WO2018006504A1 - 静动态载荷谱下材料力学性能原位测试系统与方法 - Google Patents

静动态载荷谱下材料力学性能原位测试系统与方法 Download PDF

Info

Publication number
WO2018006504A1
WO2018006504A1 PCT/CN2016/101836 CN2016101836W WO2018006504A1 WO 2018006504 A1 WO2018006504 A1 WO 2018006504A1 CN 2016101836 W CN2016101836 W CN 2016101836W WO 2018006504 A1 WO2018006504 A1 WO 2018006504A1
Authority
WO
WIPO (PCT)
Prior art keywords
arcan
subsystem
test piece
cross
modified
Prior art date
Application number
PCT/CN2016/101836
Other languages
English (en)
French (fr)
Inventor
马志超
赵宏伟
任露泉
张世忠
董景石
范尊强
方岱宁
马敬春
裴永茂
张起勋
范辉
庄庆伟
Original Assignee
吉林大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林大学 filed Critical 吉林大学
Priority to US16/316,321 priority Critical patent/US10809169B2/en
Publication of WO2018006504A1 publication Critical patent/WO2018006504A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/04Chucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0025Shearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0073Fatigue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0254Biaxial, the forces being applied along two normal axes of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0272Cruciform specimens

Definitions

  • the invention relates to the field of mechanical testing, in particular to an in-situ testing system and method for mechanical properties of materials under static and dynamic load spectrum, in particular to a microscopic in-situ mechanical testing system for materials integrating various static and dynamic testing functions.
  • the system has a rich test mode such as biaxial stretching, biaxial fatigue, biaxial stretching-shearing, impact pressure, etc., and can be integrated with optical imaging systems or digital speckle strain analysis systems for complex stress conditions.
  • the fatigue failure mechanism and the weakening law of the material are studied, and the testing tools are provided for optimizing the material preparation process and improving the service reliability of the structure.
  • the material and physical environment of the material and its products are complex and variable under the service conditions, and are often subjected to static and dynamic loads such as stretching, shearing and impact.
  • the macroscopic failure caused by the load is attributed to the damage and evolution of the microstructure under the service conditions. It is difficult to reveal the relationship between the mechanical behavior and the microstructure of the material under complex service conditions. It is impossible to conduct in-depth research on the deformation damage mechanism and performance evolution of materials and their products. Due to the unclear relationship between the microstructure evolution of the material and the mechanical properties, the safety and reliability of the critical materials are insufficient, and the resulting structural failures are numerous.
  • the mechanical properties of the three-dimensional block specimens were evaluated by the test results of low-dimensional components.
  • companies such as Kammrath & Weiss, Deben, and MTI Instruments in the United States are among the few companies with complete in-situ tensile testing systems.
  • the clamping mechanism of some models of these companies does not even consider the design of the neutral positioning of the test piece, but it is still widely used in the field of characterization and testing of bulk materials.
  • in-situ fatigue testing because commercial fatigue testing equipment is mostly large in size and difficult to achieve compatibility with imaging equipment, it generally does not have the function of in-situ testing; on the other hand, miniaturized in-situ tensile testing platform Although it can realize the reciprocating stretching and compression action, it is limited by the rotary inertia of the servo motor, the speed reduction mechanism and the transmission mechanism, and generally can only be applied to the low cycle fatigue test which does not require high loading frequency;
  • the research objects of fatigue failure behavior at scale are mostly fatigue fractures formed by non-in-situ tests, and lack of in-situ studies on slippage of micro-defects in materials and micro-crack nucleation.
  • the in-situ fatigue testing technology faces problems such as miniaturization of the structure and improvement of the test frequency.
  • Piezoelectric devices are applied to in-situ fatigue mechanics testing of micro-scale components due to their fast response, small size, and high reliability. Due to the large stiffness of the flexible hinge mechanism in the piezoelectric actuator, the output displacement of the piezoelectric device is often weakened, and the flexible hinge of small stiffness is difficult to achieve a fast response at a higher loading frequency due to its inertial load. Therefore, the design of the flexible mechanism requires a reasonable match between its stiffness and output capability. On the other hand, under high temperature and high frequency service conditions, the piezoelectric device will attenuate the output displacement due to its own temperature rise and charge accumulation. Therefore, reasonable fatigue cycle time and residual charge release are realized based on piezoelectric drive. The key to in-situ fatigue testing.
  • the force form of many components under actual working conditions is a combination of various loads, such as tensile load, shear load, impact indentation load, etc., that is, the actual service state of the material is a composite stress state.
  • loads such as tensile load, shear load, impact indentation load, etc.
  • the actual service state of the material is a composite stress state.
  • the in-situ test research on the composite stress mode of bulk materials is mostly static test, which is limited to 1 biaxial tensile test based on electro-hydraulic servo technology, 2 compression-bending composite stress test using cantilever structure, and 3 based on Arcan fixture. Achieved tensile-shear composite stress testing.
  • a multi-static coupling function can be designed and A fatigue testing system compatible with optical imaging components or digital speckle strain analysis systems is essential.
  • the development of a quasi-static indentation test or impact indentation test based on a rich initial stress state by means of a system integrating multiple static and dynamic testing functions also has important theoretical and practical value.
  • the object of the present invention is to provide an in-situ test system and method for mechanical properties of materials under static and dynamic load spectrum, which solves the above problems in the prior art.
  • the length, width and height of the mechanical body unit of the present invention are 590 mm, 578 mm and 392 mm, respectively.
  • the system is compatible with optical imaging systems with multiple degrees of freedom adjustment and 3D digital speckle strain analysis systems.
  • the system has single (double) shaft tension, single (double) shaft fatigue, quasi-static press-in, impact press-in and other single test functions, and can also achieve single (double) shaft tensile-shear composite load, based on A rich composite load test mode for fatigue testing of single (double) axial tensile-shear composite loads and indentation testing based on complex planar stress states.
  • the invention constructs a rich plane stress state by a modified Arcan clamping mechanism combined with a piezoelectric driving subsystem and a biaxial pretensioning subsystem, and the pressing test method based on the voice coil motor driving can also realize the complicated service of the material. Testing and evaluation of mechanical properties under conditions.
  • the surface prefabrication defects are constructed by the indentation test method, and the present invention can also provide a test tool for studying the evolution behavior of micro defects.
  • In-situ test system for material mechanical properties under static and dynamic load spectrum including Arcan dual-axis clamping subsystem, press-in test subsystem, dual-axis fatigue test subsystem, dual-axis pre-tension loading subsystem, signal detection subsystem, support And an adjustment subsystem, wherein the combined guiding mechanism 48 in the Arcan dual-axis clamping subsystem is respectively screwed to the guiding mechanism supporting pad 5 and the x-direction force sensor base 29, y in the supporting and adjusting subsystem Maintaining a rigid connection to the force sensor base 12; the laser transmitter 35, the voice coil motor 39, and the laser receiver 45 pressed into the test subsystem are screwed
  • the two-degree-of-freedom electric moving platform 36, the voice coil motor two-degree-of-freedom electric moving platform 38, the laser receiver two-degree-of-freedom electric moving platform 2, and the two-degree-of-freedom of the voice coil motor are respectively rigidly connected with the laser transmitter in the support and adjustment subsystem.
  • the electric moving platform 38 is mounted on the beam of the gantry column 1 by the platform fastening screw 52; the x, y-direction fatigue flexible hinges 4, 54 in the biaxial fatigue test subsystem pass the fatigue fastening screw 50 and the support and adjustment subsystem
  • the guide mechanism support pad 5, the force sensor connector 44 in the signal detection subsystem maintains a rigid connection; the y-direction fixed base 19, the cantilever support 23, and the worm shaft base 68 in the dual-axis pre-tension loading subsystem
  • the x-direction screw support 72 is rigidly connected to the base 10 in the support and adjustment subsystem by a screw connection, and the horizontal laser displacement sensors I, II32, 55 and the Arcan dual-axis clamping subsystem in the signal detection subsystem
  • the improved Arcan clamp 31 is rigidly connected, and the contact displacement sensors I, II42, 43 move the rod base 56 and the displacement sensor base base 57 and the Arcan biaxial clamp through the displacement sensor
  • the modified Arcan clamp 31 in the system is rigidly connected, the inden
  • the Arcan dual-axis clamping subsystem includes four orthogonally arranged and coplanar mounted modified Arcan clamps 31, force sensor connection brackets 44, combined guide mechanisms 48, synchronization adjustment handles 58, and four modified Arcan fixtures.
  • the relative position of 31 is fixed, has an annular groove of equal width, and the geometric circular shape of the four sets of annular grooves is the same point, that is, the geometric center point of the cross-shaped test piece 33 to be tested; the modified Arcan clamp 31
  • the force sensor connector 44 is coupled to the x-force sensor 30, y to the force sensor 11, and is circumferentially moved by the cylindrical pin 51 along the axis of symmetry of the annular groove of the modified Arcan clamp 31; the synchronous adjustment handle 58 and the combined guide
  • the mechanism 48 simultaneously adjusts and guides the relative position of the plane of the modified Arcan clamp 31.
  • the four modified Arcan clamps 31 are symmetrically mounted around the geometric center of the cross-shaped test piece 33, and the gaps of each set of adjacent modified Arcan clamps 31 are uniform; the horizontal and surface x and y-direction ball screws 7
  • the adjustment of the relative angle between the 14 axial directions depends on the combined guiding mechanism 48 having the linear and circular guiding functions; in addition, the four modified Arcan clamps 31 have the same annular groove structure, and the outer diameter of the cylindrical pin 51 is smaller than The width of the groove, along the circumferential direction of the groove of the modified Arcan clamp 31 and the cylindrical pin 51, at the center of its thickness and height, respectively pre-form an arcuate guide surface having the same radius of curvature, the guide surface and the radius of curvature
  • the uniform hardened steel balls are subjected to spherical contact to weaken the frictional resistance of the modified Arcan clamp 31 in the circumferential direction during the test, and the relative angle between the clamp and the screw axis can be freely adjusted by the force sensor connecting bracket 44.
  • the cross-shaped test piece 33 and the screw axis axis are in a loading mode at any acute angle.
  • the angle is 0°
  • the cross-shaped test piece is subjected to the axial tensile load, that is, the biaxial tensile test.
  • the specimen clamping end of the modified Arcan clamp 31 has a convex structure conforming to the shape of the arc-shaped transition portion of the cross-shaped test piece 33, and the convex structure Higher than the thickness of the cross-shaped test piece 33, that is, the positioning of the cross-shaped test piece 33 in the two orthogonal directions of the stretch in the positioning manner of the arc-shaped contact;
  • the synchronous adjustment handle 58 has a set of symmetrical positioning pins having a diameter that is consistent with the width of the annular groove of the modified Arcan clamp 31, and the axial spacing of the set of positioning pins and a set of adjacent modified Arcan clamps.
  • the distance between the adjacent semicircular centers of the annular grooves is the same, and the angles of the four modified Arcan clamps 31 relative to the axis of the ball screw can be simultaneously adjusted by two orthogonally arranged synchronous adjustment handles 58 to ensure the angle.
  • the combined guiding mechanism 48 is composed of a set of linear guide pairs and a set of curved guide pairs for synchronous guiding of the modified Arcan clamp 31 along the tensile direction and the shearing direction of the cross-shaped test piece 33;
  • the modified Arcan clamp 31 When the modified Arcan clamp 31 generates relative motion, the relative acute angle formed by the geometrical axis of the cross-shaped test piece 33 and the screw axis is monotonously decreasing with the loading process, that is, the motion form of the modified Arcan clamp 31 is linear motion.
  • the linear guide pair is used for guiding the tensile displacement of the cross-shaped test piece 33
  • the curved guide pair is used for cutting the cross-shaped test piece 33
  • the curved guide rail pair is composed of an arc-shaped guide rail 65 connected to the curved rail platform 66 through the curved rail slider 67.
  • the press-in test subsystem includes a laser emitter 35, a voice coil motor 39, an indentation force sensor 40, an indentation plane reflector 41, a laser receiver 45, an indentation force sensor nut 64, and a head clamping unit 46.
  • the indenter clamping unit 46 includes a ram 59, a ram positioning pin 60, a moving wedge ring 61, a fixed wedge ring 62, and a fixed retaining ring 63, and the narrow-beam visible laser beam emitted by the laser emitter 35 is received by the laser receiver 45 real-time reception, the initial detection of the position of the indenter 59 in the vertical direction, the wedge-shaped pre-tightening of the indenter 59 can ensure the accuracy of the position during use; the indentation force sensor 40 One end bolt is rigidly connected to the moving end of the voice coil motor 39 through the indentation force sensor nut 64, and the other end bolt and the fixed wedge ring 62 in the indenter holding unit 46 are also fastened by screwing;
  • the laser emitter 35 and the laser receiver 45 are coaxially mounted with a continuous narrow visible light path therebetween, the optical path having a defined minute spacing from the polished upper surface of the cross-shaped test piece for the indenter 59
  • the absolute position of the tip is detected in the vertical direction; in the initial state, the position of the tip of the indenter 59 is higher than the visible beam, and after the moving end of the voice coil motor 39 produces constant velocity motion or constant acceleration motion, the indenter 59 At the moment when the tip interferes with the visible beam, the laser receiver 45 cannot detect the optical signal.
  • the voice coil motor 39 continues to generate a quasi-static constant velocity motion of the determined stroke under the action of the timing voltage. Or constant acceleration motion to achieve static press-in test or impact press-in test on the cross-shaped test piece 33;
  • the cylindrical shank end of the ram 59 and the inner cylindrical surface of the moving wedge ring 61 are machined with through holes having a uniform aperture in a direction perpendicular to the axial direction thereof, and the ram positioning pin 60 is mounted on the through hole in an interference fit manner.
  • the inner position of the hole that is, the relative position of the pressing head 59 and the moving wedge ring 61 is fixed; the moving wedge ring 61 and the fixed wedge ring 62 are positioned by the conical surface with the same inclination, and the wide end face of the moving wedge ring 61 and the fixed stop ring are fixed.
  • 63 maintains the surface contact, and the narrow end face of the fixed wedge ring 62 is rigidly connected to the fixed stop ring 63 by means of a screw connection; the wedge positioning method can achieve the accuracy of the position of the indenter 59.
  • the biaxial fatigue test subsystem consists of a set of orthogonally arranged x, y piezo actuators, and the x-direction piezo driver consists of an x-direction piezoelectric stack 3 and an x-direction fatigue flexible hinge 4, y-direction pressure
  • the electric drive is composed of a y-direction piezoelectric stack 53 and a y-direction fatigue flexible hinge 54, and the x-direction fatigue flexible hinge 4 and the y-direction fatigue flexible hinge 54 are symmetric circular transition type flexible structures; x, y-direction piezoelectric actuators Installed along the outer circumference of the modified Arcan clamp 31 in the circumferential direction, the x, y-direction piezoelectric stacks 3, 53 are always under pressure, and their elastic elongation and recovery provide a stress ratio of 0 for the cross-shaped test piece 33 to be tested.
  • the alternating stress of the x, y-direction fatigue flexible hinges 4, 54 consists of three sets of flexible thin walls arranged in parallel, along the central axis perpendicular to the x, y piezoelectric stacks 3, 53,
  • the compliance of the x, y-direction fatigue flexible hinges 4, 54 is gradually reduced until it can be regarded as a rigid body structure; when an alternating voltage of the same frequency and equal amplitude is applied to the piezoelectric stacks 3, 53 to x, y, x,
  • the y-to-fatigue flexible hinges 4, 54 produce corresponding angular displacement along the flexible joint at the inner wall thereof, and the cross-shaped test piece 33 is also subjected to the same frequency and equal amplitude. Alternating load control.
  • the biaxial pretensioning loading subsystem is: the x-direction rail slider 9 floats over the x-direction linear guide 8 rigidly connected with the base 10 through a dovetail wedge structure, and the y-direction rail slider 21 also passes
  • the dovetail wedge structure floats on the y-direction linear guide 20, and the y-direction screw support base 13 and the y-direction linear guide 20 are rigidly mounted on the y-direction fixed base 19 by screwing; in addition, the y-direction screw nut 22 is sleeved
  • the x-direction ball screw 7 is flanged and rigidly mounted on the x-direction rail slider 9 together with the x-direction screw nut bracket 24; the output shaft and the y-direction of the y-direction servo motor 27 are active.
  • the gear shafts of the spur gears 26 are respectively embedded in the through holes of the flexible coupling 76, thereby realizing the transmission of the torque motion of the y-direction servo motor 27;
  • the flat key 49 is embedded in the key groove of the worm shaft 74, and two of them
  • the side positioning surface is in surface contact with the spur gears, that is, the x-direction spur gears I, II15, 18, and the y-direction spur gears I, II25, and 28, and the positioning pin shaft 75 is interference-mounted at the axial end of the worm shaft 74 at a direction perpendicular to the axial direction thereof.
  • a set of x-direction ball screws 7 have a coaxial axis, and the spiral shapes are right-handed, and both are aligned with the x-direction spur gears I and II15. 18.
  • the geometric axis of the x-active spur gear 17 is vertical; the transmission ratio of the single-stage worm gear reduction mechanism composed of the worm 70 and the worm gear 71 is 40.
  • the signal detection subsystem includes an x-direction force sensor 30, a y-direction force sensor 11, a horizontal laser displacement sensor I, II32, 55, a planar reflector 34, an indentation laser displacement sensor 37, an indentation force sensor 40, and a pressure.
  • the geometric axes of II42 and 43 form an acute angle with each other.
  • the supporting and adjusting subsystem comprises a gantry column 1, a laser receiver two-degree-of-freedom electric moving platform 2, a guiding mechanism supporting pad 5, a base 10, a laser transmitter two-degree-of-freedom electric moving platform 36 and a voice coil motor two free
  • the electric moving platform 38 wherein the base 10 is used for supporting the biaxial pre-tension loading subsystem and the biaxial fatigue testing subsystem, and the laser receiver with the gantry column 1 is rigidly connected with the two-degree-of-freedom electric moving platform 2, and the guiding mechanism supports
  • the spacer 5, the laser transmitter two-degree-of-freedom electric moving platform 36 and the voice coil motor two-degree-of-freedom electric moving platform 38 are respectively used for pressing the positions of the laser receiver 45, the laser emitter 35 and the voice coil motor 39 in the test subsystem. Make real-time adjustments.
  • Another object of the present invention is to provide an in-situ test method for mechanical properties of materials under static and dynamic load spectrum, and a stress-strain decoupling method for an Arcan biaxial clamping subsystem and a biaxial pretensioning loading subsystem,
  • the central portion and the gauge length portion of the glyph sample 33 are simplified as a unit body having uniform deformation; when calculating the true stress and strain caused by the load components of the cross-shaped test piece 33 under the tensile-shear and biaxial stretching plane stress state Decoupling the combined effects of tensile-shear and biaxial tensile loads on the stress and strain of the cross-shaped specimen 33 by the superposition principle, the vector-coupling superposition of the stress-strain constitutive relationship under each single load, comprehensive consideration
  • the material elastic extension, plastic flow and cross-section change caused by the load of the target load in the direction of the target load quantitatively describe the deformation behavior of the unit body along the direction of the target load, and obtain the stress, strain and known coupling load under the target
  • the steps are as follows: in the case of the tensile-shear composite stress mode, in order to calculate when the external load is at an acute angle to the axial direction of the test piece
  • the actual tensile strain and shear strain of the cross-shaped test piece 33 establish a simplified regular hexahedron model which can characterize the gauge portion of the cross-shaped test piece 33.
  • the initial geometric axis of the hexahedron and the direction of the stretch are offset.
  • the length, width and height correspond to the length, width and thickness of the gauge length of the test piece respectively; under the external load coaxial with the tensile direction, the regular hexahedron model is transformed into a rhombohedron, and the geometric axis and initiality of the change
  • the angle between the geometric axes can be quantitatively calculated.
  • the actual tensile and shear stress and strain of the butterfly specimen can be decoupled from the corresponding tensile stress-strain by directly collecting and calculating by the force sensor and the displacement sensor.
  • the shear stress-strain curve, and the proposed decoupling method is verified by the three-dimensional strain analysis of the digital speckle testing technique; in the biaxial stretching mode, the central region of the cross-shaped test piece 33 is in the plane stress Uniform expansion under the action, and the parallel beam part The width is gradually reduced along the direction of the load.
  • the simulation analysis and image test method the quantitative relationship between the deformation distribution and the load effect of the cross-shaped test piece can be established.
  • the invention has the advantages of compact structure, high test precision, and a body size of 590 mm ⁇ 578 mm ⁇ 392 mm.
  • the invention can realize fatigue testing based on rich biaxial tensile-shear prestressing, and can construct complex static and dynamic load spectrum, which can be used to study fatigue crack initiation of components under complex prestressed state or The law of expansion, the invention can also realize the press-in test based on the multi-dimensional plane stress state, and the hardness map or Young's modulus map of the member subjected to complex stress can be obtained by the method of press-in test.
  • the indentation test subsystem can also be used to pre-form the initial single-point indentation defect or indentation array in different characteristic areas of the cross-shaped test piece to study the evolution behavior and deformation damage mechanism of the micro-defect.
  • the invention can also independently perform in-situ mechanical testing of each single load mode, and the test content is rich, and has good compatibility with the optical imaging system with multi-degree of freedom adjustment function and the three-dimensional digital speckle strain analysis system, and can be used for components
  • An evaluation tool is provided for the performance weakening law and the optimized preparation method of the material.
  • the present invention can also realize the micro-defects of the component.
  • the study of deformation behavior and crack propagation law under multi-dimensional stress state can provide an evaluation tool for the weakening law of products and the optimized preparation method of materials.
  • Figure 1 is a schematic view showing the overall appearance of the present invention
  • Figure 2 is a front elevational view of the present invention
  • Figure 3 is a left side view of the present invention.
  • Figure 4 is a top plan view of the present invention.
  • Figure 5 is a schematic view of the Arcan clamping unit of the present invention.
  • Figure 6 is a schematic view showing the principle of biaxial stretching and biaxial stretching-shearing composite loading according to the present invention.
  • Figure 7 is a schematic view of the indentation loading unit of the present invention.
  • Figure 8 is a schematic view showing the method of clamping the indenter of the present invention.
  • Figure 9 is a schematic view of the combined guiding mechanism of the present invention.
  • Figure 10 is a schematic view of a piezoelectric driven fatigue loading unit of the present invention.
  • Figure 11 is a schematic diagram showing the stress-time curve of the static and dynamic coupling test of the present invention.
  • Figure 12 is a schematic view of a biaxial pretensioning loading subsystem of the present invention.
  • Part (a) of Figure 13 is the decoupling model of the tensile-shear composite load mode load and displacement, part (b) is the obtuse triangle for calculating strain, and part (c) is the load decoupling method.
  • Figure 14 is a theoretical model for stress and strain calculation of a cross-shaped specimen under biaxial tensile loading.
  • the in-situ test system for mechanical properties of materials under static and dynamic load spectrum of the present invention has a main body size of 590 mm ⁇ 578 mm ⁇ 392 mm, which is a three-dimensional strain optical measurement system according to the German GOM-ARAMIS type and The Nikon SMZ745 optical stereo microscope is designed to be compatible with other types of video extensometers and optical microscopy systems with continuous zoom.
  • the in-situ testing system for mechanical properties of materials under static and dynamic load spectrum of the present invention includes Arcan dual-axis clamping subsystem, press-in test subsystem, dual-axis fatigue test subsystem, and dual-axis pre-preparation.
  • a tensile loading subsystem a signal detection subsystem, a support and an adjustment subsystem
  • the combined guiding mechanism 48 in the Arcan dual-axis clamping subsystem is respectively connected to the guiding mechanism support pad in the supporting and adjusting subsystem by a screw connection Block 5, x to the force sensor base 29, y to the force sensor base 12 to maintain a rigid connection
  • the laser transmitter 35, the voice coil motor 39, and the laser receiver 45 pressed into the test subsystem are respectively supported by the screw connection
  • the laser transmitter in the adjustment subsystem two-degree-of-freedom electric moving platform 36, the voice coil motor two-degree-of-freedom electric moving platform 38, the laser receiver two-degree-of-freedom electric mobile platform 2 rigid connection, the voice coil motor two-degree-of-freedom electric mobile platform 38 is mounted on the beam of the gantry column 1 by the platform fastening screw 52; the x, y-direction fatigue flexible hinges 4, 54 in the biaxial fatigue test subsystem are passed through the fatigue fastening screw 50
  • the Arcan dual-axis clamping subsystem includes four orthogonally arranged and coplanar mounted modified Arcan clamps 31, a force sensor connector 44, a combined guide mechanism 48, and a synchronization adjustment handle 58.
  • the relative positions of the four modified Arcan clamps 31 are fixed, and have annular grooves of equal width, and the geometric circular shapes of the four sets of annular grooves are the same point, that is, the geometric center point of the cross-shaped test piece 33 to be tested.
  • the modified Arcan clamp 31 is coupled to the x-force sensor 30, y to the force sensor 11 via the force sensor connector 44, and is circumferentially moved along the axis of symmetry of the annular groove of the modified Arcan clamp 31 by the cylindrical pin 51;
  • the handle 58 and the combined guide mechanism 48 are used to synchronously adjust and guide the relative position of the plane of the modified Arcan clamp 31, respectively.
  • the four modified Arcan clamps 31 are symmetrically mounted around the geometric center of the cross-shaped test piece 33, and the gaps of each set of adjacent modified Arcan clamps 31 are uniform; the horizontal and surface x and y-direction ball screws 7
  • the adjustment of the relative angle between the 14 axial directions depends on the combined guiding mechanism 48 having the linear and circular arc guiding functions; in addition, the four modified Arcan clamps 31 have the same annular groove structure, and the outer diameter of the cylindrical pin 51 is slightly Less than the width of the groove, along the modified Arcan
  • the loading mode in any acute angle state when the angle is 0°, the cross-shaped test piece is subjected to the axial tensile load, that is, the biaxial tensile test mode; when the above angle is an acute angle, the cross-shaped test piece
  • the central region will have a relative positional displacement at its cross section, and the cross-shaped test piece is actually in a biaxial tensile-shear plane stress state; at the same time, the test piece clamping end of the modified Arcan clamp 31 has a cross shape
  • the convex portion of the arc piece transition portion of the test piece 33 has a uniform shape, and the convex structure is higher than the thickness of the cross-shaped test piece 33, that is, the position of the cross-shaped test piece 33 is realized by the positioning of the arc-face contact. Neutral in the orthogonal direction extends;
  • the synchronous adjustment handle 58 has a set of symmetrical positioning pins having a diameter that is consistent with the width of the annular groove of the modified Arcan clamp 31, and the axial spacing of the set of positioning pins and a set of adjacent modified Arcan clamps.
  • the distance between the adjacent semicircular centers of the annular grooves is the same, and the angles of the four modified Arcan clamps 31 relative to the axis of the ball screw can be simultaneously adjusted by two orthogonally arranged synchronous adjustment handles 58 to ensure the angle.
  • the combined guiding mechanism 48 is composed of a set of linear guide pairs and a set of curved guide pairs for synchronous guiding of the modified Arcan clamp 31 along the tensile direction and the shearing direction of the cross-shaped test piece 33;
  • the modified Arcan clamp 31 When the modified Arcan clamp 31 generates relative motion, the relative acute angle formed by the geometrical axis of the cross-shaped test piece 33 and the screw axis is monotonously decreasing with the loading process, that is, the motion form of the modified Arcan clamp 31 is linear motion.
  • the linear guide pair is used for guiding the tensile displacement of the cross-shaped test piece 33
  • the curved guide pair is used for cutting the cross-shaped test piece 33
  • the curved guide rail pair is composed of an arc-shaped guide rail 65 connected to the curved rail platform 66 through the curved rail slider 67.
  • the press-in test subsystem includes a laser emitter 35, a voice coil motor 39, an indentation force sensor 40, an indentation plane reflector 41, a laser receiver 45, an indentation force sensor nut 64, and a head clamping unit 46.
  • the indenter clamping unit 46 includes a ram 59, a ram positioning pin 60, a moving wedge ring 61, a fixed wedge ring 62, and a fixed retaining ring 63, and the narrow-beam visible laser beam emitted by the laser emitter 35 is received by the laser receiver 45 real-time reception, the initial detection of the position of the indenter 59 in the vertical direction, the wedge-shaped pre-tightening of the indenter 59 can ensure the accuracy of the position during use; the indentation force sensor 40
  • One end bolt is rigidly connected to the moving end of the voice coil motor 39 by the indentation force sensor nut 64, and the other end bolt and the fixed wedge ring 62 in the ram holding unit 46 are also screwed.
  • the laser emitter 35 and the laser receiver 45 are coaxially mounted with a continuous narrow visible light path therebetween,
  • the optical path and the upper surface of the cross-shaped test piece have been polished to have a determined minute pitch for detecting the absolute position of the tip of the indenter 59 in the vertical direction; in the initial state, the position of the tip of the indenter 59 is higher than visible.
  • the light beam when the moving end of the voice coil motor 39 produces a constant speed motion or a constant acceleration motion, the laser receiver 45 cannot detect the optical signal at the moment when the tip of the ram 59 interferes with the visible light beam, based on the feedback of the laser receiver 45.
  • the voice coil motor 39 continues to generate a quasi-static constant speed motion or a constant acceleration motion of the determined stroke under the action of the timing voltage, thereby realizing the static press-in test or the impact press-in test of the cross-shaped test piece 33.
  • the cylindrical shank end of the ram 59 and the inner cylindrical surface of the moving wedge ring 61 are machined with a through hole having a uniform aperture perpendicular to the axial direction thereof, and the ram positioning pin 60 is mounted in an interference fit manner.
  • the relative position of the indenter 59, that is, the indenter 59 and the moving wedge ring 61 is fixed; the moving wedge ring 61 and the fixed wedge ring 62 are positioned by the conical surface having the same inclination, and the wide end face and the fixed end of the moving wedge ring 61 are moved.
  • the ring 63 remains in surface contact, and the narrow end face of the fixed wedge ring 62 is rigidly coupled to the fixed stop ring 63 by means of a threaded connection; the wedge positioning method achieves the accuracy of the position of the indenter 59.
  • the biaxial fatigue test subsystem consists of a set of orthogonally arranged x, y piezo actuators, and the x-direction piezo driver consists of an x-direction piezoelectric stack 3 and an x-direction fatigue flexible hinge 4, y-direction pressure
  • the electric drive is composed of a y-direction piezoelectric stack 53 and a y-direction fatigue flexible hinge 54, and the x-direction fatigue flexible hinge 4 and the y-direction fatigue flexible hinge 54 are symmetric circular transition type flexible structures;
  • the x, y-direction piezoelectric actuators are circumferentially mounted orthogonally along the outer edge of the modified Arcan clamp 31, and the x, y-direction piezoelectric stacks 3, 53 are always under pressure, and their elastic elongation and recovery to the measured cross-shaped test piece 33 provides an alternating stress with a stress ratio of 0;
  • the envelope structure of the x, y-direction fatigue flexible hinges 4, 54 consists of three sets of flexible thin walls arranged in parallel, along a perpendicular to the x, y-direction piezoelectric stack 3 , the central axis direction of 53, the flexibility of the x, y-direction fatigue flexible hinges 4, 54 is gradually reduced until it can be regarded as a rigid body structure; when the x, y is applied to the piezoelectric stacks 3, 53 with the same frequency and equal amplitude When the voltage is alternating, the x, y produces a corresponding angular displacement of the flexible flexible hinges 4, 54 along the flexible
  • the biaxial pretensioning loading subsystem includes y-direction spur gears I, II25, 28, x-direction screw nut 6, x-direction ball screw 7, y-direction ball screw 14, x To the linear guide 8, x to the guide rail slider 9, x to the spur gears I, II15, 18, x to the servo motor 16, y to the servo motor 27, x to the drive spur gear 17, y to the drive spur gear 26, y direction Linear guide 20, y-direction guide rail slider 21, y-direction screw nut 22, cantilever support seat 23, worm gear positioning pin 69, worm 70, worm wheel 71, outer ring locating bearing 73, worm shaft 74, locating pin shaft 75, and slant
  • the coupling 76, the x-direction guide slider 9 floats over the x-direction linear guide 8 rigidly connected to the base 10 through the dovetail wedge structure.
  • the y-direction guide slider 21 also floats in the y direction through the dovetail wedge structure.
  • Linear guide 20, and y-direction screw support seat 13 and y-direction linear guide 20 is rigidly mounted on the y-direction fixed base 19 by a screw connection.
  • the y-direction screw nut 22 is sleeved in the flange of the x-direction ball screw 7, and is rigidly mounted on the x-direction rail slider 9 together with the x-direction screw nut holder 24 by screwing.
  • the output shaft of the y-direction servo motor 27 and the gear shaft of the y-direction drive spur gear 26 are respectively embedded in the through-holes of the flexible coupling 76, thereby realizing the transmission of the torque motion of the y-direction servo motor 27.
  • the flat key 49 is embedded in the key groove of the worm shaft 74, and the positioning surfaces on both sides thereof are in surface contact with the spur gears (such as the x spur gears I, II15, 18), and the positioning pin shaft 75 is interference mounted on the worm shaft 74 shaft.
  • the end is in the inner hole perpendicular to its axial direction to limit the axial movement of the spur gear (such as the x-direction spur gears I, II15, 18).
  • the worm wheel 71 is sleeved by the inner hole and the worm wheel positioning pin 69 and the x, y to the shaft ends of the ball screws 7, 14 respectively and realizes the limitation of the degree of freedom of rotation.
  • the bearing inner hole and the bearing outer ring of the outer ring positioning bearing 73 are respectively interference-fitted with the x, y-direction active spur gear 17, 26 gear shaft and the bearing housing hole wall on the worm shaft base 68, and the outer ring positioning bearing 73 retaining ring It is in surface contact with the outer wall of the worm shaft base 68 to limit the axial movement of the drive shafts of the drive spurs 17, 26.
  • One set of x is coaxial with the axis of the ball screw 7, and the spiral shape is right-handed, and both are perpendicular to the geometric axes of the x-direction spur gears I, II15, 18, and x active spur gears 17; by the worm 70, the worm wheel 71 has a single-stage worm gear reduction mechanism with a transmission ratio of 40;
  • the biaxial pretensioning loading subsystem provides biaxially controllable pre-stress or pre-strain for the cross-shaped test piece 33, ie performing a fatigue test based on a rich biaxial tensile-shear plane stress state, the biaxial The pre-stretching subsystem can achieve coaxial isotropic constant velocity stretching motion in two orthogonal directions, with the loading direction being the x-direction, the dual-axis pre-stretching subsystem being provided only by a separate x-direction servo motor 16
  • the torque and rotational motion output correspondingly, the x-direction spur gears I, II15, 18 meshing with the x-direction active spur gear 17 respectively output the same speed, synchronous and rotationally identical rotational motion; a set of coaxially mounted worm gears 70
  • the worm 71 has opposite directions of rotation, that is, left-handed and right-handed, respectively, and a set of x-direction ball screws 7 are both right-handed and output equal-speed,
  • the signal detection subsystem includes an x-direction force sensor 30, a y-direction force sensor 11, a horizontal laser displacement sensor I, II32, 55, a planar reflector 34, an indentation laser displacement sensor 37, an indentation force sensor 40, and a pressure.
  • the geometric axes of II42 and 43 form an acute angle with each other.
  • the macroscopic and microscopic deformation of the cross-shaped test piece 33 subjected to the biaxial tensile-shear plane stress is respectively composed of a set of contact positions.
  • Shift sensor I, II42, 43 and horizontal laser displacement sensors I, II32, 55 for detection; horizontal laser displacement sensor with smaller range and higher test resolution when the cross-shaped test piece is in the elastic deformation stage II32, 55 are used for detecting small elastic deformation (ie, microscopic deformation).
  • the contact displacement sensors I, II42, 43 are used to detect between a group of modified Arcan clamps 31. Relative deformation (ie macroscopic deformation).
  • the supporting and adjusting subsystem comprises a gantry column 1, a laser receiver two-degree-of-freedom electric moving platform 2, a guiding mechanism supporting pad 5, a base 10, a laser transmitter two-degree-of-freedom electric moving platform 36 and a voice coil motor two free
  • the electric moving platform 38 wherein the base 10 is used for supporting the biaxial pre-tension loading subsystem and the biaxial fatigue testing subsystem, and the laser receiver with the gantry column 1 is rigidly connected with the two-degree-of-freedom electric moving platform 2, and the guiding mechanism supports
  • the spacer 5, the laser transmitter two-degree-of-freedom electric moving platform 36 and the voice coil motor two-degree-of-freedom electric moving platform 38 are respectively used for pressing the positions of the laser receiver 45, the laser emitter 35 and the voice coil motor 39 in the test subsystem. Make real-time adjustments.
  • the in-situ test method for mechanical properties of materials under static and dynamic load spectrum of the present invention the stress-strain decoupling method for the Arcan biaxial clamping subsystem and the biaxial pre-tension loading subsystem, the central region and the standard of the cross-shaped test piece 33
  • the distance is simplified to a unit body with uniform deformation.
  • the comprehensive influence of stress and strain on the glyph sample 33 is decoupled into the vector-coupling superposition of the stress-strain constitutive relation under each single load, taking into account the elastic elongation, plastic flow and cross section of the material caused by the load of the target in the direction of the target load. Change, quantitatively describe the deformation behavior of the unit body along the direction of the target load, and obtain the relationship between the stress and strain under the target load and the known coupling load and displacement.
  • the procedure is as follows: In terms of the tensile-shear composite stress mode, in order to calculate the actual tensile strain and the shear strain of the cross-shaped test piece 33 when the external load is at an acute angle to the axial direction of the test piece, a characterization of the cross-shaped test piece 33 is established.
  • the simplified regular hexahedron model of the gauge length, the offset angle formed by the initial geometric axis of the hexahedron and the stretching direction is a known amount, and the length, width and height of the gauge body correspond to the length, width and thickness of the gauge length portion of the test piece, respectively.
  • the regular hexahedral model is transformed into a rhombohedron, and the angle between the geometric axis of the change and the initial geometric axis can be quantitatively calculated, and the actual stretch and shear of the butterfly test piece
  • the shear stress and strain are directly collected and calculated by the force sensor and the displacement sensor, and the corresponding tensile stress-strain and shear stress-strain curves can be decoupled and proposed by the three-dimensional strain analysis of the digital speckle test technique. The decoupling method is tested and verified.
  • the central region of the cross-shaped test piece 33 spreads uniformly under the action of the plane stress, and the width of the parallel beam portion gradually decreases along the direction of the load action, through simulation analysis and image test.
  • the method can establish the quantitative relationship between the deformation distribution of the cross-shaped test piece and the load action.
  • the components and specific models involved in the present invention are: the voice coil motor 39 is BET-TIME-S0006, the maximum output load is 6N, the maximum loading stroke is 10 mm, and the driving voltage is And counter electromotive force They are 13.3V and 4.5V respectively.
  • the model of x and y to the piezoelectric stacks 3, 53 is PANT-PTJ1501414401, the main body size is 14mm ⁇ 14mm ⁇ 40mm, the maximum nominal displacement is 40 ⁇ m, the maximum thrust is 7200N, the stiffness is 180N/ ⁇ m, and the resonant frequency is 37kHz. .
  • the x and y force sensors 30 and 11 are of the tension and pressure type, the model number is UNIPULSE-UNCLB-500N, the measuring stroke is 500N, the linear precision is 0.5%, and the axial deformation under the rated load is 0.01 mm.
  • the model of the indentation force sensor 40 is Maxwell-FB10, which has a measuring stroke of 30 N, a linear accuracy of 0.5%, and an output sensitivity of 1 mV/V.
  • the indentation laser displacement sensor 37 is of the type KEYENCE-LK-G10 with an optical reference distance of 10 mm, a measurement range of 1 mm, and a test resolution of 10 nm.
  • the horizontal laser displacement sensors I, II32, 55 are HL-C203BE-MK with an optical reference distance of 30 mm, linear accuracy of 0.03%, measurement range of 1 mm, and test resolution of 200 nm.
  • the contact displacement sensors I, II42, 43 are modeled SOWAY-SDV-H20 with a stroke of 8 mm and a test resolution of 1 ⁇ m.
  • the models of x and y servo motors 16 and 27 are YASKAWA-SGMAV, and their rated power is 150V, the rated torque is 0.477N ⁇ M, and the rated speed and maximum speed are 3000r/min and 6000r/min respectively.
  • the gantry column 1, the base 10, the force sensor connecting frame 44, the synchronous adjusting handle 58 and the curved clamping positioning portion of the modified Arcan clamp 31 are processed by multi-axis numerical control milling, moving the wedge ring 61, the fixed wedge ring 62, and fixing
  • the rotary parts such as the shift ring 63 and the worm shaft 74 are processed by a numerically controlled turning method, and the structures of the x, y-direction fatigue flexible hinges 4, 54, the y-direction fixed base 19, and the modified Arcan clamp 31 are slow. Wire cutting method.
  • the grinding flattening process is adopted between the gantry column 1 and each of the two-degree-of-freedom electric moving platforms and the mounting plane between the susceptor 10 and each supporting member.
  • the material used for the x, y-direction fatigue flexible hinges 4, 54 is 65Mn steel, which conforms to the preparation requirements of GB/T1222-2007, and its symmetrical cycle fatigue limit is better than 400 MPa.
  • the closed-loop control system mainly includes an industrial computer, a DC stabilized power supply, a motor drive controller, a data acquisition card, a conditioning amplifier circuit, and a host computer software. During the test, the load rate or displacement rate is given as the control parameter by the host computer software.
  • the command is triggered by the multi-axis motion control card in the form of a pulse, and acts on the winding of the servo motor, x, y to the servo motor 16, 27
  • the corresponding rotary motion is output.
  • the 16-bit data acquisition card is read at a high sampling frequency by the load/sensor detection signal and the digital signal of the photoelectric encoder.
  • the load/displacement analog signal is compared and calculated in real time with the load/displacement signal preset by the host computer software, and the calculation error is sent to the upper computer for processing until the sampled value of the detection signal and the set signal are The amount of variation is within the allowable range.
  • all high-power circuits are separated from low-power devices during testing to reduce electromagnetic interference and ensure safe use.
  • the output of the x, y servo motors 16, 27 to the nominal torque and angular velocity are T m and ⁇ m
  • the input and output torques of the worm gear are T w1 and T w2 respectively .
  • T w2 is the input torque of the right-handed ball screw nut pair
  • ⁇ 2 is closely related and can be expressed as:
  • the input torque T w2 of the ball screw nut pair depends on the torque T w1 of the worm gear drive pair , the transmission efficiency ⁇ w and the reduction ratio i w . It can be seen that T w2 can be expressed as:
  • T w2 T m ⁇ 1 ⁇ w i w (3)
  • the cross-shaped test piece 33 is first processed into a symmetrical structure by wire cutting. To avoid stress concentration, a circular arc transition zone with a radius of 1.5 mm is prefabricated at the junction of the central region and the cross-arm region. The width of the glyph arm region coincides with the minimum distance of a set of arcuate raised structures of the modified Arcan clamp 31. Before the test, the cross-shaped test piece 33 is subjected to one-side polishing treatment by mechanical polishing, electrochemical polishing, etc., and if the test piece is a single crystal or a polycrystalline material, the metallographic structure can also be prepared by a specific etchant.
  • a press-in test method can be used to prepare indentation defects of different depths in the central region of the cross-shaped test piece 33 or the font-shaped arm region.
  • the positioning pin structures of a set of synchronous adjustment handles 58 are respectively embedded in the annular grooves of a group of adjacent modified Arcan clamps 31, and at the same time, four modified Arcan clamps 31 are rotated.
  • a high-resolution digital angle measuring instrument to measure the relative angle between the specific straight edge of the clip and the axis of the ball screw in real time.
  • the cross-shaped test piece 33 is mounted between the arc-shaped convex structures of the four modified Arcan jigs 31, and the clamp portion of the cross-shaped test piece 33 is fastened by the press plate.
  • a pulse signal of the same amplitude and timing is applied to the windings of the servo motor 16, 27 to the x and y, and the x, y are driven to the servo motor 16, 27 to synchronize and rotate at a constant speed, and the four modified Arcan clamps 31 are mutually deviated. Synchronous, constant speed motion. Accordingly, the cross-shaped test piece 33 is subjected to a constant plane tensile-shear stress state.
  • the loading process that is, the stress or strain state of the cross-shaped test piece 33 can be controlled in real time.
  • the test frequency and amplitude of different orthogonal directions can be set in the upper computer software, and the piezoelectric stack is applied to the x and y through the multi-channel piezoelectric controller. 3.
  • a sinusoidal signal or a pulse signal having a specific frequency and amplitude is applied as a fatigue driving power source.
  • the x, y-direction piezoelectric stacks 3, 53 are always under pressure, and the highest loading frequency is 100 Hz.
  • the cross-shaped test piece 33 is subjected to the biaxial static and dynamic load at the same time, and the fatigue based on the complex plane stress state can be performed. test.
  • the horizontal laser displacement sensors I, II32, 55 are respectively used for detecting the elastic deformation and the alternating deformation of the cross-shaped test piece 33 in two orthogonal directions
  • the contact displacement sensors I, II42, and 43 are respectively used for detecting ten.
  • the plastic deformation of the glyph test piece 33 in two orthogonal directions similarly, the x, y force sensors 30, 11 are used to detect the cross-shaped test piece 33 Composite load. Combined with the corresponding tensile-shear stress-strain constitutive decoupling method, the tensile, shearing loads and deformations of the cross-shaped specimen 33 can be quantitatively analyzed.
  • the voice coil motor 39 can also be used to perform a static press-in test or an impact press-in test based on a complex planar stress state.
  • the voice coil motor 39 used in the present invention has excellent characteristics such as simple structure, small inertia load, high speed, high acceleration, fast response speed, and high-precision driving. By supplying power to the coil of the voice coil motor 39 during use, the coil drives the actuator to move synchronously according to the Lorentz force principle.
  • the voice coil motor 39 When the position of the tip of the indenter 59 is higher than the visible light beam between the laser emitter 35 and the laser receiver 45, the voice coil motor 39 generates a constant speed motion or a lateral acceleration motion according to the test mode, and after the optical path is disconnected, the pressure is applied.
  • the movement displacement of the tip of the head 59 follows the displacement stroke preset by the upper computer software, thereby implementing a static press-in test or an impact press-in test.
  • the indentation depth and load during the press-in test are detected in real time by the indentation laser displacement sensor 37 indentation force sensor 40, respectively.
  • the servo motors 16, 27 and x are stopped for the x and y directions.
  • y supplies power to the piezoelectric stacks 3, 53.
  • This aspect facilitates the release of accumulated charge in the piezoelectric stack.
  • it facilitates the three-dimensional strain optical measurement system and the optical microscopy imaging system with continuous zoom function for the defective area. High-resolution observation of the fatigue behavior of fatigue cracks.
  • Fig. 13 establishes a corresponding calculation model which will be the gauge length portion of the cross-shaped test piece 33.
  • the initial geometric axis of the hexahedron (the straight line segment of the OA in the figure) and the direction of the deflection are ⁇
  • the length l g , width b, height h correspond to the test piece gauge length The length, width and thickness of the part.
  • the regular hexahedron model is transformed into a rhombohedron whose changed geometric axis (the straight line segment of OA 1 in the figure) and the initial geometric axis form an angle of ⁇ , but
  • the angle of the shear plane (ie, the vertical plane of the OA straight line segment) and the tensile axial direction is always the complementary angle ( ⁇ /2- ⁇ ) of ⁇ , which does not change with F l . It can be seen that the stress and strain of the actual tensile and shearing of the cross-shaped test piece 33 are not simply a sine or cosine relationship with the stress and strain acquired by the force sensor and the displacement sensor.
  • a point and the A 1 point representing the top cross-sectional center point of a regular hexahedron and oblique hexahedron marked regular hexahedron model from l g is considered to be hexahedron geometrical center (O point) and the top
  • the distance between the center point of the section (point A) (i.e., the length of the OA section in the figure), and the straight line segment of AA 1 is always parallel with the stretching direction, does not change with the offset angle ⁇ , and the actual elongation of the cross-shaped test piece 33
  • the quantity ⁇ l d /2 corresponds to a multiple of the difference between the length of the OA 1 segment and the length of the OA segment in the figure.
  • the relationship between the calculated strain value of the test piece and the actual strain value can be established by the side length relationship of the obtuse triangle OAA 1 shown in part (b) of Fig. 13, wherein the length l d /2 of the straight line segment of the AA 1 is the displacement
  • the single-end elongation in the direction of stretching read by the sensor, by means of the cosine theorem, the relationship between ⁇ l d , l d and l g can be expressed as:
  • cruciform specimen may be true strain ⁇ 33 Equation (5) the expression, and found that with the increase of [epsilon] l d show an increasing trend.
  • the shear angle ⁇ formed by the shearing action can be considered cruciform shear strain specimen 33, and the angle between the straight line OA and OA. 1 may be It is determined that, as shown in part (b) of Fig. 13, ⁇ can be expressed as:
  • when the offset angle ⁇ is determined, ⁇ also increases with the increase of l d .
  • when the initial offset angle ⁇ is 45°, and the elongation of the test piece read by the displacement sensor (ie, l d ) is 0.05 mm, The calculated value of ⁇ is 0.123 rad, and when l d is increased to 0.1 mm, the calculated value of ⁇ is 0.216 rad.
  • the actual tensile force F t and the shearing force F s of the cross-shaped test piece 33 are extracted as shown in part (c) of Fig. 13, because F t and F s extend along the regular hexahedron, respectively.
  • the long direction and the shear plane function, F t and F s can be expressed as the cosine and sine components of the actual tensile force F t , respectively. It is assumed that the volume of the gauge portion of the test piece is constant and varies uniformly along the space during the deformation process.
  • the top cross-sectional area of the hexahedron after the test piece is elongated can be expressed as the product of b, h and k 2 , where k is the size reduction factor. And determined by ⁇ l d .
  • the calculation method of k can be expressed as:
  • a theoretical model of stress and strain calculation of the cross-shaped test piece 33 under the biaxial tensile load is shown.
  • the deformation characteristics of the boundary of the gauge portion of the cross-shaped test piece 33 can be approximated as an exponential function, and l cen and l g are the initial lengths of the central region of the test piece and the gauge length, respectively.
  • the O o point acts as a set of joint points of mutually perpendicular gauge lengths, and the directional movement to the O xy point is generated.
  • the corresponding movement displacements in the x and y directions are respectively ⁇ d cen-x and ⁇ d cen-y , at the same time, the P point moves to the P o point, and the corresponding additional displacements in the length and width directions of the test piece are ⁇ d xp and ⁇ d xv , respectively .
  • the definition l x is an independent variable along the stretching direction, and dl x is a small deformation unit, and the true strain of the central region of the cross-shaped test piece 33 and the gauge portion along the x direction can be quantified by the formulas (10) and (11), respectively. expression.
  • the cross-sectional area S after of the deformed test piece can be regarded as the sum of the gauge portion area S x and the central area area S c , which The area can be indirectly calculated by the total area S before before the denaturation of the cross-shaped test piece 33 and the width of the test piece (t before and t after ).
  • the variation characteristic of the thickness of the test piece is approximately simplified to a linear change of the coefficient C. Therefore, based on the above theory, S after , S before , S x , S c
  • the mathematical description between C, t before and t after is as shown in equation (14-17).
  • the area S x of the gauge length portion can be calculated by using l g - ⁇ d cen-x + ⁇ d xp as the upper limit of the integral and the integral integral with 0 as the integral lower line.
  • the calculation formula is as shown in (18), where A is a constant term ranging between 0 and 1. Due to the foregoing formula l g, ⁇ d cen-x, ⁇ d xp, l cen t before and are known amount, and theoretically, t after that can be detected in real time, therefore, the coefficient C can be determined. Therefore, the constant term A can also be calculated quantitatively. Meanwhile, the quantitative relationship between the true stress ⁇ t of the cross-shaped test piece 33 and the engineering stress ⁇ can be determined by the formula (19).

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种静动态载荷谱下材料力学性能原位测试系统与方法,属于力学测试领域。该系统通过集成正交平面内双轴拉伸、剪切的静态测试功能、双轴拉-拉模式疲劳测试功能、静动态压入测试功能,并可构建复杂的静动态载荷谱,并针对薄膜材料或块体材料开展多种模式的复合载荷力学性能评估,如基于双轴预拉伸载荷的高周疲劳测试和基于双轴拉伸-剪切预载荷的冲击压入测试等。与此同时,通过在十字形试件(33)的中心区域和十字形臂区域预制特征缺陷,并借助可变倍式光学成像系统或数字散斑应变分析系统的分析功能,可实现构件微缺陷在多维应力状态下变形行为和裂纹扩展规律的研究,对制品的性能弱化规律和材料的优化制备方法提供评估工具。

Description

静动态载荷谱下材料力学性能原位测试系统与方法 技术领域
本发明涉及力学测试领域,特别涉及一种静动态载荷谱下材料力学性能原位测试系统与方法,尤指一种集成多种静动态测试功能的材料微观原位力学测试系统。该系统具备双轴拉伸、双轴疲劳、双轴拉伸-剪切、冲击压等丰富的测试模式,且通过与光学成像系统或数字散斑应变分析系统的集成,可对复杂应力状态下材料的疲劳失效机制和性能弱化规律进行研究,为优化材料制备工艺和提升结构的服役可靠性提供测试工具。
背景技术
料及其制品在服役条件下的受力形式和物理场环境复杂多变,时常会受到拉伸、剪切、冲击等静、动态载荷的作用。材料因载荷作用导致的宏观失效归因于其显微结构在服役条件下的损伤和演化,传统材料力学性能测试技术难以揭示材料在复杂服役条件下的力学行为与显微结构间的关系,即无法对材料及其制品的变形损伤机制和性能演化规律进行深入研究。由于对材料的微结构演变与力学性能间关系的不清楚,导致关键材料的服役安全性和可靠性不足,由此带来的结构失效事故举不胜举。
材料及其制品在交变载荷作用时,虽然其所受的载荷幅值远低于其屈服强度或抗拉强度,但经过反复的、长期的变形累积,最终发生断裂破坏的行为通常都是由于疲劳失效所致。由于缺乏对材料疲劳失效机理及疲劳微观力学性能的深入研究,各类因材料疲劳失效引起的事故因其难以预测性和极大破坏性而造成了巨大的经济损失。结构在载荷作用下的失效大多可归因于交变载荷诱发的疲劳失效,在航空航天等领域,高温、重载等苛刻服役条件下构件的疲劳破坏现象时有发生。由于对材料微观疲劳失效机制与性能弱化规律的不清晰,各类疲劳失效引发的事故因其难以预测性和极大的破坏性造成了巨大的经济损失。而多数构件在其服役工况下并非承受单一载荷作用,其失效和破坏大都是多种类型外界载荷共同作用的结果,相同材料在不同载荷模式下表现出迥然不同的力学行为。因此,为提升关键结构材料的服役安全性和可靠性,研究可对材料失效机理和微观结构演化进行有效评估的技术是经济发展与科技进步的迫切需要。
在传统的材料力学性能研究模式中,通常将力学性能的测试与显微结构的表征分别独立进行,无法在微纳米尺度上获取载荷作用下材料实时、动态的微区变形行为。随着光学成像技术、电子显微学技术、数字图像相关技术的快速发展,可对材料变形损伤和结构变化进行高分辨率可视化动态监测的原位力学测试技术被广泛应用,该技术搭建了微纳米级尺度下材 料的结构演化行为与载荷作用的相关性。原位拉伸测试技术应用广泛,麻省理工学院(MIT)、剑桥大学卡文迪许实验室、洛桑联邦理工学院(EPFL)、法国国家科学院(CNRS)等均取得了有代表性的研究成果。现有固态材料原位拉伸测试研究主要可分为两类:一是借助于微机电系统(MEMS)和聚焦离子束(FIB)技术制备微尺度试件和测试装置,通过扫描电子显微镜(SEM)或透射电子显微镜(TEM)等对低维材料所开展的研究;另一类是针对特征尺寸毫米级或亚毫米级以上的三维块体材料所开展的研究一般情况下,微构件制备过程中需通过“掩膜、腐蚀、沉积”等工艺,试件尺寸微小(微米级或亚微米级以下),测试结果分散性显著,且表现出与块体材料力学性能迥异的尺寸效应,因此无法准确地以低维构件的测试结果评估三维块体试件的力学性能。就较大尺寸的三维块体材料而言,德国Kammrath&Weiss、英国Deben和美国MTI Instruments等公司是目前少数具备完备的原位拉伸测试系统研制能力的公司。这些公司的一些型号产品的夹持机构甚至未考虑试件对中性定位的设计,但依然较为广泛地应用于块体材料的表征及测试领域。
对原位疲劳测试而言,因商业化疲劳试验设备大多体积较大,难以实现与成像设备的兼容使用,故一般不具备原位测试的功能;另一方面,小型化原位拉伸测试平台虽可实现往复的拉伸、压缩动作,但受限于伺服电机、减速机构和传动机构的回转惯性,其一般仅能应用于对加载频率要求不高的低周疲劳测试中;而现有微尺度下疲劳失效行为的研究对象多为非原位测试形成的疲劳断口,缺少对材料微区缺陷处滑移和微裂纹形核的原位研究。因此,原位疲劳测试技术面临着结构小型化、测试频率提高等问题。压电器件因其响应快速、结构小巧、可靠性高等特性被应用在微尺度构件的原位疲劳力学测试上。由于压电驱动器中大刚度的柔性铰链机构往往会削弱压电器件的输出位移,而小刚度的柔性铰链则由于其惯性载荷难以实现较高加载频率下的快速响应。因此,就柔性机构的设计需对其刚度和输出能力进行合理匹配。另一方面,在高温、高频服役工况下,压电器件由于其自身的温升和电荷积累会导致输出位移的衰减,因此合理的疲劳循环间隔时间和残余电荷释放是实现基于压电驱动式原位疲劳测试的关键。
此外,实际工况下许多构件的受力形式是多种载荷的共同作用,如拉伸载荷、剪切载荷、冲击压入载荷等,即材料的实际服役状态为复合应力状态。目前针对块体材料复合应力模式的原位测试研究多为静态测试,具体限于①基于电液伺服技术的双轴拉伸测试、②采用悬臂结构实现的压缩-弯曲复合应力测试以及③基于Arcan夹具实现的拉伸-剪切复合应力测试。2013年,S.M.Gao等采用三维数字散斑测量技术获取了织物复合材料在压缩-弯曲复合应力作用下的微区应变,并提出显著应变条件下试件不同轴向应力-应变本构关系的预测方法。S.Ackermann等利用双轴电液伺服驱动技术构建了相变诱导塑性钢的平面应力状态,并就不 同表面裂纹缺陷形式对该铸钢疲劳失效行为进行了分析。对于拉伸-剪切复合应力原位测试的研究,以色列特拉维夫大学的M.Arcan于1977年提出利用拉伸轴向与蝶形试件轴线互成锐角的方法来构建平面应力状态,Acran夹持机构结构简单,且可通过改变轴线偏移角获得多种平面应力状态,为研究各向异性材料的力学行为提供了有力工具。基于改进型的Arcan夹具,法国国立海军工程学院的J.Y.Cognard和美国南卡罗来纳大学的J.H.Yan分别搭建了CCD下的测试系统,并对复合材料的层间剥离行为等进行了研究。上述研究工作大都采用矢量合成与分解方法对拉伸-剪切复合应力状态进行解耦,且极少提及基于复杂平面应力状态下的疲劳与压入测试技术。
综上,针对复合载荷下原位疲劳测试技术的发展趋势及存在问题,结合对提升关键结构材料的服役安全性和可靠性的迫切需要,设计一种具有多种静动态耦合加载功能且可与光学成像组件或数字散斑应变分析系统兼容使用的疲劳测试系统是十分必要的。此外,借助开发的集成多种静动态测试功能的系统开展基于丰富初始应力状态的准静态压入测试或冲击压入测试亦具有重要的理论与应用价值。
发明内容
本发明的目的在于提供一种静动态载荷谱下材料力学性能原位测试系统与方法,解决了现有技术存在的上述问题。本发明机械主体单元的长、宽和高分别为590mm、578mm和392mm。该系统可与具有多自由度调整功能的光学成像系统以及三维数字散斑应变分析系统兼容使用。此外,该系统具备单(双)轴拉伸、单(双)轴疲劳、准静态压入、冲击压入等单一测试功能,亦可实现单(双)轴拉伸-剪切复合载荷、基于单(双)轴拉伸-剪切复合载荷的疲劳测试以及基于复杂平面应力状态的压入测试等丰富的复合载荷测试模式。本发明通过改进型Arcan夹持机构结合压电驱动子系统和双轴预拉伸子系统构建出丰富的平面应力状态,基于音圈电机驱动实现的压入测试方法,亦可实现材料在复杂服役条件下力学性能的测试与评估。与此同时,通过压入测试方法构建表面预制缺陷,本发明亦可为研究微缺陷的演化行为提供测试工具。
本发明的上述目的通过以下技术方案实现:
静动态载荷谱下材料力学性能原位测试系统,包括Arcan双轴夹持子系统、压入测试子系统、双轴疲劳测试子系统、双轴预拉伸加载子系统、信号检测子系统、支撑及调整子系统,其中,Arcan双轴夹持子系统中的组合式导向机构48通过螺纹连接方式分别与支撑及调整子系统中的导向机构支撑垫块5、x向力传感器基座29、y向力传感器基座12保持刚性连接;压入测试子系统中的激光发射器35、音圈电机39、激光接收器45通过螺纹连接方式 分别与支撑及调整子系统中的激光发射器两自由度电动移动平台36、音圈电机两自由度电动移动平台38、激光接收器两自由度电动移动平台2刚性连接,音圈电机两自由度电动移动平台38通过平台紧固螺钉52安装在龙门立柱1的横梁上;双轴疲劳测试子系统中的x、y向疲劳柔性铰链4、54通过疲劳紧固螺钉50与支撑及调整子系统中的导向机构支撑垫块5、信号检测子系统中的力传感器连接架44保持刚性连接;双轴预拉伸加载子系统中的y向固定基座19、悬臂支撑座23、蜗杆轴基座68和x向丝杠支撑座72通过螺纹连接方式与支撑及调整子系统中的基座10刚性连接,信号检测子系统中的卧式激光位移传感器Ⅰ、Ⅱ32、55与Arcan双轴夹持子系统中的改进型Arcan夹具31刚性连接,接触式位移传感器Ⅰ、Ⅱ42、43通过位移传感器移动杆基座56和位移传感器基体基座57与Arcan双轴夹持子系统中的改进型Arcan夹具31刚性连接,压痕激光位移传感器37与压入测试子系统中的音圈电机39的固定外壁刚性连接,且平面反光板34和压痕平面反光板41分别粘接固连在Arcan双轴夹持子系统中的改进型Arcan夹具31和压入测试子系统中的固定楔形环62的表层,y向力传感器11通过力传感器紧固螺母47紧固在y向力传感器基座12上。
所述的Arcan双轴夹持子系统包括四个正交布置且共面安装的改进型Arcan夹具31、力传感器连接架44、组合式导向机构48、同步调整手柄58,四个改进型Arcan夹具31的相对位置固定不变,具有等宽的环形凹槽,且四组环形凹槽的几何圆形为同一点,即为被测的十字形试件33的几何中心点;改进型Arcan夹具31通过力传感器连接架44与x向力传感器30、y向力传感器11连接,且通过圆柱销51沿改进型Arcan夹具31的环形凹槽的对称轴线周向移动;同步调整手柄58和组合式导向机构48分别对改进型Arcan夹具31的平面相对位置进行同步调整和导向。
所述的四个改进型Arcan夹具31围绕着十字形试件33的几何中心对称安装,每组相邻改进型Arcan夹具31的间隙均一致;其在水平面上与x、y向滚珠丝杠7、14轴向之间相对角度的调整依赖于具有直线和圆弧导向功能的组合式导向机构48;此外,四个改进型Arcan夹具31具有相同的环形凹槽结构,圆柱销51的外径小于凹槽的宽度,沿改进型Arcan夹具31凹槽和圆柱销51的周向方向,在其厚度和高度的中心处,分别预制出具有相同曲率半径的弧形导向面,该导向面与曲率半径一致的淬硬钢珠进行球面接触,以削弱测试过程中改进型Arcan夹具31沿周向方向运动的摩擦阻力,且可通过力传感器连接架44自由调整夹具体与丝杠轴线的相对角度,以实现十字形试件33与丝杠轴线互成任意锐角状态下的加载模式,当该角度为0°时,十字形试件承受轴线拉伸载荷作用,即为双轴拉伸测试模式;当上述角度为锐角时,十字形试件的中心区域将在其横截面处产生相对位置错动,十字形试件实 际处于双轴拉伸-剪切平面应力状态;与此同时,改进型Arcan夹具31的试件夹持端具有与十字形试件33圆弧过渡部分形状一致的凸起结构,该凸起结构高于十字形试件33的厚度,即以弧面接触的定位方式实现对十字形试件33在两个拉伸正交方向上的对中性;
所述的同步调整手柄58具有一组对称的定位销,该定位销的直径与改进型Arcan夹具31环形凹槽的宽度一致,且一组定位销的轴线间距与一组相邻改进型Arcan夹具31环形凹槽相邻末端半圆形圆心间的距离一致,即可通过两个正交布置的同步调整手柄58同时调整四个改进型Arcan夹具31相对于滚珠丝杠轴线的角度,以确保角度调整过程中四个改进型Arcan夹具31相对位置的准确性。
所述的组合式导向机构48由一组线性导轨副和一组弧形导轨副组成,用于改进型Arcan夹具31分别沿十字形试件33拉伸方向和剪切方向的同步导向;当四个改进型Arcan夹具31产生相对运动时,被测十字形试件33的几何轴线与丝杠轴线所成的相对锐角随加载进程呈单调递减趋势,即改进型Arcan夹具31的运动形式为直线运动和围绕十字形试件33的几何中点做平面旋转运动的组合;因此,线性导轨副用于十字形试件33拉伸位移的导向,而弧形导轨副用于十字形试件33剪切位移的导向,所述弧形导轨副由弧形导轨65通过弧形导轨滑块67与弧形导轨平台66连接组成。
所述的压入测试子系统包括激光发射器35、音圈电机39、压痕力传感器40、压痕平面反光板41、激光接收器45、压痕力传感器螺母64以及压头夹持单元46,其中压头夹持单元46包括压头59、压头定位销轴60、移动楔形环61、固定楔形环62和固定档环63,激光发射器35发出的细径可见激光线束由激光接收器45实时接收,即可对压头59的竖直方向的位置进行初始探测,压头59采用的楔形预紧的安装形式可确保其使用过程中的位置的准确性;压痕力传感器40的其中一端螺栓通过压痕力传感器螺母64与音圈电机39的移动端保持刚性连接,其另一端螺栓与压头夹持单元46中的固定楔形环62亦通过螺纹连接方式紧固;
所述激光发射器35和激光接收器45同轴安装且之间具有连续的细径可见光通路,该光学通路与十字形试件已抛光处理的上表面具有确定的微小间距,用于对压头59尖端在竖直方向上的绝对位置进行检测;初始状态下,压头59尖端的位置高于可见光束,当音圈电机39的移动端产生等速运动或恒加速运动后,在压头59尖端与可见光束发生干涉的瞬间,激光接收器45无法探测到光学信号,基于激光接收器45的反馈信号,此时音圈电机39继续在时序电压的作用下产生确定行程的准静态等速运动或恒加速运动,从而实现对十字形试件33的静态压入测试或冲击压入测试;
所述压头59的圆柱柄端和移动楔形环61的内侧圆柱面在垂直于其轴向方向均加工有孔径一致的通孔,压头定位销轴60以过盈配合的方式安装在该通孔内,即压头59与移动楔形环61的相对位置是固定的;移动楔形环61与固定楔形环62通过斜度一致的圆锥面进行定位,且移动楔形环61的宽端面与固定档环63保持面接触,固定楔形环62的窄端面通过螺纹连接的方式与固定档环63保持刚性连接;该楔形定位方法可实现压头59位置的准确性。
所述的双轴疲劳测试子系统由一组正交布置的x、y向压电驱动器组成,x向压电驱动器由x向压电叠堆3和x向疲劳柔性铰链4组成,y向压电驱动器由y向压电叠堆53和y向疲劳柔性铰链54组成,且x向疲劳柔性铰链4、y向疲劳柔性铰链54为对称式圆弧过渡型柔性结构;x、y向压电驱动器沿改进型Arcan夹具31外缘周向正交安装,x、y向压电叠堆3、53始终处于受压状态,且其弹性伸长和恢复为被测十字形试件33提供了应力比为0的交变应力;x、y向疲劳柔性铰链4、54的包络结构由三组平行排布的柔性薄壁组成,沿垂直于x、y向压电叠堆3、53的中轴线方向,x、y向疲劳柔性铰链4、54的柔度逐渐减小直至可视为刚体结构;当向x、y向压电叠堆3、53施加同频、等幅的交变电压时,x、y向疲劳柔性铰链4、54沿其内壁处的柔性关节产生相应的角位移,十字形试件33亦承受同频、等幅的可控交变载荷。
所述的双轴预拉伸加载子系统是:x向导轨滑块9通过燕尾楔形结构浮于与基座10刚性连接的x向线性导轨8上方,同理,y向导轨滑块21亦通过燕尾楔形结构浮于y向线性导轨20上,y向丝杠支撑座13和y向线性导轨20通过螺纹连接方式刚性安装于y向固定基座19上;此外,y向丝杠螺母22套接于x向滚珠丝杠7的法兰上,且同x向丝杠螺母支架24一并通过螺纹连接方式刚性安装在x向导轨滑块9上;y向伺服电机27的输出轴与y向主动直齿轮26的齿轮轴分别内嵌于挠性联轴器76的通孔内,从而实现y向伺服电机27输出扭矩运动的传递;平键49内嵌于蜗杆轴74的键槽中,且其两侧定位面与直齿轮,即x向直齿轮Ⅰ、Ⅱ15、18、y向直齿轮Ⅰ、Ⅱ25、28保持面接触,定位销轴75过盈安装在蜗杆轴74轴端处与其轴线方向垂直的内孔中,以限制直齿轮,即x向直齿轮Ⅰ、Ⅱ15、18、y向直齿轮Ⅰ、Ⅱ25、28的轴向移动;蜗轮71通过其内孔和蜗轮定位销钉69与x、y向滚珠丝杠7、14的轴端套接并实现旋转自由度的限制;外圈定位轴承73的轴承内孔和轴承外圈分别与x、y向主动直齿轮17、26齿轮轴以及蜗杆轴基座68上的轴承座孔壁过盈配合,外圈定位轴承73挡圈与蜗杆轴基座68的外壁保持面接触以限制x、y向主动直齿轮17、26齿轮轴的轴向移动;
一组x向滚珠丝杠7的轴线同轴,其螺旋线形均为右旋,且均与x向直齿轮Ⅰ、Ⅱ15、 18、x主动直齿轮17的几何轴线垂直;由蜗杆70、蜗轮71构成的单级蜗杆蜗轮减速机构的传动比为40。
所述的信号检测子系统包括x向力传感器30、y向力传感器11、卧式激光位移传感器Ⅰ、Ⅱ32、55、平面反光板34、压痕激光位移传感器37、压痕力传感器40、压痕平面反光板41、接触式位移传感器Ⅰ、Ⅱ42、43、位移传感器移动杆基座56和位移传感器基体基座57,其中一组卧式激光位移传感器Ⅰ、Ⅱ32、55和接触式位移传感器Ⅰ、Ⅱ42、43分别正交安装,且x向力传感器30、y向力传感器11的几何轴线与一组卧式激光位移传感器Ⅰ、Ⅱ32、55的入、反射光对称线以及接触式位移传感器Ⅰ、Ⅱ42、43的几何轴线互成锐角。
所述的支撑及调整子系统包括龙门立柱1、激光接收器两自由度电动移动平台2、导向机构支撑垫块5、基座10、激光发射器两自由度电动移动平台36和音圈电机两自由度电动移动平台38,其中基座10用于支撑双轴预拉伸加载子系统和双轴疲劳测试子系统,与龙门立柱1刚性连接的激光接收器两自由度电动移动平台2、导向机构支撑垫块5、激光发射器两自由度电动移动平台36和音圈电机两自由度电动移动平台38分别用于对压入测试子系统中的激光接收器45、激光发射器35和音圈电机39的位置进行实时调整。
本发明的另一目的在于提供一种静动态载荷谱下材料力学性能原位测试方法,针对Arcan双轴夹持子系统和双轴预拉伸加载子系统的应力-应变解耦方法,将十字形试件33的中心区域和标距部分简化为变形均匀的单元体;在计算拉伸-剪切和双轴拉伸平面应力状态下十字形试件33各载荷分量引起的真实应力及应变时,通过叠加原理,将拉伸-剪切和双轴拉伸载荷对十字形试件33应力及应变的综合影响解耦为各单一载荷作用下应力-应变本构关系的矢量耦合叠加,综合考虑他类载荷在目标载荷作用方向上引起的材料弹性延展、塑性流动和截面变化,定量描述简化模型沿目标载荷方向上的单元体变形行为,获取目标载荷作用下的应力、应变与已知耦合载荷、位移量的确定关系;步骤如下:就拉伸-剪切复合应力模式而言,为计算当外部载荷与试件轴线方向成锐角时十字形试件33的实际拉伸应变与切应变,建立可表征十字形试件33标距部分的简化正六面体模型,六面体的初始几何轴线与拉伸方向所成的偏移角为已知量,其长、宽、高分别对应试件标距部分的长度、宽度及厚度;在与拉伸方向同轴的外部载荷作用下,该正六面体模型转变为斜六面体,其变化的几何轴线与初始几何轴线互成的角度可被定量计算,蝶形试件的实际拉伸及剪切的应力、应变与直接通过力传感器和位移传感器采集并计算,即可解耦出相应的拉伸应力-应变和剪切应力-应变曲线,并通过数字散斑测试技术的三维应变分析对提出的解耦方法进行试验验证;就双轴拉伸模式而言,十字形试件33的中心区域在平面应力的作用下会均布扩展,而平行梁部分的 宽度则沿着载荷作用方向逐渐减小,通过仿真分析和图像试验方法,可建立十字形试件的变形分布与载荷作用的定量关系。
本发明的有益效果在于:结构紧凑,测试精度高,主体尺寸为590mm×578mm×392mm。与现有技术相比,本发明可实现基于丰富双轴拉伸-剪切预应力的疲劳测试,即可构建复杂的静动态载荷谱,可用于研究构件在复杂预应力状态下疲劳裂纹萌生或扩展的规律,本发明亦可实现基于多维平面应力状态下的压入测试,即可通过压入测试的方法获取承受复杂应力构件的硬度图谱或杨氏模量图谱。测试过程中,亦可利用压入测试子系统在十字形试件的不同特征区域预制初始单点压痕缺陷或压痕阵列,以研究微缺陷的演化行为和变形损伤机制。此外,本发明亦可独立开展各单一载荷模式的原位力学测试,测试内容丰富,与具有多自由度调整功能的光学成像系统以及三维数字散斑应变分析系统具有良好的兼容性,可对构件的性能弱化规律和材料的优化制备方法提供评估工具。
通过集成正交平面内双轴拉伸、剪切的静态测试功能、双轴拉-拉模式疲劳测试功能、静动态压入测试功能,并可构建复杂的静动态载荷谱,并针对薄膜材料或块体材料开展多种模式的复合载荷力学性能评估,如基于双轴预拉伸载荷的高周疲劳测试和基于双轴拉伸-剪切预载荷的冲击压入测试等。与此同时,通过在形试件的中心区域和十字形臂区域预制特征缺陷,并借助可变倍式光学成像系统或数字散斑应变分析系统的分析功能,本发明亦可实现构件微缺陷在多维应力状态下变形行为和裂纹扩展规律的研究,即可对制品的性能弱化规律和材料的优化制备方法提供评估工具。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明的整体外观结构示意图;
图2为本发明的主视示意图;
图3为本发明的左视示意图;
图4为本发明的俯视示意图;
图5为本发明的Arcan夹持单元示意图;
图6为本发明的双轴拉伸及双轴拉伸-剪切复合加载原理示意图;
图7为本发明的压痕加载单元示意图;
图8为本发明的压头夹持方法示意图;
图9为本发明的组合式导向机构示意图;
图10为本发明的压电驱动式疲劳加载单元示意图;
图11为本发明的静动态耦合测试应力-时间曲线示意图;
图12为本发明的双轴预拉伸加载子系统示意图;
图13中(a)部分为拉伸-剪切复合载荷模式载荷及位移的解耦模型,(b)部分为计算应变的钝角三角形,(c)部分为载荷解耦方法。
图14为十字形试件在双轴拉伸载荷作用下应力、应变计算的理论模型。
图中:图中:1、龙门立柱;2、激光接收器两自由度电动移动平台;3、x向压电叠堆;4、x向疲劳柔性铰链;5、导向机构支撑垫块;6、x向丝杠螺母;7、x向滚珠丝杠;8、x向线性导轨;9、x向导轨滑块;10、基座;11、y向力传感器;12、y向力传感器基座;13、y向丝杠支撑座;14、y向滚珠丝杠;15、x向直齿轮Ⅰ;16、x向伺服电机;17、x向主动直齿轮;18、x向直齿轮Ⅱ;19、y向固定基座;20、y向线性导轨;21、y向导轨滑块;22、y向丝杠螺母;23、悬臂支撑座;24、x向丝杠螺母支架;25、y向直齿轮Ⅰ;26、y向主动直齿轮;27、y向伺服电机;28、y向直齿轮Ⅱ;29、x向力传感器基座;30、x向力传感器;31、改进型Arcan夹具;32、卧式激光位移传感器Ⅰ;33、十字形试件;34、平面反光板;35、激光发射器;36、激光发射器两自由度电动移动平台;37、压痕激光位移传感器;38、音圈电机两自由度电动移动平台;39、音圈电机;40、压痕力传感器;41、压痕平面反光板;42、接触式位移传感器Ⅰ;43、接触式位移传感器Ⅱ;44、力传感器连接架;45、激光接收器;46、压头夹持单元;47、力传感器紧固螺母;48、组合式导向机构;49、平键;50、疲劳紧固螺钉;51、圆柱销;52、平台紧固螺钉;53、y向压电叠堆;54、y向疲劳柔性铰链;55、卧式激光位移传感器Ⅱ;56、位移传感器移动杆基座;57、位移传感器基体基座;58、同步调整手柄;59、压头;60、压头定位销轴;61、移动楔形环;62、固定楔形环;63、固定档环;64、压痕力传感器螺母;65、弧形导轨;66、弧形导轨平台;67、弧形导轨滑块;68、蜗杆轴基座;69、蜗轮定位销钉;70、蜗杆;71、蜗轮;72、x向丝杠支撑座;73、外圈定位轴承;74、蜗杆轴;75、定位销轴;76、挠性联轴器。
具体实施方式
下面结合附图进一步说明本发明的详细内容及其具体实施方式。
参见图1至图14所示,本发明的静动态载荷谱下材料力学性能原位测试系统,机械单元的主体尺寸为590mm×578mm×392mm,是根据德国GOM-ARAMIS型三维应变光学测量系统和日本尼康SMZ745型光学体式显微镜的观测条件所设计的,同时可与其他类型的视频引伸计和具有连续变倍功能的光学显微成像系统兼容使用。
参见图1至图4所示,本发明的静动态载荷谱下材料力学性能原位测试系统,包括Arcan双轴夹持子系统、压入测试子系统、双轴疲劳测试子系统、双轴预拉伸加载子系统、信号检测子系统、支撑及调整子系统,其中,Arcan双轴夹持子系统中的组合式导向机构48通过螺纹连接方式分别与支撑及调整子系统中的导向机构支撑垫块5、x向力传感器基座29、y向力传感器基座12保持刚性连接;压入测试子系统中的激光发射器35、音圈电机39、激光接收器45通过螺纹连接方式分别与支撑及调整子系统中的激光发射器两自由度电动移动平台36、音圈电机两自由度电动移动平台38、激光接收器两自由度电动移动平台2刚性连接,音圈电机两自由度电动移动平台38通过平台紧固螺钉52安装在龙门立柱1的横梁上;双轴疲劳测试子系统中的x、y向疲劳柔性铰链4、54通过疲劳紧固螺钉50与支撑及调整子系统中的导向机构支撑垫块5刚性连接和信号检测子系统中的力传感器连接架44保持刚性连接;双轴预拉伸加载子系统中的y向固定基座19、悬臂支撑座23、蜗杆轴基座68和x向丝杠支撑座72通过螺纹连接方式与支撑及调整子系统中的基座10刚性连接,信号检测子系统中的卧式激光位移传感器Ⅰ、Ⅱ32、55与Arcan双轴夹持子系统中的改进型Arcan夹具31刚性连接,接触式位移传感器Ⅰ、Ⅱ42、43通过位移传感器移动杆基座56和位移传感器基体基座57与Arcan双轴夹持子系统中的改进型Arcan夹具31刚性连接,压痕激光位移传感器37与压入测试子系统中的音圈电机39的固定外壁刚性连接,且平面反光板34和压痕平面反光板41分别粘接固连在Arcan双轴夹持子系统中的改进型Arcan夹具31和压入测试子系统中的固定楔形环62的表层,y向力传感器11通过力传感器紧固螺母47紧固在y向力传感器基座12上。
参见图5所示,所述的Arcan双轴夹持子系统包括四个正交布置且共面安装的改进型Arcan夹具31、力传感器连接架44、组合式导向机构48、同步调整手柄58,四个改进型Arcan夹具31的相对位置固定不变,具有等宽的环形凹槽,且四组环形凹槽的几何圆形为同一点,即为被测的十字形试件33的几何中心点;改进型Arcan夹具31通过力传感器连接架44与x向力传感器30、y向力传感器11连接,且通过圆柱销51沿改进型Arcan夹具31的环形凹槽的对称轴线周向移动;同步调整手柄58和组合式导向机构48分别用于对改进型Arcan夹具31的平面相对位置进行同步调整和导向。
所述的四个改进型Arcan夹具31围绕着十字形试件33的几何中心对称安装,每组相邻改进型Arcan夹具31的间隙均一致;其在水平面上与x、y向滚珠丝杠7、14轴向之间相对角度的调整依赖于具有直线和圆弧导向功能的组合式导向机构48;此外,四个改进型Arcan夹具31具有相同的环形凹槽结构,圆柱销51的外径略小于凹槽的宽度,沿改进型Arcan 夹具31凹槽和圆柱销51的周向方向,在其厚度和高度的中心处,分别预制出具有相同曲率半径的弧形导向面,该导向面与曲率半径一致的淬硬钢珠进行球面接触,以削弱测试过程中改进型Arcan夹具31沿周向方向运动的摩擦阻力,且可通过力传感器连接架44自由调整夹具体与丝杠轴线的相对角度,以实现十字形试件33与丝杠轴线互成任意锐角状态下的加载模式,当该角度为0°时,十字形试件承受轴线拉伸载荷作用,即为双轴拉伸测试模式;当上述角度为锐角时,十字形试件的中心区域将在其横截面处产生相对位置错动,十字形试件实际处于双轴拉伸-剪切平面应力状态;与此同时,改进型Arcan夹具31的试件夹持端具有与十字形试件33圆弧过渡部分形状一致的凸起结构,该凸起结构高于十字形试件33的厚度,即以弧面接触的定位方式实现对十字形试件33在两个拉伸正交方向上的对中性;
所述的同步调整手柄58具有一组对称的定位销,该定位销的直径与改进型Arcan夹具31环形凹槽的宽度一致,且一组定位销的轴线间距与一组相邻改进型Arcan夹具31环形凹槽相邻末端半圆形圆心间的距离一致,即可通过两个正交布置的同步调整手柄58同时调整四个改进型Arcan夹具31相对于滚珠丝杠轴线的角度,以确保角度调整过程中四个改进型Arcan夹具31相对位置的准确性。
所述的组合式导向机构48由一组线性导轨副和一组弧形导轨副组成,用于改进型Arcan夹具31分别沿十字形试件33拉伸方向和剪切方向的同步导向;当四个改进型Arcan夹具31产生相对运动时,被测十字形试件33的几何轴线与丝杠轴线所成的相对锐角随加载进程呈单调递减趋势,即改进型Arcan夹具31的运动形式为直线运动和围绕十字形试件33的几何中点做平面旋转运动的组合;因此,线性导轨副用于十字形试件33拉伸位移的导向,而弧形导轨副用于十字形试件33剪切位移的导向,所述弧形导轨副由弧形导轨65通过弧形导轨滑块67与弧形导轨平台66连接组成。
所述的压入测试子系统包括激光发射器35、音圈电机39、压痕力传感器40、压痕平面反光板41、激光接收器45、压痕力传感器螺母64以及压头夹持单元46,其中压头夹持单元46包括压头59、压头定位销轴60、移动楔形环61、固定楔形环62和固定档环63,激光发射器35发出的细径可见激光线束由激光接收器45实时接收,即可对压头59的竖直方向的位置进行初始探测,压头59采用的楔形预紧的安装形式可确保其使用过程中的位置的准确性;压痕力传感器40的其中一端螺栓通过压痕力传感器螺母64与音圈电机39的移动端保持刚性连接,其另一端螺栓与压头夹持单元46中的固定楔形环62亦通过螺纹连接方式紧固。
所述激光发射器35和激光接收器45同轴安装且之间具有连续的细径可见光通路,该 光学通路与十字形试件已抛光处理的上表面具有确定的微小间距,用于对压头59尖端在竖直方向上的绝对位置进行检测;初始状态下,压头59尖端的位置高于可见光束,当音圈电机39的移动端产生等速运动或恒加速运动后,在压头59尖端与可见光束发生干涉的瞬间,激光接收器45无法探测到光学信号,基于激光接收器45的反馈信号,此时音圈电机39继续在时序电压的作用下产生确定行程的准静态等速运动或恒加速运动,从而实现对十字形试件33的静态压入测试或冲击压入测试。
所述的压头59的圆柱柄端和移动楔形环61的内侧圆柱面在垂直于其轴向方向均加工有孔径一致的通孔,压头定位销轴60以过盈配合的方式安装在该通孔内,即压头59与移动楔形环61的相对位置是固定的;移动楔形环61与固定楔形环62通过斜度一致的圆锥面进行定位,且移动楔形环61的宽端面与固定档环63保持面接触,固定楔形环62的窄端面通过螺纹连接的方式与固定档环63保持刚性连接;该楔形定位方法可实现压头59位置的准确性。
所述的双轴疲劳测试子系统由一组正交布置的x、y向压电驱动器组成,x向压电驱动器由x向压电叠堆3和x向疲劳柔性铰链4组成,y向压电驱动器由y向压电叠堆53和y向疲劳柔性铰链54组成,且x向疲劳柔性铰链4、y向疲劳柔性铰链54为对称式圆弧过渡型柔性结构;
x、y向压电驱动器沿改进型Arcan夹具31外缘周向正交安装,x、y向压电叠堆3、53始终处于受压状态,且其弹性伸长和恢复为被测十字形试件33提供了应力比为0的交变应力;x、y向疲劳柔性铰链4、54的包络结构由三组平行排布的柔性薄壁组成,沿垂直于x、y向压电叠堆3、53的中轴线方向,x、y向疲劳柔性铰链4、54的柔度逐渐减小直至可视为刚体结构;当向x、y向压电叠堆3、53施加同频、等幅的交变电压时,x、y向疲劳柔性铰链4、54沿其内壁处的柔性关节产生相应的角位移,十字形试件33亦承受同频、等幅的可控交变载荷。
参见图6所示,所述的双轴预拉伸加载子系统包括y向直齿轮Ⅰ、Ⅱ25、28、x向丝杠螺母6、x向滚珠丝杠7、y向滚珠丝杠14、x向线性导轨8、x向导轨滑块9、x向直齿轮Ⅰ、Ⅱ15、18、x向伺服电机16、y向伺服电机27、x向主动直齿轮17、y向主动直齿轮26、y向线性导轨20、y向导轨滑块21、y向丝杠螺母22、悬臂支撑座23、蜗轮定位销钉69、蜗杆70、蜗轮71、外圈定位轴承73、蜗杆轴74、定位销轴75和挠性联轴器76,x向导轨滑块9通过燕尾楔形结构浮于与基座10刚性连接的x向线性导轨8上方,同理,y向导轨滑块21亦通过燕尾楔形结构浮于y向线性导轨20上,且y向丝杠支撑座13和y向线性导轨 20通过螺纹连接方式刚性安装于y向固定基座19上。此外,y向丝杠螺母22套接于x向滚珠丝杠7的法兰中上,且同x向丝杠螺母支架24一并通过螺纹连接方式刚性安装在x向导轨滑块9上。y向伺服电机27的输出轴与y向主动直齿轮26的齿轮轴分别内嵌于挠性联轴器76的通孔内,从而实现y向伺服电机27输出扭矩运动的传递。平键49内嵌于蜗杆轴74的键槽中,且其两侧定位面与直齿轮(如x向直齿轮Ⅰ、Ⅱ15、18)保持面接触,定位销轴75过盈安装在蜗杆轴74轴端处与其轴线方向垂直的内孔中,以限制直齿轮(如x向直齿轮Ⅰ、Ⅱ15、18)的轴向移动。蜗轮71分别通过其内孔和蜗轮定位销钉69与x、y向滚珠丝杠7、14的轴端套接并实现旋转自由度的限制。外圈定位轴承73的轴承内孔和轴承外圈分别与x、y向主动直齿轮17、26齿轮轴以及蜗杆轴基座68上的轴承座孔壁过盈配合,外圈定位轴承73挡圈与蜗杆轴基座68的外壁保持面接触以限制主动直齿轮17、26齿轮轴的轴向移动。
其中一组x向滚珠丝杠7的轴线同轴,其螺旋线形均为右旋,且均与x向直齿轮Ⅰ、Ⅱ15、18、x主动直齿轮17的几何轴线垂直;由蜗杆70、蜗轮71构成的单级蜗杆蜗轮减速机构的传动比为40;
所述双轴预拉伸加载子系统为十字形试件33提供双轴可控预应力或预应变,即开展基于丰富双轴拉伸-剪切平面应力状态下的疲劳测试,所述双轴预拉伸子系统可实现沿两个正交方向的同轴异向等速拉伸运动,设加载方向为x向,所述双轴预拉伸子系统仅由单独的x向伺服电机16提供扭矩和旋转运动输出,相应地,与x向主动直齿轮17啮合的x向直齿轮Ⅰ、Ⅱ15、18分别输出等速、同步且旋向相同的旋转运动;一组同轴相对安装的蜗轮70、蜗杆71的旋向相反,即分别为左旋式和右旋式,一组x向滚珠丝杠7均为右旋式且输出等速、同步但旋向相反的运动,从而驱动一组x向丝杠螺母6输出同轴异向运动,即可确保十字形试件33的几何中心在任意平面应力状态下均处于测试系统和成像视野的中心区域而不随加载过程产生定向移动。
所述的信号检测子系统包括x向力传感器30、y向力传感器11、卧式激光位移传感器Ⅰ、Ⅱ32、55、平面反光板34、压痕激光位移传感器37、压痕力传感器40、压痕平面反光板41、接触式位移传感器Ⅰ、Ⅱ42、43、位移传感器移动杆基座56和位移传感器基体基座57,其中一组卧式激光位移传感器Ⅰ、Ⅱ32、55和接触式位移传感器Ⅰ、Ⅱ42、43分别正交安装,且x向力传感器30、y向力传感器11的几何轴线与一组卧式激光位移传感器Ⅰ、Ⅱ32、55的入、反射光对称线以及接触式位移传感器Ⅰ、Ⅱ42、43的几何轴线互成锐角。
承受双轴拉伸-剪切平面应力的十字形试件33的宏观与微观变形分别由一组接触式位 移传感器Ⅰ、Ⅱ42、43和卧式激光位移传感器Ⅰ、Ⅱ32、55进行检测;当十字形试件处于弹性变形阶段时,具有较小量程和较高测试分辨率的卧式激光位移传感器Ⅰ、Ⅱ32、55用于对微小弹性变形(即微观变形)的检测,当试件处于硬化或颈缩变形阶段时,接触式位移传感器Ⅰ、Ⅱ42、43用于检测一组改进型Arcan夹具31之间的相对变形(即宏观变形)。
所述的支撑及调整子系统包括龙门立柱1、激光接收器两自由度电动移动平台2、导向机构支撑垫块5、基座10、激光发射器两自由度电动移动平台36和音圈电机两自由度电动移动平台38,其中基座10用于支撑双轴预拉伸加载子系统和双轴疲劳测试子系统,与龙门立柱1刚性连接的激光接收器两自由度电动移动平台2、导向机构支撑垫块5、激光发射器两自由度电动移动平台36和音圈电机两自由度电动移动平台38分别用于对压入测试子系统中的激光接收器45、激光发射器35和音圈电机39的位置进行实时调整。
本发明静动态载荷谱下材料力学性能原位测试方法,针对Arcan双轴夹持子系统和双轴预拉伸加载子系统的应力-应变解耦方法将十字形试件33的中心区域和标距部分简化为变形均匀的单元体。在计算拉伸-剪切和双轴拉伸平面应力状态下十字形试件33各载荷分量引起的真实应力及应变时,通过叠加原理,将拉伸-剪切和双轴拉伸载荷对十字形试件33应力及应变的综合影响解耦为各单一载荷作用下应力-应变本构关系的矢量耦合叠加,综合考虑他类载荷在目标载荷作用方向上引起的材料弹性延展、塑性流动和截面变化,定量描述简化模型沿目标载荷方向上的单元体变形行为,获取目标载荷作用下的应力、应变与已知耦合载荷、位移量的确定关系。步骤如下:就拉伸-剪切复合应力模式而言,为计算当外部载荷与试件轴线方向成锐角时十字形试件33的实际拉伸应变与切应变,建立可表征十字形试件33标距部分的简化正六面体模型,六面体的初始几何轴线与拉伸方向所成的偏移角为已知量,其长、宽、高分别对应试件标距部分的长度、宽度及厚度。在与拉伸方向同轴的外部载荷作用下,该正六面体模型转变为斜六面体,其变化的几何轴线与初始几何轴线互成的角度可被定量计算,蝶形试件的实际拉伸及剪切的应力、应变与直接通过力传感器和位移传感器采集并计算,即可解耦出相应的拉伸应力-应变和剪切应力-应变曲线,并通过数字散斑测试技术的三维应变分析对提出的解耦方法进行试验验证。
就双轴拉伸模式而言,十字形试件33的中心区域在平面应力的作用下会均布扩展,而平行梁部分的宽度则沿着载荷作用方向逐渐减小,通过仿真分析和图像试验方法,可建立十字形试件的变形分布与载荷作用的定量关系。
参见图1至图14所示,本发明中涉及到的元器件和具体型号为:音圈电机39的型号为BET-TIME-S0006,其最大输出载荷为6N,最大加载行程为10mm,驱动电压和反电动势 分别为13.3V和4.5V。x、y向压电叠堆3、53的型号为PANT-PTJ1501414401,其主体尺寸为14mm×14mm×40mm,最大标称位移为40μm,最大推力为7200N,刚度为180N/μm,谐振频率为37kHz。括x、y向力传感器30、11为拉压两用型,其型号为UNIPULSE-UNCLB-500N,测量行程为500N,线性精度为0.5%,额定负载下的轴向变形量为0.01mm。压痕力传感器40的型号为Maxwell-FB10,其测量行程为30N,线性精度为0.5%,输出灵敏度为1mV/V。压痕激光位移传感器37的型号为KEYENCE-LK-G10,其光学参考距离为10mm,测量范围为1mm,测试分辨率为10nm。卧式激光位移传感器Ⅰ、Ⅱ32、55型号为HL-C203BE-MK,其光学参考距离为30mm,线性精度为0.03%,测量范围为1mm,测试分辨率为200nm。接触式位移传感器Ⅰ、Ⅱ42、43的型号为SOWAY-SDV-H20,其量行程为8mm,测试分辨率为1μm。x、y向伺服电机16、27的型号为YASKAWA-SGMAV,其额定功率为150V,额定转矩为0.477N·M,额定转速和最高转速分别为3000r/min和6000r/min。龙门立柱1、基座10、力传感器连接架44、同步调整手柄58和改进型Arcan夹具31的弧形夹持定位部分采用多轴数控铣削方式加工,移动楔形环61、固定楔形环62、固定档环63和蜗杆轴74等回转类零部件采用数控车削方式加工,而x、y向疲劳柔性铰链4、54、y向固定基座19和改进型Arcan夹具31的环形凹槽等结构采用慢走丝线切割方式加工。龙门立柱1与各两自由度电动移动平台间以及基座10与各支撑元件间的安装平面均采用磨削平坦化处理。x、y向疲劳柔性铰链4、54所使用的材料为65Mn钢材,该型钢材符合GB/T1222-2007的制备要求,其对称循环疲劳极限优于400MPa。
针对x、y向伺服电机16、27的伺服控制,本实施例采用与伺服电机转子固连的光电编码器的数字量信号或x、y向力传感器30、11输出的模拟信号作为反馈信号,以构建原位力学测试的闭环控制系统。该闭环控制系统主要包括工控机、直流稳压电源、电机驱动控制器、数据采集卡、调理放大电路及上位机软件等。测试过程中,载荷速率或位移速率作为控制参数通过上位机软件给定,该指令以脉冲的形式由多轴运动控制卡触发,并作用于伺服电机的绕组,x、y向伺服电机16、27输出相应的旋转运动。在此基础上,通过载荷/传感器检测信号和光电编码器的数字信号以高采样频率读入16位数据采集卡。在每个采样周期内,载荷/位移模拟信号与上位机软件预先设定的载荷/位移信号进行实时比较和计算,并将计算误差送至上位机处理,直至检测信号的采样值与设置信号的变差量在允许范围内。、此外,测试过程中所有的大功率电路均与低功率器件分离以减小电磁干扰并保证使用安全。
在双轴预拉伸加载子系统的传动单元中,x、y向伺服电机16、27输出的额定扭矩及角速率分别为Tm和ωm,挠性联轴器76的传动效率为η1,蜗轮蜗杆的输入、输出扭矩分别为Tw1和Tw2,Tw2即为右旋滚珠丝杠螺母副的输入扭矩,加载子系统的输出载荷F与滚珠丝杠 的导程Pb及传动效率η2密切相关,且可表达为:
F=2πη2Tw2/Pb       (1)
其中,η2取决于丝杠的导程角α和摩擦角β,且表达为:
η2=tanα/tan(α+β)      (2)
而滚珠丝杠螺母副的输入扭矩Tw2依赖于蜗轮蜗杆传动副的扭矩Tw1、传动效率ηw及减速比iw。有此可知,Tw2可表达为:
Tw2=Tmη1ηwiw      (3)
被测十字形试件33首先通过线切割方式加工出各向对称的结构,为避免应力集中,在其中心区域与十字形臂区域的连接处预制与半径为1.5mm的圆弧过渡区,十字形臂区域的宽度与,改进型Arcan夹具31一组弧形凸起结构的最小距离一致。在测试之前,通过机械抛光、电化学抛光等方式对十字形试件33进行单侧抛光处理,若试件为单晶体或多晶体材料,亦可通过特定的腐蚀剂制备其金相组织。此外,为对疲劳裂纹萌生和扩展规律进行观测,可采用压入测试方法在十字形试件33的中心区域与或字形臂区域制备不同深度的压痕缺陷。具体的测试过程中,首先根据测试模式的需要,将一组同步调整手柄58的定位销结构分别嵌入一组相邻改进型Arcan夹具31的环形凹槽中,同时转动四个改进型Arcan夹具31,并利用高分辨率数显角度测量仪实时测量夹具体直线边缘与滚珠丝杠轴线的之间的相对角度。在完成角度预设后,将十字形试件33安装于四个改进型Arcan夹具31的弧形凸起结构间,并通过压板将十字形试件33的夹持部分紧固。其次,向x、y向伺服电机16、27绕组施加相同幅值、时序的脉冲信号,驱动x、y向伺服电机16、27同步、等速旋转,四个改进型Arcan夹具31产生相互背离的同步、等速运动。相应地,十字形试件33承受等幅的平面拉伸-剪切应力状态。通过对上位机软件中应力-应变曲线的实时观测,可对加载进程,即十字形试件33的应力或应变状态实时控制,测试过程中可选择弹性变形阶段、屈服变形阶段、硬化变形阶段、最高应力阶段和颈缩阶段等代表性应力或应变状态。在此基础上,基于已知的平面应力状态,可在上位机软件中设定不同正交方向的测试频率、幅值,同时,通过多通道压电控制器向x、y向压电叠堆3、53施加具有特定频率和幅值的正弦信号或脉冲信号作为疲劳驱动动力源。x、y向压电叠堆3、53始终处于受压状态,且最高加载频率为100Hz,此时十字形试件33同时承受双轴静动态载荷,即可开展基于复杂平面应力状态下的疲劳测试。与此同时,基于卧式激光位移传感器Ⅰ、Ⅱ32、55分别用于检测十字形试件33两正交方向的弹性变形和交变变形,接触式位移传感器Ⅰ、Ⅱ42、43分别用于检测十字形试件33两正交方向的塑性变形,类似地,x、y向力传感器30、11用于检测十字形试件33所承受 的复合载荷。结合相应的拉伸-剪切应力-应变本构关系解耦方法,可对十字形试件33所承受的各向拉伸、剪切载荷与变形进行定量分析。
此外,基于相同的复杂平面应力状态的构建方法,亦可利用音圈电机39开展基于复杂平面应力状态下的静态压入测试或冲击压入测试。本发明中使用的音圈电机39具有结构简单、惯性负载小、高速度、高加速度、响应速度快和高精度驱动等卓越特性。使用过程中通过向音圈电机39的线圈供电,依据洛伦兹力原理,线圈带动执行机构同步运动。当压头59尖端的位置高于激光发射器35与激光接收器45之间的可见光束时,音圈电机39根据测试模式的不同产生等速运动或横加速运动,而光路断开后,压头59尖端的移动位移遵循上位机软件预先设定的位移行程,从而实现静态压入测试或冲击压入测试。压入测试过程中的压入深度和载荷分别由压痕激光位移传感器37压痕力传感器40实时检测。而在疲劳测试中,为实现对十字形试件33已制备缺陷区域变形过程的原位监测,在完成确定循环次数(如103)后,停止对x、y向伺服电机16、27与x、y向压电叠堆3、53进行供电,这一方面利于压电叠堆中积累电荷的释放,一方面便于三维应变光学测量系统和具有连续变倍功能的光学显微成像系统对缺陷区域疲劳裂纹的扩展行为进行高分辨率观测。
此外,为计算当外部载荷与试件轴线方向成锐角时十字形试件33的实际拉伸应变与切应变,图13建立了相应的计算模型,该模型将十字形试件33的标距部分简化为各项均匀的正六面体,六面体的初始几何轴线(图中OA直线段)与拉伸方向所成的偏移角为θ,其长lg、宽b、高h分别对应试件标距部分的长度、宽度及厚度。在与拉伸方向同轴的外部载荷Fl作用下,该正六面体模型转变为斜六面体,其变化的几何轴线(图中OA1直线段)与初始几何轴线互成的角度为γ,但其剪切面(即OA直线段的垂直面)与拉伸轴向的角度始终为θ的余角(π/2-θ),未随Fl发生变化。由此可知,十字形试件33的实际拉伸及剪切的应力、应变与直接通过力传感器和位移传感器采集并计算获取的应力、应变之间并非简单的正弦或余弦关系。
如图13中(a)部分所示,A点及A1点分别代表正六面体及斜六面体的顶端截面中心点,正六面体模型的标距lg可认为是六面体几何中心(O点)与顶端截面中心点(A点)的距离(即图中OA段长度)的倍数,且AA1直线段与拉伸方向始终平行,不随偏移角θ发生变化,而十字形试件33的实际伸长量Δld/2则相应为图中OA1段长度与OA段长度的差值的倍数。因此,试件的计算应变值与实际应变值的关系可通过图13中(b)部分所示的钝角三角形OAA1的边长关系建立,其中AA1直线段的长度ld/2为通过位移传感器读取的沿拉伸方向的单端伸长量,借助余弦定理,Δld、ld与lg的关系可表述为:
Figure PCTCN2016101836-appb-000001
相应地,十字形试件33的实际应变ε可由公式(5)表达,并可知ε随着ld的增加呈递增趋势。
Figure PCTCN2016101836-appb-000002
与此同时,在剪切平面(即斜六面体的顶端截面)内,由于剪切作用形成的剪切角γ可认为是十字形试件33的切应变,且可由直线OA1与OA的夹角确定,如图13中(b)部分所示,γ可表示为:
Figure PCTCN2016101836-appb-000003
因此,当偏移角θ确定时,γ亦随ld的增加而呈递增趋势。具体地,依据图13中(b)部分所示的试件尺寸,当初始偏移角θ为45°时,且位移传感器读取的试件伸长量(即ld)为0.05mm时,γ的计算值为0.123rad,而当ld增至0.1mm时,γ的计算值为0.216rad。
进一步,根据上述角度关系,提取出十字形试件33的实际拉伸力Ft及剪切力Fs如图13中(c)部分所示,因Ft与Fs分别沿正六面体的伸长方向及剪切面作用,Ft与Fs可分别表示为实际拉伸力Ft的余弦和正弦分量。假设变形过程中试件标距部分的体积不变且沿空间各向一致变化,试件伸长后六面体的顶端截面面积可表述为b、h与k2的乘积,其中k为尺寸缩减系数,且由Δld决定。k的计算方法可表达为:
k2=lg/(lg+Δld)  (7)
基于公式(7),试件实际拉伸应力σt、切应力τs与实际拉伸力Ft的关系可分别由公式(8)及(9)表达:
σt=Flcos(θ-γ)/(k2bh)  (8)
τs=Flsin(θ-γ)/(k2bh)  (9)
由此可知,σt、τs与Ft的余弦及正弦关系的建立是基于初始偏移角θ与逐渐变化的切应变γ的角度差,而并非θ本身。类似地,当偏移角θ确定时,σt与τs亦随ld的增加而呈递增趋势。
进一步,如图14所示为十字形试件33在双轴拉伸载荷作用下应力、应变计算的理论模型。在双轴拉伸载荷作用下,十字形试件33标距部分边界的变形特征可近似拟合为指数函数,lcen和lg分别为试件中心区域和标距部分的初始长度。在各向均一的拉伸载荷F的作用下,Oo点作为一组互相垂直标距段的连接点产生了向Oxy点的定向移动,相应的在x和y方向的的移动位移分别为Δdcen-x和Δdcen-y,同时,P点移动至Po点,相应的在试件长度和宽度方向的附加 位移分别为Δdx-p和Δdx-v。定义lx为沿拉伸方向的独立变量,dlx为微小的变形单元,则十字形试件33中心区域及标距部分沿x方向的真实应变可分别用公式(10)和(11)定量表达。此外,考虑到变形沿各个方向的均一性,dcen-x与Δdx-p之间的数学关系可用公式(12)表达,即在拉伸方向上试件总的弹性应变如公式(13)所示,其中εt和ε分别代表十字形试件33的真实应变与工程应变。
Figure PCTCN2016101836-appb-000004
Figure PCTCN2016101836-appb-000005
Figure PCTCN2016101836-appb-000006
Figure PCTCN2016101836-appb-000007
与此同时,考虑到十字形试件33在塑性变形过程中体积的不变性,变形后试件的截面面积Safter可被认为是标距部分面积Sx和中心区域面积Sc的和,该面积可通过十字形试件33变性前的总面积Sbefore和试件宽度(tbefore和tafter)间接计算。同时考虑到试件的厚度与其宽度和长度的比值较小,试件厚度的变化特征被近似简化为系数为C的线性变化,因此,基于上述理论,Safter,Sbefore,Sx,Sc,C,tbefore和tafter之间的数学描述如公式(14-17)所示。
Sbeforetbefore=Saftertafter≈SafterCtbefore    (14)
Figure PCTCN2016101836-appb-000008
Safter=Sc+Sx    (16)
Sc=(lcen+2Δdcen-x)2    (17)
基于上述对试件标距部分的近似指数拟合方法,标距部分的面积Sx可采用以lg-Δdcen-x+Δdx-p为积分上限和以0为积分下线的定积分定量计算,计算公式如(18)所示,其中A为范围在0和1之间的常数项。由于前述公式中lg,Δdcen-x,Δdx-p,lcen和tbefore均为已知量,且理论上,tafter可被实时检测,因此,系数C即可被确定。因此,常数项A亦可被定量计算。同时,十字形试件33的真实应力σt与工程应力σ之间的定量关系可由公式(19)确定。
Figure PCTCN2016101836-appb-000009
Figure PCTCN2016101836-appb-000010
以上所述仅为本发明的优选实例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡对本发明所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种静动态载荷谱下材料力学性能原位测试系统,其特征在于:包括Arcan双轴夹持子系统、压入测试子系统、双轴疲劳测试子系统、双轴预拉伸加载子系统、信号检测子系统、支撑及调整子系统,其中,Arcan双轴夹持子系统中的组合式导向机构(48)通过螺纹连接方式分别与支撑及调整子系统中的导向机构支撑垫块(5)、x向力传感器基座(29)、y向力传感器基座(12)保持刚性连接;压入测试子系统中的激光发射器(35)、音圈电机(39)、激光接收器(45)通过螺纹连接方式分别与支撑及调整子系统中的激光发射器两自由度电动移动平台(36)、音圈电机两自由度电动移动平台(38)、激光接收器两自由度电动移动平台(2)刚性连接,音圈电机两自由度电动移动平台(38)通过平台紧固螺钉(52)安装在龙门立柱(1)的横梁上;双轴疲劳测试子系统中的x、y向疲劳柔性铰链(4、54)通过疲劳紧固螺钉(50)与支撑及调整子系统中的导向机构支撑垫块(5)、信号检测子系统中的力传感器连接架(44)保持刚性连接;双轴预拉伸加载子系统中的y向固定基座(19)、悬臂支撑座(23)、蜗杆轴基座(68)和x向丝杠支撑座(72)通过螺纹连接方式与支撑及调整子系统中的基座(10)刚性连接,信号检测子系统中的卧式激光位移传感器Ⅰ、Ⅱ(32、55)与Arcan双轴夹持子系统中的改进型Arcan夹具(31)刚性连接,接触式位移传感器Ⅰ、Ⅱ(42、43)通过位移传感器移动杆基座(56)和位移传感器基体基座(57)与Arcan双轴夹持子系统中的改进型Arcan夹具(31)刚性连接,压痕激光位移传感器(37)与压入测试子系统中的音圈电机(39)的固定外壁刚性连接,且平面反光板(34)和压痕平面反光板(41)分别粘接固连在Arcan双轴夹持子系统中的改进型Arcan夹具(31)和压入测试子系统中的固定楔形环(62)的表层,y向力传感器(11)通过力传感器紧固螺母(47)紧固在y向力传感器基座(12)上。
  2. 根据权利要求1所述的静动态载荷谱下材料力学性能原位测试系统,其特征在于:所述的Arcan双轴夹持子系统包括四个正交布置且共面安装的改进型Arcan夹具(31)、力传感器连接架(44)、组合式导向机构(48)、同步调整手柄(58),四个改进型Arcan夹具(31)的相对位置固定不变,具有等宽的环形凹槽,且四组环形凹槽的几何圆形为同一点,即为被测的十字形试件(33)的几何中心点;改进型Arcan夹具(31)通过力传感器连接架(44)与x向力传感器(30)、y向力传感器(11)连接,且通过圆柱销(51)沿改进型Arcan夹具(31)的环形凹槽的对称轴线周向移动;同步调整手柄(58)和组合式导向机构(48)分别对改进型Arcan夹具(31)的平面相对位置进行同步调整和导向。
  3. 根据权利要求2所述的静动态载荷谱下材料力学性能原位测试系统,其特征在于:所述的四个改进型Arcan夹具(31)围绕着十字形试件(33)的几何中心对称安装,每组相邻改进型Arcan夹具(31)的间隙均一致;其在水平面上与x、y向滚珠丝杠(7、14)轴向之间相对角度的调整依赖于具有直线和圆弧导向功能的组合式导向机构(48);此外,四个改进型Arcan夹具(31)具有相同的环形凹槽结构,圆柱销(51)的外径小于凹槽的宽度,沿改进型Arcan夹具(31)凹槽和圆柱销(51)的周向方向,在其厚度和高度的中心处,分别预制出具有相同曲率半径的弧形导向面,该导向面与曲率半径一致的淬硬钢珠进行球面接 触,以削弱测试过程中改进型Arcan夹具(31)沿周向方向运动的摩擦阻力,且可通过力传感器连接架(44)自由调整夹具体与丝杠轴线的相对角度,以实现十字形试件(33)与丝杠轴线互成任意锐角状态下的加载模式,当该角度为0°时,十字形试件承受轴线拉伸载荷作用,即为双轴拉伸测试模式;当上述角度为锐角时,十字形试件的中心区域将在其横截面处产生相对位置错动,十字形试件实际处于双轴拉伸-剪切平面应力状态;与此同时,改进型Arcan夹具(31)的试件夹持端具有与十字形试件(33)圆弧过渡部分形状一致的凸起结构,该凸起结构高于十字形试件(33)的厚度,即以弧面接触的定位方式实现对十字形试件(33)在两个拉伸正交方向上的对中性;
    所述的同步调整手柄(58)具有一组对称的定位销,该定位销的直径与改进型Arcan夹具(31)环形凹槽的宽度一致,且一组定位销的轴线间距与一组相邻改进型Arcan夹具(31)环形凹槽相邻末端半圆形圆心间的距离一致,即可通过两个正交布置的同步调整手柄(58)同时调整四个改进型Arcan夹具(31)相对于滚珠丝杠轴线的角度,以确保角度调整过程中四个改进型Arcan夹具(31)相对位置的准确性。
  4. 根据权利要求1或2或3所述的静动态载荷谱下材料力学性能原位测试系统,其特征在于:所述的组合式导向机构(48)由一组线性导轨副和一组弧形导轨副组成,用于改进型Arcan夹具(31)分别沿十字形试件(33)拉伸方向和剪切方向的同步导向;当四个改进型Arcan夹具(31)产生相对运动时,被测十字形试件(33)的几何轴线与丝杠轴线所成的相对锐角随加载进程呈单调递减趋势,即改进型Arcan夹具(31)的运动形式为直线运动和围绕十字形试件(33)的几何中点做平面旋转运动的组合;因此,线性导轨副用于十字形试件(33)拉伸位移的导向,而弧形导轨副用于十字形试件(33)剪切位移的导向,所述弧形导轨副由弧形导轨(65)通过弧形导轨滑块(67)与弧形导轨平台(66)连接组成。
  5. 根据权利要求1所述的静动态载荷谱下材料力学性能原位测试系统,其特征在于:所述的压入测试子系统包括激光发射器(35)、音圈电机(39)、压痕力传感器(40)、压痕平面反光板(41)、激光接收器(45)、压痕力传感器螺母(64)以及压头夹持单元(46),其中压头夹持单元(46)包括压头(59)、压头定位销轴(60)、移动楔形环(61)、固定楔形环(62)和固定档环(63),激光发射器(35)发出的细径可见激光线束由激光接收器(45)实时接收,即可对压头(59)的竖直方向的位置进行初始探测,压头(59)采用的楔形预紧的安装形式可确保其使用过程中的位置的准确性;压痕力传感器(40)的其中一端螺栓通过压痕力传感器螺母(64)与音圈电机(39)的移动端保持刚性连接,其另一端螺栓与压头夹持单元(46)中的固定楔形环(62)亦通过螺纹连接方式紧固;
    所述激光发射器(35)和激光接收器(45)同轴安装且之间具有连续的细径可见光通路,该光学通路与十字形试件已抛光处理的上表面具有确定的微小间距,用于对压头(59)尖端在竖直方向上的绝对位置进行检测;初始状态下,压头(59)尖端的位置高于可见光束,当音圈电机(39)的移动端产生等速运动或恒加速运动后,在压头(59)尖端与可见光束发生干涉的瞬间,激光接收器(45)无法探测到光学信号,基于激光接收器(45)的反馈信号,此时音圈电机(39)继续在时序电压的作用下产生确定行程的准静态等速运动或恒加速运动, 从而实现对十字形试件(33)的静态压入测试或冲击压入测试;
    所述压头(59)的圆柱柄端和移动楔形环(61)的内侧圆柱面在垂直于其轴向方向均加工有孔径一致的通孔,压头定位销轴(60)以过盈配合的方式安装在该通孔内,即压头(59)与移动楔形环(61)的相对位置是固定的;移动楔形环(61)与固定楔形环(62)通过斜度一致的圆锥面进行定位,且移动楔形环(61)的宽端面与固定档环(63)保持面接触,固定楔形环(62)的窄端面通过螺纹连接的方式与固定档环(63)保持刚性连接;该楔形定位方法可实现压头(59)位置的准确性。
  6. 根据权利要求1所述的静动态载荷谱下材料力学性能原位测试系统,其特征在于:所述的双轴疲劳测试子系统由一组正交布置的x、y向压电驱动器组成,x向压电驱动器由x向压电叠堆(3)和x向疲劳柔性铰链(4)组成,y向压电驱动器由y向压电叠堆(53)和y向疲劳柔性铰链(54)组成,且x向疲劳柔性铰链(4)、y向疲劳柔性铰链(54)为对称式圆弧过渡型柔性结构;x、y向压电驱动器沿改进型Arcan夹具(31)外缘周向正交安装,x、y向压电叠堆(3、53)始终处于受压状态,且其弹性伸长和恢复为被测十字形试件(33)提供了应力比为0的交变应力;x、y向疲劳柔性铰链(4、54)的包络结构由三组平行排布的柔性薄壁组成,沿垂直于x、y向压电叠堆(3、53)的中轴线方向,x、y向疲劳柔性铰链(4、54)的柔度逐渐减小直至可视为刚体结构;当向x、y向压电叠堆(3、53)施加同频、等幅的交变电压时,x、y向疲劳柔性铰链(4、54)沿其内壁处的柔性关节产生相应的角位移,十字形试件(33)亦承受同频、等幅的可控交变载荷。
  7. 根据权利要求1所述的静动态载荷谱下材料力学性能原位测试系统,其特征在于:所述的双轴预拉伸加载子系统是:x向导轨滑块(9)通过燕尾楔形结构浮于与基座(10)刚性连接的x向线性导轨(8)上方,同理,y向导轨滑块(21)亦通过燕尾楔形结构浮于y向线性导轨(20)上,y向丝杠支撑座(13)和y向线性导轨(20)通过螺纹连接方式刚性安装于y向固定基座(19)上;此外,y向丝杠螺母(22)套接于x向滚珠丝杠(7)的法兰上,且同x向丝杠螺母支架(24)一并通过螺纹连接方式刚性安装在x向导轨滑块(9)上;y向伺服电机(27)的输出轴与y向主动直齿轮(26)的齿轮轴分别内嵌于挠性联轴器(76)的通孔内,从而实现y向伺服电机(27)输出扭矩运动的传递;平键(49)内嵌于蜗杆轴(74)的键槽中,且其两侧定位面与直齿轮,即x向直齿轮Ⅰ、Ⅱ(15、18)、y向直齿轮Ⅰ、Ⅱ(25、28)保持面接触,定位销轴(75)过盈安装在蜗杆轴(74)轴端处与其轴线方向垂直的内孔中,以限制直齿轮,即x向直齿轮Ⅰ、Ⅱ(15、18)、y向直齿轮Ⅰ、Ⅱ(25、28)的轴向移动;蜗轮(71)通过其内孔和蜗轮定位销钉(69)与x、y向滚珠丝杠(7、14)的轴端套接并实现旋转自由度的限制;外圈定位轴承(73)的轴承内孔和轴承外圈分别与x、y向主动直齿轮(17、26)齿轮轴以及蜗杆轴基座(68)上的轴承座孔壁过盈配合,外圈定位轴承(73)挡圈与蜗杆轴基座(68)的外壁保持面接触以限制x、y向主动直齿轮(17、26)齿轮轴的轴向移动;
    一组x向滚珠丝杠(7)的轴线同轴,其螺旋线形均为右旋,且均与x向直齿轮Ⅰ、Ⅱ(15、18)、x主动直齿轮(17)的几何轴线垂直;由蜗杆(70)、蜗轮(71)构成的单级蜗 杆蜗轮减速机构的传动比为40。
  8. 根据权利要求1所述的静动态载荷谱下材料力学性能原位测试系统,其特征在于:所述的信号检测子系统包括x向力传感器(30)、y向力传感器(11)、卧式激光位移传感器Ⅰ、Ⅱ(32、55)、平面反光板(34)、压痕激光位移传感器(37)、压痕力传感器(40)、压痕平面反光板(41)、接触式位移传感器Ⅰ、Ⅱ(42、43)、位移传感器移动杆基座(56)和位移传感器基体基座(57),其中一组卧式激光位移传感器Ⅰ、Ⅱ(32、55)和接触式位移传感器Ⅰ、Ⅱ(42、43)分别正交安装,且x向力传感器(30)、y向力传感器(11)的几何轴线与一组卧式激光位移传感器Ⅰ、Ⅱ(32、55)的入、反射光对称线以及接触式位移传感器Ⅰ、Ⅱ(42、43)的几何轴线互成锐角。
  9. 根据权利要求1所述的静动态载荷谱下材料力学性能原位测试系统,其特征在于:所述的支撑及调整子系统包括龙门立柱(1)、激光接收器两自由度电动移动平台(2)、导向机构支撑垫块(5)、基座(10)、激光发射器两自由度电动移动平台(36)和音圈电机两自由度电动移动平台(38),其中基座(10)用于支撑双轴预拉伸加载子系统和双轴疲劳测试子系统,与龙门立柱(1)刚性连接的激光接收器两自由度电动移动平台(2)、导向机构支撑垫块(5)、激光发射器两自由度电动移动平台(36)和音圈电机两自由度电动移动平台(38)分别用于对压入测试子系统中的激光接收器(45)、激光发射器(35)和音圈电机(39)的位置进行实时调整。
  10. 一种静动态载荷谱下材料力学性能原位测试方法,针对Arcan双轴夹持子系统和双轴预拉伸加载子系统的应力-应变解耦方法,其特征在于:将十字形试件(33)的中心区域和标距部分简化为变形均匀的单元体;在计算拉伸-剪切和双轴拉伸平面应力状态下十字形试件(33)各载荷分量引起的真实应力及应变时,通过叠加原理,将拉伸-剪切和双轴拉伸载荷对十字形试件(33)应力及应变的综合影响解耦为各单一载荷作用下应力-应变本构关系的矢量耦合叠加,综合考虑他类载荷在目标载荷作用方向上引起的材料弹性延展、塑性流动和截面变化,定量描述简化模型沿目标载荷方向上的单元体变形行为,获取目标载荷作用下的应力、应变与已知耦合载荷、位移量的确定关系;步骤如下:就拉伸-剪切复合应力模式而言,为计算当外部载荷与试件轴线方向成锐角时十字形试件(33)的实际拉伸应变与切应变,建立可表征十字形试件(33)标距部分的简化正六面体模型,六面体的初始几何轴线与拉伸方向所成的偏移角为已知量,其长、宽、高分别对应试件标距部分的长度、宽度及厚度;在与拉伸方向同轴的外部载荷作用下,该正六面体模型转变为斜六面体,其变化的几何轴线与初始几何轴线互成的角度可被定量计算,蝶形试件的实际拉伸及剪切的应力、应变与直接通过力传感器和位移传感器采集并计算,即可解耦出相应的拉伸应力-应变和剪切应力-应变曲线,并通过数字散斑测试技术的三维应变分析对提出的解耦方法进行试验验证;就双轴拉伸模式而言,十字形试件(33)的中心区域在平面应力的作用下会均布扩展,而平行梁部分的宽度则沿着载荷作用方向逐渐减小,通过仿真分析和图像试验方法,可建立十字形试件的变形分布与载荷作用的定量关系。
PCT/CN2016/101836 2016-07-08 2016-10-12 静动态载荷谱下材料力学性能原位测试系统与方法 WO2018006504A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/316,321 US10809169B2 (en) 2016-07-08 2016-10-12 System and method for in-situ testing of mechanical properties of materials in static and dynamic load spectra

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610533810.2A CN106226152B (zh) 2016-07-08 2016-07-08 静动态载荷谱下材料力学性能原位测试系统与方法
CN201610533810.2 2016-07-08

Publications (1)

Publication Number Publication Date
WO2018006504A1 true WO2018006504A1 (zh) 2018-01-11

Family

ID=57519116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101836 WO2018006504A1 (zh) 2016-07-08 2016-10-12 静动态载荷谱下材料力学性能原位测试系统与方法

Country Status (3)

Country Link
US (1) US10809169B2 (zh)
CN (1) CN106226152B (zh)
WO (1) WO2018006504A1 (zh)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108072536A (zh) * 2018-02-05 2018-05-25 吉林大学 半智能化数控伺服刀架批量化可靠性试验装置及试验方法
CN108132189A (zh) * 2018-01-26 2018-06-08 吉林大学 连续变温下高温原位双轴加载测试装置
CN108332849A (zh) * 2018-04-24 2018-07-27 浙江大学昆山创新中心 一种电主轴动态加载振动测试系统及测试方法
CN108717023A (zh) * 2018-07-17 2018-10-30 东北大学 同时测试镁合金板带材弯曲极限与回弹量的装置及方法
CN108760526A (zh) * 2018-07-06 2018-11-06 南京航空航天大学 陶瓷基复合材料高温空气环境基体裂纹观测系统及观测方法
CN108896394A (zh) * 2018-07-13 2018-11-27 中国工程物理研究院总体工程研究所 材料双轴压缩加载装置
CN108918297A (zh) * 2018-09-19 2018-11-30 北华大学 双轴拉伸-扭转复合载荷力学性能测试装置
CN109030211A (zh) * 2018-08-06 2018-12-18 江苏科技大学 一种多功能组合拉伸夹具及其使用方法
DE102018001683A1 (de) 2018-03-05 2019-09-05 Kammrath & Weiss Gmbh In-situ-Testvorrichtung und Verfahren für Substrate
CN110686987A (zh) * 2019-10-09 2020-01-14 南京航空航天大学 一种用于应急断开自封结构的动载荷剪断试验装置及方法
CN110887746A (zh) * 2019-11-18 2020-03-17 宁波大学 基于洛伦兹力的超大尺寸岩体结构面剪切试验的切向加载方法
CN111024341A (zh) * 2019-12-25 2020-04-17 大连理工大学 一种接触刚度测试装置及测试方法
CN111141699A (zh) * 2020-02-05 2020-05-12 天津大学 一种用于红外光谱仪原位分析的力热耦合疲劳试验装置
CN111209691A (zh) * 2020-02-25 2020-05-29 国网河南省电力公司电力科学研究院 变电站套管系统的动态力学特性分析方法、计算机可读介质
CN111579358A (zh) * 2019-02-18 2020-08-25 中国航发商用航空发动机有限责任公司 用于测试陶瓷基复合材料断裂强度的工装夹具
CN111993464A (zh) * 2020-08-14 2020-11-27 华南理工大学 一种弹簧耦合旋转多体机械臂系统振动测试装置及方法
CN112304789A (zh) * 2020-11-06 2021-02-02 安徽机电职业技术学院 一种基于超材料的天线面板的疲劳测试装置
CN112577823A (zh) * 2020-12-15 2021-03-30 中国林业科学研究院木材工业研究所 用于木材薄切片光学原位拉伸观测系统的原位拉伸装置
WO2021186473A1 (en) * 2020-03-20 2021-09-23 INDIAN INSTITUTE OF TECHNOLOGY MADRAS (IIT Madras) STAND-ALONE MINIATURE IN-SITU MULTIAXIAL UNIVERSAL TESTING EQUIPMENT (IsMUTE)
CN113567226A (zh) * 2021-07-23 2021-10-29 河南省特种设备安全检测研究院 一种电梯安全钳用铜合金平面应力断裂测试装置
CN114062161A (zh) * 2021-10-30 2022-02-18 福州大学 一种用于多尺寸原状土圆柱样直剪试验的大型直剪仪
CN114201833A (zh) * 2021-12-16 2022-03-18 湖南科技大学 考虑直线度误差的直线滚动导轨动态载荷计算方法及系统
CN114354402A (zh) * 2021-11-27 2022-04-15 北京工业大学 一种基于丝杠控制位移的弯扭微动损伤试验系统及其实验方法
CN114527015A (zh) * 2022-02-14 2022-05-24 哈尔滨工业大学 适用于多种尺寸组合构件的纯扭徐变试验装置及其试验方法
CN114544391A (zh) * 2022-01-21 2022-05-27 深圳大学 高温环境固体材料动态拉剪力学特性测试装置及测试方法
CN114659961A (zh) * 2022-04-09 2022-06-24 江苏瑞利山河建设工程质量检测有限公司 一种节能建筑材料防水性能测试装置
CN114720169A (zh) * 2022-06-07 2022-07-08 中国飞机强度研究所 飞机平面结构抗离散源撞击测试用复杂应力边界加载系统
CN114740384A (zh) * 2022-06-13 2022-07-12 山东天厚石油科技有限责任公司 一种光伏发电系统用的蓄电设备检测装置
CN114935505A (zh) * 2022-06-07 2022-08-23 中南大学 一种颗粒物料内聚力测试装置及方法
CN115096707A (zh) * 2022-08-26 2022-09-23 中铁北京工程局集团(天津)工程有限公司 一种桥梁工程用建筑材料抗压强度检测装置
CN117191578A (zh) * 2023-11-06 2023-12-08 江苏博盟科技有限公司 一种汽车橡胶件拉力测试装置
CN118032532A (zh) * 2024-04-12 2024-05-14 邢台中伟卓特液压科技有限公司 一种轴类工件抗压强度检测装置及其检测方法
CN118376370A (zh) * 2024-06-25 2024-07-23 中铁五局集团贵州工程有限公司 一种涵洞盖板移动式施工支架连接点检测平台

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106777789B (zh) * 2017-01-12 2019-08-23 山东理工大学 非等偏频型渐变刚度板簧接触载荷的仿真计算方法
CN106767631A (zh) * 2017-02-14 2017-05-31 山东建筑大学 实时检测双螺母滚珠丝杠副滚道磨损厚度的装置及方法
US10883908B2 (en) 2017-03-13 2021-01-05 King Fahd University Of Petroleum And Minerals Stage for high temperature indentation test
CN106908319B (zh) * 2017-03-27 2019-11-19 山东大学 一种双向十字拉伸测试装置
CN106680096B (zh) * 2017-03-28 2023-10-31 吉林大学 多试件粘接接头双向加载疲劳实验装置
CN107084874B (zh) * 2017-04-13 2019-09-17 湖南大学 纤维织物张力-剪切复合性能测试夹具
CN106988736B (zh) * 2017-04-20 2020-02-28 中国矿业大学(北京) 一种岩石地层压力模拟检测装置及模拟检测方法
CN107537065A (zh) * 2017-07-11 2018-01-05 吉林大学 基于原位测试的高熵合金人工关节耦合仿生构建方法
CN107607372B (zh) * 2017-08-22 2020-12-25 哈尔滨工程大学 一种脆性材料疲劳裂纹预制试验机
CN107340190B (zh) * 2017-08-24 2023-05-05 吉林大学 用于高频疲劳试验的多级静动态耦合力学加载装置
CN107764669B (zh) * 2017-09-08 2020-12-29 吉林大学 一种材料形变实验方法
CN107764731B (zh) * 2017-09-08 2020-12-29 吉林大学 一种材料抛丸实验方法
CN107941613B (zh) * 2017-11-15 2020-10-09 冯原 生物反应与软组织力学多功能测试一体仪
US11435244B2 (en) * 2017-11-30 2022-09-06 Koc Universitesi Force sensor for measuring static and dynamic friction coefficients
CN108225937B (zh) * 2018-01-30 2023-09-22 北方工业大学 高强钢薄板弯曲测试方法及其装置
CN108037028B (zh) * 2018-02-05 2020-06-30 东南大学 一种车辆制动条件下铺面界面抗剪疲劳测试方法及装置
CN108303319B (zh) * 2018-02-09 2023-09-15 桂林电子科技大学 线束的杨氏模量自动测试装置
CN108344650B (zh) * 2018-03-06 2023-09-08 吉林大学 用于生物材料冲击力学性能测试的电磁式实验装置
JP6987689B2 (ja) * 2018-03-30 2022-01-05 日本発條株式会社 荷重測定装置及び方法
RU181812U1 (ru) * 2018-04-24 2018-07-26 Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Пневматический стенд для испытаний аппаратуры на прочность при воздействии вертикальных нагрузок
CN108760496B (zh) * 2018-05-31 2024-03-29 易瑞博科技(北京)有限公司 渐开线式柔性材料多轴拉伸试验机
CN108956080B (zh) * 2018-08-14 2024-02-06 莱州市电子仪器有限公司 一种全方位调节防护服冲击试验机
CN109060552B (zh) * 2018-09-06 2021-08-13 北京航星机器制造有限公司 一种热环境回弹试验设备和试验方法
CN109406123A (zh) * 2018-11-16 2019-03-01 青岛理工大学 动静态多功能试验伺服加载系统
CN109724879B (zh) * 2019-01-07 2021-08-10 中国人民解放军国防科技大学 一种柔性纤维增强薄膜双轴向应力疲劳加载试验装置
CN109883833B (zh) * 2019-03-12 2024-04-30 吉林大学 拉伸-弯曲复合载荷下材料疲劳力学性能测试装置与方法
CN110031351B (zh) * 2019-03-21 2020-06-09 西南交通大学 一种基于控制能量的冲切磨损试验装置
CN109921682B (zh) * 2019-03-27 2023-10-24 吉林大学 真空环境下光学元件多自由度精密调整装置及控制方法
CN109946336B (zh) * 2019-04-22 2024-04-26 山西省检验检测中心(山西省标准计量技术研究院) 一种泡皮击碎试验装置
CN109991069B (zh) * 2019-04-22 2021-10-26 河南工业大学 一种反力台座制作方法及加载孔单元调整装置
US11054352B2 (en) 2019-05-16 2021-07-06 The Boeing Company Method of testing additive manufactured material and additive manufactured parts
US11009435B2 (en) * 2019-05-16 2021-05-18 The Boeing Company Fixture for testing a test specimen
CN110014262B (zh) * 2019-05-30 2023-11-17 洛阳理工学院 一种焊接滚轮架上筒形焊件轴向窜动调整系统
CN110243701B (zh) * 2019-07-05 2022-02-01 山东科技大学 一种锚固岩体扭转剪切试验装置及方法
CN110763567B (zh) * 2019-11-28 2021-05-07 大连理工大学 一种管材任意方向的厚向异性系数和屈服应力测定方法
CN110763566B (zh) * 2019-11-28 2021-05-11 大连理工大学 一种各向异性管材环向厚向异性系数的确定方法
CN110763568B (zh) * 2019-11-28 2021-05-07 大连理工大学 一种管材任意方向厚向异性系数的确定方法
CN110726636B (zh) * 2019-12-02 2022-05-24 吉林大学 用于双轴拉伸试验机的四轴对中调整系统及方法
TWI717162B (zh) * 2019-12-20 2021-01-21 國家中山科學研究院 一種多軸加工裝置及其補償方法
CN110967399B (zh) * 2019-12-24 2022-08-30 上海锦湖日丽塑料有限公司 一种用于测试高分子材料防异响性能的设备
CN111208007B (zh) * 2020-01-20 2022-06-03 通标标准技术服务有限公司 纺织材料力学性能检测方法
CN111157342B (zh) * 2020-02-26 2020-08-14 哈尔滨学院 一种压力控制器
CN111351713B (zh) * 2020-03-24 2023-04-07 南京理工大学 一种柔性材料多角度剥离及拉伸力学性能的测试装置
EP3904867B9 (de) * 2020-04-29 2022-11-02 voestalpine Stahl GmbH Verfahren und vorrichtung zur bestimmung der bruchfläche einer probe
CN111551431B (zh) * 2020-06-01 2024-10-11 天津工业大学 一种测试织物层间剪切性能的试验夹具
CN111735677A (zh) * 2020-06-23 2020-10-02 中南大学 固体颗粒材料剪切应力的测试设备及测试方法
TWI767264B (zh) * 2020-06-24 2022-06-11 財團法人工業技術研究院 受壓狀態量測方法及受壓狀態量測系統
CN114112758B (zh) * 2020-09-01 2024-10-08 中国石油化工股份有限公司 冲蚀磨损试验装置
CN114184497B (zh) * 2020-09-14 2023-12-22 广州汽车集团股份有限公司 一种织物剪切性能参数的测试方法与装置
CN112051154B (zh) * 2020-09-15 2022-11-04 湖北正茂新材料科技股份有限公司 一种不同原材料配合比制备的预制构件承重性检测设备
CN112045293A (zh) * 2020-09-30 2020-12-08 杨宝辉 一种点焊机辅助扩展装置
CN112461654B (zh) * 2020-11-12 2022-12-09 泰山学院 一种标准圆柱形岩石试样多场耦合实验装置
CN112629466B (zh) * 2020-11-17 2023-04-07 重庆文理学院 基于线结构光的齿轮齿廓测量设备
CN112665967A (zh) * 2020-12-18 2021-04-16 武汉理工大学 用于江海直达船复合型裂纹扩展测试的精准调角装置
CN112730596B (zh) * 2020-12-22 2024-03-26 河南科技大学 载流摩擦微区表层力-热-电负荷分布测试系统和方法
CN112504861B (zh) * 2020-12-25 2022-01-11 优之科技(深圳)有限公司 一种橡胶拉伸智能测试装置及其测试方法
CN112611272B (zh) * 2020-12-25 2024-07-09 中国航天空气动力技术研究院 导弹测试装置
CN112858003B (zh) * 2021-01-22 2023-01-13 山东大学 可模拟断层滑移错断的隧道失稳机理试验装置及方法
CN112924283B (zh) * 2021-01-29 2023-09-08 中国石油大学(华东) 一种纳米薄膜拉伸实验仪及拉伸试验方法
CN112781978B (zh) * 2021-01-29 2024-06-21 盐城工学院 变角度双轴拉伸与热场耦合材料微观力学性能原位测试仪
CN112964544B (zh) * 2021-03-11 2023-02-28 天津大学 一种用于铅铋环境下的原位双轴力学试验装置
CN113075049B (zh) * 2021-04-02 2022-08-02 山东科技大学 一种变频变强度动静组合加载岩石力学试验机及试验方法
CN113029802B (zh) * 2021-04-20 2022-10-18 中南大学 一种点阵材料等效弹性静力学参数高精度测试方法
CN113092001B (zh) * 2021-04-29 2022-12-20 哈尔滨工业大学 一种压电式力传感器标定装置
CN113155619B (zh) * 2021-04-30 2022-06-07 吉林大学 扫描电镜下的准静态原位双轴拉伸力学性能测试装置
CN113252492B (zh) * 2021-05-15 2022-04-22 南京林业大学 一种旋转式剑麻叶片切割试验台
CN113529681B (zh) * 2021-06-04 2022-06-14 吉林建筑大学 一种路基动态三轴回弹模量试验仪
CN113252472B (zh) * 2021-06-25 2021-09-21 中国科学院地质与地球物理研究所 一种夹具及剪切试验装置
CN113686648B (zh) * 2021-07-15 2024-04-05 长沙理工大学 一种原位剪切仪
CN113624600B (zh) * 2021-07-21 2024-04-26 西安工程大学 一种功能性微丝三维固形装置
CN113483717B (zh) * 2021-08-17 2023-04-11 苏州通驰智能科技有限公司 一种多参数高精度齿形检测设备及其工作方法
CN113916686B (zh) * 2021-08-23 2024-05-03 浙江理工大学 一种球铰刚度测试装置及其对球铰刚度的测试方法
CN113686682B (zh) * 2021-09-14 2024-05-28 宁波勤邦新材料科技股份有限公司 一种太阳能背板基膜的在线检测装置及其工作方法
CN113686655B (zh) * 2021-09-15 2022-12-06 北京航空航天大学 一种可实现时变正压力的摩擦磨损实验装置
CN113866544B (zh) * 2021-09-29 2023-05-30 中国科学院光电技术研究所 一种测量压电陶瓷驱动器负载下位移输出的装置
CN114414121B (zh) * 2021-11-30 2024-05-28 中船双瑞(洛阳)特种装备股份有限公司 一种超大竖向承载装置测力结构及标定方法
CN113984324B (zh) * 2021-12-07 2024-10-15 中交路桥华南工程有限公司 一种基于大数据的公路桥梁工程建设风险评估方法
CN114216780B (zh) * 2021-12-08 2024-01-30 上海交通大学 一种二维拉剪耦合加载装置
CN114152381B (zh) * 2021-12-09 2023-07-07 河北科技大学 刚度可调式测力分支及相应的并联多维力传感器
CN114264475B (zh) * 2021-12-15 2024-04-12 吉林大学 全工况模拟的双三联齿盘可靠性试验装置及方法
CN114354043B (zh) * 2021-12-29 2024-04-26 徐州徐工挖掘机械有限公司 一种测定回转支承载荷的系统及方法
CN114323928B (zh) * 2021-12-31 2022-09-09 浙江华南仪器设备有限公司 一种带夹持功能的万能试验机
CN114252349B (zh) * 2022-02-28 2022-05-17 南通天木绝缘复合材料有限公司 一种玻璃钢纤维型材强度检测装置
US12031953B2 (en) * 2022-04-08 2024-07-09 Tianjin University Deepwater platform welded joint testing system
CN114938160B (zh) * 2022-06-15 2024-09-13 吉林大学 基于柔性铰链的压电直线及旋转双自由度矢量驱动器
CN115096567B (zh) * 2022-06-15 2023-06-20 吉林大学 一种测试摆角铣头可靠性的试验装置及试验方法
CN115140703B (zh) * 2022-07-08 2024-09-17 山东大学 一种预应变辅助的褶皱形式微纳结构制造装置及方法
CN115440398B (zh) * 2022-09-13 2024-05-07 中国核动力研究设计院 一种导轨式水平和垂直双方向激励解耦装置
DE102022129834A1 (de) 2022-11-11 2024-05-16 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Prüfen eines Bauelements, insbesondere eines Coils oder einer Platine, zum Herstellen wenigstens eines Produkts
DE102022129835A1 (de) 2022-11-11 2024-05-16 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Überwachen von Bauelementen zum Herstellen von Produkten sowie Vorrichtung
CN116008071B (zh) * 2022-12-09 2023-07-18 哈尔滨工业大学(威海) 一种法向加载薄板微拉伸试验装置
CN115855135B (zh) * 2023-02-21 2023-07-28 西安感崆电子信息科技有限公司 一种光电传感器的输出信号稳定性用检测设备
CN116067290B (zh) * 2023-03-07 2023-07-14 西安航天动力研究所 一种发动机静力试验的位移测试方法及位移测试系统
CN116448553B (zh) * 2023-03-24 2024-06-25 河南科技大学 一种获取多层结构金属板材本构关系的方法及应用
CN116821745B (zh) * 2023-04-10 2024-04-09 浙江万能弹簧机械有限公司 智能线切割慢走丝设备的控制方法及其系统
CN116255936B (zh) * 2023-05-15 2023-07-18 山东新港企业集团有限公司 一种基于光学的建筑板材表面不规则检测装置
CN116413204A (zh) * 2023-06-09 2023-07-11 浙大城市学院 一种牙齿修复体粘接结构应力测量装置及使用方法
CN116718489B (zh) * 2023-08-10 2023-10-24 四川大学 深地多场与复杂应力耦合剪切试验系统及方法
CN116973245B (zh) * 2023-09-22 2023-12-01 江苏创生源智能装备股份有限公司 一种光伏电池弯曲强度检测装置
CN117420067B (zh) * 2023-11-20 2024-05-24 北京天航嘉瑞精密机械有限公司 一种分离装置
CN117387929B (zh) * 2023-12-13 2024-02-09 宁波天控五轴数控技术有限公司 一种a/c摆头夹紧力静动态检测装置
CN117420034B (zh) * 2023-12-18 2024-02-23 哈尔滨学院 一种锻炼器材焊接强度检测装置
CN117825122B (zh) * 2023-12-31 2024-10-11 中国人民解放军国防科技大学 一种面向介电弹性体的多形状样品双轴预拉伸装置及其方法
CN117848743B (zh) * 2024-03-05 2024-05-17 中铁一局集团电务工程有限公司 一种有轨电车转向架静载试验装置
CN117944095B (zh) * 2024-03-25 2024-08-16 中国科学院长春光学精密机械与物理研究所 变力矩式可控时变刚度柔性基座
CN117969243B (zh) * 2024-03-28 2024-05-31 胜利油田长龙橡塑有限责任公司 一种芳纶纤维增强型包布带拉伸强度测试方法及设备
CN117969910B (zh) * 2024-03-28 2024-05-31 山东博纳电气有限公司 一种电气设备测试装置
CN118050171B (zh) * 2024-04-15 2024-07-05 合肥倍豪海洋装备技术有限公司 一种用于船舶性能测试的多功能试验台
CN118130250B (zh) * 2024-05-06 2024-07-16 中铁建云南投资有限公司 一种有轨电车轨道多功能检测设备
CN118190794A (zh) * 2024-05-20 2024-06-14 中电建市政建设集团山东工程有限公司 一种混凝土和钢结构粘结性能的试验装置
CN118310901B (zh) * 2024-06-11 2024-08-09 北京地泽科技有限公司 一种装配式建筑用构件强度检测装置
CN118412313B (zh) * 2024-07-01 2024-09-06 上海陛通半导体能源科技股份有限公司 半导体设备的对中治具及方法
CN118549348B (zh) * 2024-07-30 2024-09-20 常州市纳途电子有限公司 一种光伏组件综合测试仪
CN118603783B (zh) * 2024-08-08 2024-10-22 国鲸科技(广东横琴粤澳深度合作区)有限公司 一种柔性基板耐久性检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279166A (en) * 1992-09-29 1994-01-18 Eg&G Idaho, Inc. Self-aligning biaxial load frame
EP1061353A2 (en) * 1999-06-18 2000-12-20 Kabushiki Kaisha Saginomiya Seisakusho Materials testing
CN101520389A (zh) * 2009-03-27 2009-09-02 吉林大学 超精密跨尺度原位纳米压痕刻划测试系统
CN102288501A (zh) * 2011-07-25 2011-12-21 吉林大学 精密纳米压痕测试装置
CN104502202A (zh) * 2014-12-15 2015-04-08 吉林大学 服役温度下材料双轴静动态性能在线测试平台
CN104897468A (zh) * 2014-03-07 2015-09-09 株式会社日立制作所 试验装置
CN104913974A (zh) * 2015-05-12 2015-09-16 吉林大学 材料微观力学性能双轴拉伸-疲劳测试系统及其测试方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4885941A (en) * 1988-06-15 1989-12-12 Regents Of The University Of Minnesota Bi-axial geomaterial test system
US7204160B1 (en) * 2004-05-24 2007-04-17 The United States Of America As Represented By The Secretary Of The Navy Biaxial and shear testing apparatus with force controls
US8082802B1 (en) * 2009-04-28 2011-12-27 The United States Of America As Represented By The Secretary Of The Navy Compact and stand-alone combined multi-axial and shear test apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279166A (en) * 1992-09-29 1994-01-18 Eg&G Idaho, Inc. Self-aligning biaxial load frame
EP1061353A2 (en) * 1999-06-18 2000-12-20 Kabushiki Kaisha Saginomiya Seisakusho Materials testing
CN101520389A (zh) * 2009-03-27 2009-09-02 吉林大学 超精密跨尺度原位纳米压痕刻划测试系统
CN102288501A (zh) * 2011-07-25 2011-12-21 吉林大学 精密纳米压痕测试装置
CN104897468A (zh) * 2014-03-07 2015-09-09 株式会社日立制作所 试验装置
CN104502202A (zh) * 2014-12-15 2015-04-08 吉林大学 服役温度下材料双轴静动态性能在线测试平台
CN104913974A (zh) * 2015-05-12 2015-09-16 吉林大学 材料微观力学性能双轴拉伸-疲劳测试系统及其测试方法

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108132189A (zh) * 2018-01-26 2018-06-08 吉林大学 连续变温下高温原位双轴加载测试装置
CN108132189B (zh) * 2018-01-26 2024-02-02 吉林大学 连续变温下高温原位双轴加载测试装置
CN108072536B (zh) * 2018-02-05 2023-09-08 吉林大学 半智能化数控伺服刀架批量化可靠性试验装置及试验方法
CN108072536A (zh) * 2018-02-05 2018-05-25 吉林大学 半智能化数控伺服刀架批量化可靠性试验装置及试验方法
DE102018001683B4 (de) 2018-03-05 2024-04-11 Kammrath & Weiss Gmbh In-situ-Testvorrichtung und Verfahren für Substrate
DE102018001683A1 (de) 2018-03-05 2019-09-05 Kammrath & Weiss Gmbh In-situ-Testvorrichtung und Verfahren für Substrate
CN108332849A (zh) * 2018-04-24 2018-07-27 浙江大学昆山创新中心 一种电主轴动态加载振动测试系统及测试方法
CN108332849B (zh) * 2018-04-24 2024-04-19 浙江大学昆山创新中心 一种电主轴动态加载振动测试系统及测试方法
CN108760526A (zh) * 2018-07-06 2018-11-06 南京航空航天大学 陶瓷基复合材料高温空气环境基体裂纹观测系统及观测方法
CN108760526B (zh) * 2018-07-06 2024-06-11 南京航空航天大学 陶瓷基复合材料高温空气环境基体裂纹观测系统及观测方法
CN108896394B (zh) * 2018-07-13 2023-12-29 中国工程物理研究院总体工程研究所 材料双轴压缩加载装置
CN108896394A (zh) * 2018-07-13 2018-11-27 中国工程物理研究院总体工程研究所 材料双轴压缩加载装置
CN108717023B (zh) * 2018-07-17 2023-10-27 东北大学 同时测试镁合金板带材弯曲极限与回弹量的装置及方法
CN108717023A (zh) * 2018-07-17 2018-10-30 东北大学 同时测试镁合金板带材弯曲极限与回弹量的装置及方法
CN109030211B (zh) * 2018-08-06 2023-12-05 江苏科技大学 一种多功能组合拉伸夹具及其使用方法
CN109030211A (zh) * 2018-08-06 2018-12-18 江苏科技大学 一种多功能组合拉伸夹具及其使用方法
CN108918297B (zh) * 2018-09-19 2024-02-06 北华大学 双轴拉伸-扭转复合载荷力学性能测试装置
CN108918297A (zh) * 2018-09-19 2018-11-30 北华大学 双轴拉伸-扭转复合载荷力学性能测试装置
CN111579358A (zh) * 2019-02-18 2020-08-25 中国航发商用航空发动机有限责任公司 用于测试陶瓷基复合材料断裂强度的工装夹具
CN110686987A (zh) * 2019-10-09 2020-01-14 南京航空航天大学 一种用于应急断开自封结构的动载荷剪断试验装置及方法
CN110887746B (zh) * 2019-11-18 2022-05-03 宁波大学 基于洛伦兹力的超大尺寸岩体结构面剪切试验的切向加载方法
CN110887746A (zh) * 2019-11-18 2020-03-17 宁波大学 基于洛伦兹力的超大尺寸岩体结构面剪切试验的切向加载方法
CN111024341A (zh) * 2019-12-25 2020-04-17 大连理工大学 一种接触刚度测试装置及测试方法
CN111141699A (zh) * 2020-02-05 2020-05-12 天津大学 一种用于红外光谱仪原位分析的力热耦合疲劳试验装置
CN111209691B (zh) * 2020-02-25 2022-09-09 国网河南省电力公司电力科学研究院 变电站套管系统的动态力学特性分析方法、计算机可读介质
CN111209691A (zh) * 2020-02-25 2020-05-29 国网河南省电力公司电力科学研究院 变电站套管系统的动态力学特性分析方法、计算机可读介质
WO2021186473A1 (en) * 2020-03-20 2021-09-23 INDIAN INSTITUTE OF TECHNOLOGY MADRAS (IIT Madras) STAND-ALONE MINIATURE IN-SITU MULTIAXIAL UNIVERSAL TESTING EQUIPMENT (IsMUTE)
CN111993464B (zh) * 2020-08-14 2024-01-23 华南理工大学 一种弹簧耦合旋转多体机械臂系统振动测试装置及方法
CN111993464A (zh) * 2020-08-14 2020-11-27 华南理工大学 一种弹簧耦合旋转多体机械臂系统振动测试装置及方法
CN112304789B (zh) * 2020-11-06 2023-06-23 安徽机电职业技术学院 一种基于超材料的天线面板的疲劳测试装置
CN112304789A (zh) * 2020-11-06 2021-02-02 安徽机电职业技术学院 一种基于超材料的天线面板的疲劳测试装置
CN112577823A (zh) * 2020-12-15 2021-03-30 中国林业科学研究院木材工业研究所 用于木材薄切片光学原位拉伸观测系统的原位拉伸装置
CN113567226B (zh) * 2021-07-23 2023-08-08 河南省特种设备安全检测研究院 一种电梯安全钳用铜合金平面应力断裂测试装置
CN113567226A (zh) * 2021-07-23 2021-10-29 河南省特种设备安全检测研究院 一种电梯安全钳用铜合金平面应力断裂测试装置
CN114062161B (zh) * 2021-10-30 2023-12-22 福州大学 一种用于多尺寸原状土圆柱样直剪试验的大型直剪仪
CN114062161A (zh) * 2021-10-30 2022-02-18 福州大学 一种用于多尺寸原状土圆柱样直剪试验的大型直剪仪
CN114354402A (zh) * 2021-11-27 2022-04-15 北京工业大学 一种基于丝杠控制位移的弯扭微动损伤试验系统及其实验方法
CN114201833A (zh) * 2021-12-16 2022-03-18 湖南科技大学 考虑直线度误差的直线滚动导轨动态载荷计算方法及系统
CN114544391A (zh) * 2022-01-21 2022-05-27 深圳大学 高温环境固体材料动态拉剪力学特性测试装置及测试方法
CN114544391B (zh) * 2022-01-21 2024-01-02 深圳大学 高温环境固体材料动态拉剪力学特性测试装置及测试方法
CN114527015B (zh) * 2022-02-14 2023-11-10 哈尔滨工业大学 适用于多种尺寸组合构件的纯扭徐变试验装置及其试验方法
CN114527015A (zh) * 2022-02-14 2022-05-24 哈尔滨工业大学 适用于多种尺寸组合构件的纯扭徐变试验装置及其试验方法
CN114659961A (zh) * 2022-04-09 2022-06-24 江苏瑞利山河建设工程质量检测有限公司 一种节能建筑材料防水性能测试装置
CN114935505B (zh) * 2022-06-07 2024-08-16 中南大学 一种颗粒物料内聚力测试装置及方法
CN114935505A (zh) * 2022-06-07 2022-08-23 中南大学 一种颗粒物料内聚力测试装置及方法
CN114720169B (zh) * 2022-06-07 2022-08-12 中国飞机强度研究所 飞机平面结构抗离散源撞击测试用复杂应力边界加载系统
CN114720169A (zh) * 2022-06-07 2022-07-08 中国飞机强度研究所 飞机平面结构抗离散源撞击测试用复杂应力边界加载系统
CN114740384A (zh) * 2022-06-13 2022-07-12 山东天厚石油科技有限责任公司 一种光伏发电系统用的蓄电设备检测装置
CN115096707B (zh) * 2022-08-26 2022-11-18 中铁北京工程局集团(天津)工程有限公司 一种桥梁工程用建筑材料抗压强度检测装置
CN115096707A (zh) * 2022-08-26 2022-09-23 中铁北京工程局集团(天津)工程有限公司 一种桥梁工程用建筑材料抗压强度检测装置
CN117191578B (zh) * 2023-11-06 2024-01-23 江苏博盟科技有限公司 一种汽车橡胶件拉力测试装置
CN117191578A (zh) * 2023-11-06 2023-12-08 江苏博盟科技有限公司 一种汽车橡胶件拉力测试装置
CN118032532A (zh) * 2024-04-12 2024-05-14 邢台中伟卓特液压科技有限公司 一种轴类工件抗压强度检测装置及其检测方法
CN118376370A (zh) * 2024-06-25 2024-07-23 中铁五局集团贵州工程有限公司 一种涵洞盖板移动式施工支架连接点检测平台

Also Published As

Publication number Publication date
US20200124510A1 (en) 2020-04-23
US10809169B2 (en) 2020-10-20
CN106226152A (zh) 2016-12-14
CN106226152B (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
WO2018006504A1 (zh) 静动态载荷谱下材料力学性能原位测试系统与方法
CN102359912B (zh) 基于准静态加载的扫描电镜下原位拉伸/压缩材料力学测试平台
CN102384875B (zh) 显微镜下拉压弯复合载荷模式材料力学性能测试装置
CN104913974B (zh) 材料微观力学性能双轴拉伸‑疲劳测试系统及其测试方法
CN102331370B (zh) 基于拉伸/压缩模式的扫描电镜下原位高频疲劳材料力学测试平台
CN108204876B (zh) 一种螺栓装配过程中预紧力实时检测装置与方法
CN103487315B (zh) 一种材料力学性能测试装置
CN102262016B (zh) 跨尺度微纳米级原位复合载荷力学性能测试平台
CN203551372U (zh) 剪切—扭转复合加载模式材料微观力学性能原位测试平台
CN107703006A (zh) 拉伸预载荷下动态扭转疲劳力学性能测试装置
CN102928304B (zh) 压电致动型材料疲劳力学性能测试装置
CN105181436B (zh) 弯曲预载荷微纳米压痕力学性能测试方法与装置
CN202256050U (zh) 基于准静态加载的扫描电镜下原位拉伸/压缩材料力学测试平台
CN202305330U (zh) 基于拉伸/压缩模式的扫描电镜下原位高频疲劳材料力学测试平台
CN103308404A (zh) 基于可调式拉伸-弯曲预载荷的原位纳米压痕测试仪
CN103528880A (zh) 剪切—扭转复合加载模式的材料微观力学性能原位测试平台
CN204718885U (zh) 材料微观力学性能双轴拉伸-疲劳测试系统
CN202903624U (zh) 压电致动型材料疲劳力学性能测试装置
CN105158057A (zh) 多场耦合下原位三轴拉伸疲劳测试装置及方法
CN203337492U (zh) 基于可调式拉伸-弯曲预载荷的原位纳米压痕测试仪
Lv et al. A parallel 3-DOF micro-nano motion stage for vibration-assisted milling
CN113310799A (zh) 一种超低应变速率下原位力学动态观察设备
CN203643278U (zh) 显微镜下的四点弯曲材料微观力学性能原位测试装置
CN202195986U (zh) 跨尺度微纳米级原位拉伸力学性能测试装置
CN103983526A (zh) 跨尺度微纳米级原位剪切力学性能测试平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908008

Country of ref document: EP

Kind code of ref document: A1