WO2018003916A1 - 塗布器具 - Google Patents

塗布器具 Download PDF

Info

Publication number
WO2018003916A1
WO2018003916A1 PCT/JP2017/023922 JP2017023922W WO2018003916A1 WO 2018003916 A1 WO2018003916 A1 WO 2018003916A1 JP 2017023922 W JP2017023922 W JP 2017023922W WO 2018003916 A1 WO2018003916 A1 WO 2018003916A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
gas
flow path
liquid
width
Prior art date
Application number
PCT/JP2017/023922
Other languages
English (en)
French (fr)
Inventor
秀俊 石川
Original Assignee
アネスト岩田株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アネスト岩田株式会社 filed Critical アネスト岩田株式会社
Publication of WO2018003916A1 publication Critical patent/WO2018003916A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point

Definitions

  • This disclosure particularly relates to a two-component mixed applicator.
  • a two-component mixing type spray nozzle is known.
  • a spray including a first chemical liquid supply pipe that discharges a first chemical liquid such as a fibrinogen-containing solution and a second chemical liquid supply pipe that discharges a second chemical liquid such as a thrombin-containing solution.
  • Nozzles are known.
  • a first outer gas supply pipe is formed outside the first chemical liquid supply pipe with a space therebetween.
  • a second outer gas supply pipe is formed outside the second chemical liquid supply pipe with a space therebetween.
  • the first outer gas supply pipe is formed coaxially with the first chemical liquid supply pipe, and the second outer gas supply pipe is formed coaxially with the second chemical liquid supply pipe.
  • the aseptic gas supplied from the gas supply unit to the spray nozzle passes through the filter and flows through the first outer gas supply pipe and the second outer gas supply pipe.
  • the first chemical liquid and the second chemical liquid respectively supplied from separate syringes are discharged from the respective discharge ports, they are atomized by the aseptic gas injected from the first outer gas injection port and the second outer gas injection port. And mixed.
  • the mixed first chemical solution and second chemical solution are applied to the affected area as a bioadhesive.
  • the chemical solution supply pipe and the gas supply pipe are arranged coaxially.
  • Such a coaxial arrangement can prevent misalignment of the spray pattern.
  • the gap through which the gas passes is constant over the entire circumference, and the gas flow velocity can also be constant over the entire circumference. Therefore, the atomized chemical solution is supplied straight (that is, goes straight) in the axial direction.
  • the nozzle for spraying the first chemical liquid and the nozzle for spraying the second chemical liquid are arranged in parallel, and the first chemical liquid and the second chemical liquid are respectively supplied straight (that is, so as to advance straight). There is a problem that it is difficult to mix.
  • This disclosure describes an applicator that can efficiently mix the first liquid and the second liquid.
  • An applicator is an applicator for atomizing and mixing a first liquid and a second liquid using a compressed gas, and a first liquid supply pipe to which the first liquid is supplied.
  • a second liquid supply pipe to which the second liquid is supplied a first nozzle that is provided at the tip of the first liquid supply pipe and discharges the first liquid from the first discharge port, and a tip of the second liquid supply pipe
  • the second nozzle for discharging the second liquid from the second discharge port, and the positions of the first nozzle and the second nozzle in a state where the first discharge port and the second discharge port are exposed from the tip surface
  • a cylindrical nozzle head that defines an injection port for gas ejected from the outer periphery of the first nozzle and the second nozzle, and the first nozzle and the second nozzle are disposed along the axial direction of the nozzle head.
  • the first liquid is discharged from the first discharge port of the first nozzle provided at the tip of the first liquid supply pipe, and the second nozzle provided at the tip of the second liquid supply pipe.
  • the second liquid is discharged from the second discharge port.
  • Compressed gas is injected from the tip surface of the nozzle head through a gas flow path formed between the nozzle head and the first nozzle and the second nozzle.
  • the first liquid discharged from the first discharge port and the second liquid discharged from the second discharge port are atomized by the compressed gas.
  • the gas guiding means provided in the nozzle head guides this compressed gas toward the center in the width direction.
  • the gas flow path includes a cylindrical first gas flow path surrounding the first nozzle and a cylindrical second gas flow path surrounding the second nozzle
  • the gas guiding means Is the width of the first central portion formed on the center side in the width direction of the first gas flow path rather than the width of the first outer portion formed on the outer side in the width direction of the first gas flow path.
  • the first nozzle is provided in the first gas flow path so that the second gas flow path is smaller than the width of the second outer portion formed outside the second gas flow path in the width direction. It has a structure in which the second nozzle is provided in the second gas flow path so that the width of the second central portion formed on the center side in the width direction becomes smaller.
  • the width of the first central portion is smaller than the width of the first outer portion.
  • the width of the second central portion is smaller than the width of the second outer portion. Therefore, the flow of the first liquid is guided to the first central portion side where the flow velocity is high, and the flow of the second liquid is guided to the second central portion side where the flow velocity is high. Thereby, the 1st liquid and the 2nd liquid can be mixed more rapidly and efficiently in the center side.
  • the gas flow path is a single flow path formed so as to surround the first nozzle and the second nozzle, and the gas guiding means is wider in the width direction than the first nozzle in the gas flow path.
  • the first nozzle and the second nozzle are wider than the width of the first outer portion formed outside the first nozzle and the width of the second outer portion formed outside the second nozzle in the width direction in the gas flow path.
  • the width of the central part is greater than the width of the first outer part and the width of the second outer part. Is small. Therefore, the flow of the first liquid and the flow of the second liquid are guided to the central portion side where the flow velocity is large. Thereby, the 1st liquid and the 2nd liquid can be mixed more rapidly and efficiently in the center side.
  • the gas guiding means has a structure in which the tip surface of the nozzle head is concave.
  • the tip surface of the nozzle head forms an angle with respect to a plane orthogonal to the axial direction, and is directed toward the center. Therefore, the compressed gas injected from the front end surface through the gas flow path is guided to the center side.
  • the flow of the first liquid and the flow of the second liquid are guided to the central portion side, and the first liquid and the second liquid can be mixed more quickly and efficiently.
  • the first liquid and the second liquid can be mixed efficiently.
  • FIG. 1 is a diagram illustrating a configuration example of an apparatus to which the applicator according to the first embodiment of the present disclosure is applied.
  • FIG. 2 is a perspective view showing the applicator of FIG. 3A is a longitudinal sectional view of the applicator, and FIG. 3B is a sectional view cut in the width direction perpendicular to FIG. 3A.
  • 4A is a perspective view of the nozzle head portion
  • FIG. 4B is a view of the nozzle head portion as viewed from the tip side
  • FIG. 4C is a cross section taken along line IVc-IVc in FIG. 4B.
  • FIG. 5 is a cross-sectional view of the nozzle head portion cut in a direction perpendicular to the central axis in the longitudinal direction of the nozzle.
  • 6A is a perspective view of the nozzle head portion according to the second embodiment
  • FIG. 6B is a view of the nozzle head portion as viewed from the tip side
  • FIG. 6C is Vc in FIG. 6B. It is sectional drawing which follows the -Vc line.
  • 7A is a perspective view of a nozzle head portion according to the third embodiment
  • FIG. 7B is a view of the nozzle head portion as viewed from the tip side
  • FIG. 7C is a VIc of FIG. 7B. It is sectional drawing which follows the -VIc line.
  • FIG. 8A is a perspective view of the nozzle head portion according to the fourth embodiment
  • FIG. 8B is a view of the nozzle head portion seen from the tip side
  • FIG. 8C is a view of VIIc in FIG. 8B. It is sectional drawing which follows the -VIIc line.
  • FIGS. 9A to 9C are diagrams respectively showing application patterns that can be formed by the applicator of the second to fourth embodiments.
  • 10A is a perspective view of the nozzle head portion according to the fifth embodiment
  • FIG. 10B is a view of the nozzle head portion as viewed from the tip side
  • FIG. 10C is IXc of FIG. 10B. It is sectional drawing which follows the -IXc line.
  • FIG. 11A is a perspective view of the nozzle head portion according to the sixth embodiment
  • FIG. 11B is a view of the nozzle head portion as viewed from the tip side
  • FIG. 11C is Xc of FIG. 11B.
  • 12A is a perspective view of a nozzle head portion according to the seventh embodiment
  • FIG. 12B is a view of the nozzle head portion as viewed from the tip side
  • FIG. 12C is a XIc of FIG. 12B.
  • 13A is a perspective view of the nozzle head portion according to the eighth embodiment
  • FIG. 13B is a view of the nozzle head portion as viewed from the tip side
  • FIG. 13B is a view of the nozzle head portion as viewed from the tip side
  • FIG. 13C is XIIc of FIG. 13B. It is sectional drawing which follows the -XIIc line.
  • 14A is a perspective view of a conventional nozzle head portion
  • FIG. 14B is a view of the nozzle head portion viewed from the tip side
  • FIG. 14C is XIIIc ⁇ of FIG. 14B. It is sectional drawing which follows a XIIIc line.
  • the application device 1 is a device that is applied to thoracic surgery, and in this case, is for applying a bioadhesive to an affected area of a patient.
  • the coating device 1 includes a coating device 2 as a biomedical adhesive coating device.
  • the coating apparatus 1 includes a gas pipe 4 connected to the coating tool 2 and a compressed gas source 3 that supplies compressed gas to the coating tool 2 through the gas pipe 4.
  • the gas pipe 4 is appropriately provided with a filter 6 and the like.
  • the compressed gas source 3 may be anything as long as it can supply or generate compressed gas.
  • the compressed gas is, for example, compressed air.
  • Application device 2 is, for example, a disposable (disposable) type device. As shown in FIG. 1 and FIG. 2, the applicator 2 includes a first syringe A1 filled with a main agent as a first liquid and a second syringe A2 filled with a curing agent as a second liquid. It is attached. More specifically, a cylindrical first syringe holding portion 11 and a second syringe holding portion 12 are provided at the rear end portion of the main body 10 of the applicator 2. The tip of the first syringe A1 is inserted and held in the first syringe holding part 11, and the tip of the second syringe A2 is inserted and held in the second syringe holding part 12. The first syringe A1 and the second syringe A2 are installed in parallel, for example. The magnitude
  • the main agent and curing agent are not particularly limited.
  • the main agent may be a fibrinogen-containing solution
  • the curing agent may be a thrombin-containing solution.
  • the main agent and the curing agent exhibit a function as an adhesive when mixed.
  • a piston and a rod (presser) are inserted into the first syringe A1 and the second syringe A2, respectively, and these can be operated by one operation unit 14.
  • the operation unit 14 is shared by the first syringe A1 and the second syringe A2.
  • an operator such as a doctor presses and pushes the operation unit 14 in the axial direction, the main agent in the first syringe A1 and the curing agent in the second syringe A2 are simultaneously sent into the main body 10.
  • the main body 10 of the applicator 2 is provided with a gas introduction part 16 in the vicinity of the distal end side of the first syringe holding part 11 and the second syringe holding part 12.
  • a gas pipe 4 is connected to the gas introduction part 16.
  • the main body 10 includes an elongated tubular portion 17 that is provided continuously with the gas introduction portion 16 and extends straight in the axial direction.
  • the tubular portion 17 is a hollow tube having an outer diameter of about 5 mm and a length of about 30 cm, for example.
  • the axes of the first syringe A1 and the second syringe A2 and the axis of the tubular portion 17 are parallel, for example.
  • the internal space of the tubular portion 17 communicates with the internal space of the gas introduction portion 16. Thereby, the compressed gas supplied from the compressed gas source 3 passes through the tubular portion 17.
  • the first liquid supply pipe 21 is supplied with the main agent from the first syringe A1
  • the second liquid supply pipe 22 is supplied with the curing agent from the second syringe A2.
  • the flow path of the compressed gas described above is formed inside the tubular portion 17 and outside the first liquid supply pipe 21 and the second liquid supply pipe 22.
  • the applicator 2 includes a first nozzle 23 provided at the tip of the first liquid supply pipe 21 and a second nozzle 24 provided at the tip of the second liquid supply pipe 22.
  • the applicator 2 includes a nozzle head 20 provided at the tip of the tubular portion 17.
  • the nozzle head 20 defines the positions of the first nozzle 23 and the second nozzle 24, and defines the gas injection ports ejected from the outer circumferences of the first nozzle 23 and the second nozzle 24.
  • the nozzle head 20 is, for example, a tubular cap having a truncated cone shape.
  • the nozzle head 20 may have a cylindrical shape.
  • the first discharge port 23a formed at the tip of the first nozzle 23 and the second discharge port 24a formed at the tip of the second nozzle 24 are exposed from the tip surface 26 of the nozzle head 20 (see FIG. 4). .
  • the first nozzle 23 discharges the main agent from the first discharge port 23a.
  • the second nozzle 24 discharges the curing agent from the second discharge port 24a.
  • a nozzle head 20 that is separate from the tubular portion 17 may be attached to the tip of the tubular portion 17, or the nozzle head 20 may be formed integrally with the tubular portion 17.
  • a first nozzle 23 separate from the first liquid supply pipe 21 may be attached to the tip of the first liquid supply pipe 21, or the first nozzle 23 is formed integrally with the first liquid supply pipe 21.
  • a second nozzle 24 separate from the second liquid supply pipe 22 may be attached to the tip of the second liquid supply pipe 22, or the second nozzle 24 is formed integrally with the second liquid supply pipe 22. May be.
  • the tubular portion 17 is inserted into the patient's body through a small hole in a tubular member called a trocar.
  • the compressed gas is supplied from the compressed gas source 3 to the nozzle head 20, and the operation unit 14 is operated in a state where the compressed gas is ejected from the outer periphery of the first nozzle 23 and the second nozzle 24.
  • the coating material is discharged from 24 respectively.
  • the main agent supplied to the first liquid supply pipe 21 and the first nozzle 23 is discharged from the first discharge port 23 a and supplied to the second liquid supply pipe 22 and the second nozzle 24 according to the operation of the operation unit 14.
  • the curing agent is discharged from the second discharge port 24a.
  • the compressed gas that has passed through the first flow path 31 and the second flow path 32 (details will be described later) in the nozzle head 20 is injected from the front end surface 26, and the main agent, the curing agent, and the compressed gas collide with each other.
  • the shearing force acts on the main agent and the curing agent, and the main agent and the curing agent are atomized.
  • the applicator 2 of the present embodiment includes a mechanism in which the main agent and the curing agent are efficiently mixed.
  • the bioadhesive obtained by mixing the two liquids can be uniformly and widely applied while spraying the two liquids in the form of a mist and mixing them reliably.
  • the supply ratio of the main agent and the curing agent is, for example, 1: 1 (equal amount).
  • the gas induction mechanism (gas induction means) M provided in the applicator 2 will be described with reference to FIG.
  • the first nozzle 23 and the second nozzle 24 are arranged along the axis L of the nozzle head 20.
  • the axis of the first nozzle 23 and the axis of the second nozzle 24 are parallel to the axis L.
  • the first nozzle 23 and the second nozzle 24 are separated in the width direction orthogonal to the axis L.
  • the width direction is a direction in which the first nozzle 23 and the second nozzle 24 which are a plurality of nozzles are arranged.
  • the nozzle head 20 includes, for example, a frustoconical peripheral wall portion 25 and a flat front end surface 26 formed on the front end side of the peripheral wall portion 25.
  • a first through hole 27 and a second through hole 28 extending along the axis L direction are formed in the nozzle head 20.
  • the first through hole 27 and the second through hole 28 extend in parallel, and each penetrate the nozzle head 20 in the axis L direction.
  • the first through hole 27 and the second through hole 28 are separated in the width direction.
  • a central wall 29 exists between the first through hole 27 and the second through hole 28.
  • the first nozzle 23 is disposed in the first through hole 27.
  • the second nozzle 24 is disposed in the second through hole 28.
  • the first nozzle 23 and the second nozzle 24 are, for example, a plurality of circumferential projections by a plurality of support protrusions 36 provided on the inner wall surfaces of the first through hole 27 and the second through hole 28.
  • the place is supported.
  • three support protrusions 36 arranged at equal intervals in the circumferential direction are provided on the inner wall surface of the first through hole 27.
  • the front end of the support protrusion 36 (the front end in the radial direction) is in contact with the outer peripheral surface of the first nozzle 23.
  • Each of the three support protrusions 36 has a predetermined shape and size, and the first nozzle 23 is installed eccentrically with respect to the first through hole 27. If each shape and size are changed, the first nozzle 23 can be installed coaxially, and the degree of eccentricity of the first nozzle 23 can be adjusted.
  • the second nozzle 24 is similarly installed with respect to the second through hole 28. With this structure, the first nozzle 23 and the second nozzle 24 are positioned and held inside the first through hole 27 and the second through hole 28.
  • the first discharge port 23a of the first nozzle 23 and the second discharge port 24a of the second nozzle 24 are respectively exposed from the tip surface 26 of the nozzle head 20.
  • the first discharge port 23 a may protrude forward from the tip surface 26.
  • the second discharge port 24 a may protrude forward from the tip surface 26.
  • both or one of the first discharge port 23a and the second discharge port 24a may be in the same position as the front end surface 26 in the axis L direction, or may be in a position slightly retracted from the front end surface 26. Good.
  • the first discharge port 23a and the second discharge port 24a are exposed from the tip surface 26 and face the outside (front). “Front” is based on the discharge direction.
  • a gas flow path 30 through which the compressed gas passes is formed between the nozzle head 20 and the first nozzle 23 and the second nozzle 24.
  • the gas flow path 30 is continuous with the flow path formed between the tubular portion 17 and the first liquid supply pipe 21 and the second liquid supply pipe 22.
  • a cylindrical first flow path (first gas flow path) 31 is formed between the nozzle head 20 and the first nozzle 23.
  • a cylindrical second flow path (second gas flow path) 32 is formed between the nozzle head 20 and the second nozzle 24.
  • first flow path 31 is defined by the first through hole 27 and the first nozzle 23.
  • the second flow path 32 is defined by the second through hole 28 and the second nozzle 24.
  • the compressed gas that has passed through the tubular portion 17 branches in the middle and passes through these two first flow paths 31 and second flow paths 32.
  • annular injection ports are respectively formed.
  • the nozzle head 20 is provided with a gas guiding mechanism M that guides the compressed gas toward the center in the width direction (that is, near the axis L).
  • the gas guiding mechanism M is configured by the arrangement of the first nozzles 23 in the first flow path 31 and the arrangement of the second nozzles 24 in the second flow path 32.
  • the gas induction mechanism M will be described.
  • the first flow path 31 surrounds the first nozzle 23 and exists over the entire circumference of the first nozzle 23.
  • the second flow path 32 surrounds the second nozzle 24 and exists over the entire circumference of the second nozzle 24.
  • the first nozzle 23 is provided to be eccentric with respect to the first flow path 31 (that is, the first through hole 27).
  • the second nozzle 24 is provided so as to be eccentric with respect to the second flow path 32 (that is, the second through hole 28).
  • the first nozzle 23 and the second nozzle 24 are offset in a direction approaching each other (that is, the center side in the width direction) with respect to the center line of the first flow path 31 and the center line of the second flow path 32.
  • I have a heart.
  • the first flow path 31 is formed on the center side in the width direction with respect to the width d1 of the first outer portion 31a formed on the outer side in the width direction.
  • the width d2 of the first central portion 31b is smaller.
  • the width d2 of the second central portion 32b formed on the center side in the width direction is smaller than the width d1 of the second outer portion 32a formed on the outer side in the width direction.
  • the arrangement / structure of the first nozzle 23 with respect to the first flow path 31 and the arrangement / structure of the second nozzle 24 with respect to the second flow path 32 are symmetric with respect to a virtual plane passing through the axis L and perpendicular to the width direction. That is, the width of the first outer portion 31a and the width of the second outer portion 32a are equal, and the width of the first central portion 31b and the width of the second central portion 32b are equal. In the drawing, the width dimension is shown only for the second flow path 32, but the same applies to the first flow path 31.
  • the arrangement / structure of the first nozzle 23 relative to the first flow path 31 and the arrangement / structure of the second nozzle 24 relative to the second flow path 32 may not be symmetric with respect to the virtual plane. These may be asymmetric depending on the mode of atomization and mixing of the two liquids.
  • the gas guiding mechanism M generates the flow velocity distribution of the compressed gas in the first flow path 31 and the second flow path 32 by having the above structure. That is, the compressed gas that passes through the first flow path 31 and the second flow path 32 has a relatively large velocity at the center side in the width direction rather than outside in the width direction. Thereby, the compressed gas injected from the front end surface 26 is guided to the center in the width direction. That is, the compressed gas has a speed inclined toward the center with respect to the direction of the axis L.
  • the main agent is discharged from the first discharge port 23 a of the first nozzle 23 provided at the tip of the first liquid supply pipe 21 and provided at the tip of the second liquid supply pipe 22.
  • the curing agent is discharged from the second discharge port 24a of the second nozzle 24 thus formed.
  • the compressed gas is jetted from the front end face 26 of the nozzle head 20 through the gas flow path 30 formed between the nozzle head 20 and the first nozzle 23 and the second nozzle 24.
  • the main agent discharged from the first discharge port 23a and the curing agent discharged from the second discharge port 24a are atomized by the compressed gas.
  • the gas guiding mechanism M provided in the nozzle head 20 guides this compressed gas to the center in the width direction. Therefore, the flow of the atomized main agent and curing agent is guided to the center side, and the main agent and the curing agent are easily mixed. Thereby, a main ingredient and a hardening
  • FIG. 14 (a) to 14 (c) show the arrangement and structure of the nozzle head 120, the first nozzle 123, and the second nozzle 124 in a conventional applicator.
  • the width d2 of the first central portion 31b is smaller than the width d1 of the first outer portion 31a.
  • the width d2 of the second central portion 32b is smaller than the width d1 of the second outer portion 32a. Therefore, the flow of the main agent is guided to the first central portion 31b side where the flow velocity is high, and the flow of the curing agent is guided to the second central portion 32b side where the flow velocity is high. Thereby, in the center side, a main ingredient and a hardening
  • the second embodiment will be described with reference to FIG.
  • the gas guiding mechanism MA shown in FIGS. 6 (a) to 6 (c) is different from the gas guiding mechanism M of the first embodiment in that one gas flow mechanism MA is used instead of the first flow channel 31 and the second flow channel 32.
  • This is a point provided with a nozzle head 20A in which a gas flow path 30A is formed.
  • One through hole 35 is formed in the nozzle head 20A.
  • the cross-sectional shape perpendicular to the axis L of the through hole 35 is a shape in which a part of two circles are overlapped.
  • the first nozzle 23 and the second nozzle 24 are disposed in the through hole 35.
  • a gas flow path 30 ⁇ / b> A is formed between the nozzle head 20 ⁇ / b> A and the first nozzle 23 and the second nozzle 24. That is, the gas guiding mechanism MA has a gas flow path 30A formed so as to surround the first nozzle 23 and the second nozzle 24.
  • the gas guiding mechanism MA includes a width d1 of the first outer portion 30a formed on the outer side (right side in the drawing) in the width direction than the first nozzle 23 in the gas flow path 30A, and a width direction from the second nozzle 24.
  • the first nozzle 23 and the second nozzle 24 are provided in the gas flow path 30A so that the width d2 of the central portion 30c is reduced.
  • the width d2 of the central portion 30c is smaller than any of the widths d1. Therefore, the flow of the main agent and the flow of the curing agent are guided to the central portion 30c side where the flow velocity is large. Thereby, in the center side, a main ingredient and a hardening
  • the circular coating pattern P1 shown in FIG. 9A can be formed.
  • the width of the first outer portion 30a and the width of the second outer portion 30b may be different.
  • the third embodiment will be described with reference to FIG.
  • the difference between the gas guiding mechanism MB shown in FIGS. 7A to 7C and the gas guiding mechanism M of the first embodiment is that the first nozzle 23 and the second nozzle 24 are not eccentric.
  • a nozzle head 20B having a concave end surface 26B is used.
  • the tip surface 26B has, for example, the same shape as a part of the cylindrical surface.
  • the center line of the cylindrical surface is a straight line perpendicular to both the axis L and the width direction, and can be set in front of the nozzle head 20B.
  • the first discharge port 23a of the first nozzle 23 and the second discharge port 24a of the second nozzle 24 may be in positions retracted from the tips provided at both ends in the width direction of the tip surface 26B.
  • the tip surface 26B of the nozzle head 20B is angled with respect to a plane orthogonal to the axis L direction and is directed toward the center. Therefore, the compressed gas injected from the front end surface 26B through the gas flow path 30 (the first flow path 31 and the second flow path 32) is guided to the center side. Along with this, the flow of the main agent and the flow of the curing agent are guided to the central portion side, and the main agent and the curing agent are more quickly and efficiently mixed. Further, according to the gas guiding mechanism MB, the elliptical coating pattern P2 shown in FIG. 9B can be formed.
  • the major axis of the ellipse is substantially equal to the diameter of the coating pattern P1, and the minor axis of the ellipse is smaller than the diameter of the coating pattern P1.
  • the coating range is controlled by the shape of the tip end face 26B.
  • the fourth embodiment will be described with reference to FIG.
  • the gas guiding mechanism MC shown in FIGS. 8A to 8C is different from the gas guiding mechanism M of the first embodiment in that the first nozzle 23 and the second nozzle 24 are not eccentric.
  • a nozzle head 20C having a concave end surface 26C is used.
  • the tip surface 26C has, for example, the same shape as a part of a spherical surface or a conical surface.
  • the axis of the spherical surface or the conical surface is located on the axis L.
  • the tip surface 26C has a bowl-shaped or mortar-shaped tip shape.
  • the first discharge port 23a of the first nozzle 23 and the second discharge port 24a of the second nozzle 24 may be in a position retracted from a circular tip provided at the peripheral edge of the tip surface 26C.
  • the same effects as those of the gas induction mechanism MB described above can be achieved.
  • the elliptical coating pattern P3 shown in FIG. 9C can be formed. It is assumed that the length of the ellipse of the coating pattern P3 is smaller than the diameter of the coating pattern P1 described above. Thus, it can be expected that the coating range is controlled by the shape of the tip surface 26C.
  • the gas induction mechanism may be configured by combining the various features described above.
  • a nozzle head 20D including a tip surface 26D having the same shape as a part of a cylindrical surface is provided.
  • the first nozzle 23 and the second nozzle 24 may be eccentric.
  • the elliptical coating pattern P2 shown in FIG. 9B can be formed.
  • a nozzle head 20E including a tip surface 26E having the same shape as a part of a spherical surface or a conical surface is provided. Furthermore, the first nozzle 23 and the second nozzle 24 may be eccentric. According to the gas guiding mechanism ME, the slightly small oval coating pattern P3 shown in FIG. 9C can be formed.
  • a nozzle head 20F including a tip surface 26F having the same shape as a part of the cylindrical surface is provided.
  • a gas flow path 30F common to the two liquids may be provided.
  • the elliptical coating pattern P2 shown in FIG. 9B can be formed.
  • a nozzle head 20G including a tip surface 26G having the same shape as a part of a spherical surface or a conical surface is provided. Further, a gas flow path 30G common to the two liquids may be provided. According to the gas guiding mechanism MG, the slightly small elliptical application pattern P3 shown in FIG. 9C can be formed.
  • the gas used for the compressed gas is not limited to air, and may be, for example, nitrogen gas or carbon dioxide gas.
  • the present invention can be applied not only to chest cavity surgery but also to other locations and other types of surgery, such as laparotomy.
  • the first liquid and the second liquid can be mixed efficiently.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Medical Informatics (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Nozzles (AREA)

Abstract

塗布器具は、第1液供給管および第2液供給管と、第1液を第1吐出口から吐出させる第1ノズルと、第2液を第2吐出口から吐出させる第2ノズルと、第1吐出口および第2吐出口が先端面から露出する状態で第1ノズルおよび第2ノズルの位置を規定し、第1ノズルおよび第2ノズルの外周から噴出するガスの噴射口を規定する筒状のノズルヘッドと、を備える。第1ノズルおよび第2ノズルは、軸線方向に直交する幅方向に離間して配置されている。ノズルヘッドと、第1ノズルおよび第2ノズルとの間には、圧縮ガスが通るガス流路が形成されている。ノズルヘッドには、ガス流路を通り先端面から噴射される圧縮ガスを幅方向の中央側に誘導するガス誘導手段が設けられている。

Description

塗布器具
 本開示は、特に、2液混合型の塗布器具に関する。
 従来、2液混合型の噴霧ノズルが知られている。たとえば特許文献1に記載されるように、フィブリノーゲン含有溶液等の第1薬液を吐出する第1薬液供給管と、トロンビン含有溶液等の第2薬液を吐出する第2薬液供給管とを備えた噴霧ノズルが知られている。第1薬液供給管の外側には、間隔をあけて、第1外側ガス供給管が形成されている。第2薬液供給管の外側には、間隔をあけて、第2外側ガス供給管が形成されている。第1外側ガス供給管は、第1薬液供給管に対して同軸状に形成されており、第2外側ガス供給管は、第2薬液供給管に対して同軸状に形成されている。
 上記の噴霧ノズルに対して、ガス供給部より供給される無菌ガスは、フィルタを通り、第1外側ガス供給管および第2外側ガス供給管を流れる。一方、別々のシリンジからそれぞれ供給される第1薬液および第2薬液は、各吐出口から吐出されると、第1外側ガス噴射口および第2外側ガス噴射口から噴射された無菌ガスによって霧化および混合される。混合された第1薬液および第2薬液は、生体接着剤として患部等に塗布される。
特開2003-159255号公報
 上記した従来の噴霧ノズルでは、薬液供給管とガス供給管とは、同軸状に配置されている。このような同軸状の配置により、噴霧パターンの片寄り等が防止され得る。一方、別の観点では、同軸状の配置により、ガスが通過する隙間は、全周において一定であり、ガスの流速も、全周において一定になり得る。そのため、霧状の薬液は、軸方向に真っ直ぐに供給される(すなわち直進する)。第1薬液を噴霧するノズルと第2薬液を噴霧するノズルは平行に配置されており、第1薬液と第2薬液がそれぞれ真っ直ぐに(すなわち直進するように)供給されるため、これらの薬液が混ざりにくいといった課題がある。
 本開示は、第1液と第2液とを効率よく混合することができる塗布器具を説明する。
 本開示の一態様に係る塗布器具は、圧縮ガスを用いて第1液と第2液とを霧化および混合するための塗布器具であって、第1液が供給される第1液供給管と、第2液が供給される第2液供給管と、第1液供給管の先端に設けられ、第1液を第1吐出口から吐出させる第1ノズルと、第2液供給管の先端に設けられ、第2液を第2吐出口から吐出させる第2ノズルと、第1吐出口および第2吐出口が先端面から露出する状態で第1ノズルおよび第2ノズルの位置を規定し、第1ノズルおよび第2ノズルの外周から噴出するガスの噴射口を規定する筒状のノズルヘッドと、を備え、第1ノズルおよび第2ノズルは、ノズルヘッドの軸線方向に沿って配置されると共に、軸線方向に直交する幅方向に離間して配置されており、ノズルヘッドと、第1ノズルおよび第2ノズルとの間には、圧縮ガスが通るガス流路が形成されており、ノズルヘッドには、ガス流路を通り先端面から噴射される圧縮ガスを幅方向の中央側に誘導するガス誘導手段が設けられている。
 この塗布器具によれば、第1液供給管の先端に設けられた第1ノズルの第1吐出口から、第1液が吐出され、第2液供給管の先端に設けられた第2ノズルの第2吐出口から、第2液が吐出される。ノズルヘッドと、第1ノズルおよび第2ノズルとの間に形成されたガス流路を通って、ノズルヘッドの先端面から圧縮ガスが噴射される。このとき、第1吐出口から吐出される第1液および第2吐出口から吐出される第2液が、圧縮ガスによって霧化される。ノズルヘッドに設けられたガス誘導手段は、この圧縮ガスを幅方向の中央側に誘導する。よって、霧化された第1液および第2液の流れは中央側に誘導されることとなり、第1液および第2液が混ざりやすくなる。これにより、第1液と第2液とを効率よく混合することができる。
 いくつかの態様において、ガス流路は、第1ノズルを包囲する筒状の第1ガス流路と、第2ノズルを包囲する筒状の第2ガス流路と、を有し、ガス誘導手段は、第1ガス流路のうち幅方向の外側に形成された第1外側部分の幅よりも、第1ガス流路のうち幅方向の中央側に形成された第1中央部分の幅の方が小さくなるように第1ガス流路内に第1ノズルが設けられ、第2ガス流路のうち幅方向の外側に形成された第2外側部分の幅よりも、第2ガス流路のうち幅方向の中央側に形成された第2中央部分の幅の方が小さくなるように第2ガス流路内に第2ノズルが設けられた構造を有する。この場合、第1液を霧化させるための第1ガス流路において、第1外側部分の幅よりも第1中央部分の幅の方が小さい。第2液を霧化させるための第2ガス流路において、第2外側部分の幅よりも第2中央部分の幅の方が小さい。よって、第1液の流れは、流速の大きい第1中央部分側に誘導され、第2液の流れは、流速の大きい第2中央部分側に誘導される。これにより、中央側において、第1液と第2液とをより迅速に効率よく混合することができる。
 いくつかの態様において、ガス流路は、第1ノズルおよび第2ノズルを包囲するように形成された1つの流路であり、ガス誘導手段は、ガス流路のうち第1ノズルよりも幅方向の外側に形成された第1外側部分の幅、および、ガス流路のうち第2ノズルよりも幅方向の外側に形成された第2外側部分の幅のいずれよりも、第1ノズルと第2ノズルとの間であってガス流路のうち幅方向の中央側に形成された中央部分の幅の方が小さくなるように、ガス流路内に第1ノズルおよび第2ノズルが設けられた構造を有する。この場合、第1液および第2液を霧化させるために設けられた1つのガス流路において、第1外側部分の幅および第2外側部分の幅のいずれよりも、中央部分の幅の方が小さい。よって、第1液の流れと第2液の流れとが、流速の大きい中央部分側に誘導される。これにより、中央側において、第1液と第2液とをより迅速に効率よく混合することができる。
 いくつかの態様において、ガス誘導手段は、ノズルヘッドの先端面が凹面状をなした構造を有する。この場合、軸線方向に直交する平面に対し、ノズルヘッドの先端面は角度をなし、中央側に向けられる。よって、ガス流路を通って先端面から噴射される圧縮ガスは、中央側へ誘導される。これに伴い、第1液の流れと第2液の流れとが中央部分側に誘導され、第1液と第2液とをより迅速に効率よく混合することができる。
 本開示のいくつかの態様によれば、第1液と第2液とを効率よく混合することができる。
図1は本開示の第1実施形態に係る塗布器具が適用された装置の構成例を示す図である。 図2は図1の塗布器具を示す斜視図である。 図3(a)は塗布器具の縦断面図、図3(b)は図3(a)に垂直な幅方向で切断した断面図である。 図4(a)はノズルヘッド部分の斜視図、図4(b)はそのノズルヘッド部分を先端側から見た図、図4(c)は図4(b)のIVc-IVc線に沿う断面図である。 図5はノズルヘッド部分を、ノズルの長手方向の中心軸に垂直な方向で切断した断面図である。 図6(a)は第2実施形態に係るノズルヘッド部分の斜視図、図6(b)はそのノズルヘッド部分を先端側から見た図、図6(c)は図6(b)のVc-Vc線に沿う断面図である。 図7(a)は第3実施形態に係るノズルヘッド部分の斜視図、図7(b)はそのノズルヘッド部分を先端側から見た図、図7(c)は図7(b)のVIc-VIc線に沿う断面図である。 図8(a)は第4実施形態に係るノズルヘッド部分の斜視図、図8(b)はそのノズルヘッド部分を先端側から見た図、図8(c)は図8(b)のVIIc-VIIc線に沿う断面図である。 図9(a)~(c)は第2~第4実施形態の塗布器具によって形成され得る塗布パターンをそれぞれ示す図である。 図10(a)は第5実施形態に係るノズルヘッド部分の斜視図、図10(b)はそのノズルヘッド部分を先端側から見た図、図10(c)は図10(b)のIXc-IXc線に沿う断面図である。 図11(a)は第6実施形態に係るノズルヘッド部分の斜視図、図11(b)はそのノズルヘッド部分を先端側から見た図、図11(c)は図11(b)のXc-Xc線に沿う断面図である。 図12(a)は第7実施形態に係るノズルヘッド部分の斜視図、図12(b)はそのノズルヘッド部分を先端側から見た図、図12(c)は図12(b)のXIc-XIc線に沿う断面図である。 図13(a)は第8実施形態に係るノズルヘッド部分の斜視図、図13(b)はそのノズルヘッド部分を先端側から見た図、図13(c)は図13(b)のXIIc-XIIc線に沿う断面図である。 図14(a)は従来の形態に係るノズルヘッド部分の斜視図、図14(b)はそのノズルヘッド部分を先端側から見た図、図14(c)は図14(b)のXIIIc-XIIIc線に沿う断面図である。
 以下、本開示の実施形態について、図面を参照しながら説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明は省略する。
 図1および図2を参照して、本実施形態に係る塗布器具2および塗布器具2が適用された塗布装置1について説明する。図1に示されるように、たとえば、塗布装置1は胸腔手術に適用される装置であり、その場合、生体用接着剤を患者の患部に塗布するためのものである。塗布装置1は、生体用接着剤塗布機器としての塗布器具2を備える。塗布装置1は、塗布器具2に接続されたガス配管4と、ガス配管4を介して塗布器具2に圧縮ガスを供給する圧縮ガス源3とを備える。ガス配管4には、フィルタ6等が適宜設けられる。圧縮ガス源3は、圧縮されたガスを供給または生成可能なものであれば、どのようなものであってもよい。圧縮ガスは、たとえば圧縮空気である。
 塗布器具2は、たとえば、ディスポーザブル(使い捨て)タイプの器具である。図1および図2に示されるように、塗布器具2には、第1液である主剤が充填された第1シリンジA1と、第2液である硬化剤が充填された第2シリンジA2とが取り付けられる。より詳細には、塗布器具2の本体10の後端部には、それぞれ円筒状の第1シリンジ保持部11および第2シリンジ保持部12が設けられている。第1シリンジ保持部11に第1シリンジA1の先端が挿入されて保持され、第2シリンジ保持部12に第2シリンジA2の先端が挿入されて保持される。第1シリンジA1と第2シリンジA2とは、たとえば平行に設置される。第1シリンジA1および第2シリンジA2の大きさは、同じであってもよいし、異なっていてもよい。
 主剤および硬化剤の種類や物質名は特に限定されるものではない。一例として、主剤はフィブリノーゲン含有溶液であってもよく、硬化剤はトロンビン含有溶液であってもよい。主剤および硬化剤は、混合されることによって接着剤としての機能を発揮する。
 第1シリンジA1および第2シリンジA2には、それぞれピストンおよびロッド(押子)が挿入されており、これらが1つの操作部14によって、操作可能になっている。操作部14は、第1シリンジA1および第2シリンジA2に対して共用化されている。操作者(医師等)が操作部14を軸線方向に押圧して押し込むことにより、第1シリンジA1内の主剤と、第2シリンジA2内の硬化剤とが同時に本体10内に送られる。
 塗布器具2の本体10には、第1シリンジ保持部11および第2シリンジ保持部12の先端側の近傍においてガス導入部16が設けられている。ガス導入部16にはガス配管4が接続されている。本体10は、ガス導入部16に連続して設けられ、軸線方向に真っ直ぐに延びる細長い管状部17を有する。管状部17は、たとえば、外径が5mm程度であり、長さが30cm程度の中空管である。第1シリンジA1および第2シリンジA2の軸線と、管状部17の軸線とは、たとえば平行である。管状部17の内部空間は、ガス導入部16の内部空間に連通している。これにより、圧縮ガス源3から供給された圧縮ガスは、管状部17内を通る。
 一方で、図3(a)および図3(b)に示されるように、管状部17内には、第1シリンジ保持部11に接続されて主剤を流通させる第1液供給管21と、第2シリンジ保持部12に接続されて硬化剤を流通させる第2液供給管22とが配置されている。第1液供給管21には、第1シリンジA1からの主剤が供給され、第2液供給管22には、第2シリンジA2からの硬化剤が供給される。上記した圧縮ガスの流路は、管状部17内であって、第1液供給管21および第2液供給管22の外部に形成される。
 塗布器具2は、第1液供給管21の先端に設けられた第1ノズル23と、第2液供給管22の先端に設けられた第2ノズル24とを備える。塗布器具2は、管状部17の先端に設けられたノズルヘッド20を備える。ノズルヘッド20は、第1ノズル23および第2ノズル24の位置を規定し、第1ノズル23および第2ノズル24の外周から噴出するガスの噴射口を規定する。ノズルヘッド20は、たとえば、円錐台状をなす管状のキャップである。なお、ノズルヘッド20は、円筒状をなしてもよい。第1ノズル23の先端に形成された第1吐出口23aおよび第2ノズル24の先端に形成された第2吐出口24aは、ノズルヘッド20の先端面26から露出している(図4参照)。第1ノズル23は、第1吐出口23aから主剤を吐出させる。第2ノズル24は、第2吐出口24aから硬化剤を吐出させる。
 このように、管状部17およびノズルヘッド20からなる1本の管状体の内部に、先端に第1ノズル23が接続された第1液供給管21および、先端に第2ノズル24が接続された第2液供給管22からなる2本の管状体が収納されている。これらの2本の管状体は、たとえば、略平行に配置されている。管状部17とは別体のノズルヘッド20が、管状部17の先端に取り付けられてもよいし、ノズルヘッド20が、管状部17と一体に形成されてもよい。第1液供給管21とは別体の第1ノズル23が、第1液供給管21の先端に取り付けられてもよいし、第1ノズル23が、第1液供給管21と一体に形成されてもよい。第2液供給管22とは別体の第2ノズル24が、第2液供給管22の先端に取り付けられてもよいし、第2ノズル24が、第2液供給管22と一体に形成されてもよい。
 2液混合型の塗布装置1および塗布器具2では、管状部17は、トロッカーと呼ばれる管状部材の小孔から患者の体内に挿入される。まず、圧縮ガス源3より圧縮ガスをノズルヘッド20に供給し、第1ノズル23及び第2ノズル24の外周から噴出させた状態で、操作部14を操作し、第1ノズル23及び第2ノズル24よりそれぞれ塗布材を吐出する。操作部14の操作に応じて、第1液供給管21および第1ノズル23に供給された主剤は第1吐出口23aから吐出され、第2液供給管22および第2ノズル24に供給された硬化剤は第2吐出口24aから吐出される。このとき、ノズルヘッド20内の第1流路31および第2流路32(詳しくは後述)を通った圧縮ガスが先端面26から噴射され、主剤および硬化剤と圧縮ガスとが衝突することにより、せん断力が主剤および硬化剤に作用し、主剤および硬化剤が霧化させられる。塗布を終了する場合は、操作部14の操作を止め、塗布剤の吐出を終了してから、圧縮ガス源3よりの圧縮ガスのノズルヘッド20への供給を止める。
 特に、本実施形態の塗布器具2は、主剤および硬化剤が効率よく混合される機構を備えている。塗布器具2では、2液を霧状に噴霧し確実に混合させながら、2液の混合によって得られる生体用接着剤を、均一かつ広範囲に塗布することができる。なお、主剤と硬化剤の供給比率は、たとえば1対1(等量)である。
 以下、図4を参照して、塗布器具2が備えるガス誘導機構(ガス誘導手段)Mについて説明する。図4(a)~図4(c)に示されるように、第1ノズル23および第2ノズル24は、ノズルヘッド20の軸線Lに沿って配置されている。第1ノズル23の軸線および第2ノズル24の軸線は、軸線Lに平行である。第1ノズル23および第2ノズル24は、軸線Lに直交する幅方向に離間している。幅方向とは、複数のノズルである第1ノズル23および第2ノズル24が並ぶ方向である。
 ノズルヘッド20は、たとえば円錐台状の周壁部25と、周壁部25の先端側に形成された平坦な先端面26とを含む。ノズルヘッド20内には、軸線L方向に沿って延びる第1貫通孔27および第2貫通孔28が形成されている。第1貫通孔27および第2貫通孔28は、平行に延在しており、それぞれ、ノズルヘッド20を軸線L方向に貫通している。第1貫通孔27および第2貫通孔28は、幅方向に離間している。第1貫通孔27および第2貫通孔28の間には、中央壁29が存在する。
 第1貫通孔27内に、第1ノズル23が配置される。第2貫通孔28内に、第2ノズル24が配置される。図5に示されるように、第1ノズル23および第2ノズル24は、たとえば、第1貫通孔27および第2貫通孔28の内壁面に設けられた複数の支持突起36によって、周方向の複数箇所を支持されている。たとえば、図5に示されるように、第1貫通孔27の内壁面には、周方向に等間隔に配置された3つの支持突起36が設けられている。支持突起36の先端(径方向内方の先端)は、第1ノズル23の外周面に当接する。3つの支持突起36はそれぞれ所定の形状および大きさを有しており、第1貫通孔27に対して、第1ノズル23は偏心するように設置されている。それぞれの形状および大きさを変えれば、第1ノズル23を同軸状に設置する事も出来るし、第1ノズル23の偏心の度合いを調整することも出来る。第2ノズル24は、第2貫通孔28に対して同様に設置されている。この構造により、第1ノズル23および第2ノズル24は、第1貫通孔27および第2貫通孔28の内部において位置決めされ、保持されている。
 上記したように、第1ノズル23の第1吐出口23aと、第2ノズル24の第2吐出口24aとは、それぞれ、ノズルヘッド20の先端面26から露出している。図4(c)に示されるように、第1吐出口23aは、先端面26よりも前方に突出してもよい。第2吐出口24aは、先端面26よりも前方に突出してもよい。なお、第1吐出口23aおよび第2吐出口24aの両方またはいずれか一方が、軸線L方向において先端面26と同じ位置にあってもよく、先端面26より僅かに引っ込んだ位置にあってもよい。いずれにしても、第1吐出口23aと第2吐出口24aとは、先端面26から露出しており、外部(前方)に臨んでいる。なお、「前方」は、吐出方向を基準としている。
 図4(b)および図4(c)に示されるように、ノズルヘッド20と、第1ノズル23および第2ノズル24との間には、圧縮ガスが通るガス流路30が形成されている。このガス流路30は、管状部17と、第1液供給管21および第2液供給管22との間に形成された上記の流路に連続している。
 より詳細には、ノズルヘッド20と第1ノズル23との間には、円筒状の第1流路(第1ガス流路)31が形成されている。ノズルヘッド20と第2ノズル24との間には、円筒状の第2流路(第2ガス流路)32が形成されている。言い換えれば、第1流路31は、第1貫通孔27と第1ノズル23とによって画成される。第2流路32は、第2貫通孔28と第2ノズル24とによって画成される。管状部17内を通過した圧縮ガスは、途中で分岐して、これらの2つの第1流路31および第2流路32を通る。第1流路31および第2流路32の先端には、環状の噴射口がそれぞれ形成されている。
 ここで、ノズルヘッド20には、圧縮ガスを幅方向の中央側(すなわち軸線L寄り)に誘導するガス誘導機構Mが設けられている。ガス誘導機構Mは、第1流路31内における第1ノズル23の配置と、第2流路32内における第2ノズル24の配置とによって構成されている。以下、ガス誘導機構Mについて説明する。
 第1流路31は、第1ノズル23を包囲しており、第1ノズル23の全周にわたって存在している。第2流路32は、第2ノズル24を包囲しており、第2ノズル24の全周にわたって存在している。第1ノズル23は、第1流路31(すなわち第1貫通孔27)に対して偏心するように設けられている。第2ノズル24は、第2流路32(すなわち第2貫通孔28)に対して偏心するように設けられている。
 より詳細には、第1ノズル23および第2ノズル24は、第1流路31の中心線および第2流路32の中心線に対して、互いに近づく方向(すなわち幅方向の中央側)に偏心している。これにより、図4(b)に示されるように、第1流路31のうち、幅方向の外側に形成された第1外側部分31aの幅d1よりも、幅方向の中央側に形成された第1中央部分31bの幅d2の方が小さくなっている。第2流路32のうち、幅方向の外側に形成された第2外側部分32aの幅d1よりも、幅方向の中央側に形成された第2中央部分32bの幅d2の方が小さくなっている。
 第1流路31に対する第1ノズル23の配置・構造と、第2流路32に対する第2ノズル24の配置・構造とは、軸線Lを通り且つ幅方向に垂直な仮想平面に関して対称である。すなわち、第1外側部分31aの幅と第2外側部分32aの幅は等しく、第1中央部分31bの幅と第2中央部分32bの幅とは等しい。図中においては、第2流路32に関してのみ幅寸法が図示されているが、第1流路31に関しても同様である。
 なお、第1流路31に対する第1ノズル23の配置・構造と、第2流路32に対する第2ノズル24の配置・構造とが、上記仮想平面に関して対称でなくてもよい。これらは、2液の霧化および混合の態様に応じて、非対称とされてもよい。
 ガス誘導機構Mは、上記の構造を有することによって、第1流路31および第2流路32において圧縮ガスの流速分布を生じさせる。すなわち、第1流路31および第2流路32を通過する圧縮ガスは、幅方向の外側よりも幅方向の中央側において、比較的大きな速度を有する。これにより、先端面26から噴射される圧縮ガスは、幅方向の中央側に誘導される。すなわち、圧縮ガスは、軸線L方向に対して、中央側に傾斜した速度を有する。
 本実施形態の塗布器具2によれば、第1液供給管21の先端に設けられた第1ノズル23の第1吐出口23aから、主剤が吐出され、第2液供給管22の先端に設けられた第2ノズル24の第2吐出口24aから、硬化剤が吐出される。ノズルヘッド20と、第1ノズル23および第2ノズル24との間に形成されたガス流路30を通って、ノズルヘッド20の先端面26から圧縮ガスが噴射される。このとき、第1吐出口23aから吐出される主剤および第2吐出口24aから吐出される硬化剤が、圧縮ガスによって霧化される。ノズルヘッド20に設けられたガス誘導機構Mは、この圧縮ガスを幅方向の中央側に誘導する。よって、霧化された主剤および硬化剤の流れは中央側に誘導されることとなり、主剤および硬化剤が混ざりやすくなる。これにより、主剤と硬化剤とが効率よく混合される。
 図14(a)~図14(c)には、従来の塗布器具における、ノズルヘッド120と、第1ノズル123および第2ノズル124の配置・構造が示されている。従来は、ガス流路130に対して、第1ノズル123および第2ノズル124が同軸状に設けられていた。よって、ガス流路130は全周において一定(すなわち幅d1=幅d2)であり、圧縮ガスの流速も、全周において一定であった。そのため、霧状になった液体は、軸方向に真っ直ぐに供給され、直進していた。主剤と硬化剤はそれぞれ真っ直ぐに(すなわち直進するように)供給されるため、これらの薬液が混ざりにくかった。これに対して、ガス誘導機構Mを備える本実施形態の塗布器具2では、主剤と硬化剤とが混ざりやすくなっている。
 ガス誘導機構Mでは、主剤を霧化させるための第1流路31において、第1外側部分31aの幅d1よりも第1中央部分31bの幅d2の方が小さい。硬化剤を霧化させるための第2流路32において、第2外側部分32aの幅d1よりも第2中央部分32bの幅d2の方が小さい。よって、主剤の流れは、流速の大きい第1中央部分31b側に誘導され、硬化剤の流れは、流速の大きい第2中央部分32b側に誘導される。これにより、中央側において、主剤と硬化剤とがより迅速に効率よく混合される。
 図6を参照して、第2実施形態について説明する。図6(a)~図6(c)に示されるガス誘導機構MAが第1実施形態のガス誘導機構Mと違う点は、第1流路31および第2流路32に代えて、1つのガス流路30Aが形成されたノズルヘッド20Aを備えた点である。ノズルヘッド20Aには、1つの貫通孔35が形成されている。貫通孔35の軸線Lに直交する断面形状は、2つの円の一部を重ね合わせた形状をなしている。この貫通孔35内に、第1ノズル23および第2ノズル24が配置されている。ノズルヘッド20Aと、第1ノズル23および第2ノズル24との間に、ガス流路30Aが形成されている。すなわち、ガス誘導機構MAは、第1ノズル23および第2ノズル24を包囲するように形成されたガス流路30Aを有する。ガス誘導機構MAは、ガス流路30Aのうち第1ノズル23よりも幅方向の外側(図示右側)に形成された第1外側部分30aの幅d1、および、第2ノズル24よりも幅方向の外側(図示左側)に形成された第2外側部分30bの幅d1のいずれよりも、第1ノズル23と第2ノズル24との間であってガス流路30Aのうち幅方向の中央側に形成された中央部分30cの幅d2の方が小さくなるように、ガス流路30A内に第1ノズル23および第2ノズル24が設けられた構造を有する。
 ガス誘導機構MAを備えた塗布器具2によれば、主剤および硬化剤を霧化させるために設けられた1つのガス流路30Aにおいて、第1外側部分30aの幅d1および第2外側部分30bの幅d1のいずれよりも、中央部分30cの幅d2の方が小さい。よって、主剤の流れと硬化剤の流れとが、流速の大きい中央部分30c側に誘導される。これにより、中央側において、主剤と硬化剤とがより迅速に効率よく混合される。また、ガス誘導機構MAによれば、図9(a)に示される円形の塗布パターンP1が形成され得る。なお、ガス誘導機構MAにおいて、第1外側部分30aの幅と第2外側部分30bの幅とが異なってもよい。
 図7を参照して、第3実施形態について説明する。図7(a)~図7(c)に示されるガス誘導機構MBが第1実施形態のガス誘導機構Mと違う点は、第1ノズル23および第2ノズル24は偏心していない点と、平坦な先端面26に代えて、凹面状をなす先端面26Bを有するノズルヘッド20Bが用いられた点である。先端面26Bは、たとえば、円筒面の一部と同じ形状を有する。その円筒面の中心線は、軸線Lおよび幅方向のいずれにも垂直な直線であり、ノズルヘッド20Bの前方に設定され得る。第1ノズル23の第1吐出口23aと、第2ノズル24の第2吐出口24aとは、先端面26Bの幅方向の両端に設けられた先端より引っ込んだ位置にあってもよい。
 ガス誘導機構MBを備えた塗布器具2によれば、軸線L方向に直交する平面に対し、ノズルヘッド20Bの先端面26Bは角度をなし、中央側に向けられている。よって、ガス流路30(第1流路31および第2流路32)を通って先端面26Bから噴射される圧縮ガスは、中央側へ誘導される。これに伴い、主剤の流れと硬化剤の流れとが中央部分側に誘導され、主剤と硬化剤とがより迅速に効率よく混合される。また、ガス誘導機構MBによれば、図9(b)に示される楕円形の塗布パターンP2が形成され得る。塗布パターンP2において、楕円の長径は、上記した塗布パターンP1の直径に略等しく、楕円の短径は、塗布パターンP1の直径よりも小さい。このように、先端面26Bの形状によって、塗布範囲をコントロールすることも期待できる。
 図8を参照して、第4実施形態について説明する。図8(a)~図8(c)に示されるガス誘導機構MCが第1実施形態のガス誘導機構Mと違う点は、第1ノズル23および第2ノズル24は偏心していない点と、平坦な先端面26に代えて、凹面状をなす先端面26Cを有するノズルヘッド20Cが用いられた点である。先端面26Cは、たとえば、球面または円錐面の一部と同じ形状を有する。その球面の中心または円錐面の軸線は、軸線L上に位置する。先端面26Cは、お椀型またはすり鉢型の先端形状をなしている。第1ノズル23の第1吐出口23aと、第2ノズル24の第2吐出口24aとは、先端面26Cの周縁部に設けられた円形の先端より引っ込んだ位置にあってもよい。
 ガス誘導機構MCを備えた塗布器具2によっても、上記したガス誘導機構MBと同様の作用効果が奏され得る。また、ガス誘導機構MCによれば、図9(c)に示される楕円の塗布パターンP3が形成され得る。塗布パターンP3の楕円の長は、上記した塗布パターンP1の直径よりも小さくなる事が想定される。このように、先端面26Cの形状によって、塗布範囲をコントロールすることも期待できる。
 上記した各種特徴を組み合わせることにより、ガス誘導機構を構成してもよい。たとえば、図10(a)~図10(c)に示される第5実施形態に係るガス誘導機構MDのように、円筒面の一部と同じ形状を有する先端面26Dを含むノズルヘッド20Dを備え、更に、第1ノズル23および第2ノズル24を偏心させてもよい。ガス誘導機構MDによれば、図9(b)に示される楕円形の塗布パターンP2が形成され得る。
 図11(a)~図11(c)に示される第6実施形態に係るガス誘導機構MEのように、球面または円錐面の一部と同じ形状を有する先端面26Eを含むノズルヘッド20Eを備え、更に、第1ノズル23および第2ノズル24を偏心させてもよい。ガス誘導機構MEによれば、図9(c)に示されるやや小さな楕円形の塗布パターンP3が形成され得る。
 図12(a)~図12(c)に示される第7実施形態に係るガス誘導機構MFのように、円筒面の一部と同じ形状を有する先端面26Fを含むノズルヘッド20Fを備え、更に、2液共通のガス流路30Fを設けてもよい。ガス誘導機構MFによれば、図9(b)に示される楕円形の塗布パターンP2が形成され得る。
 図13(a)~図13(c)に示される第8実施形態に係るガス誘導機構MGのように、球面または円錐面の一部と同じ形状を有する先端面26Gを含むノズルヘッド20Gを備え、更に、2液共通のガス流路30Gを設けてもよい。ガス誘導機構MGによれば、図9(c)に示されるやや小さな楕円形の塗布パターンP3が形成され得る。
 以上、本開示の実施形態について説明したが、本発明は上記実施形態に限られない。圧縮ガスに用いられるガスは、空気に限られず、たとえば窒素ガスや炭酸ガス等であってもよい。胸腔手術に限られず、他の箇所や他の種類の手術、たとえば開腹手術等に、本発明を適用することもできる。
 本開示のいくつかの態様によれば、第1液と第2液とを効率よく混合することができる。
 1…塗布装置、2…塗布器具、20,20A~20G…ノズルヘッド、21…第1液供給管、22…第2液供給管、23…第1ノズル、23a…第1吐出口、24…第2ノズル、24a…第2吐出口、26…先端面、30a…第1外側部分、30b…第2外側部分、30c…中央部分、31a…第1外側部分、31b…第1中央部分、32a…第2外側部分、32b…第2中央部分、L…軸線、M,MA~MG…ガス誘導機構(ガス誘導手段)。

Claims (4)

  1.  圧縮ガスを用いて第1液と第2液とを霧化および混合するための塗布器具であって、
     前記第1液が供給される第1液供給管と、
     前記第2液が供給される第2液供給管と、
     前記第1液供給管の先端に設けられ、前記第1液を第1吐出口から吐出させる第1ノズルと、
     前記第2液供給管の先端に設けられ、前記第2液を第2吐出口から吐出させる第2ノズルと、
     前記第1吐出口および前記第2吐出口が先端面から露出する状態で前記第1ノズルおよび前記第2ノズルの位置を規定し、第1ノズルおよび第2ノズルの外周から噴出するガスの噴射口を規定する筒状のノズルヘッドと、を備え、
     前記第1ノズルおよび前記第2ノズルは、前記ノズルヘッドの軸線方向に沿って配置されると共に、前記軸線方向に直交する幅方向に離間して配置されており、
     前記ノズルヘッドと、前記第1ノズルおよび前記第2ノズルとの間には、前記圧縮ガスが通るガス流路が形成されており、
     前記ノズルヘッドには、前記ガス流路を通り前記先端面から噴射される前記圧縮ガスを前記幅方向の中央側に誘導するガス誘導手段が設けられている、塗布器具。
  2.  前記ガス流路は、
     前記第1ノズルを包囲する筒状の第1ガス流路と、
     前記第2ノズルを包囲する筒状の第2ガス流路と、を有し、
     前記ガス誘導手段は、
     前記第1ガス流路のうち前記幅方向の外側に形成された第1外側部分の幅よりも、前記第1ガス流路のうち前記幅方向の中央側に形成された第1中央部分の幅の方が小さくなるように前記第1ガス流路内に前記第1ノズルが設けられ、前記第2ガス流路のうち前記幅方向の外側に形成された第2外側部分の幅よりも、前記第2ガス流路のうち前記幅方向の中央側に形成された第2中央部分の幅の方が小さくなるように前記第2ガス流路内に前記第2ノズルが設けられた構造を有する、請求項1に記載の塗布器具。
  3.  前記ガス流路は、前記第1ノズルおよび前記第2ノズルを包囲するように形成された1つの流路であり、
     前記ガス誘導手段は、
     前記ガス流路のうち前記第1ノズルよりも前記幅方向の外側に形成された第1外側部分の幅、および、前記ガス流路のうち前記第2ノズルよりも前記幅方向の外側に形成された第2外側部分の幅のいずれよりも、前記第1ノズルと前記第2ノズルとの間であって前記ガス流路のうち幅方向の中央側に形成された中央部分の幅の方が小さくなるように、前記ガス流路内に前記第1ノズルおよび前記第2ノズルが設けられた構造を有する、請求項1に記載の塗布器具。
  4.  前記ガス誘導手段は、
     前記ノズルヘッドの前記先端面が凹面状をなした構造を有する、請求項1~3のいずれか一項に記載の塗布器具。
PCT/JP2017/023922 2016-07-01 2017-06-29 塗布器具 WO2018003916A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-131756 2016-07-01
JP2016131756A JP2018000561A (ja) 2016-07-01 2016-07-01 塗布器具

Publications (1)

Publication Number Publication Date
WO2018003916A1 true WO2018003916A1 (ja) 2018-01-04

Family

ID=60785400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023922 WO2018003916A1 (ja) 2016-07-01 2017-06-29 塗布器具

Country Status (2)

Country Link
JP (1) JP2018000561A (ja)
WO (1) WO2018003916A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719069A (en) * 1980-07-04 1982-02-01 Sumitomo Light Metal Ind Ltd Coating method for inner surface of long-sized pipe with small caliber
JPS58163462A (ja) * 1982-03-24 1983-09-28 Babcock Hitachi Kk 二流体物質による噴霧方法
JPH07255729A (ja) * 1994-02-28 1995-10-09 Immuno Ag 多成分組織接着剤の適用装置
JP3024765U (ja) * 1995-11-17 1996-05-31 株式会社八光電機製作所 二薬液混合噴霧ノズル
JP2000354797A (ja) * 1999-06-17 2000-12-26 Sumitomo Bakelite Co Ltd 生体組織接着剤塗布用具
JP2001057979A (ja) * 1999-08-20 2001-03-06 Sumitomo Bakelite Co Ltd 生体組織接着剤塗布用具
JP2002522177A (ja) * 1998-08-14 2002-07-23 インセプト エルエルシー ヒドロゲルのインサイチュ形成のための方法および装置
JP2003159255A (ja) * 2001-11-26 2003-06-03 Hakko Medical:Kk 生体接着剤噴霧ノズル
US20030127536A1 (en) * 2002-01-07 2003-07-10 Illinois Tool Works Inc. All plastic air cap for hot melt adhsive applicator
WO2006061883A1 (ja) * 2004-12-07 2006-06-15 Nakanishi Inc. バイオポリマー粉体のゲル状化噴射装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719069A (en) * 1980-07-04 1982-02-01 Sumitomo Light Metal Ind Ltd Coating method for inner surface of long-sized pipe with small caliber
JPS58163462A (ja) * 1982-03-24 1983-09-28 Babcock Hitachi Kk 二流体物質による噴霧方法
JPH07255729A (ja) * 1994-02-28 1995-10-09 Immuno Ag 多成分組織接着剤の適用装置
JP3024765U (ja) * 1995-11-17 1996-05-31 株式会社八光電機製作所 二薬液混合噴霧ノズル
JP2002522177A (ja) * 1998-08-14 2002-07-23 インセプト エルエルシー ヒドロゲルのインサイチュ形成のための方法および装置
JP2000354797A (ja) * 1999-06-17 2000-12-26 Sumitomo Bakelite Co Ltd 生体組織接着剤塗布用具
JP2001057979A (ja) * 1999-08-20 2001-03-06 Sumitomo Bakelite Co Ltd 生体組織接着剤塗布用具
JP2003159255A (ja) * 2001-11-26 2003-06-03 Hakko Medical:Kk 生体接着剤噴霧ノズル
US20030127536A1 (en) * 2002-01-07 2003-07-10 Illinois Tool Works Inc. All plastic air cap for hot melt adhsive applicator
WO2006061883A1 (ja) * 2004-12-07 2006-06-15 Nakanishi Inc. バイオポリマー粉体のゲル状化噴射装置

Also Published As

Publication number Publication date
JP2018000561A (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
JP5658162B2 (ja) 加圧ガス管路を有するスプレーヘッド及び噴霧装置
JP3061741B2 (ja) 多成分組織接着剤の適用装置
KR20210054529A (ko) 고속 액체 가스 흐름을 사용하여 치료제를 투여하기위한 쉴드 장치
JP6435083B2 (ja) 遠心混合スプレーノズル
JP2008018400A (ja) 二流体ノズル
EP3500182B1 (en) Spray tips for simultaneous multi-directional delivery of dissimilar fluids
WO2013094522A1 (ja) 液体霧化装置
US10343179B2 (en) Painting device
WO2015198834A1 (ja) スプレーノズル
WO2018003916A1 (ja) 塗布器具
KR101676833B1 (ko) 휴대용 미스트용 노즐 구조
JP2018000559A (ja) 塗布器具
KR101270127B1 (ko) 분무 노즐체
WO2012137603A1 (ja) 液体霧化装置
JP5496761B2 (ja) 二流体ノズル
JP2018000560A (ja) 塗布器具
JP2018000562A (ja) 塗布器具
JP6911542B2 (ja) 生体用薬液注入用具
KR102335937B1 (ko) 신체 공동 내로 물질을 표적화 도입하기 위한 의료 기구, 및 이를 위한 도구
WO2022131249A1 (ja) 生体用薬液注入用具
JP2006035081A (ja) 薬液散布用ノズル及び散布器
EP3478348B1 (en) Spray dispenser
JP6820018B2 (ja) 液体散布ノズル
KR101739178B1 (ko) 유체를 혼합하여 분무하는 방법 및 노즐
JP3025775U (ja) 二薬液混合噴霧ノズル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820270

Country of ref document: EP

Kind code of ref document: A1