温感应线圈 6d进行励磁的励磁 驱动电路, 即在测温感应线圈 6d旁边设置了励磁线圈 4d, 测温感应线圈 6d与励磁线 圈 4d匹配, 能够产生感应电信号, 励磁线圈 4d可由输出控制电路提供电源并对测温 感应线圈 6d进行励磁。 当使用燃气灶煮饭时, 激活励磁线圈, 并对测温感应线圈 6d 进行励磁, 在测温感应线圈 6d和磁性感温元件 7d之间形成一个检测磁场, 测温感应 线圈 6d可以根据磁性感温元件 7d的磁性变化, 输出相应的电压, 燃气灶燃烧加热煮 食锅 3d内的米和水, 当饭煮干之后, 饭的温度达到 105° C时, 测温感应线圈 6d产生 的电压值变化到某一电压值 X伏时,电压判别电路感受到该 X伏电压值时,参见图 21, 马上向输出控制电路传递信号, 减小或断开燃气灶的火力, 则停止加热, 从而实现燃 气灶的煮饭自动测温功能。 当煮食锅 3d内的温度小于 70° C时,测温感应线圈 6d产生 的电压值变化到某一电压值 Y伏时,电压判别电路感受到该 Y伏电压值,马上向输出控 制电路传递信号, 又重新自动点火, 进入小火力燃烧状态, 当煮食锅 3d的温度达到所 设定的保温上限温度后, 燃气灶又断开燃气灶的火力, 以实现保温功能。
实施例九
本实施例所述的测温感应线圈, 采用的是霍尔元件, 具体的讲, 本实施例采用了 利用霍尔效应制备的霍尔元件作为本发明所述的非接触式测温方法的测温感应线圈, 具体的: 采用均匀的 N型半导体材料制成的矩形薄片, 所述的薄片具有一定的长、 宽、 厚, 在长度方向的两端加上电压, 所述的霍尔元件的位置在磁性感温元件磁场的有效 作用范围内。
当磁性感温元件在温度的变化下导致磁场 B变化, 基本垂直于霍尔元件宽面的磁 场 B的变化, 导致了所述的霍尔元件的薄片的宽度的两端产生电位差, 然后将所述的 电位差转变成电信号, 按照实施例一的方式处理。
上述实施例仅仅是对本发明的优选实施例进行描述, 并非对本发明的构思和范围 进行限定, 在不脱离本发明设计思想的前提下, 本领域中专业技术人员对本发明的技 术方案作出的各种变化和改进, 均属于本发明的保护范围。

Claims

权 利 要 求 书
1、一种非接触式测温方法,其特征在于: 在所述的方法中, 包括一个需要测温的部件, 在所述的需要测温的部件接触部位设置至少一个磁性感温元件, 一与所述磁性感温元件位 置相对应的测温元件, 测温元件包括测温感应线圈和励磁线圈, 还包括一控制电路, 所述 的磁性感温元件为铁磁体或亚铁磁体, 利用磁体磁导率的温度特性, 配合励磁线圈和测温 感应线圈, 在工作温度范围内, 具有连续下降的 μ -Τ 曲线, 即磁导率 -温度曲线, 所述曲 线的任一点的切线与横向的 Τ轴具有夹角 β,所述的夹角 β为钝角;或具有连续上升的 μ _Τ 曲线, 所述曲线的任一点的切线与横向的 Τ轴具有夹角 α, 所述的夹角 α 为锐角; 在励磁 线圈上施加一个交变电场, 励磁线圈工作时, 在测温感应线圈中产生一个基本电信号, 同 时对磁性感温元件进行励磁, 当被测物体温度变化时, 磁性感温元件的磁感应强度发生变 化, 所述的变化反映在测温感应线圈中就产生了相应温度的电信号, 通过控制电路实现温 度检测及控制。
2、 根据权利要求 1所述的方法, 其特征在于: 励磁线圈通电, 产生一定强度的感温检 测磁场, 感温检测磁场通过磁性感温元件和测温感应线圈时, 在测温感应线圏中产生电信 号, 当磁性感温元件的温度随需要测温的部件温度变化时, 磁性感温元件的磁性强度发生 变化, 则测温感应线圈的磁通量相应发生变化, 进而导致测温感应线圈两端的电信号产生 变化, 由于磁性感温元件的不同温度点对应着不同强度的磁性, 磁性强度变化, 感温检测 磁场产生的电信号变化, 根据该电信号对应检测到需要测温的部件的温度。
3、 根据权利要求 2所述的方法, 其特征在于: 由于磁性感温元件的不同温度点对应着 不同强度的磁性, 同时测温感应线圈中会产生相应的电信号, 根据不同加热要求设定多个 温度点, 通过测温感应线圈产生的电信号的大小判别出磁性感温元件的多点温度变化, 实 现自动温度控制。
4、 根据权利要求 1所述的方法, 其特征在于: 所述的 β 角的范围在 100-170度; 所 述的 α 角的范围在 10-80度。
5、 根据权利要求 4所述的方法, 其特征在于: 所述的 β 角的范围在 110-160度; 所 述的 α 角的范围在 15-75度。
6、 根据权利要求 5所述的方法, 其特征在于: 所述的 β 角的范围在 110-140度; 所 述的 α 角的范围在 25-70度。
7、一种具有如权利要求 1-6任一所述测温方法的装置,其特征在于: 该装置为电饭煲, 在电饭煲的外壳中, 包括一内壳、 内锅、 发热盘及控制电路, 磁性感温元件安装于内锅底 或安装于内壳底部的上表面, 位于发热盘的中心, 测温感应线圈和励磁线圈与磁性感温元 权 利 要 求 书 件位置相对应, 当所述的磁性感温元件的磁感应强度随温度变化而变化时, 其产生的磁场 发生变化, 该变化反映在测温感应线圈中就产生了相应温度的电信号, 通过控制电路实现 温度检测及控制。
8、 根据权利要求 7所述的装置, 其特征在于: 所述的电饭煲为普通加热电饭煲, 所述 的发热盘内嵌电发热管。
9、 根据权利要求 7所述的装置, 其特征在于: 所述的电饭煲为电磁电饭煲, 所述的发 热盘内为电磁加热线圈, 励磁线圈与电磁加热线圈为一体, 所述的电磁加热线圈在施加交 变磁场对铁磁体材料制备的内锅进行加热的同时, 兼做与磁性感温元件、 测温感应线圈匹 配的励磁线圈。
10、 一种具有如权利要求 1-6任一所述测温方法的装置, 其特征在于: 该装置为电磁 炉, 包括电磁炉壳体、 电磁炉台板、 电磁炉台板下方的加热线圈、 控制电路及位于电磁炉 台板上的加热锅, 磁性感温元件与加热锅底部紧密接触, 测温感应线圈和磁性感温元件设 置在励磁线圈的作用范围内; 测温感应线圏设置在能够感知磁性感温元件磁场强度变化的 区域范围内, 当所述的磁性感温元件的磁感应强度随温度变化而变化时, 其产生的磁场发 生变化, 该变化反映在测温感应线圈中就产生了相应温度的电信号, 通过控制电路实现温 度检测及控制。
11、 根据权利要求 10所述的装置, 其特征在于: 所述的测温感应线圈和磁性感温元件 设置在励磁线圈的作用范围内; 测温感应线圈设置在能够感知磁性感温元件磁场强度变化 的区域范围内。
12、 根据权利要求 10所述的装置, 其特征在于: 所述的加热线圏与所述的励磁线圏为 同一线圏, 所述的测温感应线圏由支架固定在电磁炉台板的下方, 对应磁性感温元件位置, 支架为一纵向截面为阶梯形的板架。
13、 根据权利要求 10所述的装置, 其特征在于: 所述的测温感应线圈、 励磁线圈一起 由支架固定在电磁炉台板的下方, 对应磁性感温元件位置, 支架为一纵向截面为阶梯形的 板架, 测温感应线圈和励磁线圈同轴固定在板架上。
14、 一种具有如权利要求 1-6任一所述测温方法的装置, 其特征在于: 该装置为微波 炉, 包括外壳、 设于外壳内部的加热室、 为加热室加热的磁电管、 位于加热室内的转盘、 带动转盘转动的电机及控制电路, 转盘上设有用于盛放食物、 微波能够穿透加热的器皿, 转盘的下方设有测温元件, 包括测温感应线圈和励磁线圈, 器皿底部设有与励磁线圈对应 的磁感应强度根据温度变化而变化的磁性感温元件, 所述的励磁线圈对测温感应线圈进行 权 利 要 求 书 励磁, 在测温感应线圈和磁性感温元件之间形成一个感温检测磁场, 用于将磁性感温元件 在不同温度下产生的磁信号转换为电信号并输出, 以检测器皿的温度。
15、 根据权利要求 14所述的装置, 其特征在于: 所述的测温感应线圈、 励磁线圈一起 由支架固定在加热室的下方, 对应器皿中心位置, 支架为一纵向截面为阶梯形的板架, 测 温感应线圈和励磁线圈同轴固定在板架上。
16、 根据权利要求 14所述的装置, 其特征在于: 所述的测温感应线圈与励磁线圈对应 匹配, 设于加热室内、 转盘下方靠近器皿中心的位置, 励磁线圈设置在测温感应线圈旁边, 或与测温感应线圈同轴套在一起。
17、 根据权利要求 14-16任一所述的装置, 其特征在于: 所述的磁性感温元件同铸或 镶嵌于能与食物直接接触的器皿底部内表面, 位于靠近器皿中心位置, 与测温感应线圈的 位置相对应。
18、根据权利要求 7-17任一所述的装置,其特征在于:所述的控制电路包括电源电路、 输出控制电路, 还包括测温电路, 所述的测温电路包括测温感应线圈和电信号判别电路, 测温感应线圈与电信号判别电路相连, 电信号判别电路再与输出控制电路连接, 所述的测 温电路还包括整流滤波电路, 测温感应线圈产生的交变电信号通过整流滤波电路之后变成 直流电信号, 输出到信号判别电路。
19、 一种具有如权利要求 1-7任一所述测温方法的装置, 其特征在于: 该装置为燃气 灶, 包括灶台座、 设于灶台座上的燃烧器、 支脚架及设于支脚架上的煮食锅, 所述的燃烧 器中心位置设有测温元件, 包括测温感应线圈和励磁线圈, 煮食锅底部设有与励磁线圈对 应的磁感应强度根据温度变化而变化的磁性感温元件, 所述的励磁线圈对测温感应线圈进 行励磁, 在测温感应线圈和磁性感温元件之间形成一个感温检测磁场, 用于将磁性感温元 件在不同温度下产生的磁信号转换为电信号并输出, 以检测煮食锅的温度。
20、 根据权利要求 19所述的装置, 其特征在于: 所述的磁性感温元件同铸或镶嵌于煮 食锅底部, 测温元件的外部设有隔热罩, 隔热罩对应磁性感温元件贴住锅底隔绝火焰以使 得磁性感温元件的温度与煮食锅内食物的温度接近。
21、 根据权利要求 19所述的装置, 其特征在于: 所述的测温感应线圈与励磁线圈对应 匹配, 励磁线圈设置在测温感应线圈旁边, 或与测温感应线圈同轴套在一起。
22、 根据权利要求 20所述的装置, 其特征在于: 所述的测温感应线圈与励磁线圈对应 匹配, 同轴套在一起设于托架上, 托架下方设有弹簧以使得隔热罩升降, 与不同形状的煮 权 利 要 求 书 食锅底部对应贴合, 测温元件与隔热罩之间填充有隔热材料。
23、 根据权利要求 19所述的装置, 其特征在于: 所述的燃气灶设有温控电路, 包括电 源电路、 与电源电路连接的输出控制电路、 与输出控制电路连接控制燃气大小的输出调节 电路、 控制励磁线圈工作的励磁驱动电路及输出显示信息的显示电路, 还包括与输出控制 电路连接的测温电路, 所述的测温电路包括测温感应线圈和电信号判别电路, 测温感应线 圈与电信号判别电路相连, 电信号判别电路再与输出控制电路连接。
24、 根据权利要求 18或 23所述的装置, 其特征在于: 所述的电信号判别电路为电压 判别电路或电流判别电路, 或脉冲宽度测量电路。
25、 根据权利要求 18或 23所述的装置, 其特征在于: 所述的测温电路还包括整流滤 波电路, 测温感应线圈产生的交变电信号通过整流滤波电路之后变成直流电信号, 输出到 信号判别电路。
26、 根据权利要求 7-25任一所述的装置, 其特征在于: 所述的磁性感温元件是铁氧体 材料的磁性感温元件, 或是感温磁钢, 或是合金材料的磁性感温元件, 或者是稀土材料的 磁性感温元件。
27、 根据权利要求 7-25任一所述的装置, 其特征在于: 所述的测温感应线圈为电磁感 应线圈或霍尔线圈或霍尔芯片, 或者为它们的任意组合。
PCT/CN2011/072223 2010-03-31 2011-03-28 一种非接触式测温方法及利用该测温方法的装置 WO2011120414A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010136784.2 2010-03-31
CN201010136784.2A CN102207411B (zh) 2010-03-31 2010-03-31 一种非接触式测温方法
CN201110064550.6A CN102680128B (zh) 2011-03-17 2011-03-17 一种非接触式测温方法及利用该测温方法的装置
CN201110064550.6 2011-03-17

Publications (1)

Publication Number Publication Date
WO2011120414A1 true WO2011120414A1 (zh) 2011-10-06

Family

ID=44711362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072223 WO2011120414A1 (zh) 2010-03-31 2011-03-28 一种非接触式测温方法及利用该测温方法的装置

Country Status (1)

Country Link
WO (1) WO2011120414A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020064685A1 (en) * 2018-09-25 2020-04-02 Philip Morris Products S.A. Susceptor assembly for inductively heating an aerosol-forming substrate
WO2020064684A1 (en) * 2018-09-25 2020-04-02 Philip Morris Products S.A. Inductive heating assembly for inductive heating of an aerosol-forming substrate
CN111685576A (zh) * 2019-03-13 2020-09-22 广东美的白色家电技术创新中心有限公司 一种用于电磁加热的锅具及其制备方法和测温的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900602A (zh) * 2006-07-18 2007-01-24 叶小舟 一种可自动控温的电磁灶
CN101193464A (zh) * 2006-11-25 2008-06-04 浙江苏泊尔家电制造有限公司 感应测温锅具
CN101307924A (zh) * 2008-06-06 2008-11-19 叶小舟 一种设有磁感应测温装置的电磁炉
WO2009088062A1 (ja) * 2008-01-10 2009-07-16 Akita University 感温磁性体を用いた温度計測方法及び温度制御方法
CN101637354A (zh) * 2009-07-13 2010-02-03 叶小舟 一种电磁电饭煲

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900602A (zh) * 2006-07-18 2007-01-24 叶小舟 一种可自动控温的电磁灶
CN101193464A (zh) * 2006-11-25 2008-06-04 浙江苏泊尔家电制造有限公司 感应测温锅具
WO2009088062A1 (ja) * 2008-01-10 2009-07-16 Akita University 感温磁性体を用いた温度計測方法及び温度制御方法
CN101307924A (zh) * 2008-06-06 2008-11-19 叶小舟 一种设有磁感应测温装置的电磁炉
CN101637354A (zh) * 2009-07-13 2010-02-03 叶小舟 一种电磁电饭煲

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020064685A1 (en) * 2018-09-25 2020-04-02 Philip Morris Products S.A. Susceptor assembly for inductively heating an aerosol-forming substrate
WO2020064684A1 (en) * 2018-09-25 2020-04-02 Philip Morris Products S.A. Inductive heating assembly for inductive heating of an aerosol-forming substrate
CN112739229A (zh) * 2018-09-25 2021-04-30 菲利普莫里斯生产公司 用于感应加热气溶胶形成基材的感应加热组件
CN112822950A (zh) * 2018-09-25 2021-05-18 菲利普莫里斯生产公司 用于感应加热气溶胶形成基材的感受器组件
EP3855960B1 (en) * 2018-09-25 2022-11-02 Philip Morris Products S.A. Susceptor assembly for inductively heating an aerosol-forming substrate
CN111685576A (zh) * 2019-03-13 2020-09-22 广东美的白色家电技术创新中心有限公司 一种用于电磁加热的锅具及其制备方法和测温的方法

Similar Documents

Publication Publication Date Title
CN102680128B (zh) 一种非接触式测温方法及利用该测温方法的装置
CN102679416B (zh) 一种非接触式电磁感应测温微波炉及测温方法
WO2009146663A1 (zh) 一种厨具的非接触式温度检测和控制方法及一种电磁炉
CN102204780B (zh) 一种非接触式测温的电饭煲及测温方法
CN102207299B (zh) 一种自动控温燃气灶及控温方法
CN100449210C (zh) 一种可自动控温的电磁灶
CN102207411B (zh) 一种非接触式测温方法
CN102823323B (zh) 感应加热烹调器
CN101637354B (zh) 一种电磁电饭煲
US10869365B2 (en) Induction heating device
CN102235701A (zh) 一种非接触式测温的电磁炉及测温方法
US11202345B2 (en) Loaded-object sensor and induction heating device including loaded-object sensor
CN102226539B (zh) 一种电磁炉及电磁炉的测温方法
WO2011120414A1 (zh) 一种非接触式测温方法及利用该测温方法的装置
JP2007287702A (ja) 誘導加熱調理器
JPH0982466A (ja) 誘導加熱装置
US20180376542A1 (en) Induction heating device
CN202082979U (zh) 一种电磁炉
CN206861632U (zh) 一种电磁感应加热炊具
CN215187467U (zh) 一种耦合线圈和家用电器
CN109140543A (zh) 一种电磁加热炊具的降噪方法
CN208804723U (zh) 电磁装置及带有该电磁装置的感应测量装置和烹饪装置
CN212108522U (zh) 一种电磁炉锅体
JP2004247237A (ja) 誘導加熱調理器
CN210748690U (zh) 一种微电脑电饭煲

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11761988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11761988

Country of ref document: EP

Kind code of ref document: A1