WO2018003931A1 - Tft回路およびシフトレジスタ回路 - Google Patents

Tft回路およびシフトレジスタ回路 Download PDF

Info

Publication number
WO2018003931A1
WO2018003931A1 PCT/JP2017/023992 JP2017023992W WO2018003931A1 WO 2018003931 A1 WO2018003931 A1 WO 2018003931A1 JP 2017023992 W JP2017023992 W JP 2017023992W WO 2018003931 A1 WO2018003931 A1 WO 2018003931A1
Authority
WO
WIPO (PCT)
Prior art keywords
tft
node
circuit
potential
terminal
Prior art date
Application number
PCT/JP2017/023992
Other languages
English (en)
French (fr)
Inventor
徳生 吉田
卓哉 渡部
晶 田川
泰章 岩瀬
洋平 竹内
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/309,386 priority Critical patent/US10490144B2/en
Publication of WO2018003931A1 publication Critical patent/WO2018003931A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0408Integration of the drivers onto the display substrate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements

Definitions

  • the present invention relates to a TFT circuit including a depletion type thin film transistor and a shift register circuit.
  • circuit TFTs constituting a drive circuit
  • circuit TFTs are generally manufactured simultaneously in a process of manufacturing TFTs (hereinafter referred to as “pixel TFTs”) arranged as switching elements for each pixel. Therefore, the circuit TFT and the pixel TFT are often formed using the same oxide semiconductor film, and often have the same or similar structure.
  • an enhancement type TFT having a positive threshold voltage Vth is usually used as the pixel TFT and the circuit TFT.
  • a charge on a floating node in the monolithic gate driver (described later) (Charges on the two floating nodes indicated by reference numerals netA and netB) also need to be discharged.
  • a monolithic gate driver using an a-Si TFT since the off-leakage current of the a-Si TFT is relatively large, the charge on the floating node in the monolithic gate driver (hereinafter sometimes referred to as “floating charge”) is about 3 milliseconds. Can be discharged.
  • floating charge is about 3 milliseconds.
  • the present inventor can reduce the amount of charge accumulated in the display region and in a driving circuit such as a monolithic gate driver by using a depletion type oxide semiconductor TFT having a negative threshold voltage Vth. I found it.
  • the gate potential of the TFT needs to be lower than the source potential (Vgs ⁇ 0 (V)).
  • a gate output failure may occur.
  • An embodiment of the present invention has been made in view of the above circumstances, and an object thereof is to suppress a decrease in output characteristics due to a leakage current of a depletion type TFT in a TFT circuit having a depletion type TFT. is there.
  • the TFT circuit supplies a first node to which a first low potential Vc is supplied, and a second low potential Va higher than the first node and the first low potential Vc.
  • a depletion type first TFT disposed between the first TFT and the low potential wiring, the drain terminal of which is connected to the first node, wherein the first TFT and the low potential wiring
  • a depletion-type second TFT which is disposed between the first and second TFTs and is connected to the source terminal of the first TFT.
  • the gate terminal of the second TFT includes the first TFT. Is supplied, and a second node that can be in a floating state is formed between the source terminal of the first TFT and the source terminal of the second TFT. Nodes of the second The potential of over-de lower than said second lower potential Va, and is connected to the sub-circuit capable of be higher than the first low potential Vc.
  • the sub-circuit supplies the second node with a third low potential Vb that is lower than the second low potential Va and higher than the first low potential Vc.
  • the potential of the second node can be lower than the third low potential Vb and higher than the first low potential Vc.
  • a first push-down circuit that pushes down the potential of the second node n times and a plurality of signals input to the TFT circuit
  • a second push-down circuit that pushes down the potential of the gate terminal of the second TFT by m times more than n times
  • the sub-circuit includes the first push-down circuit.
  • the TFT circuit is a bistable circuit constituting a shift register, an output terminal for outputting an output signal, an output transistor having a source or drain terminal connected to the output terminal, and the output transistor A node netA connected to the gate terminal of the first node, a pull-down transistor for lowering the potential of the node netA, and a node netB connected to the gate terminal of the pull-down transistor, wherein the first node is the node netB It is.
  • a shift register circuit includes any of the TFT circuits described above.
  • a TFT circuit having a depletion type TFT it is possible to suppress a decrease in output characteristics due to a leakage current of the depletion type TFT.
  • FIG. 1 is a diagram illustrating a part of a TFT circuit 101 according to a first embodiment. It is a figure which shows a part of TFT circuit 1001 of a comparative example. It is a figure which shows a part of TFT circuit 102 of 2nd Embodiment.
  • 6 is a diagram illustrating a configuration of a shift register circuit 2000 of Reference Example 1.
  • FIG. (A) is a figure which shows the TFT circuit 2001 of the reference example 1
  • (b) is a figure which illustrates the signal waveform (timing chart) in the TFT circuit 2001.
  • FIG. It is a figure which illustrates the structure of the shift register circuit 200 of 2nd Embodiment.
  • FIG. 1 is a figure which shows a part of TFT circuit 103 of 3rd Embodiment
  • (b) is a figure which illustrates the signal waveform of the TFT circuit 103.
  • FIG. 5 is a diagram illustrating a sub circuit SC1 in the TFT circuit 103.
  • FIG. It is a figure which illustrates the current-voltage characteristic of an enhancement type oxide semiconductor TFT and a depletion type oxide semiconductor TFT.
  • the TFT circuit of the present embodiment only needs to include a plurality of depletion type TFTs, and may be a drive circuit such as a gate driver. All TFTs included in the TFT circuit may be a depletion type, or only a part of the TFTs may be a depletion type. In the following description, a TFT circuit using an n-channel TFT as a depletion type TFT will be described.
  • FIG. 1 is a diagram schematically showing a part of the TFT circuit of the present embodiment.
  • the TFT circuit 101 includes a first node N1 to which a first low potential Vc is supplied, a depletion-type first TFT 21 disposed between the first node N1 and the low potential wiring 11, and a first node A depletion type second TFT 22 disposed between the TFT 21 and the low potential wiring 11.
  • the low potential wiring 11 is a wiring for supplying a second low potential Va higher than the first low potential Vc, and may be a power supply wiring.
  • the drain terminal of the first TFT 21 is connected to the first node N1.
  • the source terminal of the first TFT 21 is connected to the source terminal of the second TFT 22 and is connected to the low potential wiring 11 through the second TFT 22.
  • the second low potential Va is supplied to the gate terminal of the first TFT 21.
  • the source terminal of the second TFT 22 is connected to the source terminal of the first TFT 21, and the drain terminal of the second TFT 22 is connected to the low potential wiring 11.
  • the first low potential Vc is supplied to the gate terminal of the second TFT 22.
  • a second node N2 that can be in a floating state is formed between the source terminal of the first TFT 21 and the source terminal of the second TFT 22.
  • the second node N2 is connected to the sub circuit SC1.
  • the sub-circuit SC1 is a circuit that can make the second node N2 higher than the first low potential Vc and lower than the second low potential Va.
  • the sub-circuit SC ⁇ b> 1 may include the second TFT 22.
  • the sub-circuit SC1 may be, for example, a push-down circuit of the second low potential Va formed by using a signal (clock signal, start pulse signal, etc.) input to the TFT circuit 101 and a capacitor.
  • the sub-circuit SC1 may include the second TFT 22 and another depletion type TFT (hereinafter referred to as “third TFT”) connected to the wiring that supplies the first low potential Vc. .
  • third TFT another depletion type TFT
  • the TFT circuit 101 of the present embodiment includes a second node N2, a second TFT 22, and a sub circuit SC1 between the first TFT 21 and the low potential wiring 11.
  • a circuit 10 including a first TFT 21, a second node N2, a second TFT 22, and a sub circuit SC1 provided at a selected node (here, the first node N1) in the TFT circuit is described.
  • This is called a “node potential holding circuit”.
  • the node potential holding circuit 10 may be provided at each of a plurality of nodes in the TFT circuit. By providing the node potential holding circuit 10, it is possible to hold the potential of the selected node for a predetermined period and to suppress the deterioration of the circuit output characteristics. Hereinafter, the reason will be described.
  • FIG. 2 shows a TFT circuit 1001 of Comparative Example 1 which does not have a node potential holding circuit and in which only the first TFT 21 is arranged between the first node N1 and the low potential wiring 11. .
  • the second low potential Va is supplied to the gate terminal.
  • the first low potential Va is supplied to the gate terminal of the first TFT 21, and the potential (higher than Vc and lower than Va is applied to the second node N2 by the sub-circuit SC1.
  • FIG. 3 is a diagram illustrating a part of the TFT circuit 102 according to the second embodiment. 3, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the TFT circuit 102 supplies the first node N1 to which the first low potential Vc is supplied, the first TFT 21 connected to the first node N1, and the first TFT 21 and the second low potential Va.
  • the second TFT 22 is provided between the low potential wiring and the second TFT 22.
  • the first low potential Vc is supplied to the gate terminals of the first TFT 21 and the second TFT 22.
  • a second node N2 that can be in a floating state is formed between the source terminal of the first TFT 21 and the source terminal of the second TFT 22.
  • a depletion type third TFT 23 is connected to the second node N2.
  • the sub-circuit SC1 capable of supplying the third low potential Vb (Vc ⁇ Vb ⁇ Va) is connected to the second node N2.
  • the sub-circuit SC ⁇ b> 1 in this embodiment includes a second TFT 22 and a depletion type third TFT 23.
  • the third TFT 23 has a source terminal connected to the second node N2, and a drain terminal connected to a wiring for supplying the first low potential Vc.
  • the first low potential Vc is supplied to the gate terminal of the third TFT 23.
  • the gate terminal of the third TFT 23 may be connected to the first node N1.
  • the second low potential Va and the first low potential Vc may be supplied from the outside as external signals. These low potentials Va and Vc may be power supply potentials.
  • the drain terminals of the second TFT 22 and the third TFT 23 are connected to the power supply wiring for supplying the second low potential Va and the power supply wiring for supplying the first low potential Vc, respectively.
  • the TFT circuit 102 An example of the operation of the TFT circuit 102 will be described.
  • the first TFT 21 and the second TFT 22 are on, and the potential V (N1) of the first node N1 becomes the second low potential Va.
  • the first low potential Vc is supplied to the gate terminal of the first TFT 21 to turn on the third TFT 23.
  • the third TFT 23 is turned on, the source potentials of the second TFT 22 and the third TFT 23 are mixed in the second node N2.
  • the potential V (N2) of the second node N2 is higher than Vc and lower than Va (Vc ⁇ V (N2) ⁇ Va).
  • the first TFT 21 since the gate potential (Vc) is lower than the source potential (V (N2) ) (Vgs ⁇ 0 (V)), the first TFT 21 is turned off. As a result, the potential of the first node N1 can be held, and the deterioration of the output characteristics of the TFT circuit 102 is suppressed.
  • This embodiment can be applied to, for example, a shift register circuit constituting a monolithic gate driver.
  • a shift register circuit constituting a monolithic gate driver.
  • an example in which the present embodiment is applied to a shift register circuit will be described.
  • Reference Example 1 a configuration of a conventional shift register circuit 2000 is shown as Reference Example 1. This configuration is disclosed in, for example, International Publication No. 2011/135879.
  • the shift register circuit 2000 has a plurality of unit circuits (hereinafter referred to as “unit circuits”) SR1 to SRn.
  • Each stage unit circuit SRk (k is a natural number of 1 ⁇ k ⁇ n) includes a set terminal for inputting a set signal SET, an output terminal for outputting an output signal GOUT, a reset terminal for inputting a reset signal RESET, and a low power supply potential VSS. And a clock input terminal for inputting clock signals CLK1 and CLK2.
  • the output signal GOUTk-1 of the preceding unit circuit SRk-1 is input to the set terminal.
  • the gate start pulse signal GSP is input to the set terminal of the unit circuit SR1 in the first stage.
  • the output terminal In the unit circuit SRk (k ⁇ 1) in each stage, the output terminal outputs the output signal GOUTk to the corresponding scanning signal line arranged in the display area.
  • the output signal GOUTk + 1 of the next stage unit circuit SRk + 1 is input to the reset terminal of the unit circuit SRk (k ⁇ n ⁇ 1).
  • the clear signal CLR is input to the reset terminal of the final unit circuit SRn.
  • the Low power supply potential VSS which is the power supply voltage on the low potential side in each unit circuit SRk, is input to the Low power supply input terminal.
  • the clock signal CLK1 is input to one of the two clock input terminals, and the clock signal CLK2 is input to the other clock input terminal.
  • the clock signal input to the clock input terminal is configured to be alternately switched between adjacent stages.
  • the clock signal CLK1 and the clock signal CLK2 have a complementary phase relationship in which active clock pulse periods (here, high level periods) do not overlap each other.
  • the voltage on the high level side (active side) of the clock signals CLK1 and CLK2 is VGH, and the voltage on the low level side (inactive side) is VGL.
  • the low power supply voltage VSS is equal to the voltage VGL on the low level side of the clock signals CLK1 and CLK2.
  • the clock signal CLK1 and the clock signal CLK2 may be in opposite phases to each other.
  • the active clock pulse period of one clock signal may be included within the inactive period of the other clock signal (ie, the clock duty is less than 1/2).
  • the gate start pulse signal GSP is a signal that becomes active during the first clock pulse period of one frame period.
  • the clear signal CLR is a signal that is active (here, High) in the last clock pulse period of one frame period.
  • the gate start pulse signal GSP is input as a shift pulse to the set terminal of the first unit circuit SR1.
  • the shift register circuit 2000 outputs an active pulse of the output signal GOUTk when the cascaded unit circuits SRk sequentially pass this shift pulse.
  • FIG. 5A is a diagram showing a unit circuit SRk (hereinafter, simply referred to as “TFT circuit”) 2001 of Reference Example 1.
  • FIG. 5B shows a signal waveform in the TFT circuit 2001.
  • the TFT circuit 2001 of Reference Example 1 includes five n-channel TFTs 31 to 35 and a capacitor CAP. These TFTs are all enhancement type TFTs.
  • TFT 31 is an input transistor.
  • the gate and drain of the TFT 31 are connected to the set terminal, and the source of the TFT 31 is connected to the gate of the TFT 35.
  • the TFT 35 is an output transistor.
  • the drain of the TFT 35 is connected to the clock input terminal, and the source is connected to the output terminal. That is, the TFT 35 serves as a transmission gate and passes and blocks the clock signal CLK1 input to the clock input terminal.
  • the capacitor CAP is connected between the gate and the source of the TFT 35.
  • a node connected to the gate of the TFT 35 output transistor
  • a node connected to the output terminal is referred to as “node GOUT”.
  • the TFT 33 is disposed between the low power input terminal and the node netA.
  • the TFT 33 is a pull-down transistor for reducing the potential of the node netA.
  • the gate of the TFT 33 is connected to the reset terminal, the drain is connected to the node netA, and the source is connected to the low power input terminal.
  • a node connected to the gate of the pull-down transistor (TFT 33 in this case) is referred to as “node netB”.
  • TFTs 32 and 34 are connected to the node GOUT.
  • the TFT 34 has a gate connected to a reset terminal, a drain connected to an output terminal, and a source connected to a low power input terminal.
  • the gate of the TFT 32 is connected to the input terminal of the clock signal CLK2, the drain is connected to the output terminal, and the source is connected to the Low power input terminal.
  • the TFTs 34 and 35 are in a high impedance state until a shift pulse is input to the set terminal, and the TFT 32 is in an ON state every time the clock signal CLK2 input from the clock input terminal becomes a high level.
  • the output terminal is in a period for holding Low.
  • the TFT 35 Since the potential of the node netA is pushed up by the bootstrap effect of the capacitor CAP at the moment when this clock pulse (High level) is input, the TFT 35 obtains a large overdrive voltage. As a result, almost the entire amplitude of the VGH of the clock pulse input to the clock input terminal is transmitted to the output terminal and output to become a gate pulse.
  • the TFT 31 When the input of the shift pulse to the set terminal is completed, the TFT 31 is turned off and the netA is kept in a floating state. After the gate output (GOUT) is completed, the floating state of each node is released by the reset pulse signal. Specifically, the gate pulse of the next unit circuit SRk + 1 is input to the reset terminal as a reset pulse. As a result, the TFTs 33 and 34 are turned on, and the node netA and the output terminal are connected to the low power supply voltage VSS. Accordingly, the TFT 35 is turned off. When the input of the reset pulse is finished, the generation period of the gate pulse of the TFT circuit 2001 is finished, and the output terminal becomes a period for holding the Low again.
  • the node potential holding circuit 10 described above with reference to FIG. 3 is provided for the node netA and the node GOUT in the TFT circuit 2001.
  • FIG. 6 is a diagram illustrating the configuration of the shift register circuit 200 of the present embodiment.
  • the shift register circuit 200 is different from the shift register circuit 2000 of FIG. 4 in that two types of low power supply potentials Vss1 and Vss2 are input.
  • FIG. 7A is a diagram illustrating the TFT circuit 201 of this embodiment.
  • the TFT circuit 201 is a unit circuit SRk that constitutes the shift register circuit 200.
  • the same reference numerals are assigned to the same components as those of the TFT circuit 2001 of Reference Example 1.
  • FIG. 7B is a diagram illustrating the waveform of each signal in the TFT circuit 201. In the following description, the description of the same configuration and operation as the TFT circuit 2001 of Reference Example 1 is omitted.
  • the TFT circuit 201 two types of low potentials Vgl1 and Vgl2 are supplied from the outside.
  • the low potential Vgl2 is lower than the low potential Vgl1 (Vgl1> Vgl2). That is, the low potential Vgl1 corresponds to the second low potential Va, and the low potential Vgl2 corresponds to the first low potential Vc.
  • the TFTs 31 to 35 constituting the TFT circuit 201 are all depletion type TFTs.
  • the node netA in the TFT circuit 201 is provided with a first node potential holding circuit 10 a including the TFT 33.
  • the node GOUT is provided with a second node potential holding circuit 10b including the TFT 32. Note that the node potential holding circuit may be provided only in one of the node netA and the node GOUT. Alternatively, similar node potential holding circuits may be provided in other nodes.
  • the first node potential holding circuit 10a includes a TFT 33 and depletion type TFTs x1 and TFTy1.
  • the TFT 33, TFT y1, and TFT x1 correspond to the first TFT, the second TFT, and the third TFT shown in FIG. 3, respectively.
  • Both the source terminal of TFTx1 and the source terminal of TFTy1 are connected to the source terminal of TFT33.
  • a node netC that can be in a floating state is formed between the three TFTs 33, TFTx1, and TFTy1.
  • the drain terminal of the TFTx1 is connected to the input terminal of the low potential Vgl2, and the gate terminal is connected to the node netB.
  • a low potential Vgl2 is supplied to the node netB.
  • the drain terminal of TFTy1 is connected to the input terminal of low potential Vgl1, and the gate terminal is connected to node netA.
  • the node netA is supplied with the low potential Vgl2.
  • the TFT 33 and the TFT x1 are turned on, and the node netA is set to the low potential Vgl2.
  • the TFTy1 is turned on, and the source potential of the TFTy1 and the source potential of the TFTx1 are mixed at the node netC. Therefore, the potential V (netC) of the node netC is higher than Vgl2 and lower than Vgl1 (Vgl2 ⁇ V (netC) ⁇ Vgl1).
  • the gate potential Vgl2 of the TFT 33 becomes lower than the source potential V (netC) , so that the TFT 33 is turned off.
  • the potential V (netC) of the node netC becomes a value U (Vgl1) close to Vgl1 within a range satisfying Vgl2 ⁇ V (netC) ⁇ Vgl1.
  • a value lower than the potential X and close to the potential X is expressed as U (X) (X> U (X) and X ⁇ U (X) ).
  • the TFT 33 since the TFT 33 is turned off during the selection period, the node netA is in a floating state, and the potential of the node netA can be held. For this reason, the output defect resulting from the leakage current of the TFT 33 can be suppressed.
  • the second node potential holding circuit 10b includes a TFT 32, a depletion type TFT x2, and a TFT y2.
  • the TFT 32, TFT y2, and TFT x2 correspond to the first TFT, the second TFT, and the third TFT shown in FIG. 3, respectively.
  • Both the source terminal of TFTx2 and the source terminal of TFTy2 are connected to the source terminal of TFT32.
  • a node netD that can be in a floating state is formed between the three TFTs 32, TFTx2, and TFTy2.
  • the drain terminal of the TFTx2 is connected to the input terminal of the low potential Vgl2, and the gate terminal is connected to the clock input terminal for inputting the clock signal CLK2.
  • a low potential Vgl1 is supplied to the gate terminal of the TFTx2.
  • the drain terminal of TFTy2 is connected to a wiring or a terminal for supplying a common potential COM (COM> Vgl1> Vgl2) higher than the low potentials Vgl1 and Vgl2.
  • the gate terminal of TFTy2 is connected to node GOUT.
  • a low potential Vgl2 is supplied to the node GOUT.
  • the TFT 32 and the TFT x2 are turned on, and the node GOUT is set to the low potential Vgl2.
  • the TFTy2 is turned on, and the source potential of the TFTy2 and the source potential of the TFTx2 are mixed at the node netD. Therefore, the potential V (netD) of the node netD is higher than Vgl2 and lower than COM (Vgl2 ⁇ V (netD) ⁇ COM).
  • the TFTx2 As the potential V (netD) of the node netD increases, the current flowing through the TFTx2 decreases, and when the potential V (netD) of the node netD exceeds Vgl1, the TFTx2 and the TFT 32 are turned off. Since the TFT x2 is turned off, the potential V (netD) of the node netD becomes a value U (COM) close to COM within a range satisfying Vgl2 ⁇ V (netD) ⁇ COM. In this manner, since the TFT 32 can be turned off, the potential of the node GOUT can be held, and output failure due to the off-leak current of the TFT 32 can be suppressed.
  • the TFT circuit 2002 of Reference Example 2 is one of the unit circuits SRk in the shift register circuit, and is configured using an enhancement type TFT.
  • the TFT circuit 2002 inputs ten TFTs 40 to 49, a capacitor CAP, a low power input terminal for inputting a low potential Vss, a clock input terminal for inputting any of the four-phase clock signals CLK1 to CLK4, and a set signal SET. It has a set terminal, a reset terminal for inputting a reset signal RESET, a clear terminal for inputting a clear signal CLR, and an output terminal for outputting an output signal GOUT.
  • TFT 41 is an input transistor
  • TFT 47 is an output transistor
  • TFTs 48, 45 and 42 are connected to the node netA connected to the gate of the TFT 47 (output transistor).
  • TFTs 49, 44, and 43 are connected to the node netB connected to the gate of the TFT 45.
  • TFTs 40 and 46 are connected to the node GOUT.
  • the TFT circuit 2002 performs interlace driving using, for example, four-phase clock signals (first clock signal CLK1 to fourth clock signal CLK4).
  • first clock signal CLK1 first clock signal CLK1 to fourth clock signal CLK4
  • the set signal SET is turned ON
  • the capacitor CAP is charged and the node netA is precharged to a high level.
  • the first clock signal CLK1 changes from the low level to the high level
  • the potential of the node netA rises to 2Vgh due to the bootstrap effect of the capacitor CAP.
  • the output signal GOUT becomes high level.
  • a reset pulse signal is input, the floating state of each node is released, and the node netA and the node GOUT become low level.
  • the node potential holding circuit 10 described above with reference to FIG. 3 is provided for the node netA and the node netB in the TFT circuit 2002.
  • FIGS. 9A and 9B are diagrams showing signal waveforms of another TFT circuit 202 and the TFT circuit 202 of the present embodiment, respectively.
  • the TFTs constituting the TFT circuit 202 are all depletion type TFTs.
  • the TFT circuit 202 As in the TFT circuit 201, two types of low potentials Vgl1 and Vgl2 are supplied from the outside (Vgl1> Vgl2).
  • the low potentials Vgl1 and Vgl2 are low power supply potentials. Accordingly, the TFT circuit 202 has a Low power input terminal for inputting the Low power supply potential Vgl1 and a Low power input terminal for inputting the Low power supply potential Vgl2.
  • the TFTs 40 to 49 constituting the TFT circuit 202 are all depletion type TFTs.
  • the node netB in the TFT circuit 202 is provided with a third node potential holding circuit 10 c including the TFT 44.
  • the node netA is provided with a fourth node potential holding circuit 10d including a TFT 45. Note that the node potential holding circuit may be provided only in one of the node netA and the node netB. Alternatively, a node potential holding circuit may be provided in another node.
  • the third node potential holding circuit 10c includes a TFT 44 and depletion type TFTx3 and TFTy3.
  • the TFT 44, TFT y3, and TFT x3 correspond to the first TFT, the second TFT, and the third TFT shown in FIG. 3, respectively.
  • the source terminal of the TFT x3 and the source terminal of the TFT y3 are both connected to the source terminal of the TFT 44.
  • a node netE that can be in a floating state is formed between the three TFTs 44, TFTx3, and TFTy3.
  • the drain terminal of the TFTx3 is connected to the low potential Vgl2Low power input terminal, and the gate terminal is connected to the node netA.
  • the low potential Vgl2 is supplied to the node netA via the TFT 45 and the TFT x4.
  • the drain terminal of TFTy3 is connected to the input terminal of low potential Vgl1, and the gate terminal is connected to node netB.
  • the low potential Vgl2 is supplied to the node netB.
  • the potential V (netE) of the node netE becomes a value H (Vgl2) close to Vgl2 within a range satisfying Vgl2 ⁇ V (netE) ⁇ Vgl1.
  • the potential H (Vgl2) is greater than Vlg2 and close to Vlg2 (Vlg2 ⁇ H (Vgl2) and Vlg2 ⁇ H (Vgl2) ).
  • the source potential of TFTy3 and the source potential of TFTx3 are mixed through TFTy3 and TFTx3. Therefore, the potential V (netE) of the node netE is a potential between Vgl2 and Vgl1.
  • the TFT 44 Since the potential V (netE) of the node netE is higher than the gate potential (H (Vgl2) ) of the TFT 44 and TFTx3, the TFT 44 is turned off. The forced Vgl1 subtraction by TFTy3 and Vgl2 are mixed, and the potential V (netE) of the node netE becomes a value U (Vgl1) close to Vgl1 within a range satisfying Vgl2 ⁇ V (netC) ⁇ Vgl1. In this manner, since the TFT 44 can be turned off, the through current from the TFT 43 to the TFT 44 can be reduced in the non-selection period, and the decrease in the potential of the node netB (the potential supplied to the gate terminal of the TFT 45) can be suppressed.
  • the fourth node potential holding circuit 10d includes a TFT 45 and depletion type TFTs x4 and TFTy4.
  • the TFT 45, TFT y4, and TFT x4 correspond to the first TFT, the second TFT, and the third TFT shown in FIG. 3, respectively.
  • Both the source terminal of TFTx4 and the source terminal of TFTy4 are connected to the source terminal of TFT45.
  • a node netF that can be in a floating state is formed between the three TFTs 45, TFTx4, and TFTy4.
  • a low potential Vgl2 is supplied to the drain terminal of the TFTx4.
  • the gate terminal of the TFTx4 is connected to the node netB. During the selection period, the low potential Vgl2 is supplied to the node netB.
  • the COM potential (Vgl2 ⁇ Vgl1 ⁇ COM) is supplied to the drain terminal of TFTy4.
  • the gate terminal of TFTy4 is connected to node netA.
  • the low potential Vgl2 is supplied to the node netA.
  • the TFT 45 and the TFT x4 are in an ON state, and the potential V (netF) of the node netF is a value H (Vgl2) close to Vgl2 within a range satisfying Vgl2 ⁇ V (netF) ⁇ COM .
  • the source potential of TFTy4 and the source potential of TFTx4 are mixed through TFTy4 and TFTx4. For this reason, the potential V (netF) of the node netE is a potential between Vgl2 and COM.
  • the TFT 45 Since the potential V (netF) of the node netF is higher than the gate potential (H (Vgl2) ) of the TFT 45 and TFTx4, the TFT 45 is turned off.
  • the forced COM pull by TFTy4 and Vgl2 are mixed, and the potential V (netF) of the node netF becomes a value U (COM) close to COM within a range satisfying Vgl2 ⁇ V (netC) ⁇ COM.
  • the TFT 45 can be turned off, the potential of the node netA can be held.
  • connection destination of the TFT 42 of the TFT circuit 202 is different from that of the TFT circuit 2002 shown in FIG.
  • a depletion type TFT is used as the TFT 42
  • the source of the TFT 42 is connected to the netA as in the TFT circuit 2002 shown in FIG. 8
  • the node netA is held in a floating state by the leak current of the TFT 42 during bootstrapping. Disappear.
  • the connection destination of the TFT 42 since the connection destination of the TFT 42 is changed from the node netA, the floating state of the node netA can be maintained at the time of bootstrapping, and the potential when the set signal SET is ON A decrease in a certain precharge potential can be suppressed.
  • the TFT 47 as an output transistor operates as follows. In the selection period, the gate potential (the potential of the node netA) is 2 Vgh, and the source potential is Vgh. In the non-selection period, the gate potential (the potential of the node netA) is H (Vgl2) , the source potential is Vgl1, and the transistor is turned off.
  • the drain terminal of TFTy3 is connected to the terminal that supplies the low potential Vgl1, but may instead be connected to the terminal that supplies the COM potential.
  • the drain terminal of the TFT y4 is connected to a terminal that supplies a COM potential, but may instead be connected to a terminal that supplies a low potential Vgl1.
  • the configuration of the shift register circuit of the present embodiment is not limited to the example described with reference to FIGS.
  • the present embodiment can be applied to various shift register circuits.
  • a node potential holding circuit is provided for at least one of the node netA, the node netB, and the node GOUT, a decrease in output characteristics can be more effectively suppressed.
  • the TFT circuit of the third embodiment is different from the TFT circuit of the above-described embodiment in that a node potential holding circuit including two types of push-down circuits is formed with respect to the depletion type TFT.
  • FIG. 10A is a diagram illustrating a part of the TFT circuit 103 according to the third embodiment.
  • the same components as those in FIG. 10A the same components as those in FIG. 10A.
  • the TFT circuit 103 is provided between the first node N1 to which the first low potential Vc is supplied, the first TFT 21 connected to the first node N1, and the first TFT 21 and the low potential wiring 11.
  • the second TFT 22 is provided.
  • the low potential wiring 11 is a wiring for supplying the second low potential Va.
  • the gate terminal of the first TFT 21 is connected to, for example, a clear terminal. Alternatively, the second low potential Va is supplied to the gate terminal.
  • the sub-circuit SC1 that supplies a third low potential Vb that is lower than the second low potential Va and higher than the first low potential Vc is connected to the second node N2.
  • the sub-circuit SC1 uses, for example, a plurality of signals input to the TFT circuit 103 to push down the potential of the second node N2 once, and the push-down circuit 51 and the second node N2 And a capacitor 53 disposed between the two.
  • a sub-circuit SC2 for supplying the first low potential Vc is connected to the gate terminal of the second TFT 22.
  • the sub-circuit SC2 uses a plurality of signals input to the TFT circuit 103 to push down the potential of the gate terminal of the second TFT twice, and the push-down circuit 55 and the gate terminal And a capacitor 57 disposed between the two.
  • the push-down circuit 55 is also connected to the first node N1, and the pushed-down potential (first low potential Vc) is also supplied to the first node N1.
  • the number of push-downs in the push-down circuits 51 and 55 is not limited to the above number. Assuming that the number of push-downs in the push-down circuits 51 and 55 is n times and m times, respectively, it is only necessary that n ⁇ m. As a result, the potential supplied to the gate terminal of the second TFT 22 can be made lower than the third low potential Vb supplied to the second node N2 on the source side of the second TFT 22, so that the second The TFT 22 can be turned off.
  • the second low potential Va is a low power supply potential
  • the first low potential Vc and the third low potential Vb are new signals generated by the push-down circuits 51 and 55.
  • the TFT circuit 103 can be configured without adding a signal supplied from the outside.
  • the configuration of the push-down circuits 51 and 55 is not particularly limited.
  • the push-down circuits 51 and 55 may be configured using signals externally input to the TFT circuit 101, for example, clock signals CLK1 and CLK2, a gate start pulse signal GSP, and the like.
  • An example of the sub-circuit SC1 including the push-down circuit 51 is shown in FIG.
  • the first TFT 21 may be a clear transistor of the unit circuit SRk in the shift register circuit.
  • the “clear transistor” is a TFT in which a clear signal CLR is input to a gate and a drain or a source is connected to a low potential wiring.
  • the TFTs 48, 49, and 40 are clear transistors.
  • the first TFT 21 is a clear transistor of the unit circuit SRk
  • the first node N1 is, for example, the node netA, the node netB, or the node GOUT.
  • FIG. 10A only the clear transistor of one unit circuit SRk is shown, but the clear transistors in a plurality of unit circuits may be connected to the common second node N2.
  • the common circuit including the second TFT 22, the second node N2, and the sub-circuits SC1 and SC2 for the clear transistor in the multi-stage unit circuit SRk without increasing the size of each unit circuit SRk, A decrease in output characteristics due to the leakage current of the clear transistor can be suppressed.
  • FIG. 10B is a diagram showing signal waveforms in the TFT circuit 103.
  • two types of clock signals CLK1, CLK2, gate start pulse signal GSP, clear signal CLR, signal waveforms of the first node N1 and the second node N2 are illustrated.
  • the second node N2 is pushed down to the third low potential Vb by the push-down circuit 51, and the first node N1 is pushed down to the first low potential Vc by the push-down circuit 55. .
  • the potentials V (N1) and V (N2) of the first node N1 and the second node N2 are mixed through the first TFT 21 whose gate voltage Vgs is positive (Vgs ⁇ 0 (V)).
  • the potential is higher than the first low potential Vc and lower than the third low potential Vb (Vc ⁇ V (N1) , V (N2) ⁇ Vb)).
  • an oxide semiconductor TFT may be used as the depletion type TFT.
  • the leakage current when the gate voltage Vgs is 0 V can be increased, so that the charge on the floating node in the circuit is quickly discharged. be able to. Accordingly, when a node potential holding circuit is provided in a shift register circuit including a depletion type oxide semiconductor TFT, uneven charging due to floating charges is suppressed, and the circuit output characteristics are deteriorated due to a leakage current of the depletion type oxide semiconductor TFT. Can be suppressed, which is advantageous.
  • a node potential holding circuit may be provided in a part of the circuit TFTs constituting the driving circuit.
  • the oxide semiconductor layer may have a stacked structure of two or more layers.
  • the oxide semiconductor layer may include an amorphous oxide semiconductor layer and a crystalline oxide semiconductor layer.
  • a plurality of crystalline oxide semiconductor layers having different crystal structures may be included.
  • a plurality of amorphous oxide semiconductor layers may be included.
  • the energy gap of the oxide semiconductor included in the upper layer is preferably larger than the energy gap of the oxide semiconductor included in the lower layer.
  • the energy gap of the lower oxide semiconductor may be larger than the energy gap of the upper oxide semiconductor.
  • the oxide semiconductor layer may contain at least one metal element of In, Ga, and Zn, for example.
  • the oxide semiconductor layer includes, for example, an In—Ga—Zn—O-based semiconductor (eg, indium gallium zinc oxide).
  • Such an oxide semiconductor layer can be formed using an oxide semiconductor film containing an In—Ga—Zn—O-based semiconductor.
  • the In—Ga—Zn—O-based semiconductor may be amorphous or crystalline.
  • a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
  • a TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (more than 20 times that of an a-Si TFT) and low leakage current (less than one hundredth of that of an a-Si TFT).
  • the TFT is suitably used as a driving TFT (for example, a TFT included in a driving circuit provided on the same substrate as the display area around a display area including a plurality of pixels) and a pixel TFT (a TFT provided in the pixel).
  • a driving TFT for example, a TFT included in a driving circuit provided on the same substrate as the display area around a display area including a plurality of pixels
  • a pixel TFT a TFT provided in the pixel
  • the oxide semiconductor layer may include another oxide semiconductor instead of the In—Ga—Zn—O-based semiconductor.
  • an In—Sn—Zn—O-based semiconductor eg, In 2 O 3 —SnO 2 —ZnO; InSnZnO
  • the In—Sn—Zn—O-based semiconductor is a ternary oxide of In (indium), Sn (tin), and Zn (zinc).
  • the oxide semiconductor layer includes an In—Al—Zn—O based semiconductor, an In—Al—Sn—Zn—O based semiconductor, a Zn—O based semiconductor, an In—Zn—O based semiconductor, and a Zn—Ti—O based semiconductor.
  • Cd—Ge—O based semiconductor Cd—Pb—O based semiconductor, CdO (cadmium oxide), Mg—Zn—O based semiconductor, In—Ga—Sn—O based semiconductor, In—Ga—O based semiconductor, A Zr—In—Zn—O based semiconductor, an Hf—In—Zn—O based semiconductor, an Al—Ga—Zn—O based semiconductor, a Ga—Zn—O based semiconductor, or the like may be included.
  • ⁇ Depression type TFT structure The structure of the depletion type TFT used in the embodiment described above is not particularly limited.
  • a bottom gate structure in which a gate electrode is disposed between the semiconductor layer and the substrate may be employed, or a top gate structure in which a gate electrode is disposed above the semiconductor layer may be employed.
  • the source and drain electrodes may be in contact with the upper surface of the semiconductor layer (top contact structure), or may be in contact with the lower surface of the semiconductor layer (bottom contact structure).
  • the TFT may have a channel etch structure or an etch stop structure.
  • An etch stop type TFT has an etch stop layer so as to be in contact with the upper surface of the channel region of a semiconductor layer (eg, an oxide semiconductor layer). The lower surfaces of the end portions on the channel side of the source and drain electrodes are located, for example, on the etch stop layer.
  • an etch stop type TFT is formed by forming an etch stop layer that covers a portion of a semiconductor layer that becomes a channel region, and then forming a conductive film for a source / drain electrode on the semiconductor layer and the etch stop layer. Formed by performing separation.
  • channel etch type TFT an etch stop layer is not formed on the channel region, and the lower surface of the end of the source and drain electrodes on the channel side is disposed in contact with the upper surface of the oxide semiconductor layer.
  • a channel etch type TFT is formed, for example, by forming a conductive film for a source / drain electrode on an oxide semiconductor layer and performing source / drain separation. In the source / drain separation step, the surface portion of the channel region may be etched.
  • the TFT circuits of the first to third embodiments described above may be a shift register circuit or a unit circuit (bistable circuit) constituting the shift register circuit.
  • a circuit can be suitably applied to, for example, a monolithic gate driver, an active matrix substrate including a monolithic gate driver, or a display device.
  • the first to third embodiments are not limited to the shift register circuit, and can be applied to various circuits including a depletion type TFT.
  • the embodiment of the present invention can be widely applied to various circuits including a depletion type TFT.
  • a driving circuit such as a gate driver.
  • a monolithic gate driver in an active matrix substrate.
  • active matrix substrates include liquid crystal display devices, display devices such as organic electroluminescence (EL) display devices and inorganic electroluminescence display devices, imaging devices such as image sensor devices, image input devices, fingerprint readers, and semiconductors. It is applied to various electronic devices such as a memory.

Abstract

TFT回路(101)は、第1の低電位(Vc)が供給される第1のノード(N1)と、第1の低電位(Vc)よりも高い第2の低電位(Va)を供給する低電位配線(11)と第1のノード(N1)との間に配置され、かつ、ドレイン端子が第1のノードに接続されたデプレッション型の第1のTFT(21)と、第1のTFT(21)と低電位配線(11)との間に配置され、かつ、ソース端子が第1のTFTのソース端子に接続されたデプレッション型の第2のTFT(22)とを備え、第2のTFTのゲート端子には第1の低電位(Vc)が供給され、第1のTFTのソース端子と第2のTFTのソース端子との間にはフローティング状態になり得る第2のノード(N2)が形成され、第2のノード(N2)は、第2のノード(N2)の電位を第2の低電位(Va)より低く、かつ、第1の低電位(Vc)よりも高くすることの可能なサブ回路(SC1)に接続されている。

Description

TFT回路およびシフトレジスタ回路
 本発明は、デプレッション型の薄膜トランジスタを含むTFT回路、およびシフトレジスタ回路に関する。
 液晶表示装置等に用いられるアクティブマトリクス基板は、画素毎に薄膜トランジスタ(Thin Film Transistor;以下、「TFT」)などのスイッチング素子を備えている。このようなスイッチング素子としては、従来から、アモルファスシリコン膜を活性層とするTFT(以下、「アモルファスシリコンTFT」)や多結晶シリコン膜を活性層とするTFT(以下、「多結晶シリコンTFT」)が広く用いられている。
 近年、TFTの活性層の材料として、アモルファスシリコンや多結晶シリコンに代わって、酸化物半導体を用いることが提案されている。このようなTFTを「酸化物半導体TFT」と称する。酸化物半導体は、アモルファスシリコンよりも高い移動度を有している。このため、酸化物半導体TFTは、アモルファスシリコンTFTよりも高速で動作することが可能である。また、酸化物半導体TFTでは、酸化物半導体が高い移動度を有することから、Id-Vg特性の立ち上がりが急峻になり、オフリーク電流が小さい。
 一方、ゲートドライバやソースドライバなどの駆動回路を、基板上にモノリシック(一体的)に設ける技術が知られている(例えば特許文献1参照)。これらの駆動回路(モノリシックドライバ)は、通常、TFTを用いて構成される。最近では、酸化物半導体TFTを用いて基板上にモノリシックドライバを作製する技術が利用されており、これによって、額縁領域の狭小化や、実装工程簡略化によるコストダウンが実現される。
 駆動回路を構成するTFT(以下、「回路TFT」)は、一般的には、画素ごとにスイッチング素子として配置されるTFT(以下、「画素TFT」)を作製する工程において同時に作製される。このため、回路TFTと画素TFTとは、同一の酸化物半導体膜を用いて形成され、なおかつ、同一または類似の構造を有することが多い。画素TFTおよび回路TFTとして、通常、閾値電圧Vthが正であるエンハンスメント型のTFTが用いられる。
 ところで、アクティブマトリクス基板を用いたアクティブマトリクス型の液晶表示装置において、利用者によって電源が遮断されたにもかかわらず、直ちに表示がクリアされず、白くかすむような画像が残ることがある。この理由は、装置の電源がオフされると画素容量に保持された電荷の放電経路が遮断され、画素領域内に残留電荷が蓄積されるからである。また、画素領域内に残留電荷が蓄積された状態で装置の電源がオンされると、その残留電荷に基づくフリッカの発生など表示品位の低下が生じる。
 ゲートドライバがモノリシックに設けられた液晶パネル(以下、「ゲートドライバモノリシックパネル」)においては、表示領域内の電荷、ゲートバスラインの電荷に加えて、モノリシックゲートドライバ内の浮遊ノード上の電荷(後述する符号netAおよび符号netBで示す2つの浮遊ノード上の電荷)も放電させる必要がある。a-SiTFTを用いたモノリシックゲートドライバでは、a-SiTFTのオフリーク電流が比較的大きいため、モノリシックゲートドライバ内の浮遊ノード上の電荷(以下「浮遊電荷」という場合がある。)は3ミリ秒程度で放電され得る。しかしながら、オフリーク電流の小さい酸化物半導体TFTを用いたモノリシックゲートドライバでは、浮遊電荷を速やかに放電することが困難であり、浮遊電荷に起因するチャージムラを十分に抑制できない可能性がある。
 これに対し、本発明者は、閾値電圧Vthが負であるデプレッション型の酸化物半導体TFTを用いることで、表示領域内およびモノリシックゲートドライバ等の駆動回路内に蓄積される電荷量を小さくできることを見出した。
 図12は、エンハンスメント型の酸化物半導体TFTおよびデプレッション型の酸化物半導体TFTの電流電圧特性を例示する図である。横軸はソースを基準としたゲート電圧Vgs、縦軸はドレイン電流Idsを表す。エンハンスメント型のTFTでは、閾値電圧Vthは正であり(Vth>0(v))、ゲート電圧Vgsが0Vのときのリーク電流Idsは小さく抑えられている。この例では4pA程度である。一方、デプレッション型のTFTでは、閾値電圧Vthは負であり(Vth<0(v))、ゲート電圧Vgsが0Vのときのリーク電流Idsは、エンハンスメント型のTFTよりも大きくなる。この例では260nA程度である。このように、デプレッション型の酸化物半導体TFTでは、ゲート電圧Vgsが0Vのときのリーク電流(以下、ゲート電圧Vgsが0(v)のときに生じるリーク電流を「Ids(Vgs=0)」と表す。)を大きくできる。このため、デプレッション型の酸化物半導体TFTを用いると、表示領域内および駆動回路内の浮遊電荷を酸化物半導体TFTを介して速やかに放電することが可能になり、浮遊電荷に起因するゲートバスライン不良、チャージムラなどを抑制できると考えられる。
特開2015-60100号公報
 しかしながら、本発明者が検討したところ、デプレッション型のTFTを用いて駆動回路を形成する場合、次のような問題がある。以下では、デプレッション型のnチャネルTFTを例に説明する。
 デプレッション型のTFTを厳密にオフ状態にするためには、TFTのゲート電位をソース電位よりも低くする必要がある(Vgs<0(V))。しかしながら、従来の回路構成によると、一部のデプレッション型のTFTでは、ゲート電位とソース電位とが同電位となってしまい(Vgs=0(V))、リーク電流Ids(Vgs=0)が流れる。この結果、ゲート出力不良が生じるおそれがある。
 なお、デプレッション型のTFTとして、酸化物半導体TFT以外のTFT(例えばシリコンTFT)を用いても、上記と同様の課題がある。さらに、駆動回路に限定されず、TFTを含む種々の回路(「TFT回路」と呼ぶ)において、デプレッション型のTFTを用いると、そのリーク電流Ids(Vgs=0)に起因して出力特性が低下する場合がある。
 特許文献1は、例えば、エンハンスメント型の酸化物半導体TFTを有する駆動回路において、水素ガス等の侵入によって酸化物半導体層が低抵抗化された結果、酸化物半導体TFTがデプレッション型のTFTとして動作する場合でも、リーク電流を抑制し得る構成を提案している。しかしながら、特許文献1の提案する構成は、駆動回路を構成するTFTのうち一部のTFTには適用できない。
 本発明の実施形態は上記事情に鑑みてなされたものであり、その目的は、デプレッション型のTFTを有するTFT回路において、デプレッション型のTFTのリーク電流に起因する出力特性の低下を抑制することにある。
 本発明の実施形態のTFT回路は、第1の低電位Vcが供給される第1のノードと、前記第1のノードと前記第1の低電位Vcよりも高い第2の低電位Vaを供給する低電位配線との間に配置され、かつ、ドレイン端子が前記第1のノードに接続されたデプレッション型の第1のTFTとを備えたTFT回路であって、前記第1のTFTと前記低電位配線との間に配置され、かつ、ソース端子が前記第1のTFTのソース端子に接続されたデプレッション型の第2のTFTをさらに備え、前記第2のTFTのゲート端子には前記第1の低電位Vcが供給され、前記第1のTFTの前記ソース端子と、前記第2のTFTの前記ソース端子との間には、フローティング状態になり得る第2のノードが形成され、前記第2のノードは、前記第2のノードの電位を前記第2の低電位Vaより低く、かつ、前記第1の低電位Vcよりも高くすることの可能なサブ回路に接続されている。
 ある実施形態において、前記サブ回路は、前記第2のTFTおよびデプレッション型の第3のTFTを含み、前記第3のTFTのソース端子は前記第2のノードに接続され、前記第3のTFTのゲート端子には前記第1の低電位Vcが供給され、前記第3のTFTのドレイン端子は、前記第1の低電位Vcを供給する他の低電位配線に接続されている。
 ある実施形態において、前記サブ回路は、前記第2のノードに、前記第2の低電位Vaより低く、かつ、前記第1の低電位Vcより高い第3の低電位Vbを供給し、これにより、前記第2のノードの電位を、前記第3の低電位Vbよりも低く、かつ、前記第1の低電位Vcよりも高くすることが可能である。
 ある実施形態において、前記TFT回路に入力される複数の信号を利用して、前記第2のノードの電位をn回突き下げる第1の突き下げ回路と、前記TFT回路に入力される複数の信号を利用して、前記第2のTFTの前記ゲート端子の電位を、n回よりも多いm回突き下げる第2の突き下げ回路とをさらに備え、前記サブ回路は、前記第1の突き下げ回路を含む。
 ある実施形態において、前記TFT回路は、シフトレジスタを構成する双安定回路であって、出力信号を出力する出力端子と、ソースまたはドレイン端子が前記出力端子に接続された出力トランジスタと、前記出力トランジスタのゲート端子に接続されたノードnetAと、前記ノードnetAの電位を低下させるためのプルダウントランジスタと、前記プルダウントランジスタのゲート端子に接続されたノードnetBとを含み、前記第1のノードは前記ノードnetAであり、前記第1のTFTは前記プルダウントランジスタである。
 ある実施形態において、前記TFT回路は、シフトレジスタを構成する双安定回路であって、出力信号を出力する出力端子と、ソースまたはドレイン端子が前記出力端子に接続された出力トランジスタと、前記出力トランジスタのゲート端子に接続されたノードnetAと、前記ノードnetAの電位を低下させるためのプルダウントランジスタと、前記プルダウントランジスタのゲート端子に接続されたノードnetBとを含み、前記第1のノードは前記ノードnetBである。
 ある実施形態において、前記TFT回路は、シフトレジスタを構成する双安定回路であって、出力信号を出力する出力端子と、前記出力端子に接続されたノードGOUTと、ソースまたはドレイン端子が前記出力端子に接続された出力トランジスタと、前記出力トランジスタのゲート端子に接続されたノードnetAと、前記ノードnetAの電位を低下させるためのプルダウントランジスタと、前記プルダウントランジスタのゲート端子に接続されたノードnetBとを含み、前記第1のノードは前記ノードGOUTである。
 ある実施形態において、前記第1のTFTおよび前記第2のTFTは、酸化物半導体TFTである。
 本発明の実施形態のシフトレジスタ回路は、上記のいずれかに記載のTFT回路を含む。
 本発明の一実施形態によると、デプレッション型のTFTを有するTFT回路において、デプレッション型のTFTのリーク電流に起因する出力特性の低下を抑制できる。
第1の実施形態のTFT回路101の一部を示す図である。 比較例のTFT回路1001の一部を示す図である。 第2の実施形態のTFT回路102の一部を示す図である。 参考例1のシフトレジスタ回路2000の構成を例示する図である。 (a)は、参考例1のTFT回路2001を示す図であり、(b)は、TFT回路2001における信号波形(タイミングチャート)を例示する図である。 第2の実施形態のシフトレジスタ回路200の構成を例示する図である。 (a)は、シフトレジスタ回路200の単位回路であるTFT回路201を示す図であり、(b)は、TFT回路201における信号波形を例示する図である。 (a)は、参考例2のTFT回路2002を示す図であり、(b)は、TFT回路2002における信号波形を示す図である。 (a)は、第2の実施形態の他のシフトレジスタ回路の単位回路であるTFT回路202を示す図であり、(b)は、TFT回路202における信号波形を示す図である。 (a)は、第3の実施形態のTFT回路103の一部を示す図であり、(b)は、TFT回路103の信号波形を例示する図である。 TFT回路103におけるサブ回路SC1を例示する図である。 エンハンスメント型の酸化物半導体TFTおよびデプレッション型の酸化物半導体TFTの電流電圧特性を例示する図である。
 (第1の実施形態)
 以下、図面を参照しながら、本発明によるTFT回路の第1の実施形態を説明する。本実施形態のTFT回路は、複数のデプレッション型のTFTを含んでいればよく、ゲートドライバなどの駆動回路であってもよい。TFT回路に含まれる全てのTFTがデプレッション型であってもよいし、一部のTFTのみがデプレッション型であってもよい。以下の説明では、デプレッション型TFTとして、nチャネル型TFTを用いたTFT回路を説明する。
 図1は、本実施形態のTFT回路の一部を模式的に示す図である。
 TFT回路101は、第1の低電位Vcが供給される第1のノードN1と、第1のノードN1と低電位配線11との間に配置されたデプレッション型の第1のTFT21と、第1のTFT21と低電位配線11との間に配置されたデプレッション型の第2のTFT22とを有する。低電位配線11は、第1の低電位Vcよりも高い第2の低電位Vaを供給する配線であり、電源配線であってもよい。
 第1のTFT21のドレイン端子は第1のノードN1に接続されている。第1のTFT21のソース端子は、第2のTFT22のソース端子に接続され、かつ、第2のTFT22を介して低電位配線11に接続されている。第1のTFT21のゲート端子には、例えば、第2の低電位Vaが供給される。一方、第2のTFT22のソース端子は第1のTFT21のソース端子に接続され、第2のTFT22のドレイン端子は低電位配線11に接続されている。第2のTFT22のゲート端子には、例えば第1の低電位Vcが供給される。
 第1のTFT21のソース端子と、第2のTFT22のソース端子との間には、フローティング状態になり得る第2のノードN2が形成されている。第2のノードN2はサブ回路SC1に接続されている。サブ回路SC1は、第2のノードN2を、第1の低電位Vcよりも高く、かつ、第2の低電位Vaより低くすることができる回路である。後述するように、サブ回路SC1は第2のTFT22を含んでいてもよい。
 サブ回路SC1は、例えば、TFT回路101に入力される信号(クロック信号、スタートパルス信号など)および容量を利用して形成された、第2の低電位Vaの突き下げ回路であってもよい。あるいは、サブ回路SC1は、第2のTFT22と、第1の低電位Vcを供給する配線に接続された他のデプレッション型TFT(以下、「第3のTFT」と呼ぶ)を含んでいてもよい。サブ回路SC1の具体的な構成は後述する。
 本実施形態のTFT回路101は、第1のTFT21と低電位配線11との間に、第2のノードN2、第2のTFT22およびサブ回路SC1を有する。これにより、第1のTFT21のリーク電流Ids(Vgs=0)に起因する第1のノードN1の電位の低下を抑制でき、第1のノードN1の電位を保持することが可能になる。
 本明細書では、TFT回路における選択されたノード(ここでは第1のノードN1)に設けられた、第1のTFT21、第2のノードN2、第2のTFT22およびサブ回路SC1を含む回路10を「ノード電位保持回路」と呼ぶ。ノード電位保持回路10は、TFT回路における複数のノードにそれぞれ設けられていてもよい。ノード電位保持回路10を設けることにより、選択されたノードの電位を所定の期間保持し、回路出力特性の低下を抑制することが可能である。以下、この理由を説明する。
 比較のため、ノード電位保持回路を有しておらず、第1のノードN1と低電位配線11との間に第1のTFT21のみが配置された比較例1のTFT回路1001を図2に示す。図2では、図1に示すTFT回路101と同様の構成要素には同じ参照符号を付している。TFT回路1001では、第1のTFT21のドレイン端子は第1のノードN1に接続され、ソース端子は低電位配線11に直接接続されている。ゲート端子には、例えば第2の低電位Vaが供給される。
 比較例1のTFT回路1001において、第1のTFT21をオフ状態にすべきときに、第1のTFT21のソース電位とゲート電位とはいずれもVaとなり、ゲート電圧Vgsは0(V)となる。このため、第1のTFT21を介して、第1のノードN1から低電位配線11に比較的大きいリーク電流Ids(Vgs=0)が流れる。この結果、第1のノードN1の電位が保持されず、所定の出力が得られない場合がある。
 これに対し、図1に示すTFT回路101では、第1のTFT21のゲート端子に第1の低電位Vaが供給され、第2のノードN2にサブ回路SC1によってVcより高くVaよりも低い電位(第3の低電位)Vbが供給されると、TFT21のゲート電位はソース電位よりも高くなる(Vgs>0(V))。従って、第1のTFT21は厳密にはオフ状態とならずに、リーク電流Ids(Vgs=0)が生じ、第2のノードN2の電位と第1のノードN1の電位とが、第1のTFT21を介して混じり合う。第1のノードN1の電位をV(N1)、第2のノードN2の電位をN(N2)とすると、電位V(N1)およびV(N2)は、第1の低電位Vcよりも高く、かつ、第3の低電位Vbよりも低くなる(Vc<V(N1)、V(N2)<Vb)。このため、第2のTFT22では、ゲート電位(第1の低電位Vc)をソース電位V(N2)よりも低くできるので(Vgs<0)、第2のTFT22はオフ状態となる。この結果、第1のノードN2および第2のノードN2がフローティング状態になるので、第1のノードN1の電位を保持できる。
 (第2の実施形態)
 図3は、第2の実施形態のTFT回路102の一部を例示する図である。図3では、図1と同様の構成要素には同じ参照符号を付し、説明を省略する。
 TFT回路102は、第1の低電位Vcが供給される第1のノードN1、第1のノードN1に接続された第1のTFT21、および、第1のTFT21と第2の低電位Vaを供給する低電位配線との間に配置された第2のTFT22を備える。第1のTFT21および第2のTFT22のゲート端子には、例えば第1の低電位Vcが供給される。第1のTFT21のソース端子と第2のTFT22のソース端子との間には、フローティング状態になり得る第2のノードN2が形成されている。第2のノードN2には、デプレッション型の第3のTFT23が接続されている。
 本実施形態でも、第1の実施形態と同様に、第2のノードN2に、第3の低電位Vb(Vc<Vb<Va)を供給することができるサブ回路SC1が接続されている。本実施形態におけるサブ回路SC1は、第2のTFT22と、デプレッション型の第3のTFT23とを含む。第3のTFT23のソース端子は第2のノードN2に接続され、ドレイン端子は第1の低電位Vcを供給する配線に接続されている。第3のTFT23のゲート端子には、例えば第1の低電位Vcが供給される。第3のTFT23のゲート端子は第1のノードN1に接続されていてもよい。
 本実施形態では、第2の低電位Vaおよび第1の低電位Vc(Va>Vc)を、外部信号として、外部から供給してもよい。これらの低電位Va、Vcは電源電位であってもよい。この場合、第2のTFT22および第3のTFT23のドレイン端子は、それぞれ、第2の低電位Vaを供給する電源配線および第1の低電位Vcを供給する電源配線に接続される。
 TFT回路102の動作の一例を説明する。非選択期間において、第1のTFT21および第2のTFT22はオン状態であり、第1のノードN1の電位V(N1)は第2の低電位Vaとなる。次いで、選択期間において、第1のTFT21のゲート端子に第1の低電位Vcを供給し、第3のTFT23をオン状態とする。第3のTFT23がオン状態になると、第2のノードN2では、第2のTFT22および第3のTFT23のソース電位が混じり合う。この結果、第2のノードN2の電位V(N2)はVcより高く、かつ、Vaよりも低くなる(Vc<V(N2)<Va)。第1のTFT21では、ゲート電位(Vc)はソース電位(V(N2))よりも低くなるので(Vgs<0(V))、第1のTFT21はオフ状態となる。これにより、第1のノードN1の電位を保持することができ、TFT回路102の出力特性の低下が抑制される。
 <シフトレジスタ回路への適用例1>
 本実施形態は、例えば、モノリシックゲートドライバを構成するシフトレジスタ回路に適用され得る。以下、本実施形態をシフトレジスタ回路に適用した例を説明する。
 まず、図4を参照しながら、参考例1として、従来のシフトレジスタ回路2000の構成を示す。この構成は、例えば国際公開第2011/135879号に開示されている。
 シフトレジスタ回路2000は、複数の単位回路(以下、「単位回路」)SR1~SRnを有している。各段の単位回路SRk(kは1≦k≦nの自然数)は、セット信号SETを入力するセット端子、出力信号GOUTを出力する出力端子、リセット信号RESETを入力するリセット端子、Low電源電位VSSを入力するLow電源入力端子、および、クロック信号CLK1、CLK2を入力するクロック入力端子を備えている。単位回路SRk(k≧2)において、セット端子には前段の単位回路SRk-1の出力信号GOUTk-1が入力される。初段の単位回路SR1のセット端子にはゲートスタートパルス信号GSPが入力される。各段の単位回路SRk(k≧1)において、出力端子は、表示領域に配置された対応する走査信号線に出力信号GOUTkを出力する。単位回路SRk(k≦n-1)のリセット端子には、次段の単位回路SRk+1の出力信号GOUTk+1が入力される。最終段の単位回路SRnのリセット端子にはクリア信号CLRが入力される。
 Low電源入力端子には、各単位回路SRkにおける低電位側の電源電圧であるLow電源電位VSSが入力される。2つのクロック入力端子の一方にクロック信号CLK1が入力されるとともに他方のクロック入力端子にクロック信号CLK2が入力される。クロック入力端子に入力されるクロック信号は、隣接する段間で交互に入れ替わるように構成されている。
 クロック信号CLK1とクロック信号CLK2とは、アクティブなクロックパルス期間(ここではHighレベル期間)が互いに重ならない相補的な位相関係を有している。クロック信号CLK1、CLK2のHighレベル側(アクティブ側)の電圧はVGHで、Lowレベル側(非アクティブ側)の電圧はVGLである。Low電源電圧VSSはクロック信号CLK1、CLK2のLowレベル側の電圧VGLに等しい。クロック信号CLK1とクロック信号CLK2とは互いに逆相の関係にあってもよい。あるいは、一方のクロック信号のアクティブなクロックパルス期間が、他方のクロック信号の非アクティブな期間内に包含されていてもよい(すなわちクロックデューティが1/2未満)。
 ゲートスタートパルス信号GSPは、1フレーム期間の最初のクロックパルス期間にアクティブとなる信号である。クリア信号CLRは、1フレーム期間の最後のクロックパルス期間にアクティブ(ここではHigh)となる信号である。
 シフトレジスタ回路2000では、1フレーム期間の最初に、シフトパルスとしてゲートスタートパルス信号GSPが初段の単位回路SR1のセット端子に入力される。シフトレジスタ回路2000は、縦続接続された各段の単位回路SRkがこのシフトパルスを順に受け渡しすることにより、出力信号GOUTkのアクティブなパルスを出力する。
 参考例1として、特許文献1に開示された単位回路SRkの構成を説明する。
 図5(a)は、参考例1の単位回路SRk(以下、単に「TFT回路」とする)2001を示す図である。図5(b)はTFT回路2001における信号波形を示す図である。
 参考例1のTFT回路2001は、5つのnチャネル型TFT31~35および容量CAPを備えている。これらのTFTは全てエンハンスメント型TFTである。
 TFT31は入力トランジスタである。TFT31のゲートおよびドレインはセット端子に接続され、TFT31のソースはTFT35のゲートに接続されている。TFT35は出力トランジスタである。TFT35のドレインはクロック入力端子に、ソースは出力端子に、それぞれ接続されている。すなわち、TFT35は伝送ゲートとして、クロック入力端子に入力されるクロック信号CLK1の通過および遮断を行う。容量CAPは、TFT35のゲートとソースとの間に接続されている。本明細書では、TFT35(出力トランジスタ)のゲートに接続されたノードを「ノードnetA」と称する。また、出力端子に接続されたノードを「ノードGOUT」と称する。
 TFT33は、Low電源入力端子とノードnetAとの間に配置されている。TFT33は、ノードnetAの電位を低下させるためのプルダウントランジスタである。TFT33のゲートはリセット端子に、ドレインはノードnetAに、ソースはLow電源入力端子に、それぞれ接続されている。プルダウントランジスタ(ここではTFT33)のゲートに接続されたノードを「ノードnetB」と称する。
 ノードGOUTにはTFT32、34が接続されている。TFT34のゲートはリセット端子に、ドレインは出力端子に、ソースはLow電源入力端子に、それぞれ接続されている。TFT32のゲートはクロック信号CLK2の入力端子に、ドレインは出力端子に、ソースはLow電源入力端子に、それぞれ接続されている。
 TFT回路2001では、セット端子にシフトパルスが入力されるまでは、TFT34、35がハイインピーダンス状態であるとともに、TFT32がクロック入力端子から入力されるクロック信号CLK2がHighレベルになるたびにON状態となり、出力端子はLowを保持する期間となる。
 図5(b)に示すように、セット端子にシフトパルスが入力されると、出力信号GOUTのアクティブなパルスであるゲートパルスの生成期間が開始され、TFT31がON状態となって容量CAPを充電する。容量CAPが充電されることにより、ゲートパルスのHighレベルをVGH、TFT31の閾値電圧をVthとすると、ノードnetAの電位V(netA)はVGH-Vthまで上昇する(V(netA)=VGH-Vth)。この結果、TFT35がON状態になり、クロック入力端子から入力されたクロック信号CLK1がTFT35のソースに現れる。このクロックパルス(Highレベル)が入力された瞬間に容量CAPのブートストラップ効果によってノードnetAの電位が突き上げられるので、TFT35は大きなオーバドライブ電圧を得ることとなる。これにより、クロック入力端子に入力されたクロックパルスのVGHのほぼ全振幅が出力端子に伝送されて出力され、ゲートパルスとなる。
 セット端子へのシフトパルスの入力が終了すると、TFT31はOFF状態となり、netAはフローティング状態を保持する。ゲート出力(GOUT)完了後、リセットパルス信号により、各ノードのフローティング状態は解除される。具体的には、次段の単位回路SRk+1のゲートパルスがリセットパルスとしてリセット端子に入力される。これにより、TFT33、34がオン状態となり、ノードnetAおよび出力端子がLow電源電圧VSSに接続される。従って、TFT35がOFF状態となる。リセットパルスの入力が終了すると、このTFT回路2001のゲートパルスの生成期間は終了し、出力端子は再びLowを保持する期間となる。
 上記のTFT回路2001において、TFT31~35としてデプレッション型TFTを用いると、一部のTFTのリーク電流Ids(Vgs=0)によって回路の出力特性が低下するおそれがある。例えば、ゲートパルスの生成期間において、TFT33がオフ状態にならずにリーク電流Ids(Vgs=0)が生じると、ノードnetAの電位が保持されなくなる。また、TFT32にリーク電流Ids(Vgs=0)が生じると、ノードGOUTの電位が保持されなくなる。
 本実施形態では、一例として、TFT回路2001におけるノードnetAおよびノードGOUTに対し、図3を参照しながら上述したノード電位保持回路10を設ける。
 図6は、本実施形態のシフトレジスタ回路200の構成を例示する図である。シフトレジスタ回路200では、2種類のLow電源電位Vss1、Vss2が入力される点で、図4のシフトレジスタ回路2000と異なっている。
 図7(a)は、本実施形態のTFT回路201を例示する図である。TFT回路201は、シフトレジスタ回路200を構成する単位回路SRkである。図7(a)では、参考例1のTFT回路2001と同様の構成要素には同じ参照符号を付している。また、図7(b)は、TFT回路201における各信号の波形を例示する図である。以下の説明では、参考例1のTFT回路2001と同様の構成および動作については、説明を省略する。
 TFT回路201では、外部から2種類の低電位Vgl1、Vgl2が供給される。低電位Vgl2は、低電位Vgl1よりも低い(Vgl1>Vgl2)。すなわち、低電位Vgl1は第2の低電位Va、低電位Vgl2は第1の低電位Vcにそれぞれ対応する。本実施形態では、低電位Vgl1、Vgl2は、それぞれ、Low電源電位Vss1、Vss2である。従って、TFT回路201は、低電位Vgl1(=Vss1)を入力するLow電源入力端子と、低電位Vgl2(=Vss2)を入力するLow電源入力端子とを有している。
 TFT回路201を構成するTFT31~35は、いずれもデプレッション型TFTである。TFT回路201におけるノードnetAには、TFT33を含む第1ノード電位保持回路10aが設けられている。また、ノードGOUTには、TFT32を含む第2ノード電位保持回路10bが設けられている。なお、ノード電位保持回路は、ノードnetAおよびノードGOUTのいずれか一方のみに設けられてもよい。あるいは、他のノードにも同様のノード電位保持回路が設けられてもよい。
 第1ノード電位保持回路10aは、TFT33と、デプレッション型のTFTx1およびTFTy1とを含む。TFT33、TFTy1およびTFTx1は、それぞれ、図3に示す第1のTFT、第2のTFTおよび第3のTFTに相当する。TFTx1のソース端子およびTFTy1のソース端子は、いずれも、TFT33のソース端子に接続されている。3つのTFT33、TFTx1、TFTy1の間には、フローティング状態となり得るノードnetCが形成されている。TFTx1のドレイン端子は低電位Vgl2の入力端子に接続され、ゲート端子はノードnetBに接続されている。ノードnetBには低電位Vgl2が供給される。一方、TFTy1のドレイン端子は低電位Vgl1の入力端子に接続され、ゲート端子はノードnetAに接続されている。ノードnetAには低電位Vgl2が供給される。
 図7(b)に示すように、非選択期間では、TFT33およびTFTx1をオン状態とし、ノードnetAを低電位Vgl2にする。選択期間では、TFTy1がオン状態となり、ノードnetCでは、TFTy1のソース電位とTFTx1のソース電位とが混ざり合う。このため、ノードnetCの電位V(netC)は、Vgl2よりも高く、かつ、Vgl1よりも低くなる(Vgl2<V(netC)<Vgl1)。この結果、TFT33のゲート電位Vgl2は、ソース電位V(netC)よりも低くなるので、TFT33はオフ状態となる。同様に、TFTx1もオフ状態となるので、ノードnetCの電位V(netC)は、Vgl2<V(netC)<Vgl1を満たす範囲内で、Vgl1に近い値U(Vgl1)となる。本明細書では、電位Xより低く、かつ、電位Xに近い値をU(X)と表記する(X>U(X)、かつ、X≒U(X))。
 このように、選択期間において、TFT33がオフ状態になるので、ノードnetAがフローティング状態となり、ノードnetAの電位を保持することができる。このため、TFT33のリーク電流に起因する出力不良を抑制できる。
 第2ノード電位保持回路10bは、TFT32と、デプレッション型のTFTx2およびTFTy2トを含む。TFT32、TFTy2およびTFTx2は、それぞれ、図3に示す第1のTFT、第2のTFTおよび第3のTFTに相当する。TFTx2のソース端子およびTFTy2のソース端子は、いずれも、TFT32のソース端子に接続されている。3つのTFT32、TFTx2およびTFTy2の間には、フローティング状態になり得るノードnetDが形成されている。TFTx2のドレイン端子は低電位Vgl2の入力端子に接続され、ゲート端子はクロック信号CLK2を入力するクロック入力端子に接続されている。TFTx2のゲート端子には低電位Vgl1が供給される。一方、TFTy2のドレイン端子には、低電位Vgl1、Vgl2よりも高いコモン電位COM(COM>Vgl1>Vgl2)を供給する配線または端子に接続されている。TFTy2のゲート端子はノードGOUTに接続されている。ノードGOUTには低電位Vgl2が供給される。
 図7(b)に示すように、非選択期間では、TFT32およびTFTx2をオン状態とし、ノードGOUTを低電位Vgl2にする。選択期間では、TFTy2がオン状態となり、ノードnetDでは、TFTy2のソース電位とTFTx2のソース電位とが混ざり合う。このため、ノードnetDの電位V(netD)は、Vgl2よりも高く、かつ、COMよりも低くなる(Vgl2<V(netD)<COM)。ノードnetDの電位V(netD)の上昇に伴い、TFTx2を流れる電流が小さくなり、ノードnetDの電位V(netD)がVgl1を超えると、TFTx2およびTFT32はオフ状態となる。TFTx2がオフ状態になるため、ノードnetDの電位V(netD)は、Vgl2<V(netD)<COMを満たす範囲内で、かつ、COMに近い値U(COM)となる。このように、TFT32をオフ状態にできるので、ノードGOUTの電位を保持することができ、TFT32のオフリーク電流に起因する出力不良を抑制できる。
 <シフトレジスタ回路への適用例2>
 図面を参照しながら、本実施形態をシフトレジスタ回路に適用した他の例を説明する。この例では、各単位回路SRkにクリア信号が供給される。また、4相のクロック信号が用いられる。
 図8(a)および(b)は、それぞれ、参考例2のTFT回路2002、およびTFT回路2002の信号波形を示す図である。参考例2のTFT回路2002は、シフトレジスタ回路における単位回路SRkの1つであり、エンハンスメント型TFTを用いて構成されている。
 TFT回路2002は、10個のTFT40~49、容量CAP、低電位Vssを入力するLow電源入力端子、4相のクロック信号CLK1~CLK4のいずれかを入力するクロック入力端子、セット信号SETを入力するセット端子、リセット信号RESETを入力するリセット端子、クリア信号CLRを入力するクリア端子、および、出力信号GOUTを出力する出力端子を有している。
 TFT41は入力トランジスタ、TFT47は出力トランジスタである。TFT47(出力トランジスタ)のゲートに接続されたノードnetAには、TFT48、45、42が接続されている。TFT45のゲートに接続されたノードnetBには、TFT49、44、43が接続されている。ノードGOUTにはTFT40、46が接続されている。
 参考例2のTFT回路2002をデプレッション型TFTを用いて形成すると、例えばTFT44、45のリーク電流Ids(Vgs=0)により、ノードnetAおよびノードnetBの電位が保持されない可能性がある。
 TFT回路2002は、図8(b)に示すように、例えば、4相のクロック信号(第1クロック信号CLK1~第4クロック信号CLK4)を用いたインターレース駆動を行う。まず、セット信号SETがONとなると、容量CAPが充電され、ノードnetAはハイレベルにプリチャージされる。次いで、第1クロック信号CLK1がローレベルからハイレベルに変化すると、容量CAPのブートストラップ効果によってノードnetAの電位が2Vghに上昇する。これにより、クロックパルスのVghのほぼ全振幅が出力端子に伝送され、出力信号GOUTはハイレベルになる。この後、リセットパルス信号が入力されると、各ノードのフローティング状態は解除され、ノードnetAおよびノードGOUTはローレベルとなる。
 本実施形態では、一例として、TFT回路2002におけるノードnetAおよびノードnetBに対し、図3を参照しながら上述したノード電位保持回路10を設ける。
 図9(a)および(b)は、それぞれ、本実施形態の他のTFT回路202、およびTFT回路202の信号波形を示す図である。この例では、TFT回路202を構成するTFTは、いずれもデプレッション型TFTである。
 TFT回路202では、TFT回路201と同様に、外部から2種類の低電位Vgl1、Vgl2が供給される(Vgl1>Vgl2)。この例では、低電位Vgl1、Vgl2はLow電源電位である。従って、TFT回路202は、Low電源電位Vgl1を入力するLow電源入力端子と、Low電源電位Vgl2を入力するLow電源入力端子とを有している。
 TFT回路202を構成するTFT40~49は、いずれもデプレッション型TFTである。TFT回路202におけるノードnetBには、TFT44を含む第3ノード電位保持回路10cが設けられている。また、ノードnetAには、TFT45を含む第4ノード電位保持回路10dが設けられている。なお、ノード電位保持回路は、ノードnetAおよびノードnetBのいずれか一方のみに設けられてもよい。あるいは、他のノードにもノード電位保持回路を設けてもよい。
 第3ノード電位保持回路10cは、TFT44と、デプレッション型のTFTx3およびTFTy3とを含む。TFT44、TFTy3およびTFTx3は、それぞれ、図3に示す第1のTFT、第2のTFTおよび第3のTFTに相当する。TFTx3のソース端子およびTFTy3のソース端子は、いずれも、TFT44のソース端子に接続されている。3つのTFT44、TFTx3、TFTy3の間には、フローティング状態になり得るノードnetEが形成されている。TFTx3のドレイン端子は、低電位Vgl2Low電源入力端子に接続され、ゲート端子はノードnetAに接続されている。非選択期間、TFT45、TFTx4を介して、ノードnetAには低電位Vgl2が供給される。一方、TFTy3のドレイン端子は低電位Vgl1の入力端子に接続され、ゲート端子はノードnetBに接続されている。選択期間、ノードnetBには低電位Vgl2が供給される。
 TFT44の選択期間では、ノードnetEの電位V(netE)は、Vgl2<V(netE)<Vgl1を満たす範囲内で、Vgl2に近い値H(Vgl2)となる。電位H(Vgl2)は、Vlg2超であり、かつ、Vlg2に近い値である(Vlg2<H(Vgl2)、かつ、Vlg2≒H(Vgl2))。非選択期間では、TFTy3およびTFTx3を介して、TFTy3のソース電位とTFTx3のソース電位とが混ざり合う。このため、ノードnetEの電位V(netE)は、Vgl2とVgl1との間の電位となる。ノードnetEの電位V(netE)が、TFT44およびTFTx3のゲート電位(H(Vgl2))よりも高くなるので、TFT44はオフ状態となる。TFTy3による強制的なVgl1引き、及び、Vgl2が混じり合い、ノードnetEの電位V(netE)は、Vgl2<V(netC)<Vgl1を満たす範囲内で、Vgl1に近い値U(Vgl1)となる。このように、TFT44をオフ状態にできるので、非選択期間において、TFT43からTFT44への貫通電流を低減でき、ノードnetBの電位(TFT45のゲート端子に供給する電位)の低下を抑制できる。
 第4ノード電位保持回路10dは、TFT45と、デプレッション型のTFTx4およびTFTy4とを含む。TFT45、TFTy4およびTFTx4は、それぞれ、図3に示す第1のTFT、第2のTFTおよび第3のTFTに相当する。TFTx4のソース端子およびTFTy4のソース端子は、いずれも、TFT45のソース端子に接続されている。3つのTFT45、TFTx4、TFTy4の間には、フローティング状態になり得るノードnetFが形成されている。TFTx4のドレイン端子には低電位Vgl2が供給される。TFTx4のゲート端子はノードnetBに接続されている。選択期間、ノードnetBには低電位Vgl2が供給される。一方、TFTy4のドレイン端子にはCOM電位(Vgl2<Vgl1<COM)が供給される。TFTy4のゲート端子はノードnetAに接続されている。非選択期間、ノードnetAには低電位Vgl2が供給される。
 TFT45の非選択期間では、TFT45およびTFTx4がオン状態であり、ノードnetFの電位V(netF)は、Vgl2<V(netF)<COMを満たす範囲内で、Vgl2に近い値H(Vgl2)となる。選択期間では、TFTy4およびTFTx4を介して、TFTy4のソース電位とTFTx4のソース電位とが混ざり合う。このため、ノードnetEの電位V(netF)は、Vgl2とCOMとの間の電位となる。ノードnetFの電位V(netF)が、TFT45およびTFTx4のゲート電位(H(Vgl2))よりも高くなるので、TFT45はオフ状態となる。TFTy4による強制的なCOM引きとVgl2が混じり合い、ノードnetFの電位V(netF)は、Vgl2<V(netC)<COMを満たす範囲内で、COMに近い値U(COM)となる。このように、TFT45をオフ状態にできるので、ノードnetAの電位を保持することが可能になる。
 また、TFT回路202のTFT42の接続先は、図8に示すTFT回路2002とは異なっている。TFT42としてデプレッション型TFTを用いる場合、図8に示すTFT回路2002のようにTFT42のソースがnetAに接続されていると、ブートストラッピング時、TFT42のリーク電流によって、ノードnetAがフローティング状態に保持されなくなる。これに対し、TFT回路202では、TFT42の接続先をノードnetAから変更しているため、ブートストラッピング時にノードnetAのフローティング状態を保持することが可能になり、セット信号SETのON時の電位であるプリチャージ電位の低下を抑制できる。
 出力トランジスタであるTFT47は次のように動作する。選択期間では、ゲート電位(ノードnetAの電位)が2Vgh、ソース電位がVghである。非選択期間では、ゲート電位(ノードnetAの電位)はH(Vgl2)、ソース電位はVgl1であり、オフ状態となる。
 なお、図9に示す例では、TFTy3のドレイン端子は、低電位Vgl1を供給する端子に接続されているが、代わりにCOM電位を供給する端子に接続されていてもよい。また、TFTy4のドレイン端子はCOM電位を供給する端子に接続されているが、代わりに、低電位Vgl1を供給する端子に接続されていてもよい。
 本実施形態のシフトレジスタ回路の構成は、図4~図9を参照しながら説明した例に限定されない。本実施形態は種々のシフトレジスタ回路に適用され得る。シフトレジスタ回路に適用する場合、ノードnetA、ノードnetBおよびノードGOUTの少なくとも1つのノードに対してノード電位保持回路を設けると、出力特性の低下をより効果的に抑制できる。
 (第3の実施形態)
 第3の実施形態のTFT回路は、デプレッション型TFTに対して、2種類の突き下げ回路を含むノード電位保持回路を形成する点で、前述の実施形態のTFT回路と異なる。
 図10(a)は、第3の実施形態のTFT回路103の一部を例示する図である。図10(a)では、図1と同様の構成要素には同じ参照符号を付し、説明を省略する。
 TFT回路103は、第1の低電位Vcが供給される第1のノードN1と、第1のノードN1に接続された第1のTFT21と、第1のTFT21および低電位配線11との間に配置された第2のTFT22とを備えている。低電位配線11は第2の低電位Vaを供給する配線である。第1のTFT21のゲート端子は、例えばクリア端子に接続されている。あるいは、ゲート端子には、第2の低電位Vaが供給される。
 第2のノードN2には、第2の低電位Vaより低く、かつ、第1の低電位Vcより高い第3の低電位Vbを供給するサブ回路SC1が接続されている。サブ回路SC1は、例えば、TFT回路103に入力される複数の信号を利用して、第2のノードN2の電位を1回突き下げる突き下げ回路51と、突き下げ回路51と第2のノードN2との間に配置された容量53とを含む。
 また、第2のTFT22のゲート端子には、第1の低電位Vcを供給するサブ回路SC2が接続されている。サブ回路SC2は、TFT回路103に入力される複数の信号を利用して、前記第2のTFTのゲート端子の電位を、2回突き下げる突き下げ回路55と、突き下げ回路55とゲート端子との間に配置された容量57とを含んでいる。図示していないが、突き下げ回路55は第1のノードN1にも接続されており、突き下げられた電位(第1の低電位Vc)は第1のノードN1にも供給される。
 突き下げ回路51、55における突き下げ回数は上記の回数に限定されない。突き下げ回路51、55における突き下げ回数をそれぞれn回、m回とすると、n<mであればよい。これにより、第2のTFT22のゲート端子に供給される電位を、第2のTFT22のソース側である第2のノードN2に供給される第3の低電位Vbよりも低くできるので、第2のTFT22をオフ状態にすることが可能である。
 本実施形態では、第2の低電位Vaは低電源電位であり、第1の低電位Vcおよび第3の低電位Vbは、突き下げ回路51、55によって発生させた新たな信号である。これにより、外部から供給される信号を追加することなく、TFT回路103を構成することが可能である。
 突き下げ回路51、55の構成は特に限定しない。突き下げ回路51、55は、TFT回路101に外部から入力される信号、例えばクロック信号CLK1、CLK2、ゲートスタートパルス信号GSPなどを利用して構成されていてもよい。突き下げ回路51を含むサブ回路SC1の一例を図11に示す。
 一例として、第1のTFT21は、シフトレジスタ回路における単位回路SRkのクリアトランジスタであってもよい。「クリアトランジスタ」は、ゲートにクリア信号CLRが入力され、かつ、ドレインまたはソースが低電位配線に接続されたTFTである。例えば図9に示すTFT回路202では、TFT48、49、40がクリアトランジスタである。第1のTFT21が単位回路SRkのクリアトランジスタである場合、第1のノードN1は、例えば、ノードnetA、ノードnetBまたはノードGOUTである。
 図10(a)では1つの単位回路SRkのクリアトランジスタのみを示しているが、複数段の単位回路におけるクリアトランジスタを、共通の第2のノードN2に接続してもよい。複数段の単位回路SRkにおけるクリアトランジスタに対し、第2のTFT22、第2のノードN2、サブ回路SC1、SC2を含む共通の回路を設けることで、各単位回路SRkのサイズを増大させることなく、クリアトランジスタのリーク電流による出力特性の低下を抑制できる。
 図10(b)は、TFT回路103における各信号波形を示す図である。ここでは、2種類のクロック信号CLK1、CLK2、ゲートスタートパルス信号GSP、クリア信号CLR、第1のノードN1、第2のノードN2の信号波形を例示している。
 アクティブ期間において、第2のノードN2は、突き下げ回路51により第3の低電位Vbに突き下げられ、第1のノードN1は、突き下げ回路55によって、第1の低電位Vcまで突き下げられる。第1のノードN1および第2のノードN2の電位V(N1)、V(N2)は、ゲート電圧Vgsが正(Vgs≧0(V))である第1のTFT21を介して混ざり合い、第1の低電位Vcよりも高く、第3の低電位Vbよりも低い電位となる(Vc<V(N1)、V(N2)<Vb))。第2のTFT22では、ゲート電位Vcがソース電位である第2のノードN2の電位V(N2)よりも低くなるので(Vgs<0)、第2のTFT22はオフ状態となる。これにより、第1のノードN1および第2のノードN2は混じり合い、同電位U(Vb)(V)(Vc<U(Vb)<Vb)に保持される。第1のノードN1および第2のノードN2の電位は、クリア信号CLRがハイレベルになると第2の低電位Va(=Vgl)にリセットされる。
 <酸化物半導体>
 上述したいずれの実施形態でも、デプレッション型TFTとして、酸化物半導体TFTを用いてもよい。
 図12を参照しながら前述したように、デプレッション型の酸化物半導体TFTを用いると、ゲート電圧Vgsが0Vのときのリーク電流を大きくできるので、回路内の浮遊ノード上の電荷を速やかに放電することができる。従って、デプレッション型の酸化物半導体TFTを含むシフトレジスタ回路にノード電位保持回路を設けると、浮遊電荷によるチャージムラを抑えるとともに、デプレッション型の酸化物半導体TFTのリーク電流に起因する回路出力特性の低下を抑制できるので有利である。例えば、画素TFTおよび回路TFTとしてデプレッション型の酸化物半導体TFTを用いたアクティブマトリクス基板において、駆動回路を構成する一部の回路TFTにノード電位保持回路を設けてもよい。
 酸化物半導体TFTの酸化物半導体層に含まれる酸化物半導体は、アモルファス酸化物半導体であってもよいし、結晶質部分を有する結晶質酸化物半導体であってもよい。結晶質酸化物半導体としては、多結晶酸化物半導体、微結晶酸化物半導体、c軸が層面に概ね垂直に配向した結晶質酸化物半導体などが挙げられる。
 酸化物半導体層は、2層以上の積層構造を有していてもよい。酸化物半導体層が積層構造を有する場合には、酸化物半導体層は、非晶質酸化物半導体層と結晶質酸化物半導体層とを含んでいてもよい。あるいは、結晶構造の異なる複数の結晶質酸化物半導体層を含んでいてもよい。また、複数の非晶質酸化物半導体層を含んでいてもよい。酸化物半導体層が上層と下層とを含む2層構造を有する場合、上層に含まれる酸化物半導体のエネルギーギャップは、下層に含まれる酸化物半導体のエネルギーギャップよりも大きいことが好ましい。ただし、これらの層のエネルギーギャップの差が比較的小さい場合には、下層の酸化物半導体のエネルギーギャップが上層の酸化物半導体のエネルギーギャップよりも大きくてもよい。
 非晶質酸化物半導体および上記の各結晶質酸化物半導体の材料、構造、成膜方法、積層構造を有する酸化物半導体層の構成などは、例えば特開2014-007399号公報に記載されている。参考のために、特開2014-007399号公報の開示内容の全てを本明細書に援用する。
 酸化物半導体層は、例えば、In、GaおよびZnのうち少なくとも1種の金属元素を含んでもよい。本実施形態では、酸化物半導体層は、例えば、In-Ga-Zn-O系の半導体(例えば酸化インジウムガリウム亜鉛)を含む。ここで、In-Ga-Zn-O系の半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、GaおよびZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。このような酸化物半導体層は、In-Ga-Zn-O系の半導体を含む酸化物半導体膜から形成され得る。
 In-Ga-Zn-O系の半導体は、アモルファスでもよいし、結晶質でもよい。結晶質In-Ga-Zn-O系の半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系の半導体が好ましい。
 なお、結晶質In-Ga-Zn-O系の半導体の結晶構造は、例えば、上述した特開2014-007399号公報、特開2012-134475号公報、特開2014-209727号公報などに開示されている。参考のために、特開2012-134475号公報および特開2014-209727号公報の開示内容の全てを本明細書に援用する。In-Ga-Zn-O系半導体層を有するTFTは、高い移動度(a-SiTFTに比べ20倍超)および低いリーク電流(a-SiTFTに比べ100分の1未満)を有しているので、駆動TFT(例えば、複数の画素を含む表示領域の周辺に、表示領域と同じ基板上に設けられる駆動回路に含まれるTFT)および画素TFT(画素に設けられるTFT)として好適に用いられる。
 酸化物半導体層は、In-Ga-Zn-O系半導体の代わりに、他の酸化物半導体を含んでいてもよい。例えばIn-Sn-Zn-O系半導体(例えばIn23-SnO2-ZnO;InSnZnO)を含んでもよい。In-Sn-Zn-O系半導体は、In(インジウム)、Sn(スズ)およびZn(亜鉛)の三元系酸化物である。あるいは、酸化物半導体層は、In-Al-Zn-O系半導体、In-Al-Sn-Zn-O系半導体、Zn-O系半導体、In-Zn-O系半導体、Zn-Ti-O系半導体、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドミウム)、Mg-Zn-O系半導体、In-Ga-Sn-O系半導体、In-Ga-O系半導体、Zr-In-Zn-O系半導体、Hf-In-Zn-O系半導体、Al-Ga-Zn-O系半導体、Ga-Zn-O系半導体などを含んでいてもよい。
 <デプレッション型TFTの構造>
 上述した実施形態で用いるデプレッション型TFTの構造は特に限定されない。半導体層と基板との間にゲート電極が配置されたボトムゲート構造であってもよいし、半導体層の上方にゲート電極が配置されたトップゲート構造であってもよい。また、ソースおよびドレイン電極は半導体層の上面と接していてもよいし(トップコンタクト構造)、半導体層の下面と接していてもよい(ボトムコンタクト構造)。
 トップコンタクト構造を有するTFTを用いる場合、TFTはチャネルエッチ構造を有していてもよいし、エッチストップ構造を有していてもよい。エッチストップ型のTFTでは、半導体層(例えば酸化物半導体層)のチャネル領域の上面と接するようにエッチストップ層を有している。ソースおよびドレイン電極のチャネル側の端部下面は、例えばエッチストップ層上に位置する。エッチストップ型のTFTは、例えば半導体層のうちチャネル領域となる部分を覆うエッチストップ層を形成した後、半導体層およびエッチストップ層上にソース・ドレイン電極用の導電膜を形成し、ソース・ドレイン分離を行うことによって形成される。一方、チャネルエッチ型TFTでは、チャネル領域上にエッチストップ層が形成されておらず、ソースおよびドレイン電極のチャネル側の端部下面は、酸化物半導体層の上面と接するように配置されている。チャネルエッチ型のTFTは、例えば酸化物半導体層上にソース・ドレイン電極用の導電膜を形成し、ソース・ドレイン分離を行うことによって形成される。ソース・ドレイン分離工程において、チャネル領域の表面部分がエッチングされる場合がある。
 上記の第1~第3の実施形態のTFT回路は、シフトレジスタ回路またはシフトレジスタ回路を構成する単位回路(双安定回路)であってもよい。このような回路は、例えばモノリシックゲートドライバ、モノリシックゲートドライバを備えたアクティブマトリクス基板または表示装置に好適に適用され得る。なお、第1~第3の実施形態は、シフトレジスタ回路に限定されず、デプレッション型のTFTを含む種々の回路に適用され得る。
 本発明の実施形態は、デプレッション型TFTを含む種々の回路に広く適用され得る。例えば、ゲートドライバなどの駆動回路に適用され得る。特に、アクティブマトリクス基板におけるモノリシックゲートドライバに好適に適用され得る。このようなアクティブマトリクス基板は、液晶表示装置、有機エレクトロルミネセンス(EL)表示装置および無機エレクトロルミネセンス表示装置等の表示装置、イメージセンサー装置等の撮像装置、画像入力装置、指紋読み取り装置、半導体メモリ等の種々の電子装置に適用される。
11         :低電位配線
21、22、23、31~35、40~49    :デプレッション型TFT
51、55      :突き下げ回路
53、57、CAP  :容量
101、102、103、201、202     :TFT回路
200        :シフトレジスタ回路
CLK1、CLK2、CLK3、CLK4     :クロック信号
CLR        :クリア信号
COM        :コモン電位
GOUT       :出力信号
GSP        :ゲートスタートパルス信号
N1         :第1のノード
N2         :第2のノード
netA~netF、NGOUT     :ノード
RESET      :リセット信号
SC1、SC2    :サブ回路
SET        :セット信号
SRk        :単位回路
Va、Vb、Vc   :低電位

Claims (9)

  1.  第1の低電位Vcが供給される第1のノードと、
     前記第1のノードと前記第1の低電位Vcよりも高い第2の低電位Vaを供給する低電位配線との間に配置され、かつ、ドレイン端子が前記第1のノードに接続されたデプレッション型の第1のTFTと
    を備えたTFT回路であって、
     前記第1のTFTと前記低電位配線との間に配置され、かつ、ソース端子が前記第1のTFTのソース端子に接続されたデプレッション型の第2のTFTをさらに備え、
     前記第2のTFTのゲート端子には前記第1の低電位Vcが供給され、
     前記第1のTFTの前記ソース端子と、前記第2のTFTの前記ソース端子との間には、フローティング状態になり得る第2のノードが形成され、
     前記第2のノードは、前記第2のノードの電位を前記第2の低電位Vaより低く、かつ、前記第1の低電位Vcよりも高くすることの可能なサブ回路に接続されている、TFT回路。
  2.  前記サブ回路は、前記第2のTFTおよびデプレッション型の第3のTFTを含み、
     前記第3のTFTのソース端子は前記第2のノードに接続され、
     前記第3のTFTのゲート端子には前記第1の低電位Vcが供給され、
     前記第3のTFTのドレイン端子は、前記第1の低電位Vcを供給する他の低電位配線に接続されている、請求項1に記載のTFT回路。
  3.  前記サブ回路は、前記第2のノードに、前記第2の低電位Vaより低く、かつ、前記第1の低電位Vcより高い第3の低電位Vbを供給し、これにより、前記第2のノードの電位を、前記第3の低電位Vbよりも低く、かつ、前記第1の低電位Vcよりも高くすることが可能である、請求項1に記載のTFT回路。
  4.  前記TFT回路に入力される複数の信号を利用して、前記第2のノードの電位をn回突き下げる第1の突き下げ回路と、
     前記TFT回路に入力される複数の信号を利用して、前記第2のTFTの前記ゲート端子の電位を、n回よりも多いm回突き下げる第2の突き下げ回路と
    をさらに備え、
     前記サブ回路は、前記第1の突き下げ回路を含む、請求項3に記載のTFT回路。
  5.  前記TFT回路は、シフトレジスタを構成する双安定回路であって、
     出力信号を出力する出力端子と、
     ソースまたはドレイン端子が前記出力端子に接続された出力トランジスタと、
     前記出力トランジスタのゲート端子に接続されたノードnetAと、
     前記ノードnetAの電位を低下させるためのプルダウントランジスタと、
     前記プルダウントランジスタのゲート端子に接続されたノードnetBと
    を含み、
     前記第1のノードは前記ノードnetAであり、前記第1のTFTは前記プルダウントランジスタである、請求項1から4のいずれかに記載のTFT回路。
  6.  前記TFT回路は、シフトレジスタを構成する双安定回路であって、
     出力信号を出力する出力端子と、
     ソースまたはドレイン端子が前記出力端子に接続された出力トランジスタと、
     前記出力トランジスタのゲート端子に接続されたノードnetAと、
     前記ノードnetAの電位を低下させるためのプルダウントランジスタと、
     前記プルダウントランジスタのゲート端子に接続されたノードnetBと
    を含み、
     前記第1のノードは前記ノードnetBである、請求項1から4のいずれかに記載のTFT回路。
  7.  前記TFT回路は、シフトレジスタを構成する双安定回路であって、
     出力信号を出力する出力端子と、
     前記出力端子に接続されたノードGOUTと、
     ソースまたはドレイン端子が前記出力端子に接続された出力トランジスタと、
     前記出力トランジスタのゲート端子に接続されたノードnetAと、
     前記ノードnetAの電位を低下させるためのプルダウントランジスタと、
     前記プルダウントランジスタのゲート端子に接続されたノードnetBと
    を含み、
     前記第1のノードは前記ノードGOUTである、請求項1から4のいずれかに記載のTFT回路
  8.  前記第1のTFTおよび前記第2のTFTは、酸化物半導体TFTである、請求項1から7のいずれかに記載のTFT回路。
  9.  請求項1から8のいずれかに記載のTFT回路を含むシフトレジスタ回路。
PCT/JP2017/023992 2016-07-01 2017-06-29 Tft回路およびシフトレジスタ回路 WO2018003931A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/309,386 US10490144B2 (en) 2016-07-01 2017-06-29 TFT circuit and shift register circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-131398 2016-07-01
JP2016131398 2016-07-01

Publications (1)

Publication Number Publication Date
WO2018003931A1 true WO2018003931A1 (ja) 2018-01-04

Family

ID=60786705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023992 WO2018003931A1 (ja) 2016-07-01 2017-06-29 Tft回路およびシフトレジスタ回路

Country Status (2)

Country Link
US (1) US10490144B2 (ja)
WO (1) WO2018003931A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11113496B1 (en) * 2020-05-06 2021-09-07 Wuhan China Star Optoelectronics Technology Co., Ltd. Fingerprint recognition driving circuit
CN112687227A (zh) * 2021-01-08 2021-04-20 厦门天马微电子有限公司 显示面板和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086363A (ja) * 2009-09-16 2011-04-28 Semiconductor Energy Lab Co Ltd 駆動回路、当該駆動回路を具備する表示装置、当該表示装置を具備する電子機器
JP2012257211A (ja) * 2011-05-13 2012-12-27 Semiconductor Energy Lab Co Ltd 半導体装置
JP2014085648A (ja) * 2012-10-26 2014-05-12 Japan Display Inc 表示装置及び駆動回路
JP2014153532A (ja) * 2013-02-08 2014-08-25 Japan Display Inc 表示装置及び駆動回路
JP2015060100A (ja) * 2013-09-19 2015-03-30 株式会社ジャパンディスプレイ 表示装置及び駆動回路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102870163B (zh) * 2010-04-28 2015-06-17 夏普株式会社 移位寄存器电路和显示装置及移位寄存器电路的驱动方法
CN102779478B (zh) * 2012-04-13 2015-05-27 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、移位寄存器和显示装置
CN102819998B (zh) * 2012-07-30 2015-01-14 京东方科技集团股份有限公司 移位寄存器和显示装置
CN103198783B (zh) * 2013-04-01 2015-04-29 京东方科技集团股份有限公司 移位寄存器单元、移位寄存器和显示装置
KR20150069317A (ko) * 2013-12-13 2015-06-23 한국전자통신연구원 중첩된 펄스들을 출력하는 게이트 드라이버 회로

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086363A (ja) * 2009-09-16 2011-04-28 Semiconductor Energy Lab Co Ltd 駆動回路、当該駆動回路を具備する表示装置、当該表示装置を具備する電子機器
JP2012257211A (ja) * 2011-05-13 2012-12-27 Semiconductor Energy Lab Co Ltd 半導体装置
JP2014085648A (ja) * 2012-10-26 2014-05-12 Japan Display Inc 表示装置及び駆動回路
JP2014153532A (ja) * 2013-02-08 2014-08-25 Japan Display Inc 表示装置及び駆動回路
JP2015060100A (ja) * 2013-09-19 2015-03-30 株式会社ジャパンディスプレイ 表示装置及び駆動回路

Also Published As

Publication number Publication date
US10490144B2 (en) 2019-11-26
US20190164509A1 (en) 2019-05-30

Similar Documents

Publication Publication Date Title
EP3125225B1 (en) Shift register using oxide transistor and display device using the same
US6970530B1 (en) High-reliability shift register circuit
KR102340936B1 (ko) 산화물 트랜지스터를 이용한 쉬프트 레지스터 및 그를 이용한 표시 장치
US8565369B2 (en) Scanning signal line drive circuit and display device having the same
US10068543B2 (en) Unit shift register circuit, shift register circuit, method for controlling unit shift register circuit, and display device
EP2838200B1 (en) Buffer circuit and method for driving buffer circuit
US10706803B2 (en) Shift register circuit
TWI357058B (en) Display device
CN114220401B (zh) 具有栅极驱动器的显示装置
CN114220400B (zh) 具有栅极驱动器的显示装置
US20190172843A1 (en) Active matrix substrate, and liquid crystal display device provided with active matrix substrate
KR102045730B1 (ko) 인버터와 이를 이용한 구동회로 및 표시장치
US11217175B2 (en) Pixel-driving circuit and method, and a display utilizing the same
JP2009094927A (ja) バッファ、レベルシフト回路及び表示装置
US20120140873A1 (en) Shift register
US10192507B2 (en) Shift register circuit and display device provided with same
US10621941B2 (en) Display device
WO2020156386A1 (zh) 移位寄存器及其驱动方法、栅极驱动电路、显示装置
US10276122B2 (en) Unit shift register circuit, shift register circuit, control method for unit shift register circuit, and display device
JP2005094335A (ja) シフトレジスタ回路及び電子装置
WO2018003931A1 (ja) Tft回路およびシフトレジスタ回路
US11112628B2 (en) Liquid crystal display device including common electrode control circuit
JP5028207B2 (ja) 画像表示装置および画像表示装置の駆動方法
US9454945B2 (en) Scanning circuit and display device
US7667682B2 (en) Display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17820285

Country of ref document: EP

Kind code of ref document: A1