WO2009146663A1 - 一种厨具的非接触式温度检测和控制方法及一种电磁炉 - Google Patents

一种厨具的非接触式温度检测和控制方法及一种电磁炉 Download PDF

Info

Publication number
WO2009146663A1
WO2009146663A1 PCT/CN2009/072169 CN2009072169W WO2009146663A1 WO 2009146663 A1 WO2009146663 A1 WO 2009146663A1 CN 2009072169 W CN2009072169 W CN 2009072169W WO 2009146663 A1 WO2009146663 A1 WO 2009146663A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
circuit
coil
magnetic
induction
Prior art date
Application number
PCT/CN2009/072169
Other languages
English (en)
French (fr)
Inventor
叶小舟
彭霭钳
Original Assignee
Ye Xiaozhou
Peng Aiqian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ye Xiaozhou, Peng Aiqian filed Critical Ye Xiaozhou
Publication of WO2009146663A1 publication Critical patent/WO2009146663A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like

Definitions

  • the invention relates to a non-contact temperature detecting and controlling method for kitchen utensils and an electromagnetic oven, belonging to the field of daily household appliance testing. Background technique
  • the induction cooker is a household appliance that uses an electromagnetic field to cook an electromagnetic cooker made of a ferromagnetic material as a load for direct heating.
  • a contact temperature detecting method and a non-contact temperature detecting method are employed in the temperature control process of the induction cooker.
  • the contact temperature detecting method is to control the temperature of the bottom of the electromagnetic cooker by the temperature of the bottom of the electromagnetic cooker to the heat sensitive element.
  • the disadvantages are: due to the poor thermal conductivity of the electromagnetic oven platen, the temperature of the bottom of the electromagnetic cooker It is difficult to ensure accurate and timely transmission to the heat-sensitive components. In particular, it is not possible to get the temperature-sensitive components to obtain accurate and timely signals at a certain temperature point. It is difficult to achieve accurate and automatic control of the temperature of the electromagnetic cooker during the cooking process.
  • the electromagnetic heating kitchenware cannot achieve specific temperature control, but uses three or more heating power divisions of high, medium and low. And the proximity value in the heating temperature range corresponding to different heating powers is marked on the control panel of the heating kitchen utensil, which itself does not have a specific function of accurately measuring the heating temperature.
  • the temperature and temperature of the heating plate are measured by installing a temperature sensitive resistor under the heating platen.
  • Such a measuring method cannot be accurately expressed on the platen portion due to the uneven heat conduction of the heating platen and the low heat conduction effect of the thickness of the heating platen. The temperature of the object being heated.
  • the existing non-contact temperature detecting method utilizes the rapid degaussing principle of the temperature-sensitive magnetic steel for temperature control: a temperature-sensitive magnetic steel is disposed at the bottom of the electromagnetic pot or on the induction cooktop, when the temperature of the temperature-sensitive magnetic steel is higher than At the Curie temperature, the temperature-sensitive magnetic steel loses its magnetic properties. At this time, the magnetic sensor is used to detect the change in the magnetic properties of the temperature-sensitive magnetic steel for temperature measurement.
  • the Chinese patent application with the application number 200610036568 The sensor is equipped with temperature-sensitive magnetic steel to replace the contact heat conduction and the sensing method to sense the temperature change of the heat-sensitive element. It has the advantages of accurate and timely detection, and overcomes the aforementioned inaccurate and slow response of the contact temperature detection method.
  • the Chinese patent application with the application number of 200610036568. 4 detects the temperature-sensitive magnetic steel by placing a magnet or a magnetic sensitive sensor itself as an exciting coil in the vicinity of the magnetic sensor to form a magnetic field loop between the magnetic sensor and the temperature-sensitive magnetic steel.
  • the magnetic signal generated changes.
  • the magnetic field of the magnetic field circuit changes accordingly, and the magnetic sensor detects the change of the magnetic field and points to the signal.
  • the circuit outputs a corresponding signal, and the magnetic signal is amplified by the processing circuit and output to the output control circuit, and the control circuit converts the control program accordingly, thereby achieving the purpose of temperature control, but since the magnetic signal generated by the magnetic sensor itself is rather weak, The magnetic sensor can not detect the magnetic change of the temperature-sensitive magnetic steel at other temperature points. The magnetic change of the temperature-sensitive magnetic steel can only be detected when the temperature-sensitive magnetic steel reaches the Curie temperature point and the magnetic signal changes strongly. Because the induction cooker emits a strong magnetic force by the heating coil to heat the electromagnetic pot, when the heating coil is heated, its powerful magnetic field will interfere with the magnetic sensitive sensor to the temperature-sensitive magnetic steel at the set temperature point.
  • the detection of the magnetic signal therefore, must be controlled by the program that disconnects the heating coil for a short time. After the magnetic field of the heating electromagnetic pot disappears, the magnetic sensor is detected during the power-off of the heating coil. After the detection is completed, the heating is performed. The coil is energized again, this process continues until the magnetic sensor The signal generated by the electromagnetic pot at a set temperature point is detected. Therefore, the technical solution has the following defects: (1) In order to ensure the normal detection of the magnetic sensor, it is necessary to disconnect the power supply of the heating coil frequently, which is not conducive to the normal heating operation of the induction cooker; (2) setting the first time to disconnect the heating coil during the heating process The time of the power supply will vary depending on the amount of food to be heated.
  • An object of the present invention is to provide a non-contact temperature detecting and controlling method for a kitchen appliance, which is to excite a temperature measuring induction coil by using a heating coil or an exciting coil as an excitation source, because the heating coil is directly used. Or the excitation coil excites the temperature sensing coil, so when the temperature of the electromagnetic pot is detected, it is not necessary to disconnect the power supply of the heating coil, and it is possible to detect a plurality of set temperature points of the electromagnetic pot, so that the control program makes corresponding
  • the transformation can realize automatic, flexible and accurate control of the multi-point temperature of the induction cooker during the cooking process.
  • Another object of the present invention is to provide an induction cooker prepared by a non-contact temperature detecting and controlling method for a kitchen appliance, which uses a non-contact method to detect the temperature of the electromagnetic pot, and does not need to be broken when the temperature measuring device detects the temperature of the electromagnetic pot. Open the power supply of the heating coil, and can detect multiple set temperature points of the electromagnetic cooker, so that the control program can make corresponding changes, which can realize the automatic, flexible and accurate temperature of the induction cooker during the cooking process. Control.
  • Non-contact temperature detecting and controlling method for kitchen utensils and electromagnetic cooker comprising heating coil, temperature measuring induction coil, magnetic temperature sensing element, electric signal discriminating circuit and output control circuit, said non-contact temperature detecting And control methods include the following steps:
  • the heating coil is energized to excite the temperature measuring induction coil, and a detection magnetic field is formed between the heating coil, the temperature measuring induction coil and the magnetic temperature sensing element;
  • the heating coil When the heating coil is energized to change the temperature of the electromagnetic pot, the magnetic strength of the magnetic temperature sensing element changes, so that the electrical signals at both ends of the temperature measuring induction coil change accordingly;
  • the electrical signal discriminating circuit detects the electrical signal of the temperature sensing coil change, and transmits the detected electrical signal to the output control circuit for temperature control.
  • the kitchen utensil is an induction cooker, and the induction cooker is further provided with an independent excitation coil.
  • the excitation coil excites the temperature measurement induction coil, and forms an excitation coil, a temperature measurement induction coil and a magnetic temperature sensing element. Detecting a magnetic field environment; when the temperature of the object to be measured changes, the magnetic strength of the magnetic temperature sensing element changes, causing the detection magnetic field environment to continuously change, so that the electrical signals at both ends of the temperature sensing coil follow A continuous change occurs; the electrical signal change is detected by the electrical signal discriminating circuit and transmitted to the electrical signal discriminating circuit, and the output control circuit adjusts the heating coil according to the preset command and against the output electrical signal.
  • the power supply of the heating coil can be cut off and/or not cut off.
  • the excitation coil is activated, in the environment of the detected magnetic field formed, when the temperature of the object to be measured changes, the magnetic temperature sensing element The magnetic intensity changes continuously, causing the detection magnetic field environment to continuously change, so that the electrical signals at both ends of the temperature sensing coil are continuously changed; the electrical signal change is detected by the electrical signal discriminating circuit and transmitted to The output control circuit adjusts the heating coil according to the preset command and according to the output electrical signal.
  • the electrical signal at both ends of the temperature sensing coil may be a current and/or voltage signal and/or a pulse width; the electrical signal discriminating circuit may respectively adopt a current discriminating circuit and/or a voltage discriminating circuit according to the signal type of the output signal. / or voltage comparison circuit and / or pulse width measurement circuit; and / or through the A / D conversion circuit and the determination of the converted electrical signal.
  • the kitchen utensils also include an induction cooker, a microwave oven, a gas cooker, a rice cooker, an electric water heater, an electric soup, and an electric pressure cooker.
  • the control circuit further includes a rectifying and filtering circuit, and the electric signal generated by the temperature measuring induction coil is rectified After the filter circuit is input to the electric signal discriminating circuit, the electric signal discriminating circuit discriminates and transmits it to the output control circuit to realize automatic control of the induction cooker.
  • the temperature relationship between the generated electrical signal and the electromagnetic pot is: a positive temperature coefficient relationship or a negative temperature coefficient relationship.
  • the induction cooker includes an induction cooker housing, an induction cooktop platen, a heating coil and a control circuit, wherein a non-contact temperature measuring device is disposed under the electromagnetic oven platen, and the non-contact temperature measuring device is disposed in the pot
  • the temperature sensing induction coil corresponding to the magnetic temperature sensing element on the body or the platen, and the output end of the electrical signal discriminating circuit and the temperature sensing induction coil are connected to the output control circuit.
  • the control circuit includes an electric signal discriminating circuit, a temperature protection circuit, an output adjusting circuit, an output control circuit, a power supply circuit, a current detecting circuit, a protection circuit, a display circuit, an oscillating circuit and a driving circuit; the temperature protection circuit input end and The output end of the thermistor is connected to the output control circuit; the output end of the drive circuit is connected to the output control circuit and the output end is connected to the power supply circuit; the oscillation circuit is connected to the drive circuit; the power supply circuit, the current detection circuit and the protection circuit The display circuit and the output adjustment circuit are respectively connected to the output control circuit.
  • the non-contact temperature measuring device can also be disposed in a microwave oven, a gas stove, a rice cooker, an electric water heater, an electric soup, and an electric pressure cooker.
  • the electrical signal discriminating circuit may be a current discriminating circuit and/or a voltage discriminating circuit and/or a voltage comparing circuit and/or a pulse width measuring circuit and/or an A/D converting circuit.
  • the control circuit further includes a rectifying and filtering circuit, the input end of the rectifying and filtering circuit is connected to the temperature sensing coil, and the output end is connected to the electric signal discriminating circuit.
  • the magnetic temperature sensing element is directly disposed at the bottom of the electromagnetic pot having a two-layer structure, the electromagnetic pot has an outer shell and an inner shell, and the magnetic temperature sensing element is disposed in the two shells.
  • the outer casing of the bottom of the electromagnetic cooker is directly in contact with the induction platen.
  • the temperature sensing induction coil may be a method of tapping the temperature measuring coil and/or the iron measuring core may be added between the temperature measuring induction coil and/or the distance between the temperature measuring induction coil and the magnetic temperature sensing element is less than 20mm.
  • the kitchenware includes an exciting coil, a temperature measuring induction coil, a magnetic temperature sensing element in contact with the detected object, an electric signal discriminating circuit, and an output control circuit, and the detecting and controlling method comprises the following steps:
  • the excitation coil, the temperature sensing coil and the magnetic temperature sensing element together form a required magnetic field detecting environment
  • the electrical signal discriminating circuit detects the electrical signal of the temperature sensing coil change, and transmits the detected electrical signal to the output control circuit for temperature control.
  • the excitation coil may be a magnetic heating coil of the kitchen utensil itself, and/or an excitation coil independently provided, and/or an excitation coil formed by tapping the temperature sensing induction coil, the kitchenware being an induction cooker, a microwave oven, and a gas Stove, rice cooker, electric water heater, electric soup and electric pressure.
  • the alternating electric signal generated by the temperature measuring induction coil such as voltage or current
  • the direct current voltage or the direct current is input to the voltage or current discriminating circuit, the voltage or current.
  • the discriminating circuit can determine the magnitude of the DC voltage or current. Since the size of the electrical signal is affected by the magnetic strength of the magnetic sensing element, the stronger the magnetic, the larger the electrical signal, the weaker the magnetic, and the smaller the electrical signal (see Figure 1).
  • the magnetic strength of the magnetic temperature sensing element is affected by the temperature of the electromagnetic pot.
  • the magnetic induction temperature measuring circuit can determine the temperature of the electromagnetic pot, and the relationship between the temperature and the electric signal has a positive temperature coefficient relationship and a negative relationship.
  • Figure 11 is a graph showing the relationship between the temperature of the induction cooker body and the DC voltage (current) in one embodiment of the present invention. It can be seen that when the temperature of the electromagnetic cooker reaches a certain temperature, The voltage value changes to a certain voltage value X volts.
  • the temperature measuring circuit can discriminate the plurality of temperature points of the electromagnetic pot body, so that the control program can be correspondingly changed to meet other cooking requirements of the induction cooker. It should be particularly noted that the relationship shown in Figs. 1 to 3 and Figs. 11 and 14 can be a straight line or a curved line.
  • the invention further comprises an excitation circuit in the electromagnetic oven control circuit, wherein the excitation circuit can excite the temperature measuring induction coil, and form a detection magnetic field between the temperature measuring induction coil and the magnetic temperature sensing element, so that the heating coil does not work.
  • the temperature of the electromagnetic pot can also be detected.
  • the excitation circuit is mainly composed of an excitation coil, and the excitation coil may be disposed beside the temperature measurement induction coil or may be coaxially sleeved with the temperature measurement induction coil.
  • the temperature measuring induction coil of the present invention is matched with the exciting coil to generate an induced electrical signal.
  • the temperature measuring induction coil can be excited by the heating coil to form a detecting magnetic field.
  • the temperature measuring induction coil is excited by the exciting coil to form a detecting magnetic field. That is, in both cases, the temperature sensing coil can generate an induced electrical signal.
  • the invention has the following advantages: (1)
  • the induction cooker adopting the non-contact temperature detecting and controlling method of the present invention is different from the detecting of the magnetic signal emitted by the magnetic temperature sensing element in the prior art, and the temperature measuring device of the present invention does not need to disconnect the power supply of the heating coil when detecting Instead, the magnetic field generated by the heating coil of the induction cooker is utilized.
  • the magnetic field passes through the temperature measuring induction coil, an electrical signal is generated, and only the electrical signal needs to be detected. According to the correspondence between the temperature of the electromagnetic pot and the electrical signal, the indirect relationship can be realized.
  • the detection of temperature is accurate, simple and practical, and easy to implement.
  • the induction cooker using the non-contact temperature detecting and controlling method of the present invention can not only utilize the Curie point temperature of the magnetic temperature sensing element as the detecting temperature point, but also can utilize the Curie point temperature section of the magnetic sensing element as the detection.
  • the temperature point sets a plurality of program controlled temperature points to meet the more varied cooking requirements of the induction cooker.
  • the induction cooker adopting the non-contact temperature detecting and controlling method can control the oil temperature during the cooking operation such as frying, and the oil temperature is controlled within 150°, so that the user is cooking in frying. It does not produce soot, but it also prevents the oil from carbonizing when it reaches an excessive temperature, which in turn allows the user to eat healthy fried foods.
  • the induction cooker adopting the non-contact temperature detecting and controlling method realizes automatic temperature control by using the excitation coil excitation to perform the cooking only 7-9 minutes, while the conventional rice cooker cooking generally takes 15-20 minutes. Compared with the traditional rice cooker, it has better energy saving effect.
  • the exciting coil used in the induction cooker using the non-contact temperature detecting and controlling method of the present invention is inexpensive, and the production cost of the induction cooker can be greatly reduced.
  • the magnetic temperature sensing element according to the present invention can be disposed on the upper surface of the induction cooktop plate, and can also be attached to the electromagnetic cooker used in combination, so that the implementation of the present invention can be flexible and diverse, and it is helpful to widen the electromagnetic cooker and the induction cooker. use.
  • the induction cooker adopting the non-contact temperature detecting and controlling method can design an accurate automatic control program, which can not only achieve the same effect as the automatic rice cooker, but also realize other cooking functions set, and further improve the automation of the induction cooker. degree.
  • the non-contact temperature detecting and controlling method used in the present invention can also be applied to daily electric heating appliances such as rice cookers, electric water heaters, electric soups, point pressure cookers, gas cookers, microwave ovens, etc., which can greatly improve work efficiency. To make the control process more comprehensive and reliable.
  • Figure 1 is a graph showing the relationship between the magnetic strength and the electrical signal of the magnetic temperature sensing element of the present invention
  • 2 is a graph showing the relationship between the temperature of the electromagnetic cooker body and the electric signal during the operation of the induction cooker of the present invention (positive temperature coefficient);
  • Figure 3 is a graph showing the relationship between the temperature of the electromagnetic cooker body and the electrical signal during operation of the induction cooker of the present invention (negative temperature coefficient);
  • Figure 4 is a front sectional view showing the induction cooker according to Embodiment 1 of the present invention.
  • Figure 5 is a block diagram showing the principle of an induction cooker control circuit according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of a temperature measuring circuit with a pulse signal discriminating circuit according to Embodiment 1 of the present invention
  • FIG. 7 is a front cross-sectional view of the induction cooker according to Embodiment 2 of the present invention.
  • Figure 8 is a block diagram showing the principle of the control circuit of the induction cooker according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic diagram of a temperature measuring circuit with a rectifying and filtering circuit according to Embodiment 2 of the present invention.
  • Figure 10 is a schematic diagram of an excitation circuit of Embodiment 2 of the present invention.
  • Figure 11 is a graph showing the relationship between the pot body temperature and the DC voltage (current) when the induction cooker according to Embodiment 2 of the present invention realizes the functions of cooking, heat preservation and automatic boiling water;
  • Figure 12 is a front sectional view showing an induction cooker according to a third embodiment of the present invention.
  • Figure 13 is a schematic diagram of a temperature measuring circuit with a voltage comparison circuit according to Embodiment 3 of the present invention.
  • Figure 14 is a graph showing the relationship between the pot body temperature and the DC voltage (current) when the induction cooker function of the induction cooker according to Embodiment 3 of the present invention is realized;
  • Figure 15 is a schematic diagram showing an excitation circuit for forming an exciting coil by using a temperature measuring induction coil tap in the induction cooker according to Embodiment 4 of the present invention
  • Fig. 16 is a view showing an embodiment in which the induction cooker according to the fifth embodiment of the present invention increases the magnetic flux of the detection magnetic field by increasing the iron core.
  • the induction cooker adopting the non-contact temperature detecting and controlling method as shown in FIG. 4, FIG. 5 and FIG. 6 is the first embodiment of the present invention, including the induction cooker housing 2, the induction cooker platen 3, the heating coil 4, and the control circuit, and the control
  • the circuit comprises a control board 1 and a driving board 8, and a center of the heating coil 4 is provided with a bracket 5 on which a thermistor 7 is mounted.
  • a temperature measuring induction coil 6 is further disposed under the induction cooktop 3 for converting a magnetic signal generated by the magnetic temperature sensing element 10 above the induction cooktop 3 at a set temperature point into an electrical signal and outputting the temperature sensing.
  • the coil 6 is matched to the heating coil 4 to generate an induced electrical signal.
  • Temperature measuring induction coil 6 is located in heating coil 4 and magnetic sexy In the vicinity of the temperature element 10 in the region where the temperature sensing magnetic field can be generated, in the present embodiment, the temperature measuring induction coil 6 is fixed to one side of the heating coil 4 by the other holder 5a.
  • the magnetic temperature sensing element 10 in this embodiment adopts a temperature sensitive magnetic steel of amorphous material, which is fixed on the upper surface of the induction cooktop 3 and directly above the temperature measuring induction coil 6, since the temperature sensing coil 6 is located in the living room.
  • the side of the heating coil in the middle of the platen therefore, the temperature-sensitive magnetic steel is not provided at the center of the induction platen 3. Due to the limitation of processing accuracy, the contact surface between the temperature-sensitive magnetic steel and the bottom of the electromagnetic cooker 9 tends to be uneven, resulting in low heat transfer efficiency and inaccurate temperature conduction, which affects the detection results of the temperature measuring device.
  • thermal silica gel 11 is also disposed between the bottom of the pot 9 to ensure timely and accurate detection results.
  • the thermally conductive silicone layer 11 above the temperature sensitive magnetic steel is in contact with the bottom of the pot of the electromagnetic cooker 9.
  • the induction cooker control circuit of the embodiment is an improvement based on the prior art.
  • the induction cooker control circuit includes a power supply circuit, an output control circuit, a current detection circuit, a temperature protection circuit, an output adjustment circuit, and a display circuit. And protection circuits, etc.
  • a temperature measuring circuit is provided, the temperature measuring circuit includes a temperature measuring induction coil 6 and an electric signal discriminating circuit, the temperature measuring induction coil 6 is connected to the electric signal discriminating circuit, and the electric signal discriminating circuit is connected to the output control circuit.
  • the control program of the induction cooker is changed accordingly.
  • the electric signal discriminating circuit in this embodiment employs a pulse signal discriminating circuit such as a pulse width measuring circuit.
  • the thermistor 7 is still connected to the temperature protection circuit, performing the tasks of ordinary temperature control and temperature limit safety protection in the prior art.
  • the heating coil 4 When the induction cooker is working, the heating coil 4 generates an alternating magnetic field of a certain intensity.
  • the alternating magnetic field passes through the temperature sensing magnetic steel and the temperature measuring induction coil 6, an electrical signal is generated in the temperature measuring induction coil 6 - pulse width, pulse signal discriminating circuit
  • the pulse width generated by the temperature measuring induction coil 6 is directly used as a discrimination signal, and the magnitude of the pulse width is discriminated and outputted, and accordingly, a corresponding control program is set in the output control circuit to cause the induction cooker to perform a conversion program operation on the set temperature. Thereby achieving automatic control of the induction cooker cooking program.
  • the induction cooker provided with the magnetic induction temperature measuring device shown in FIG. 7 , FIG. 8 , FIG. 9 , FIG. 10 , and FIG. 11 is the second embodiment of the present invention.
  • the temperature measuring induction coil 6 is located in the heating coil.
  • the magnetic temperature sensing element 10 is made of a heat-sensitive ferrite material.
  • the temperature measuring induction coil 6 and the thermistor 7 are fixed to the lower side of the induction hob plate 3 by the bracket 5.
  • the bracket 5 is a stepped frame with a longitudinal section.
  • the thermistor 7 is fixed on the upper plate frame, and the temperature measuring induction coil 6 is fixed on the lower plate frame.
  • the magnetic temperature sensing element 10 is centrally fixed to the upper surface of the induction hob platen 3, and corresponds to the position of the temperature measuring induction coil 6.
  • the magnetic temperature sensing element 10 is in direct contact with the bottom of the electromagnetic pot 9.
  • the magnetic induction temperature measuring circuit of the induction cooker further comprises a rectifying and filtering circuit, the input end of the rectifying and filtering circuit is connected with the temperature measuring induction coil 6, and the output end is connected with the electric signal discriminating circuit.
  • the electric signal discriminating circuit in this embodiment is a voltage discriminating circuit such as an A/D circuit.
  • the following is a process for realizing the cooking and heat preservation function of the induction cooker by the magnetic induction temperature measuring device in the embodiment.
  • the alternating voltage generated by the temperature measuring induction coil 6 is generated by the rectifying and filtering circuit to generate a direct current voltage, and the direct current voltage is input to the voltage discriminating circuit, that is, the A/D interface input to the output control circuit, and the A/D circuit.
  • the magnitude of the DC voltage can be determined. The stronger the magnetic properties of the magnetic sensing element 10, the larger the electrical signal generated by the temperature sensing coil 6; conversely, the weaker the magnetic, the smaller the electrical signal.
  • This embodiment adopts a negative temperature coefficient, that is, the higher the temperature of the electromagnetic pot, the smaller the electrical signal.
  • an excitation circuit capable of exciting the temperature measuring induction coil 6 is further disposed in the induction cooker control circuit, that is, an excitation coil 12, a temperature measuring induction coil 6 and an excitation coil 12 are disposed beside the temperature measuring induction coil 6. Matching, an inductive electrical signal can be generated, and the excitation coil 12 can provide power to the output control circuit and excite the temperature sensing coil 6. As shown in FIGS.
  • the temperature measuring coil 6 is excited by the heating coil 4, and a detecting magnetic field is formed between the temperature measuring coil 6 and the magnetic temperature sensing element 10,
  • the excitation circuit does not work: when the heating coil 4 is not working, the excitation circuit excites the temperature sensing coil 6, and forms a detection magnetic field between the temperature sensing coil 6 and the magnetic temperature sensing element 10.
  • the temperature sensing coil 6 can According to the magnetic change of the magnetic temperature sensing element 10, a corresponding voltage is output to realize temperature detection when the heating coil 4 is not operating, that is, the temperature of the electromagnetic pot can be detected even when the heating circuit of the induction heating furnace is powered off.
  • the exciting circuit excites the temperature measuring induction coil 6 to form a detecting magnetic field, see Fig. 11, when the temperature of the electromagnetic pot 9 is less than 70 °C, the temperature measuring induction coil 6
  • the voltage discriminating circuit senses the Y volt voltage value, immediately transmits a signal to the output control circuit, and re-opens the heating circuit of the induction cooker, and the electromagnetic pot enters the heat preservation state, that is, Start heating coil 4 low power (or intermittent energization), at this time, the excitation circuit does not work, the temperature sensing coil 6 is excited by the heating coil 4; when the temperature of the electromagnetic pot 9 reaches the set upper temperature limit,
  • the induction cooker also disconnects the heating circuit to realize the heat preservation function of the induction cooker.
  • the automatic boiling water function of the electromagnetic oven can also be realized by the temperature measuring device, and when the electromagnetic oven is working, The boiling water program is started, and the electromagnetic furnace heats the water in the electromagnetic cooker 9.
  • the control circuit of the electromagnetic oven can set a program for measuring the heating rate in the output adjusting circuit, and the change value of the voltage generated by the temperature measuring induction coil 6 is used as the heating rate.
  • the heating rate is inversely proportional to the weight of the water in the pot, that is, the more the water is heated, the smaller the heating time required.
  • the voltage discriminating circuit obtains the temperature sensing coil 6 at a water temperature of 98 ° C
  • the signal is transmitted to the output control circuit, and the output regulating circuit controls the induction cooker to enter the delay state immediately, and the heating rate and the current temperature value measured during heating are determined, and the control program can determine the water to The time required for boiling is ⁇ .
  • the delay reaches ⁇
  • the control program of the induction cooker performs the conversion procedure to stop the heating.
  • the induction cooker avoids the water boiling for a long time, avoids the water in the cooking pot, ensures safety, saves energy, and easily realizes automatic boiled water.
  • the induction cooker using the non-contact temperature detecting and controlling method shown in FIG. 12, FIG. 13, and FIG. 14 is the third embodiment of the present invention.
  • the magnetic temperature sensing element 10 is a nanocrystalline material.
  • the temperature-sensitive magnetic steel, the induction cooker is matched with a specific electromagnetic pot 9, and the magnetic temperature sensing element 10 is directly disposed at the bottom of the electromagnetic cooker 9 having a double-layer structure, and the electromagnetic cooker 9 has an outer casing 91 and an inner shell.
  • Body 92, the electromagnetic pot of this structure is not easy to dissipate heat, and the heat preservation effect is better.
  • the magnetic temperature sensing element 10 is disposed between the two layers of the housing, that is, the outer casing 91 at the bottom of the electromagnetic pot 9 is directly in contact with the induction platen 3.
  • the outer casing 91 can be Made of non-metallic materials.
  • the electric signal discriminating circuit in this embodiment is a voltage comparing circuit.
  • the automatic soup function of the induction cooker is realized by the temperature measuring device:
  • the alternating voltage generated by the temperature measuring induction coil 6 generates a DC voltage through a rectifying and filtering circuit, and the DC voltage is input to the voltage discriminating circuit. That is, input to the voltage comparison circuit, the voltage comparison circuit can determine the magnitude of the DC voltage and output.
  • the soup preparation program is started, and the induction cooker firstly uses the high-power heating of the soup material in the electromagnetic pot 9.
  • the control circuit of the induction cooker has a program for measuring the heating rate of the water in the pot body, which can be generated by the temperature measuring induction coil 6. The voltage change value is used to measure the heating rate.
  • the voltage VI generated by the temperature sensing coil 6 is converted.
  • the starting point of the program when the voltage comparison circuit in the temperature measuring circuit senses the voltage of the VI volt, transmits a signal to the output control circuit, and the control circuit controls the induction cooker to enter the delay state immediately, and takes the heating rate measured during heating as a parameter. , determine the delay time to change the next program T 1.
  • the control circuit controls the induction cooker to stop the high-power heating and transfer to the low-power heating state, which can maintain the soup in the electromagnetic pot to keep boiling and not let the soup roll out of the pot. This state is maintained until the set time of the soup is stopped, and the induction cooker stops working to realize the automatic soup function of the induction cooker.
  • An induction cooker using a non-contact temperature detecting and controlling method as shown in FIG. 15 is an embodiment of the present invention.
  • the excitation coil adopts a method of measuring the temperature of the induction coil to be used as the excitation coil.
  • the excitation coil 13 of the temperature measurement induction coil is used to measure the temperature induction coil 6
  • a detection magnetic field is formed between the temperature sensing coil 6 and the magnetic temperature sensing element 10, and the temperature sensing coil 6 can output a corresponding voltage according to the magnetic change of the magnetic temperature sensing element 10, so that the heating coil 4 does not work.
  • the temperature detection at the time that is, the temperature of the electromagnetic cooker can also be detected in the case where the heating circuit of the induction cooker is de-energized.
  • the exciting circuit excites the temperature measuring induction coil 6 to form a detecting magnetic field, see FIG. 11, when the temperature of the electromagnetic pot 9 is less than 70 ° C, the temperature measuring induction coil 6
  • the voltage discriminating circuit senses the Y volt voltage value, immediately transmits a signal to the output control circuit, and re-opens the heating circuit of the induction cooker, and the electromagnetic pot enters the heat preservation state, that is, Start heating coil 4 low power (or intermittent energization), at this time, the excitation circuit does not work, the temperature sensing coil 6 is excited by the heating coil 4; when the temperature of the electromagnetic pot 9 reaches the set upper temperature limit,
  • the induction cooker also disconnects the heating circuit to realize the heat preservation function of the induction cooker.
  • the induction cooker adopting the non-contact temperature detecting and controlling method shown in FIG. 16 is the fifth embodiment of the present invention.
  • the iron core 14 is added in the middle of the temperature measuring induction coil to improve the temperature sensing.
  • the magnetic flux of the coil 6 enhances the magnetic field environment between the exciting coil 12, the temperature measuring induction coil 6 and the magnetic temperature sensing element 10, thereby enabling the induction cooker to more accurately achieve multi-point temperature and automatic temperature control during the cooking process. .
  • the magnetic temperature sensing element 10 may be a magnetic temperature sensing element of another material, such as a magnetic temperature sensing element of an alloy material, or a magnetic temperature sensing element of a rare earth material.
  • the bottom of the pot of the electromagnetic cooker may be in contact with the induction cooktop plate 3 or the induction cooktop plate 3 except for the portion in contact with the magnetic temperature sensing element 10, as long as the heating coil 4 and the temperature measuring induction coil are 6 can sense the magnetic temperature sensing element 10 at the bottom of the pot.
  • the various cooking programs of the induction cooker in the above embodiments such as cooking rice, boiled water, soup, etc.
  • the non-contact temperature detecting and controlling method of the invention can also be widely applied in rice cookers, electric water heaters, electric soups, electric pressure cookers, gas cookers, microwave ovens, and the heating method of the conventional heating plate/heating tube is changed into heating. Electromagnetic heating of the coil improves cooking efficiency and makes the control process more comprehensive and reliable.

Description

说 明 书
一种厨具的非接触式温度检测和控制方法及一种电磁炉 技术领域
本发明涉及一种厨具的非接触式温度检测和控制方法及一种电磁炉, 属于日常 家电检测领域。 背景技术
电磁炉是利用电磁场把铁磁材料制成的电磁锅作为负载直接加热而进行烹饪的 家用电器。 现有技术中, 对电磁炉的温度控制过程中采用包括接触式温度检测方法 和非接触式温度检测方法。 其中, 接触式温度检测方法是利用电磁锅底的温度通过 电磁炉台板传导给热敏元件的方式来进行温度控制的, 其不足之处是: 由于电磁 炉台板的导热性差, 电磁锅底的温度很难保证准确、 及时地传递给热敏元件, 尤其 是不能在某个特定的温度点让热敏元件准确及时地得到信号, 难以实现电磁锅的温 度在烹饪过程中的准确和自动控制。
现有技术中对电磁加热厨具无法实现具体温度控制, 而是采用设定高、 中、 低 三种或三种以上加热功率划分。 并以不同加热功率大概对应的加热温度范围中的接 近值标识在加热厨具的控制面板上, 其本身不具有具体的准确测量加热温度的功能。
或者采用在加热台板的下面安装温敏电阻的方式对加热温温度进行测量, 这样 的测量方式由于加热台板的受热不均勾以及本身厚度造成导热效应低下而无法精确 表达放置在台板上部被加热物体的温度。
现有的非接触式温度检测方法是利用感温磁钢的快速消磁原理来进行温度控制 的: 在电磁锅的底部或者电磁炉台板上设置感温磁钢, 当感温磁钢的温度高于居里 温度时, 感温磁钢便会失去磁性, 此时, 用磁性传感器检测感温磁钢磁性的变化进 行温度测量, 如已公开的申请号为 200610036568. 4 的中国专利申请, 设置磁敏传 感器配套感温磁钢来代替接触式热传导和热敏元件感应方式感应温度变化, 具有检 测准确、 及时的优点, 克服了前述的接触式温度检测方法不准确且反应慢的缺陷。
申请号为 200610036568. 4的中国专利申请是通过在磁敏传感器的附近放置磁 铁或磁敏传感器自身作为励磁线圈来使磁敏传感器和感温磁钢之间形成磁场回路来 检测感温磁钢中产生的磁信号变化, 当回路中的感温磁钢的磁性随锅体的温度而变 化时, 这一磁场回路的磁场就随之变化, 磁敏传感器检测到磁场的变化并向信号处 理电路输出一个相应的信号, 磁信号经过处理电路放大后输出给输出控制电路, 控 制电路据此转换控制程序, 从而实现温度控制的目的, 但是由于磁敏传感器本身产 生的磁信号相当微弱, 因而磁敏传感器无法检测到感温磁钢在其它温度点产生的磁 性变化, 只能在感温磁钢达到居里温度点失磁时产生磁信号的强烈变化时检测到感 温磁钢的磁性变化, 而由于电磁炉是靠加热线圈发出强大的磁力来加热电磁锅, 因 此, 当加热线圈加热工作时, 其强大的磁场会干扰磁敏传感器对感温磁钢在设定的 温度点上所发出的磁信号的检测, 因此, 必须同时采用将加热线圈短时间断开电源 的程序控制, 等加热电磁锅的磁场消失后, 让磁敏传感器在加热线圈断电期间进行 检测, 检测工作完成后, 加热线圈再通电工作, 这个过程一直循环下去, 直到磁敏 传感器检测到电磁锅在某一设定的温度点所发生的信号为止。 故该技术方案存在以 下缺陷: (1)为了保证磁敏传感器的正常检测, 要经常断开加热线圈的电源, 不利于 电磁炉的正常加热工作; (2)在加热过程中设置首次断开加热线圈的电源的时间会因 加热食物的分量不同而有所不同, 因此, 难以针对所有的情况设置较为合适的时间 点, 对于断电时间点设定早了的情况, 断电次数会增多且检测时间过长, 会影响加 热效率; (3)电磁炉的大功率管或功率模块频繁开关动作对控制系统带来冲击, 会影 响控制系统的使用寿命; (4)难以对多个的温度点进行检测: 由于不同的烹饪程序要 求控制不同的温度点, 即不是所有烹饪程序都要求达到居里点才工作, 而此种检测 方法只能检测到感温磁钢的居里点温度, 而不能检测多点温度, 因而无法对电磁炉 烹饪过程中所要求的多点温度进行灵活、 准确地控制, 温度检测仍然受到局限。 发明内容
本发明的一个目的是提供一种厨具的非接触式的温度检测和控制方法, 所述方 法是通过采用加热线圈或励磁线圈作为励磁源对测温感应线圈进行励磁, 该方法因 为直接利用加热线圈或励磁线圈对测温感应线圈励磁, 所以当对电磁锅的温度进行 检测时无需断开加热线圈的电源, 并能够对电磁锅多个设定的温度点进行检测, 使 控制程序做出相应的变换, 可以实现电磁炉在烹饪过程中多点温度自动、 灵活、 准 确的控制。
本发明的另一个目的是提供一种厨具的非接触式温度检测和控制方法制备的电 磁炉, 采用非接触的方法来检测电磁锅的温度, 当测温装置对电磁锅的温度进行检 测时无需断开加热线圈的电源, 并能对电磁锅多个设定的温度点进行检测, 使控制 程序做出相应的变换, 可以实现电磁炉在烹饪过程中多点温度自动、 灵活、 准确的 控制。
一种厨具的非接触式温度检测和控制方法及一种电磁炉, 所述电磁炉包括加热 线圈、 测温感应线圈、 磁性感温元件、 电信号判别电路和输出控制电路, 所述非接 触式温度检测和控制方法包括以下步骤:
a. 所述加热线圈通电对测温感应线圈进行励磁, 所述加热线圈、 测温感应线圈和磁 性感温元件之间形成检测磁场;
b. 加热线圈通电使电磁锅温度变化时, 所述磁性感温元件的磁性强度发生变化, 使 所述测温感应线圈两端的电信号随之发生变化;
c 所述电信号判别电路检测到测温感应线圈变化的电信号, 并将检测到的电信号传 送给输出控制电路进行控温。
所述的厨具是电磁炉, 所述电磁炉内还设置有独立的励磁线圈, 工作时, 所述 励磁线圈对测温感应线圈进行励磁, 并形成了由励磁线圈、 测温感应线圈和磁性感 温元件组成的检测磁场环境; 当被测物体的温度变化时, 所述磁性感温元件的磁性 强度发生变化, 导致所述的检测磁场环境连续变化, 使所述测温感应线圈两端的电 信号随之发生连续变化; 所述的电信号变化被所述电信号判别电路检测到并被传输 至电信号判别电路, 输出控制电路根据预置的指令并对照所输出的电信号对加热线 圈进行调节。
当电磁炉独立设置励磁线圈时, 可以切断和 /或不切断加热线圈的供电, 当启动 励磁线圈时, 在所形成的检测磁场环境中, 当被测物体的温度变化时, 所述磁性感 温元件的磁性强度发生变化, 导致所述的检测磁场环境连续变化, 使所述测温感应 线圈两端的电信号随之发生连续变化; 所述的电信号变化被电信号判别电路检测到 并被传输至输出控制电路, 输出控制电路根据预置的指令并对照所输出的电信号对 加热线圈进行调节。
所述测温感应线圈两端的电信号可以是电流和 /或电压信号和 /或脉冲宽度; 所述 电信号判别电路根据前述输出的信号类型, 可分别采用电流判别电路和 /或电压判别 电路和 /或电压比较电路和 /或脉冲宽度测量电路; 和 /或通过 A/D转换电路并对转换 后的电信号进行判别。
所述的厨具还包括电磁炉、 微波炉、 煤气灶、 电饭煲、 电开水器、 电汤煲和电压 力煲。
所述控制电路中还包括整流滤波电路, 所述测温感应线圈产生的电信号经过整流 滤波电路后输入到电信号判别电路, 电信号判别电路判别后传送给输出控制电路, 实现对电磁炉的自动控制。
所述的产生变化的电信号与所述电磁锅的温度关系为: 正温度系数关系或负温 度系数关系。
所述电磁炉, 包括电磁炉壳体、 电磁炉台板、 加热线圈和控制电路, 其特征在 于所述电磁炉台板下方设置有以非接触式测温度装置, 所述非接触式测温度装置为 设置在锅体或台板上的磁性感温元件相对应的测温感应线圈, 所述电信号判别电路 输入端与测温感应线圈相连输出端与输出控制电路相连。
所述的控制电路包括电信号判别电路、 温度保护电路、 输出调节电路、 输出控 制电路、 电源电路、 电流检测电路、 保护电路、 显示电路、 振荡电路和驱动电路; 所述温度保护电路输入端与热敏电阻相连输出端与输出控制电路相连; 所述驱动电 路输入端与输出控制电路相连输出端与电源电路相连; 所述振荡电路与驱动电路相 连; 所述电源电路、 电流检测电路、 保护电路、 显示电路和输出调节电路分别与输 出控制电路相连。
所述非接触式测温度装置还可以设置在微波炉、 煤气灶、 电饭煲、 电开水器、 电汤煲和电压力煲中。
所述的电信号判别电路可以是电流判别电路和 /或电压判别电路和 /或电压比较 电路和 /或脉冲宽度测量电路和 /或通过 A/D转换电路。
所述控制电路还包括整流滤波电路, 所述整流滤波电路的输入端与测温感应线 圈相连, 输出端与电信号判别电路相连。
所述的磁性感温元件直接设置在配套使用的具有双层结构的电磁锅底部, 所述 的电磁锅具有外层壳体和内层壳体, 所述磁性感温元件设置在两壳体之间, 即电磁 锅底部的外层壳体直接与电磁炉台板相接触。
所述的测温感应线圈可以是测温线圈抽头的方式和 /或所述的测温感应线圈中间 还可加入铁芯和 /或所述测温感应线圈与磁性感温元件之间的距离小于 20mm。
所述厨具包括励磁线圈、 测温感应线圈、 与被检测物体接触的磁性感温元件、 电 信号判别电路和输出控制电路, 所述检测和控制方法包括以下步骤:
a. 工作时, 由励磁线圈、 测温感应线圈和磁性感温元件共同形成所需的磁场检测环 境;
b. 当被检测物体的温度变化时, 所述磁性感温元件的磁性强度发生变化, 导致检测 磁场环境变化使所述测温感应线圈两端的电信号随之发生变化;
C . 所述电信号判别电路检测到测温感应线圈变化的电信号, 并将检测到的电信号传 送给输出控制电路进行控温。
所述的励磁线圈可以是厨具本身的磁性加热线圈, 和 /或独立设置的励磁线圈, 和 /或利用对测温感应线圈抽头的方式形成的励磁线圈, 所述的厨具是电磁炉、 微波 炉、 煤气灶、 电饭煲、 电开水器、 电汤煲和电压力煲。
电磁炉工作时, 所述的测温感应线圈产生的交变电信号, 如电压或电流经过整 流滤波电路产生直流电压或直流电流, 直流电压或直流电流输入到电压或电流判别 电路后, 电压或电流判别电路便可以判别出直流电压或电流的大小。 由于电信号的 大小是受磁性感温元件的磁性强度大小的影响, 磁性越强, 电信号越大, 磁性越弱, 电信号越小 (参见图 1)。 磁性感温元件的磁性强度大小又是受电磁锅的温度高低的影 响, 因此, 所述的磁感应测温电路可以判别出电磁锅温度的高低, 温度和电信号的 关系有正温度系数关系和负温度系数关系两种, 参见图 2和图 3 , 其中, 图 2所示 为正温度系数关系的情况, 即温度越高, 电信号越强, 图 3所示为负温度系数关系 的情况, 即温度越高, 电信号越弱。 图 11 所示的是本发明其中一个实施例采用负温 度系数关系的情况, 为电磁炉锅体温度和直流电压 (电流)的关系曲线图, 可以看出, 电磁锅的温度达到某一温度时, 电压值变化到某一电压值 X伏, 如某一温度为 105 °C时, 该温度正是饭煮熟的温度, 因此, 设置此温度点可用于实现电磁炉煮饭测温 功能。 同理, 所述的测温电路可以判别出电磁锅体的多个温度点的变化, 使控制程 序做出相应的变换, 从而满足电磁炉的其它烹饪要求。 要特别说明的是, 图 1〜3和 图 11 、 图 14所示的关系由线可以是直线, 也可以是曲线。
本发明在电磁炉控制电路中还设置励磁电路, 所述的励磁电路可对测温感应线 圈进行励磁, 在测温感应线圈和磁性感温元件之间形成一个检测磁场, 这样, 在加 热线圈不工作的情况下也可以检测到电磁锅的温度。 在本发明中, 所述的励磁电路 主要出励磁线圈组成, 励磁线圈可以设置在测温感应线圈旁边, 也可以与测温感应 线圈同轴套在一起。 本发明所述的测温感应线圈与励磁线圈匹配, 能够产生感应电 信号。 当加热线圈工作时, 可以由加热线圈对测温感应线圈进行励磁, 形成一个检 测磁场, 当加热线圈不工作时, 由励磁线圈对测温感应线圈进行励磁, 形成一个检 测磁场。 即在上述两种情况下, 测温感应线圈都能够产生感应电信号。
本发明与现有技术相比具有以下的优点: (1)本发明采用非接触式温度检测和控制方法的电磁炉, 不同于现有技术中对磁 性感温元件发出的磁信号的检测, 本发明的测温装置检测时无需断开加热线圈的电 源, 反而是利用了电磁炉加热线圈工作时产生的磁场, 该磁场通过测温感应线圈时 产生电信号, 只需要对电信号进行检测即可, 根据电磁锅的温度与电信号的对应关 系可以间接实现对温度的检测, 测量准确, 简单实用、 易于实现。
(2) 本发明采用非接触式温度检测和控制方法的电磁炉不仅可以利用磁性感温 元件的居里点温度作为检测温度点, 而且还可以利用磁性感温元件的居里点前温度 段作为检测温度点设定的多个程序控制的温度点, 从而满足电磁炉的更多样的烹饪 要求。
(3) 本发明采用非接触式温度检测和控制方法的电磁炉在进行油炸一类的烹饪 操作时可以对油温进行控制, 将油温控制在 150° 之内, 使得使用者在油炸烹饪时不 会产生油烟, 而且还能防止油在达到过高温度时发生碳化, 进而能让使用者吃到健 康的油炸食品。
(4) 本发明采用非接触式温度检测和控制方法的电磁炉通过利用励磁线圈励磁 实现自动控温在进行煮饭时只需 7-9分钟,而传统的电饭煲煮饭一般需要 15-20分钟, 与传统的电饭煲相比有更好的节能效果。
(5) 本发明采用非接触式温度检测和控制方法的电磁炉所使用的励磁线圈价格 低廉, 可以大大降低该电磁炉的生产成本。
(6) 本发明涉及的磁性感温元件可以设置在电磁炉台板的上表面,还可以附加到 配套使用的电磁锅上, 使本发明的实施可以灵活多样, 有助于拓宽电磁锅和电磁炉 的用途。
(7) 本发明采用非接触式温度检测和控制方法的电磁炉可以设计精确的自动控 制程序, 不但能够达到与自动电饭煲相同的效果, 还能实现设定的其它烹饪功能, 进一步提高了电磁炉的自动化程度。
(8) 本发明所采用的非接触式温度检测和控制方法还可以应用在电饭煲、电开水 器、 电汤煲、 点压力煲、 煤气灶、 微波炉等日常电加热器具中, 可大大提高工作效 率, 使控制过程更加全面、 可靠。 附图说明
图 1是本发明的磁性感温元件的磁性强度与电信号的关系曲线图; 图 2是本发明的电磁炉工作时电磁锅锅体温度与电信号的关系曲线图(正温度 系数);
图 3是本发明的电磁炉工作时电磁锅锅体温度与电信号的关系曲线图(负温度 系数);
图 4是本发明实施例 1的电磁炉的主视剖面图;
图 5是本发明实施例 1的电磁炉控制电路原理框图;
图 6是本发明实施例 1的带有脉冲信号判别电路的测温电路原理图; 图 7是本发明实施例 2的电磁炉的主视剖面图;
图 8是本发明实施例 2的电磁炉控制电路原理框图;
图 9是本发明实施例 2的带有整流滤波电路的测温电路原理图;
图 10是本发明实施例 2的励磁电路原理图;
图 11是本发明实施例 2的电磁炉实现煮饭、保温功能和自动煮开水功能时的 锅体温度和直流电压(电流)的关系曲线图;
图 12是本发明实施例 3的电磁炉的主视剖面图;
图 13是本发明实施例 3的带有电压比较电路的测温电路原理图;
图 14是本发明实施例 3的电磁炉实现自动煲汤功能时的锅体温度和直流电压 (电流)的关系曲线图;
图 15是本发明实施例 4的电磁炉采用测温感应线圈抽头的方式形成励磁线圈 的励磁电路原理图;
图 16是本发明实施例 5的电磁炉通过增加铁芯方式增大检测磁场磁通量的实 施方式。 具体实施方式
实施例 1
如图 4、 图 5、 图 6所示的采用非接触式温度检测和控制方法的电磁炉是本发明 实施例 1, 包括电磁炉壳体 2、 电磁炉台板 3、 加热线圈 4和和控制电路, 控制电路 包括控制板 1和驱动板 8, 加热线圈 4的中央设有支架 5, 该支架 5上装有热敏电阻 7。 电磁炉台板 3下方还设有测温感应线圈 6, 用于将电磁炉台板 3上方的磁性感温 元件 10在设定的温度点上产生的磁信号转换为电信号并输出, 该测温感应线圈 6与 加热线圈 4匹配, 能够产生感应电信号。 测温感应线圈 6位于加热线圈 4和磁性感 温元件 10附近、 能产生感温检测磁场的区域内, 在本实施例中, 测温感应线圈 6由 另一支架 5a固定在加热线圈 4的其中一侧。
本实施例中的磁性感温元件 10采用非晶材料的感温磁钢,它固定在电磁炉台板 3 的上表面, 并位于测温感应线圈 6的正上方, 由于测温感应线圈 6位于居于台板中 部的加热线圈的旁边, 因此, 即感温磁钢并非设在电磁炉台板 3 的中心部位上。 感 温磁钢与电磁锅 9底部的接触面由于加工精度的限制, 往往凹凸不平, 导致传热效 率低, 温度传导不够准确, 影响测温装置的检测结果, 因此, 在感温磁钢与电磁锅 9 的底部之间还设有一层导热硅胶层 11, 以确保检测结果的及时准确。 当使用电磁炉 时, 感温磁钢上方的导热硅胶层 11与电磁锅 9的锅底相接触。
本实施例的电磁炉控制电路是在现有技术的基础上做的改进, 如图 5所示, 电 磁炉控制电路包括电源电路、 输出控制电路、 电流检测电路、 温度保护电路、 输出 调节电路、 显示电路和保护电路等。 在本发明中, 增设了测温电路, 该测温电路包 括测温感应线圈 6和电信号判别电路, 测温感应线圈 6与电信号判别电路相连, 电 信号判别电路再与输出控制电路连接, 使电磁炉的控制程序做出相应的变换。 参见 图 6, 本实施例中的电信号判别电路采用脉冲信号判别电路, 如脉冲宽度测量电路。 热敏电阻 7则仍与温度保护电路连接, 执行现有技术中的普通温控和限温安全保护 的任务。
电磁炉工作时, 加热线圈 4产生一定强度的交变磁场, 交变磁场通过感温磁钢 和测温感应线圈 6时, 在测温感应线圈 6中产生电信号——脉冲宽度, 脉冲信号判 别电路直接将测温感应线圈 6产生的脉冲宽度作为判别信号, 判别脉冲宽度的大小 并输出, 相应地在输出控制电路中设置相应的控制程序, 使电磁炉对所设定的温度 做转换程序的操作, 从而实现对电磁炉烹饪程序的自动控制。
实施例 2
如图 7 、 图 8 、 图 9 、 图 10 、 图 11 所示的设有磁感应测温装置的电磁炉是 本发明实施例之 2, 与实施例 1不同的是, 测温感应线圈 6位于加热线圈 4的中央, 磁性感温元件 10采用热敏铁氧体材料, 电磁炉工作时, 在磁场强度相同的条件下, 通过测温感应线圈 6的磁通量最大。 测温感应线圈 6与热敏电阻 7—起由支架 5 固 定在电磁炉台板 3的下方。 支架 5为一纵向截面为阶梯形的板架, 热敏电阻 7固定 在其高一层板架上, 测温感应线圈 6固定在其低一层板架上。 磁性感温元件 10居中 固定在电磁炉台板 3的上表面, 与测温感应线圈 6的位置相对应。 当使用电磁炉时, 磁性感温元件 10与电磁锅 9的底部直接接触。 电磁炉的磁感应测温电路还包括整流 滤波电路, 整流滤波电路的输入端与测温感应线圈 6相连, 输出端与电信号判别电 路相连。 本实施例中的电信号判别电路为电压判别电路, 如 A/D 电路。
以下是本实施例中通过磁感应测温装置实现电磁炉的煮饭、 保温功能的过程。 电磁炉工作时, 参见图 9 , 测温感应线圈 6产生的交变电压经过整流滤波电路产生 直流电压,直流电压输入到电压判别电路, 即输入到输出控制电路的 A/D接口, A/D 电路便可以判别出直流电压的大小。 磁性感温元件 10的磁性越强, 测温感应线圈 6 所产生的电信号越大; 反之, 磁性越弱, 电信号越小。 本实施例采用负温度系数, 即电磁锅的温度越高, 电信号越小。 当电磁炉启动煮饭程序时, 电磁炉加热电磁锅 9 内的米和水, 当饭煮干之后, 饭的温度达到 105°C时, 测温感应线圈 6产生的电压值 变化到某一电压值 X伏时, 电压判别电路感受到该 X伏电压值时, 参见图 11, 马上 向输出控制电路传递信号, 断开电磁炉的加热电路, 则电磁炉停止加热, 从而实现 电磁炉的煮饭测温功能。
在本实施例中, 在电磁炉控制电路中还设置了可对测温感应线圈 6进行励磁的 励磁电路, 即在测温感应线圈 6旁边设置了励磁线圈 12, 测温感应线圈 6与励磁线 圈 12 匹配, 能够产生感应电信号, 励磁线圈 12可出输出控制电路提供电源并对测 温感应线圈 6进行励磁。 如图 7和图 8所示, 当加热线圈 4工作时, 由加热线圈 4 对测温感应线圈 6进行励磁, 在测温感应线圈 6和磁性感温元件 10之间形成一个检 测磁场, 此时励磁电路不工作:当加热线圈 4不工作时, 出励磁电路对测温感应线圈 6进行励磁, 在测温感应线圈 6和磁性感温元件 10之间形成一个检测磁场, 测温感 应线圈 6可以根据磁性感温元件 10的磁性变化, 输出相应的电压, 以实现加热线圈 4不工作时的温度检测,即在电磁炉的加热电路断电的情况下也可以检测到电磁锅的 温度。 根据这一设计, 在加热线圈 4不工作的情况下, 励磁电路对测温感应线圈 6 进行励磁形成一个检测磁场, 参见图 11, 当电磁锅 9的温度小于 70 °C时, 测温感应 线圈 6产生的电压值变化到某一电压值 Y伏时, 电压判别电路感受到该 Y伏电压值, 马上向输出控制电路传递信号, 又重新开启电磁炉的加热电路, 则电磁锅进入保温 状态, 即启动加热线圈 4小功率通电(或间歇通电) , 此时, 励磁电路不工作, 由加 热线圈 4对测温感应线圈 6进行励磁;当电磁锅 9的温度达到所设定的保温上限温度 后, 电磁炉又断开加热电路, 以实现电磁炉的保温功能。
本实施例中还可以通过测温装置实现电磁炉的自动煮开水功能, 电磁炉工作时, 启动煮开水程序, 电磁炉对电磁锅 9 内的水进行加热, 电磁炉的控制电路可在输出 调节电路中设置测算加热速率的程序, 通过测温感应线圈 6 产生的电压的变化值作 为测算加热速率的基本参数, 加热速率与锅体内水的重量成反比, 即水越多加热速 率越小, 所需的加热时间越长。
参见图 11, 本实施例中将水温达到 98°C (非特定值, 〈100°C均可)时作为变换程 序的启动点,当电压判别电路获得测温感应线圈 6在水温为 98°C 时所产生的电压值 VI伏时, 向输出控制电路传递信号, 输出调节电路即控制电磁炉马上进入延时状态, 以加热时测算的加热速率和现时的温度值为依据, 控制程序可以确定水至沸腾所需 延时的时间 Π, 当延时到 Π时, 水开始沸腾, 电磁炉的控制程序做出转换程序的操 作, 停止加热。 使电磁炉避免水处在长时间沸腾的状态, 既避免煮干锅内的水, 确 保安全, 又能节约能源, 轻松实现自动煮开水。
实施例 3
如图 12、 图 13、 图 14所示的采用非接触式的温度检测和控制方法的电磁炉是 本发明实施例之 3, 与实施例 2所不同的是, 磁性感温元件 10为纳米晶材料的的感 温磁钢, 电磁炉配套特定的电磁锅 9使用, 磁性感温元件 10直接设在配套使用的具 有双层结构的电磁锅 9底部, 电磁锅 9具有外层壳体 91和内层壳体 92,此种结构的 电磁锅热量不易散失, 保温效果更好。 磁性感温元件 10设在两层壳体之间, 即电磁 锅 9底部的外层壳体 91直接与电磁炉台板 3相接触, 为了保证磁性感温元件 10正 常工作, 外层壳体 91可采用非金属材料制成。 本实施例中的电信号判别电路为电压 比较电路。
本实施例中, 通过测温装置实现电磁炉的自动煲汤功能: 电磁炉工作时, 参见 图 13, 测温感应线圈 6产生的交变电压经过整流滤波电路产生直流电压, 直流电压 输入到电压判别电路, 即输入到电压比较电路, 电压比较电路便可以判别出直流电 压的大小并输出。 启动煲汤程序, 电磁炉先采用大功率加热电磁锅 9 内的汤料, 同 实施例 2相同的是, 电磁炉的控制电路具有测算锅体内的水的加热速率的程序, 可 通过测温感应线圈 6产生的电压变化值来进行加热速率的测算, 参见图 14, 将电磁 锅 9内的水温达到 98°C (非特定值,〈100°C均可)时测温感应线圈 6产生的电压 VI作 为变换程序的启动点, 当测温电路中的电压比较电路感受到该 VI伏电压值时, 向输 出控制电路传递信号, 控制电路控制电磁炉马上进入延时状态, 并以加热时测算的 加热速率为参数, 确定变换下一个程序的延时时间 T 1.当电磁炉延时到 Π时, 汤己 经沸腾, 控制电路控制电磁炉停止大功率加热, 转入小功率加热状态, 既能维持电 磁锅内的汤保持沸腾状态又不致于让汤滚出锅外。 这种状态一直保持, 直到设定的 煲汤定时的时间为止, 电磁炉才停止工作, 实现电磁炉的自动煲汤功能。
实施例 4
如图 15所示的采用非接触式的温度检测和控制方法的电磁炉是本发明实施例之
4, 与前述实施例不同的是, 该励磁线圈是采用测温感应线圈抽头的方式作为励磁线 圈, 当加热线圈不工作时, 采用测温感应线圈抽头方式的励磁线圈 13对测温感应线 圈 6进行励磁, 在测温感应线圈 6和磁性感温元件 10之间形成一个检测磁场, 测温 感应线圈 6可以根据磁性感温元件 10的磁性变化, 输出相应的电压, 以实现加热线 圈 4不工作时的温度检测, 即在电磁炉的加热电路断电的情况下也可以检测到电磁 锅的温度。 根据这一设计, 在加热线圈 4不工作的情况下, 励磁电路对测温感应线 圈 6进行励磁形成一个检测磁场, 参见图 11, 当电磁锅 9的温度小于 70°C时, 测温 感应线圈 6产生的电压值变化到某一电压值 Y伏时, 电压判别电路感受到该 Y伏电 压值, 马上向输出控制电路传递信号, 又重新开启电磁炉的加热电路, 则电磁锅进 入保温状态, 即启动加热线圈 4小功率通电(或间歇通电),此时, 励磁电路不工作, 由加热线圈 4对测温感应线圈 6进行励磁;当电磁锅 9的温度达到所设定的保温上限 温度后, 电磁炉又断开加热电路, 以实现电磁炉的保温功能。
实施例 5
如图 16所示的采用非接触式的温度检测和控制方法的电磁炉是本发明实施例之 5, 与前述实施例不同的是, 该测温感应线圈中间加入铁芯 14, 以提高测温感应线圈 6的磁通量, 使励磁线圈 12、 测温感应线圈 6和磁性感温元件 10之间的磁场环境增 强, 进而使电磁炉在烹饪过程中能更准确的实现多点温度、 自动进行控温的目的。
上述实施例中, 磁性感温元件 10还可以是其它材料的磁性感温元件, 如合金材 料的磁性感温元件, 或者是稀土材料的磁性感温元件。 电磁锅的锅底除了与磁性感 温元件 10相接触的部分外, 其余部分既可以与电磁炉台板 3相接触, 也可以不与电 磁炉台板 3相接触, 只要加热线圈 4以及测温感应线圈 6能感应到锅底的磁性感温 元件 10即可。
上述实施例中的电磁炉的各种烹饪程序, 如煮饭、 煮开水、 煲汤等, 可以根据电 磁炉的设计要求进行灵活组合, 电磁炉的测温装置实现上述烹饪程序的原理和过程 相同。 本发明的非接触式的温度检测和控制方法还可以广泛应用在电饭煲、 电开水器、 电汤煲、 电压力煲、 煤气灶、 微波炉中, 将传统的发热盘 /发热管加热方式变为加 热线圈电磁加热, 可提高烹饪效率, 使控制过程更加全面、 可靠。

Claims

权 利 要 求 书
1. 一种厨具的非接触式温度检测和控制方法及一种电磁炉, 所述电磁炉包括加热线 圈、 测温感应线圈、 磁性感温元件、 电信号判别电路和输出控制电路, 所述非接 触式温度检测和控制方法包括以下步骤:
a. 所述加热线圈通电对测温感应线圈进行励磁, 所述加热线圈、 测温感应线圈和磁 性感温元件之间形成检测磁场;
b. 加热线圈通电使电磁锅温度变化时, 所述磁性感温元件的磁性强度发生变化, 使 所述测温感应线圈两端的电信号随之发生变化;
c 所述电信号判别电路检测到测温感应线圈变化的电信号, 并将检测到的电信号传 送给输出控制电路进行控温。
2. 根据权利要求 1所述的非接触式温度检测和控制方法, 其特征在于所述的厨具是 电磁炉, 所述电磁炉内还设置有独立的励磁线圈, 工作时, 所述励磁线圈对测温感 应线圈进行励磁, 并形成了由励磁线圈、 测温感应线圈和磁性感温元件组成的检测 磁场环境; 当被测物体的温度变化时, 所述磁性感温元件的磁性强度发生变化, 导 致所述的检测磁场环境连续变化, 使所述测温感应线圈两端的电信号随之发生连续 变化; 所述的电信号变化被所述电信号判别电路检测到并被传输至电信号判别电路, 输出控制电路根据预置的指令并对照所输出的电信号对加热线圈进行调节。
3. 根据权利要求 1所述的非接触式温度检测和控制方法, 其特征在于当电磁炉独立 设置励磁线圈时, 可以切断和 /或不切断加热线圈的供电, 当启动励磁线圈时, 在所 形成的检测磁场环境中, 当被测物体的温度变化时, 所述磁性感温元件的磁性强度 发生变化, 导致所述的检测磁场环境连续变化, 使所述测温感应线圈两端的电信号 随之发生连续变化; 所述的电信号变化被电信号判别电路检测到并被传输至输出控 制电路, 输出控制电路根据预置的指令并对照所输出的电信号对加热线圈进行调节。
4. 根据权利要求 1所述的非接触式温度检测和控制方法, 其特征在于所述测温感应 线圈两端的电信号可以是电流和 /或电压信号和 /或脉冲宽度; 所述电信号判别电路根 据前述输出的信号类型, 可分别采用电流判别电路和 /或电压判别电路和 /或电压比较 电路和 /或脉冲宽度测量电路; 和 /或通过 A/D 转换电路并对转换后的电信号进行判 别。
5. 根据权利要求 1所述的非接触式温度检测和控制方法, 其特征在于所述的厨具还 包括电磁炉、 微波炉、 煤气灶、 电饭煲、 电开水器、 电汤煲和电压力煲。
6. 根据权利要求 1所述的非接触式温度检测和控制方法, 其特征在于所述控制电路 中还包括整流滤波电路, 所述测温感应线圈产生的电信号经过整流滤波电路后输入 到电信号判别电路, 电信号判别电路判别后传送给输出控制电路, 实现对电磁炉的 自动控制。
7. 根据前述任一项权利要求所述的非接触式温度检测和控制方法, 其特征在于所述 的产生变化的电信号与所述电磁锅的温度关系为: 正温度系数关系或负温度系数关 系。
8. 一种采用权利要求 1所述的一种电磁炉, 包括电磁炉壳体、 电磁炉台板、 加热线 圈和控制电路, 其特征在于所述电磁炉台板下方设置有以非接触式测温度装置, 所 述非接触式测温度装置为设置在锅体或台板上的磁性感温元件相对应的测温感应线 圈, 所述电信号判别电路输入端与测温感应线圈相连输出端与输出控制电路相连。
9. 根据权利要求 8所述的一种电磁炉, 其特征在于所述的控制电路包括电信号判别 电路、 温度保护电路、 输出调节电路、 输出控制电路、 电源电路、 电流检测电路、 保护电路、 显示电路、 振荡电路和驱动电路; 所述温度保护电路输入端与热敏电阻 相连输出端与输出控制电路相连; 所述驱动电路输入端与输出控制电路相连输出端 与电源电路相连; 所述振荡电路与驱动电路相连; 所述电源电路、 电流检测电路、 保护电路、 显示电路和输出调节电路分别与输出控制电路相连。
10. 根据权利要求 8所述的电磁炉, 其特征在于所述非接触式测温度装置还可以设 置在微波炉、 煤气灶、 电饭煲、 电开水器、 电汤煲和电压力煲中。
11 . 根据权利要求 8所述的电磁炉, 其特征在于所述的电信号判别电路可以是电流 判别电路和 /或电压判别电路和 /或电压比较电路和 /或脉冲宽度测量电路和 /或通过 A/D转换电路。
12. 根据权利要求 8所述的电磁炉, 其特征在于所述控制电路还包括整流滤波电路, 所述整流滤波电路的输入端与测温感应线圈相连, 输出端与电信号判别电路相连。
13. 根据权利要求 8或 10或 11所述的电磁炉, 其特征在于所述的磁性感温元件直 接设置在配套使用的具有双层结构的电磁锅底部, 所述的电磁锅具有外层壳体和内 层壳体, 所述磁性感温元件设置在两壳体之间, 即电磁锅底部的外层壳体直接与电 磁炉台板相接触。
14. 根据权利要求 9所述的电磁炉,其特征在于所述的测温感应线圈可以是测温线圈 抽头的方式和 /或所述的测温感应线圈中间还可加入铁芯和 /或所述测温感应线圈与 磁性感温元件之间的距离小于 20mm。
15. 一种厨具的非接触式温度检测和控制方法, 所述厨具包括励磁线圈、 测温感应 线圈、 与被检测物体接触的磁性感温元件、 电信号判别电路和输出控制电路, 所述 检测和控制方法包括以下步骤:
a. 工作时, 由励磁线圈、 测温感应线圈和磁性感温元件共同形成所需的磁场检测环 境;
b. 当被检测物体的温度变化时, 所述磁性感温元件的磁性强度发生变化, 导致检测 磁场环境变化使所述测温感应线圈两端的电信号随之发生变化;
c 所述电信号判别电路检测到测温感应线圈变化的电信号, 并将检测到的电信号传 送给输出控制电路进行控温。
16. 根据权利要求 1所述的方法, 其特征在于所述的励磁线圈可以是厨具本身的磁性加热线圈, 和 /或独立设置的励磁线圈, 和 /或利用对测温感应线圈抽头的方式形成的励磁线圈, 所述的厨具 是电磁炉、 微波炉、 煤气灶、 电饭煲、 电开水器、 电汤煲和电压力煲。
PCT/CN2009/072169 2008-06-06 2009-06-08 一种厨具的非接触式温度检测和控制方法及一种电磁炉 WO2009146663A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810028622.X 2008-06-06
CN200810028622XA CN101307924B (zh) 2008-06-06 2008-06-06 一种设有磁感应测温装置的电磁炉

Publications (1)

Publication Number Publication Date
WO2009146663A1 true WO2009146663A1 (zh) 2009-12-10

Family

ID=40124499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072169 WO2009146663A1 (zh) 2008-06-06 2009-06-08 一种厨具的非接触式温度检测和控制方法及一种电磁炉

Country Status (2)

Country Link
CN (1) CN101307924B (zh)
WO (1) WO2009146663A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107726388A (zh) * 2016-08-23 2018-02-23 佛山市顺德区美的电热电器制造有限公司 电磁炉加热装置
EP2590475A3 (de) * 2011-11-04 2018-06-20 BSH Hausgeräte GmbH Induktionsheizvorrichtung
CN109340838A (zh) * 2018-12-17 2019-02-15 广东万家乐厨房科技有限公司 温控系统和电磁炉组件
CN109387289A (zh) * 2018-11-20 2019-02-26 林向东 一种非接触式电磁炉温度检测装置及电磁炉
CN111281138A (zh) * 2019-09-11 2020-06-16 上海纯米电子科技有限公司 设置有发光控制装置的电磁加热水壶
CN113654676A (zh) * 2020-05-12 2021-11-16 佛山市顺德区美的电热电器制造有限公司 一种加热测温电路、测温电路及烹饪装置
CN114485978A (zh) * 2022-02-14 2022-05-13 湖南大学 一种基于材料电导率-温度特性的非接触式测温方法与装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101307924B (zh) * 2008-06-06 2010-06-16 叶小舟 一种设有磁感应测温装置的电磁炉
CN101929894A (zh) * 2009-06-19 2010-12-29 张华文 感温探头
CN101637354B (zh) * 2009-07-13 2014-04-02 叶小舟 一种电磁电饭煲
CN102207411B (zh) * 2010-03-31 2014-10-15 叶小舟 一种非接触式测温方法
CN102207299B (zh) * 2010-03-31 2013-07-31 叶小舟 一种自动控温燃气灶及控温方法
CN102235701A (zh) * 2010-03-31 2011-11-09 叶小舟 一种非接触式测温的电磁炉及测温方法
WO2011120414A1 (zh) * 2010-03-31 2011-10-06 Ye Xiaozhou 一种非接触式测温方法及利用该测温方法的装置
CN102679416B (zh) * 2011-03-17 2015-02-18 叶小舟 一种非接触式电磁感应测温微波炉及测温方法
CN107592692B (zh) * 2016-07-08 2020-12-25 肇庆市天宇进出口贸易有限公司 一种电磁炉的电磁加热控制系统及其控制方法
CN106765361A (zh) * 2017-03-27 2017-05-31 徐士刚 一种智能电磁炉
CN107280455B (zh) * 2017-07-12 2022-09-20 浙江绍兴苏泊尔生活电器有限公司 烹饪器具和烹饪温控方法
CN109100037B (zh) * 2018-07-25 2019-07-26 南京磊智电子科技有限公司 应用于电磁炉的锅底温度测量方法、装置及系统
CN112578828B (zh) * 2019-09-30 2022-06-14 张玮 一种测温方法、装置、及加热设备
CN112714513B (zh) * 2019-10-25 2023-01-31 佛山市顺德区美的电热电器制造有限公司 电磁加热烹饪器具及其测温方法、计算机可读存储介质
CN112714522B (zh) * 2019-10-25 2023-03-31 佛山市顺德区美的电热电器制造有限公司 电磁加热设备及其测温方法和装置
CN113654678B (zh) * 2020-05-12 2022-10-28 佛山市顺德区美的电热电器制造有限公司 一种加热测温电路及其测温方法、烹饪装置、存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167637A (ja) * 1983-03-14 1984-09-21 Toshiba Corp 高周波加熱調理装置
JPH0367486A (ja) * 1989-08-07 1991-03-22 Sanyo Electric Co Ltd 誘導加熱調理器
JP2003092178A (ja) * 2001-09-18 2003-03-28 Sanyo Electric Co Ltd 電磁調理器
JP2004227804A (ja) * 2003-01-20 2004-08-12 Daihen Corp 電磁誘導加熱調理器
CN1887150A (zh) * 2006-07-18 2007-01-03 叶小舟 一种能发出反映温度变化的磁信号的电磁锅
CN1900602A (zh) * 2006-07-18 2007-01-24 叶小舟 一种可自动控温的电磁灶
CN101307924A (zh) * 2008-06-06 2008-11-19 叶小舟 一种设有磁感应测温装置的电磁炉
CN201229010Y (zh) * 2008-06-06 2009-04-29 叶小舟 一种设有磁感应测温装置的电磁炉

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167637A (ja) * 1983-03-14 1984-09-21 Toshiba Corp 高周波加熱調理装置
JPH0367486A (ja) * 1989-08-07 1991-03-22 Sanyo Electric Co Ltd 誘導加熱調理器
JP2003092178A (ja) * 2001-09-18 2003-03-28 Sanyo Electric Co Ltd 電磁調理器
JP2004227804A (ja) * 2003-01-20 2004-08-12 Daihen Corp 電磁誘導加熱調理器
CN1887150A (zh) * 2006-07-18 2007-01-03 叶小舟 一种能发出反映温度变化的磁信号的电磁锅
CN1900602A (zh) * 2006-07-18 2007-01-24 叶小舟 一种可自动控温的电磁灶
CN101307924A (zh) * 2008-06-06 2008-11-19 叶小舟 一种设有磁感应测温装置的电磁炉
CN201229010Y (zh) * 2008-06-06 2009-04-29 叶小舟 一种设有磁感应测温装置的电磁炉

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2590475A3 (de) * 2011-11-04 2018-06-20 BSH Hausgeräte GmbH Induktionsheizvorrichtung
CN107726388A (zh) * 2016-08-23 2018-02-23 佛山市顺德区美的电热电器制造有限公司 电磁炉加热装置
CN109387289A (zh) * 2018-11-20 2019-02-26 林向东 一种非接触式电磁炉温度检测装置及电磁炉
CN109340838A (zh) * 2018-12-17 2019-02-15 广东万家乐厨房科技有限公司 温控系统和电磁炉组件
CN111281138A (zh) * 2019-09-11 2020-06-16 上海纯米电子科技有限公司 设置有发光控制装置的电磁加热水壶
CN113654676A (zh) * 2020-05-12 2021-11-16 佛山市顺德区美的电热电器制造有限公司 一种加热测温电路、测温电路及烹饪装置
CN114485978A (zh) * 2022-02-14 2022-05-13 湖南大学 一种基于材料电导率-温度特性的非接触式测温方法与装置

Also Published As

Publication number Publication date
CN101307924A (zh) 2008-11-19
CN101307924B (zh) 2010-06-16

Similar Documents

Publication Publication Date Title
WO2009146663A1 (zh) 一种厨具的非接触式温度检测和控制方法及一种电磁炉
CN102680128B (zh) 一种非接触式测温方法及利用该测温方法的装置
JP5454576B2 (ja) 誘導加熱調理器
CN101637354B (zh) 一种电磁电饭煲
CN102679416B (zh) 一种非接触式电磁感应测温微波炉及测温方法
CN201135358Y (zh) 电磁炉及配套的烧水壶之水温和水位测控电路
WO2006126345A1 (ja) 誘導加熱調理器
JP4821791B2 (ja) 誘導加熱調理器
CN201602644U (zh) 高能效智能电磁感应加热电热壶/锅
JP2010080187A (ja) 誘導加熱調理器
CN201229010Y (zh) 一种设有磁感应测温装置的电磁炉
JP2007287702A (ja) 誘導加熱調理器
KR20210105217A (ko) 박막 온도를 추정하는 유도 가열 방식의 쿡탑
WO2011120414A1 (zh) 一种非接触式测温方法及利用该测温方法的装置
JP2009043587A (ja) 誘導加熱調理器
JP4251231B2 (ja) 誘導加熱調理器
JP5264838B2 (ja) 加熱調理器
JP4102258B2 (ja) 誘導加熱調理器
KR20210105208A (ko) 피가열 물체 재질을 결정하는 유도 가열 방식의 쿡탑 및 그 방법
CN207601003U (zh) 一种检测装置及家电设备
CN110553284A (zh) 一种烹饪器具及控制温度的方法
JP5050791B2 (ja) 誘導加熱調理器
CN109140543A (zh) 一种电磁加热炊具的降噪方法
JP2007115516A (ja) 誘導加熱装置
JP2004247237A (ja) 誘導加熱調理器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09757097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09757097

Country of ref document: EP

Kind code of ref document: A1