WO2018003514A1 - 重合性液晶組成物 - Google Patents

重合性液晶組成物 Download PDF

Info

Publication number
WO2018003514A1
WO2018003514A1 PCT/JP2017/022076 JP2017022076W WO2018003514A1 WO 2018003514 A1 WO2018003514 A1 WO 2018003514A1 JP 2017022076 W JP2017022076 W JP 2017022076W WO 2018003514 A1 WO2018003514 A1 WO 2018003514A1
Authority
WO
WIPO (PCT)
Prior art keywords
oco
liquid crystal
coo
polymerizable liquid
group
Prior art date
Application number
PCT/JP2017/022076
Other languages
English (en)
French (fr)
Inventor
一輝 初阪
桑名 康弘
浩一 延藤
美花 高崎
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201780038201.2A priority Critical patent/CN109415632A/zh
Priority to JP2018525037A priority patent/JP6414367B2/ja
Publication of WO2018003514A1 publication Critical patent/WO2018003514A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/301Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a polymerizable liquid crystal composition useful as a liquid crystal device, a display, an optical component, a colorant, a security marking, a member for laser emission, or a component of an optical anisotropic body used for optical compensation such as a liquid crystal display. And an optically anisotropic body, a retardation film, a viewing angle compensation film, an antireflection film, a polarizing plate and a display element comprising the composition.
  • the polymerizable liquid crystal composition is useful as a constituent member of an optical anisotropic body, and after coating a polymerizable liquid crystal material contained in the polymerizable liquid crystal composition on a substrate, it is photopolymerized in an aligned state to thereby form a retardation film.
  • An optical anisotropic body such as can be manufactured. When photopolymerization is performed in a state where the polymerizable liquid crystal material exhibits a smectic phase, the layer structure of the smectic phase is fixed in the optical anisotropic body, so that it is closer to the crystal structure than when it is fixed in the nematic phase. An optical anisotropic body having a higher order structure can be obtained.
  • a polymerizable liquid crystal material that suppresses unnecessary induction of thermal polymerization and exhibits a smectic phase at room temperature is preferable.
  • a polymerizable liquid crystal material exhibiting a smectic phase at room temperature is described in Patent Document 1, but since it is mainly composed of monofunctional liquid crystal acrylate, it is difficult to photopolymerize in air, It is necessary to photopolymerize in a nitrogen atmosphere. Therefore, the handling in the manufacturing process becomes complicated, and there is a problem that the manufacturing cost is increased.
  • Patent Document 2 discloses a method for solving this problem by using a polymerizable liquid crystal composition in which a monofunctional polymerizable liquid crystal compound and a bifunctional polymerizable liquid crystal compound are mixed.
  • the method described in Patent Document 2 has a problem that when the transition temperature (Tni) from the nematic phase to the isotropic liquid is increased, the upper limit temperature of the smectic phase is lowered. For this reason, since the smectic phase state having a layer structure closer to the crystal structure than the nematic phase can be maintained only at a lower temperature, there is a problem that the heat resistance of the obtained optical anisotropic body is lowered.
  • a polymerizable liquid crystal material exhibiting a smectic phase at room temperature has a high transition temperature (Tni) to an isotropic liquid and an upper limit temperature (Tna) for forming a smectic phase. It is to provide a polymerizable liquid crystal composition that contains a highly polymerizable liquid crystal material and is photopolymerizable in air. Furthermore, the present invention provides a polymer obtained by polymerizing the polymerizable liquid crystal composition, having good orientation, high durability (retardation retention ratio), little repelling, and an optical anisotropic body using the polymer. It is to be.
  • the present inventors have developed a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound having a specific structure. That is, the present invention contains at least two polymerizable liquid crystal compounds having two polymerizable functional groups in the molecule, one of which is a polymerizable liquid crystal compound represented by the general formula (I-1).
  • a polymerizable liquid crystal composition to be selected is provided, and a polymer obtained by polymerizing the polymerizable liquid crystal composition and an optical anisotropic body using the polymer are provided.
  • the polymerizable liquid crystal composition of the present invention contains a polymerizable liquid crystal material having a high transition temperature (Tni) to an isotropic liquid and a high upper limit temperature (Tna) for forming a smectic phase.
  • Tni transition temperature
  • Tna high upper limit temperature
  • a possible polymerizable liquid crystal composition is provided. Since the polymerizable liquid crystal composition of the present invention can obtain a layer structure derived from a smectic phase that has undergone phase transition to a smectic liquid crystal having a higher alignment order than a nematic liquid crystal, the alignment property is good and the durability (retardation) Since an optically anisotropic body having a high retention ratio and low repellency can be obtained, it is useful for applications of optical materials such as a retardation film.
  • the “liquid crystal” of the polymerizable liquid crystal composition refers to removing the organic solvent after coating the polymerizable liquid crystal composition on a substrate. It is intended to show liquid crystal properties in the state.
  • the “liquid crystal” of the polymerizable liquid crystal compound means a case where it is intended to show liquid crystal properties with only one type of polymerizable liquid crystal compound used, or a mixture with other liquid crystal compounds. It is intended to exhibit liquid crystal properties.
  • the polymerizable liquid crystal composition can be polymerized (formed into a film) by performing a polymerization treatment by irradiation with light such as ultraviolet rays, heating, or a combination thereof.
  • the polymerizable liquid crystal composition of the present invention contains at least two kinds of polymerizable liquid crystal compounds (bifunctional polymerizable liquid crystal compounds) having two polymerizable functional groups in the molecule, one of which is The essential component is selected from polymerizable liquid crystal compounds represented by the following general formula (I-1).
  • P 111 and P 112 each independently represent a polymerizable functional group
  • Sp 111 and Sp 112 each independently represent an alkylene group having 1 to 18 carbon atoms or a single bond
  • One —CH 2 — or two or more non-adjacent —CH 2 — may each be independently replaced by —O—, —COO—, —OCO— or —OCO—O—
  • One or more hydrogen atoms of the alkylene group may be substituted with a halogen atom or a CN group
  • X 111 and X 112 are each independently —O—, —S—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O—CO—O—, —CO—NH—, —NH—CO -, - SCH 2 -, - CH 2 S -, - CF 2 O ,
  • these polymerizable groups are polymerized by radical polymerization, radical addition polymerization, cationic polymerization and anionic polymerization.
  • the formula (P-1), formula (P-2), formula (P-3), formula (P-4), formula (P-5), formula (P ⁇ 7), formula (P-11), formula (P-13), formula (P-15) or formula (P-18) are preferred, and formula (P-1), formula (P-2), formula (P-18) P-7), formula (P-11) or formula (P-13) is more preferred, formula (P-1), formula (P-2) or formula (P-3) is more preferred, and formula (P- Particular preference is given to 1) or formula (P-2).
  • q111 and q112 each independently represents an integer of 0 to 5, more preferably an integer of 0 to 2, and particularly preferably 1.
  • Sp 111 and Sp 112 each independently represent an alkylene group having 1 to 18 carbon atoms or a single bond, and one —CH 2 — or adjacent group in the alkylene group. Two or more —CH 2 — may be each independently substituted by —O—, —COO—, —OCO— or —OCO—O—, and one or more of the alkylene group has The hydrogen atom may be substituted by a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) or a CN group.
  • a halogen atom fluorine atom, chlorine atom, bromine atom, iodine atom
  • Sp 111 and Sp 112 each independently preferably represents an alkylene group having 1 to 12 carbon atoms, and one —CH 2 — or two or more non-adjacent ones in the alkylene group.
  • Each of —CH 2 — may be independently substituted with —O—, —COO—, —OCO— or —OCO—O—.
  • Sp 111 and Sp 112 each independently represent an alkylene group having 1 to 8 carbon atoms.
  • X 111 and X 112 are each independently —O—, —S—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—.
  • X 111 and X 112 each independently represent
  • Y 111 , Y 112 and Y 113 each independently represent —COO— or —OCO—.
  • the bifunctional polymerizable liquid crystal compound represented by the general formula (I-1) may be used alone or in combination of two or more, but the total content of the bifunctional polymerizable liquid crystal compound represented by the general formula (I-1) is included.
  • the amount is preferably 1 to 70% by mass, more preferably 1 to 60% by mass, and more preferably 5 to 55% by mass, based on the total amount of the polymerizable liquid crystal compound used in the polymerizable liquid crystal composition. It is particularly preferred.
  • the lower limit is preferably 5% by mass or more, and more preferably 10% by mass or more.
  • the upper limit is preferably 40% by mass or less, and more preferably 30% by mass or less.
  • the compounds represented by the general formula (I-1) are preferably compounds represented by the following formulas (I-1-1) to (I-1-12).
  • the polymerizable liquid crystal composition of the present invention contains at least two kinds of polymerizable liquid crystal compounds (bifunctional polymerizable liquid crystal compounds) having two polymerizable functional groups in the molecule. It is preferable to use one or more polymerizable liquid crystal compounds selected from the polymerizable liquid crystal compounds represented by the following general formula (I-2) together with the polymerizable liquid crystal compound represented by 1).
  • P 121 and P 122 each independently represent a polymerizable functional group
  • Sp 121 and Sp 122 each independently represent an alkylene group having 1 to 18 carbon atoms or a single bond
  • one —CH 2 — or two or more non-adjacent —CH 2 — may be each independently substituted by —O—, —COO—, —OCO— or —OCO—O—.
  • One or two or more hydrogen atoms of the alkylene group may be substituted with a halogen atom or a CN group
  • X 121 and X 122 are each independently —O—, —S—, —OCH.
  • P 121 and P 122 each independently represent a polymerizable functional group, and the following formulas (P-1) to (P-20)
  • these polymerizable groups are polymerized by radical polymerization, radical addition polymerization, cationic polymerization and anionic polymerization.
  • the formula (P-1), formula (P-2), formula (P-3), formula (P-4), formula (P-5), formula (P ⁇ 7), formula (P-11), formula (P-13), formula (P-15) or formula (P-18) are preferred, and formula (P-1), formula (P-2), formula (P-18) P-7), formula (P-11) or formula (P-13) is more preferred, formula (P-1), formula (P-2) or formula (P-3) is more preferred, and formula (P- Particular preference is given to 1) or formula (P-2).
  • q121 and q122 each independently represent an integer of 0 to 5, more preferably an integer of 0 to 2, and particularly preferably 1. .
  • Sp 121 and Sp 122 each independently represent an alkylene group having 1 to 18 carbon atoms or a single bond, and one —CH 2 — in the alkylene group or adjacent to each other. Two or more —CH 2 — may be each independently substituted by —O—, —COO—, —OCO— or —OCO—O—, and one or more of the alkylene group has The hydrogen atom may be substituted by a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) or a CN group.
  • a halogen atom fluorine atom, chlorine atom, bromine atom, iodine atom
  • Sp 121 and Sp 122 each independently represents an alkylene group having 1 to 12 carbon atoms, one —CH 2 — in the alkylene group or two or more non-adjacent ones. Each of —CH 2 — may be independently substituted with —O—, —COO—, —OCO— or —OCO—O—. Further, it is particularly preferable that Sp 121 and Sp 122 each independently represent an alkylene group having 1 to 8 carbon atoms.
  • X 121 and X 122 are each independently —O—, —S—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—.
  • X 121 and X 122 each independently represent
  • Y 121 and Y 122 each independently represent —COO— or —OCO—.
  • the bifunctional polymerizable liquid crystal compound represented by the general formula (I-2) may be used alone or in combination of two or more, but the total content of the bifunctional polymerizable liquid crystal compound represented by the general formula (I-2) is included.
  • the amount is preferably 0 to 80% by mass, more preferably 0 to 75% by mass, and more preferably 5 to 60% by mass, of the total amount of the polymerizable liquid crystal compound used in the polymerizable liquid crystal composition. It is particularly preferred.
  • the lower limit is preferably 10% by mass or more, more preferably 20% by mass or more.
  • the upper limit value is preferably less than 60% by mass, and more preferably 50% by mass or less.
  • the mass ratio of the bifunctional polymerizable liquid crystal compound represented by the general formula (I-1) to the total content of the bifunctional polymerizable liquid crystal compound represented by the general formula (I-2) [general formula (I -1) / general formula (I-2)] is in the range of 1/2 to 7/1, the transition temperature (Tni) to the isotropic liquid is high, and the upper limit temperature for forming the smectic phase ( Tna) is preferable from the viewpoint of becoming a polymerizable liquid crystal material.
  • the compounds represented by the general formula (I-2) are preferably compounds represented by the following formulas (I-2-1) to (I-2-12).
  • the polymerizable liquid crystal composition of the present invention contains at least two kinds of polymerizable liquid crystal compounds (bifunctional polymerizable liquid crystal compounds) having two polymerizable functional groups in the molecule.
  • the polymerizable liquid crystal compound represented by the above general formula (I-2) and / or the polymerizable liquid crystal compound represented by the following general formula (I-3) is used in combination with the polymerizable liquid crystal compound represented by 1) It is preferable.
  • P 131 and P 132 each independently represent a polymerizable functional group
  • Sp 131 and Sp 132 each independently represent an alkylene group having 1 to 18 carbon atoms or a single bond
  • one -CH 2 in the group - or nonadjacent two or more -CH 2 - are each independently -O -, - COO -, - OCO- or --OCO-O-substituted by
  • one or more hydrogen atoms of the alkylene group may be substituted with a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom) or a CN group
  • X 131 and X 132 are respectively Independently, —O—, —S—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O— CO—O
  • q131 and q132 each independently represent 0 or 1, but q131 and q132 are preferably 1.
  • Sp 131 and Sp 132 each independently preferably represent an alkylene group having 1 to 15 carbon atoms, and one —CH 2 — or adjacent group in the alkylene group. Two or more —CH 2 — that are not present may be each independently substituted by —O—, —COO—, —OCO—, or —OCO—O—, and one or more of the alkylene group has May be substituted by a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) or a CN group, and Sp 131 and Sp 132 are each independently an alkylene group having 1 to 12 carbon atoms.
  • halogen atom fluorine atom, chlorine atom, bromine atom, iodine atom
  • one —CH 2 — or two or more non-adjacent —CH 2 — are each independently —O—, —COO—, —OCO— or —. OC It may be replaced by -O-.
  • X 131 and X 132 are each independently —O—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—, —O—.
  • MG 131 represents a mesogenic group, and a group represented by the general formula (I-3-b) is preferable.
  • A1, A2 and A3 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, tetrahydropyran-2,5-diyl group, 1,3 -Dioxane-2,5-diyl group, tetrahydrothiopyran-2,5-diyl group, 1,4-bicyclo (2,2,2) octylene group, decahydronaphthalene-2,6-diyl group, pyridine-2 , 5-diyl group, pyrimidine-2,5-diyl group, pyrazine-2,5-diyl group, thiophene-2,5-diyl group-, 1,2,3,4-tetrahydronaphthalene-2,6-diyl Group, 2,6-naphthylene group, phenanthrene-2,7-diyl group, 9,10-dihydroph
  • the bifunctional polymerizable liquid crystal compound represented by the general formula (I-3) may be used alone or in combination of two or more, but the total content of the bifunctional polymerizable liquid crystal compound represented by the general formula (I-3) is included.
  • the amount is preferably 0 to 40% by mass, more preferably 0 to 30% by mass, and more preferably 10 to 20% by mass, based on the total amount of the polymerizable liquid crystal compound used in the polymerizable liquid crystal composition. It is particularly preferred.
  • the lower limit is preferably 5% by mass or more, more preferably 10% by mass or more, and importance is attached to the flexibility of the obtained optical anisotropic body.
  • polymerizable liquid crystal compounds represented by the general formula (I-3) when the viscosity of the polymerizable liquid crystal composition is lowered while maintaining curability, the following general formula (I-3-1) It is preferable to use a polymerizable liquid crystal compound represented by the formula:
  • P 1311 and P 1312 each independently represent a polymerizable functional group
  • Sp 1311 and Sp 1312 each independently represent an alkylene group having 1 to 18 carbon atoms or a single bond
  • One —CH 2 — or two or more non-adjacent —CH 2 — may each be independently replaced by —O—, —COO—, —OCO— or —OCO—O—
  • One or more hydrogen atoms of the alkylene group may be substituted with a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom) or a CN group
  • X 1311 and X 1312 are each independently -O-, -S-, -OCH 2- , -CH 2 O-, -CO-, -COO-, -OCO-, -CO-S-, -S-CO-, -O-CO- O-, -CO-NH-,
  • q1311 and q1312 each independently represent 0 or 1, but q1311 and q1312 are preferably 1.
  • Sp 1311 and Sp 1312 each independently preferably represents an alkylene group having 1 to 15 carbon atoms, and one —CH 2 — or Two or more non-adjacent —CH 2 — may be each independently substituted by —O—, —COO—, —OCO— or —OCO—O—, and one or two of the alkylene group
  • One or more hydrogen atoms may be substituted with a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) or a CN group, and Sp 1311 and Sp 1312 each independently have 1 to 12 carbon atoms.
  • one -CH 2 in the alkylene group - or nonadjacent two or more -CH 2 - are each independently -O -, - COO -, - OCO Or may be substituted by --OCO-O-.
  • Y 1311 represents —COO—, —OCO—, —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, —CH ⁇ CH—, —C ⁇ C. —, —CH ⁇ CHCOO—, —OCOCH ⁇ CH—, —CH 2 CH 2 COO—, —CH 2 CH 2 OCO—, —COOCH 2 CH 2 —, —OCOCH 2 CH 2 —, —C ⁇ N—, —N ⁇ C—, —CONH—, —NHCO—, —C (CF 3 ) 2 —, and a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom) which may have 2 to 10 carbon atoms Y 1311 represents —COO—, —OCO—, —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, —, —
  • Y 1311 is -COO -, - OCO -, - CH 2 CH 2 -, - OCH 2 -, - CH 2 O- or a single bond is more preferable Y 1311 is particularly preferably —COO—, —OCO— or a single bond.
  • the bifunctional polymerizable liquid crystal compound represented by the general formula (I-3-1) may be used alone or in combination of two or more types, but the bifunctional polymerizable liquid crystal represented by the general formula (I-3-1)
  • the total content of the compound is preferably 0 to 40% by mass, more preferably 0 to 30% by mass of the total amount of the polymerizable liquid crystal compound used in the polymerizable liquid crystal composition, and 10 to 20%. It is particularly preferable to contain it by mass%.
  • the lower limit is preferably 5% by mass or more, more preferably 10% by mass or more, and the flexibility of the obtained optical anisotropic body is improved.
  • the upper limit value is preferably 30% by mass or less, and more preferably 20% by mass or less.
  • the compound represented by the general formula (I-3-1) compounds represented by the following formulas (I-3-1-1) to (I-3-1-12) are preferable. .
  • the formulas (I-3-1-1) to (I-3-1-12) the formulas (I-3-1-1) to (I-3-1-4) are preferable,
  • the formula (I-3-1-1) is particularly preferred.
  • each n independently represents an integer of 1 to 18, and each n is preferably independently an integer of 1 to 10.
  • N are each independently preferably an integer of 3-6.
  • R d and R e each independently represent a hydrogen atom or a methyl group
  • the cyclic group includes one or more F, Cl, CF 3 , OCF 3 , CN groups, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, and 1 to 8 alkanoyl groups, alkanoyloxy groups having 1 to 8 carbon atoms, alkoxycarbonyl groups having 1 to 8 carbon atoms, alkenyl groups having 2 to 8 carbon atoms, alkenyloxy groups having 2 to 8 carbon atoms, carbon atoms May have an alkenoyl group having 2 to 8 carbon atoms and an alkenoyloxy group having 2 to 8 carbon atoms, m1 and m2 each independently represent an integer of 0 to 18, and n1, n2, n3, and n4 each independently represent 0 or 1.
  • Total content of the bifunctional polymerizable liquid crystal compound having two polymerizable functional groups in the molecule represented by the general formula (I-1), general formula (I-2) and general formula (I-3) Is preferably 20 to 100% by mass, more preferably 40 to 100% by mass, and 65 to 85% by mass of the total amount of the polymerizable liquid crystal compound used in the polymerizable liquid crystal composition. Is particularly preferred.
  • the polymerizable liquid crystal composition of the present invention may contain a polymerizable liquid crystal compound having three polymerizable functional groups in the molecule as long as the physical properties are not impaired. Examples of the polymerizable liquid crystal compound having three polymerizable functional groups in the molecule include compounds represented by the following general formula (III).
  • P 31 to P 33 each independently represents a polymerizable functional group
  • Sp 31 to S 33 each independently represents an alkylene group having 1 to 18 carbon atoms or a single bond
  • one -CH 2 in the group - or nonadjacent two or more -CH 2 - are each independently -O -, - COO -, - OCO- or --OCO-O-substituted by
  • one or more hydrogen atoms of the alkylene group may be substituted with a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) or a CN group
  • X 31 to X 33 are respectively Independently, —O—, —S—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O— CO—O—, —CO—NH—, —NH
  • each of Sp 31 to Sp 33 preferably independently represents an alkylene group having 1 to 15 carbon atoms, and one —CH 2 — or not adjacent to the alkylene group.
  • Two or more —CH 2 — may be each independently substituted by —O—, —COO—, —OCO— or —OCO—O—, and one or more hydrogen atoms of the alkylene group
  • the atom may be substituted by a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) or a CN group
  • Sp 31 to Sp 33 each independently represents an alkylene group having 1 to 12 carbon atoms.
  • one -CH 2 in the alkylene group - or nonadjacent two or more -CH 2 - are each independently -O -, - COO -, - OCO- or -OCO- O- It may be substituted me.
  • X 31 to X 33 are each independently —O—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—, —O—CO—O—, —CO—NH.
  • A1, A2 and A3 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, tetrahydropyran-2,5-diyl group, 1,3 -Dioxane-2,5-diyl group, tetrahydrothiopyran-2,5-diyl group, 1,4-bicyclo (2,2,2) octylene group, decahydronaphthalene-2,6-diyl group, pyridine-2 , 5-diyl group, pyrimidine-2,5-diyl group, pyrazine-2,5-diyl group, thiophene-2,5-diyl group-, 1,2,3,4-tetrahydronaphthalene-2,6-diyl Group, 2,6-naphthylene group, phenanthrene-2,7-diyl group, 9,10-dihydroph
  • Z1 and Z2 are each independently —COO—, —OCO—, —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, —CH ⁇ CH—, —C ⁇ C—, —CH ⁇ CHCOO—, —OCOCH ⁇ CH—, —CH 2 CH 2 COO—, —CH 2 CH 2 OCO—, —COOCH 2 CH 2 —, —OCOCH 2 CH 2 —, —C ⁇ N—, —N ⁇ C— , —CONH—, —NHCO—, —C (CF 3 ) 2 —, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) or an alkyl group having 2 to 10 carbon atoms or a single atom Z1 and Z2 each independently represent —COO—, —OCO—, —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, —
  • A1, A2 and A3 each independently preferably represents a 1,4-phenylene group, a 1,4-cyclohexylene group or a 2,6-naphthylene group.
  • Examples of the general formula (III) include compounds represented by the following general formulas (III-1) to (III-8), but are not limited to the following general formulas.
  • P 31 , Sp 31 , X 31 , q 31 , X 32 , Sp 32 , q 32 , P 32 , X 33 , q 35, Sp 33 , q 34, P 33 are as defined in the general formula (III) above.
  • A11, A12, A13, A2, and A3 each represent the same definition as A1 to A3 in the general formula (III-A), and may be the same or different
  • Z11, Z12, Z13, and Z2 each represent the same definition as Z1 and Z2 in the general formula (III-A), and may be the same or different.
  • Examples of the compounds represented by the general formulas (III-1) to (III-8) include the compounds represented by the following general formulas (III-9-1) to (III-9-6). However, it is not necessarily limited to these.
  • R f , R g and R h each independently represent a hydrogen atom or a methyl group
  • R i , R j and R k are Each independently represents a hydrogen atom, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cyano group.
  • alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms all of them are unsubstituted or one or more halogen atoms (fluorine atom, chlorine atom, bromine atom, iodine)
  • the cyclic group may be one or more F, Cl, CF 3 , OCF 3 , CN groups, alkyl groups having 1 to 8 carbon atoms, 1 to 8 carbon atoms as substituents.
  • alkoxy groups 1 to 8 carbon atoms
  • Canoyl group alkanoyloxy group having 1 to 8 carbon atoms, alkoxycarbonyl group having 1 to 8 carbon atoms, alkenyl group having 2 to 8 carbon atoms, alkenyloxy group having 2 to 8 carbon atoms, 2 carbon atoms It may have an alkenoyl group of ⁇ 8 and an alkenoyloxy group of 2 to 8 carbon atoms.
  • m4 to m9 each independently represents an integer of 0 to 18, and n4 to n10 each independently represents 0 or 1.
  • the polyfunctional polymerizable liquid crystal compound having three polymerizable functional groups can be used alone or in combination of two or more.
  • the total content of the polyfunctional polymerizable liquid crystal compound having three polymerizable functional groups in the molecule may be 0 to 20% by mass of the total amount of the polymerizable liquid crystal compound used in the polymerizable liquid crystal composition.
  • the content is preferably 0 to 10% by mass, more preferably 0 to 5% by mass.
  • the polymerizable liquid crystal composition of the present invention has a monofunctional compound having one polymerizable functional group in the molecule in order to give the obtained optical anisotropic body a higher-order structure close to the crystal structure derived from the smectic phase. It is preferable to contain one or more polymerizable liquid crystal compounds.
  • One or more polymerizable liquid crystal compounds selected from the group represented by the following general formula (II-1) may be used as the monofunctional polymerizable liquid crystal compound having one polymerizable functional group in the molecule. Particularly preferred.
  • P 21 represents a polymerizable functional group
  • Sp 21 represents an alkylene group having 1 to 18 carbon atoms or a single bond, and one —CH 2 — in the alkylene group or not adjacent to each other
  • Two or more —CH 2 — may be each independently substituted by —O—, —COO—, —OCO— or —OCO—O—, and one or more hydrogen atoms of the alkylene group
  • the atom may be substituted with a halogen atom or a CN group
  • X 21 represents —O—, —S—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O—CO—O—, —CO—NH—, —NH—CO—, —SCH 2 —, —CH 2 S—, —CF 2 O—, — OCF 2 -, - CF 2
  • q21 represents 0 or 1, but q21 is preferably 1.
  • Sp 21 represents an alkylene group having 1 to 18 carbon atoms or a single bond, and one —CH 2 — in the alkylene group or two or more non-adjacent — CH 2 — may be each independently substituted by —O—, —COO—, —OCO— or —OCO—O—, and one or more hydrogen atoms of the alkylene group may be a halogen atom Alternatively, it may be substituted by a CN group.
  • Sp 21 more preferably represents an alkylene group or a single bond having 1 to 12 carbon atoms, one -CH 2 in the alkylene group - or nonadjacent two or more -CH 2 - are each independently And may be substituted by —O—, —COO—, —OCO— or —OCO—O—.
  • Sp 21 preferably represents an alkylene group having 1 to 8 carbon atoms or a single bond, and Sp 21 particularly preferably represents an alkylene group having 1 to 8 carbon atoms.
  • Y 21 represents —COO—, —OCO— or a single bond, and Y 21 is preferably a single bond.
  • T 21 represents —OH, —SH, —CN, —COOH, —NH 2 , —NO 2 or —COCH 3 , —O (CH 2 ) n CH 3 , or — (CH 2 ) n CH 3 , where n represents an integer of 0 to 20, and from the viewpoint that the polymerizable liquid crystal composition of the present invention exhibits smectic properties, T 21 represents —OH, —SH, —CN, —COCH 3 , —O (CH 2 ) n CH 3 , or — (CH 2 ) n CH 3 (n is 0 or an integer of 5 or more and 20 or less), and T 21 is —CN, —OCH 3 , —CO (CH 2 ) n CH 3 or —CS (CH 2 ) n CH 3 (n is 0 or an integer of 8 or more and 20 or less), T 21 is —CN, —OCH 3 is more preferable, and T 21 is —CN, —OCH
  • the total content of the monofunctional polymerizable liquid crystal compound represented by the general formula (II-1) is preferably 0 to 80% by mass of the total amount of the polymerizable liquid crystal compound used in the polymerizable liquid crystal composition.
  • the content is more preferably 0 to 75% by mass, further preferably 5 to 60% by mass, and particularly preferably 10 to 40% by mass.
  • the lower limit is preferably 10% by mass or more, more preferably 15% by mass or more.
  • the upper limit value is preferably less than 65% by mass, and more preferably 40% by mass or less.
  • the monofunctional polymerizable liquid crystal compound represented by the general formula (II-1) is represented by the bifunctional polymerizable liquid crystal compound represented by the general formula (I-1) and the general formula (I-2).
  • Use in combination with a bifunctional polymerizable liquid crystal compound is preferable from the viewpoint that the transition temperature (Tni) to the isotropic liquid and the upper limit temperature (Tna) for forming the smectic phase become higher.
  • the general formula (I-1 ) A bifunctional polymerizable liquid crystal compound represented by the general formula (I-2), a monofunctional polymerizable liquid crystal compound represented by the general formula (II-1),
  • the blending ratio [(I-1) / (I-2) / (II-1)] is a ratio of (10 to 60) / (5 to 40) / (20 to 40) on a mass basis.
  • the polymerizable liquid crystal composition of the present invention preferably contains one or more monofunctional polymerizable liquid crystal compounds having one polymerizable functional group in the molecule, and the above general formula (II-1)
  • a polymerizable liquid crystal compound represented by the following general formula (II-2) is preferably used in combination with the polymerizable liquid crystal compound represented by general formula (II).
  • P 22 represents a polymerizable functional group
  • Sp 22 represents an alkylene group having 1 to 18 carbon atoms or a single bond
  • one —CH 2 — in the alkylene group or not adjacent 2 more than five -CH 2 - are each independently -O -, - COO -, - OCO- or --OCO-O-may be substituted by, one or more hydrogen atoms possessed by said alkylene group May be substituted by a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom) or a CN group
  • X 22 is —O—, —S—, —OCH 2 —, —CH 2 O—, — CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O—CO—O—, —CO—NH—, —NH—CO—, —SCH 2 —, —
  • Cyano group straight or branched chain having 1 to 12 carbon atoms
  • P 22 preferably represents a substituent selected from the polymerizable groups represented by the following formulas (P-2-1) to (P-2-20).
  • Sp 22 preferably represents an alkylene group having 1 to 15 carbon atoms, and one —CH 2 — in the alkylene group or two or more —CH 2 that are not adjacent to each other. 2 — may be each independently substituted by —O—, —COO—, —OCO— or —OCO—O—, and one or more hydrogen atoms of the alkylene group may be a halogen atom ( A fluorine atom, a chlorine atom, a bromine atom, an iodine atom) or a CN group, and Sp 22 preferably represents an alkylene group having 1 to 12 carbon atoms, and one — CH 2 — or two or more non-adjacent —CH 2 — may each independently be replaced by —O—, —COO—, —OCO— or —OCO—O—.
  • X 22 represents —O—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—, —O—CO—O—, —CO—.
  • MG 22 represents a mesogenic group, and preferably represents the following general formula (II-2-b).
  • A1, A2 and A3 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, tetrahydropyran-2, 5-diyl group, 1,3-dioxane-2,5-diyl group, tetrahydrothiopyran-2,5-diyl group, 1,4-bicyclo (2,2,2) octylene group, decahydronaphthalene-2, 6-diyl group, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, pyrazine-2,5-diyl group, thiophene-2,5-diyl group-, 1,2,3,4 Tetrahydronaphthalene-2,6-diyl group, 2,6-naphthylene group, phenanthrene-2,7-diyl group, 9,10-dihydr
  • Z1 and Z2 are each independently —COO—, —OCO—, —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, —CH ⁇ CH. —, —C ⁇ C—, —CH ⁇ CHCOO—, —OCOCH ⁇ CH—, —CH 2 CH 2 COO—, —CH 2 CH 2 OCO—, —COOCH 2 CH 2 —, —OCOCH 2 CH 2 —, It may have —C ⁇ N—, —N ⁇ C—, —CONH—, —NHCO—, —C (CF 3 ) 2 —, and a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom).
  • Z1 and Z2 are each independently —COO—, —OCO—, —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, — CH ⁇ CH—, —C ⁇ C—, —CH ⁇ CHCOO—, —OCOCH ⁇ CH—, —C H 2 CH 2 COO—, —CH 2 CH 2 OCO—, —COOCH 2 CH 2 —, —OCOCH 2 CH 2 — or a single bond is preferable.
  • r1 represents 0, 1, 2 or 3, and when there are a plurality of A1 and Z1, they may be the same or different.
  • the polymerizable liquid crystal compound represented by the general formula (II-2) does not include the polymerizable liquid crystal compound represented by the general formula (II-1).
  • Examples of the general formula (II-2) include compounds represented by the following general formulas (II-2-1) to (II-2-4), but are not limited to the following general formulas is not.
  • each of P 22 , Sp 22 , X 22 , q 1, and R 22 represents the same as defined in the general formula (II-2), A11, A12, A13, A2, and A3 represent the same definitions as A1 to A3 in the general formula (II-2-b), and may be the same or different, Z11, Z12, Z13 and Z2 represent the same definitions as Z1 to Z3 in the general formula (II-2-b), and may be the same or different,
  • the compounds represented by the general formulas (II-2-1) to (II-2-4) are represented by the following formulas (II-2-1-1) to (II-2-1-24). The compounds represented are exemplified, but not limited thereto.
  • R c represents a hydrogen atom or a methyl group
  • m represents an integer of 0 to 18
  • n represents 0 or 1
  • R 21 represents the same as defined in the general formulas (II-2-1) to (II-2-4), but R 21 represents a hydrogen atom, a halogen atom (a fluorine atom, a chlorine atom, Bromine atom, iodine atom), cyano group, one —CH 2 — may be substituted by —O—, —CO—, —COO—, —OCO—, straight chain having 1 to 6 carbon atoms It preferably represents an alkyl group or a linear alkenyl group having 1 to 6 carbon atoms.
  • the cyclic group is one or more F, Cl, CF 3 , OCF 3 , CN groups, carbon atoms as substituents
  • the monofunctional polymerizable liquid crystal compound represented by the general formula (II-2) may be used alone or in combination of two or more, but the total content of the monofunctional polymerizable liquid crystal compound represented by the general formula (II-2)
  • the amount is preferably 0 to 80% by mass, more preferably 0 to 60% by mass, and more preferably 5 to 40% by mass, based on the total amount of the polymerizable liquid crystal compound used in the polymerizable liquid crystal composition. It is particularly preferred.
  • the lower limit value is preferably 5% by mass or more, more preferably 10% by mass or more.
  • the upper limit is preferably 40% by mass or less, and more preferably 20% by mass or less.
  • the total content of monofunctional polymerizable liquid crystal compounds having one polymerizable functional group in the molecule represented by general formula (II-1) or general formula (II-2) is used for the polymerizable liquid crystal composition.
  • the total amount of the polymerizable liquid crystal compound is preferably 0 to 80% by mass, more preferably 5 to 75% by mass, and particularly preferably 5 to 70% by mass.
  • the lower limit is preferably 5% by mass or more, more preferably 10% by mass or more, and importance is given to the curability of the resulting coating film.
  • the polymerizable liquid crystal composition of the present invention may contain a compound containing a mesogenic group having no polymerizable group, such as a normal liquid crystal device, for example, STN (super twisted nematic) liquid crystal, Examples thereof include compounds used for TN (twisted nematic) liquid crystal, TFT (thin film transistor) liquid crystal, and the like.
  • a normal liquid crystal device for example, STN (super twisted nematic) liquid crystal
  • STN super twisted nematic liquid crystal
  • TFT thin film transistor
  • the compound containing a mesogenic group having no polymerizable functional group is preferably a compound represented by the following general formula (5).
  • the mesogenic group or mesogenic supporting group represented by MG3 has the general formula (5-b)
  • A1 d , A2 d and A3 d are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, tetrahydropyran-2,5-diyl group 1,3-dioxane-2,5-diyl group, tetrahydrothiopyran-2,5-diyl group, 1,4-bicyclo (2,2,2) octylene group, decahydronaphthalene-2,6-diyl group Pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, pyrazine-2,5-diyl group, thiophene-2,5-diyl group-, 1,2,3,4-tetrahydronaphthalene-2 , 6-diyl group, 2,6-naphthylene group, phenanthrene-2,7-diyl group, 9,10-d
  • one or more halogen atoms may be substituted by or CN, this is not one CH 2 group or adjacent present in group two or more CH 2
  • the groups are independent of each other, and in such a form that oxygen atoms are not directly bonded to each other, —O—, —S—, —NH—, —N (CH 3 ) —, —CO—, —COO—, —OCO It may be replaced by —, —OCOO—, —SCO—, —COS— or —C ⁇ C—. ).
  • Ra and Rb each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkenyl group having 1 to 6 carbon atoms, or a cyano group.
  • an alkyl group of ⁇ 6 or an alkoxy group of 1 to 6 carbon atoms all may be unsubstituted or substituted by one or more halogen atoms.
  • the total content of the compound having a mesogenic group is preferably 0% by mass or more and 20% by mass or less with respect to the total amount of the polymerizable liquid crystal composition. It is preferably at least mass%, preferably at least 5 mass%, more preferably at most 15 mass%, preferably at most 10 mass%.
  • An organic solvent may be added to the polymerizable liquid crystal composition in the present invention. Although there is no limitation in particular as an organic solvent to be used, the organic solvent in which a polymeric liquid crystal compound shows favorable solubility is preferable, and it is preferable that it is an organic solvent which can be dried at the temperature of 100 degrees C or less.
  • solvents examples include aromatic hydrocarbons such as toluene, xylene, cumene and mesitylene, ester solvents such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate, methyl ethyl ketone (MEK), methyl isobutyl ketone ( MIBK), ketone solvents such as cyclohexanone and cyclopentanone, ether solvents such as tetrahydrofuran, 1,2-dimethoxyethane and anisole, amide solvents such as N, N-dimethylformamide and N-methyl-2-pyrrolidone Propylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, ⁇ -butyrolactone and chlorobenzene. These can be used alone or in combination of two or more, but any one of ketone solvents, ether solvents, ester solvents and aromatic hydrocarbon solvents It is preferable to be
  • the composition used in the present invention can be applied to a substrate as an organic solvent solution, and the ratio of the organic solvent used in the polymerizable liquid crystal composition is not particularly limited as long as the applied state is not significantly impaired.
  • the total amount of the organic solvent contained in the polymerizable liquid crystal composition is preferably 10 to 95% by mass, more preferably 12 to 90% by mass, and particularly preferably 15 to 85% by mass. preferable.
  • the heating temperature at the time of heating and stirring may be appropriately adjusted in consideration of the solubility of the composition to be used in the organic solvent, but is preferably 15 ° C. to 110 ° C., more preferably 15 ° C. to 105 ° C. from the viewpoint of productivity. 15 to 100 ° C. is more preferable, and 20 to 90 ° C. is particularly preferable.
  • dispersion stirrer when adding the solvent, it is preferable to stir and mix with a dispersion stirrer.
  • the dispersion stirrer include a disperser having a stirring blade such as a disper, a propeller, and a turbine blade, a paint shaker, a planetary stirring device, a shaker, a shaker, or a rotary evaporator.
  • an ultrasonic irradiation apparatus can be used.
  • the number of rotations of stirring when adding the solvent is preferably adjusted appropriately depending on the stirring device used, but the number of rotations of stirring is preferably 10 rpm to 1000 rpm in order to obtain a uniform polymerizable liquid crystal composition solution, and 50 rpm to 800 rpm is more preferable, and 150 rpm to 600 rpm is particularly preferable.
  • Polymerization inhibitor It is preferable to add a polymerization inhibitor to the polymerizable liquid crystal composition in the present invention.
  • the polymerization inhibitor include phenol compounds, quinone compounds, amine compounds, thioether compounds, nitroso compounds, and the like.
  • phenolic compounds include p-methoxyphenol, cresol, t-butylcatechol, 3.5-di-t-butyl-4-hydroxytoluene, 2.2'-methylenebis (4-methyl-6-t-butylphenol) 2.2′-methylenebis (4-ethyl-6-tert-butylphenol), 4.4′-thiobis (3-methyl-6-tert-butylphenol), 4-methoxy-1-naphthol, 4,4′- Dialkoxy-2,2′-bi-1-naphthol, and the like.
  • quinone compounds include hydroquinone, methylhydroquinone, tert-butylhydroquinone, p-benzoquinone, methyl-p-benzoquinone, tert-butyl-p-benzoquinone, 2,5-diphenylbenzoquinone, 2-hydroxy-1,4-naphthoquinone 1,4-naphthoquinone, 2,3-dichloro-1,4-naphthoquinone, anthraquinone, diphenoquinone and the like.
  • amine compounds include p-phenylenediamine, 4-aminodiphenylamine, N.I. N'-diphenyl-p-phenylenediamine, Ni-propyl-N'-phenyl-p-phenylenediamine, N- (1.3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, N.I. N′-di-2-naphthyl-p-phenylenediamine, diphenylamine, N-phenyl- ⁇ -naphthylamine, 4.4′-dicumyl-diphenylamine, 4.4′-dioctyl-diphenylamine and the like.
  • thioether compounds include phenothiazine and distearyl thiodipropionate.
  • nitroso compounds include N-nitrosodiphenylamine, N-nitrosophenylnaphthylamine, N-nitrosodinaphthylamine, p-nitrosophenol, nitrosobenzene, p-nitrosodiphenylamine, ⁇ -nitroso- ⁇ -naphthol, and the like, N, N-dimethyl p-nitrosoaniline, p-nitrosodiphenylamine, p-nitronedimethylamine, p-nitrone-N, N-diethylamine, N-nitrosoethanolamine, N-nitrosodi-n-butylamine, N-nitroso-Nn-butyl- 4-butanolamine, N-nitroso-diisopropanolamine, N-nitroso-N-ethyl-4-butanolamine, 5-nitroso-8-hydroxyquinoline, N-nitrosomorpholine, N-nitros
  • the addition amount of the polymerization inhibitor is preferably 0.01 to 1.0% by mass and more preferably 0.05 to 0.5% by mass with respect to the polymerizable liquid crystal composition.
  • the polymerizable liquid crystal composition in the present invention preferably contains a photopolymerization initiator. It is preferable to contain at least one photopolymerization initiator.
  • the amount of the photopolymerization initiator used is preferably 0.1 to 10 parts by weight, preferably 0.5 to 7 parts by weight with respect to 100 parts by weight of the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition. Is particularly preferred. In order to improve the curability of the optical anisotropic body, it is preferable to use a photopolymerization initiator of 3 parts by mass or more with respect to 100 parts by mass of the polymerizable liquid crystal compound. These can be used alone or in combination of two or more, and a sensitizer or the like may be added.
  • thermo polymerization initiator In the polymerizable liquid crystal composition of the present invention, a thermal polymerization initiator may be used in combination with a photopolymerization initiator.
  • a thermal polymerization initiator known and conventional ones can be used.
  • methyl acetoacetate peroxide cumene hydroperoxide, benzoyl peroxide, bis (4-t-butylcyclohexyl) peroxydicarbonate, t-butyl Peroxybenzoate, methyl ethyl ketone peroxide, 1,1-bis (t-hexylperoxy) 3,3,5-trimethylcyclohexane, p-pentahydroperoxide, t-butylhydroperoxide, dicumyl peroxide, isobutyl Organic peroxides such as peroxide, di (3-methyl-3-methoxybutyl) peroxydicarbonate, 1,1-bis (t-butylperoxy) cyclohexane, 2,2′-azobisisobutyronitrile , 2,2'-azobis (2,4 Azonitrile compounds such as dimethylvaleronitrile), azoamidin compounds such as 2,2′-azobis (2-methyl-N-phenyl
  • V-40 and “VF-096” manufactured by Wako Pure Chemical Industries, Ltd., “Perhexyl D” and “Perhexyl I” of Nippon Oil & Fats Co., Ltd. (currently Nippon Oil Co., Ltd.) Etc.
  • the amount of the thermal polymerization initiator used is preferably 0.1 to 10 parts by weight, particularly preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition. . These can be used alone or in combination of two or more.
  • the polymerizable liquid crystal composition in the present invention may contain at least one surfactant in order to reduce film thickness unevenness when an optical anisotropic body is used.
  • Surfactants that can be included include alkyl carboxylates, alkyl phosphates, alkyl sulfonates, fluoroalkyl carboxylates, fluoroalkyl phosphates, fluoroalkyl sulfonates, polyoxyethylene derivatives, fluoro Examples thereof include alkylethylene oxide derivatives, polyethylene glycol derivatives, alkylammonium salts, fluoroalkylammonium salts and the like, and fluorine-containing surfactants are particularly preferable.
  • the surfactant is not an essential component, but when added, the surfactant is added in an amount of 0.001 part by mass relative to 100 parts by mass of the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition.
  • the amount is preferably 01 to 2 parts by mass, and more preferably 0.05 to 0.5 parts by mass.
  • the tilt angle at the air interface can be effectively reduced.
  • the polymerizable liquid crystal composition according to the present invention has the effect of effectively reducing the tilt angle of the air interface in the case of an optical anisotropic body, and is represented by the following general formula (7) except for the surfactant.
  • examples thereof include compounds having a unit having a weight average molecular weight of 100 or more.
  • each of R 11 , R 12 , R 13 and R 14 independently represents a hydrogen atom, a halogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and one or more hydrogen atoms in the hydrocarbon group It may be substituted with a halogen atom.
  • Examples of suitable compounds represented by the general formula (7) include polyethylene, polypropylene, polyisobutylene, paraffin, liquid paraffin, chlorinated polypropylene, chlorinated paraffin, and chlorinated liquid paraffin.
  • the amount of the compound represented by the general formula (7) is preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition. More preferably, it is 0.05 to 0.5 parts by mass.
  • a compound having a polymerizable group but not a liquid crystal compound can be added. Such a compound can be used without particular limitation as long as it is generally recognized as a polymerizable monomer or polymerizable oligomer in this technical field.
  • the addition amount of the non-liquid crystalline compound having a polymerizable group is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition.
  • the amount is more preferably 0.05 to 1 part by mass, and particularly preferably 0.05 to 0.5 part by mass.
  • Tetra (meth) acrylates such as (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, etc., dipentaerythritol hexa (meth) acrylate Rate, oligomeric (meth) acrylate, various urethane acrylates, various macromonomers, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl Examples thereof include epoxy compounds such as ether, glycerin diglycidyl ether, and bisphenol A diglycidyl ether, and maleimide.
  • the polymerizable liquid crystal composition in the present invention preferably further includes a chain transfer agent in order to further improve the adhesion with the base material in the case of an optical anisotropic body.
  • the chain transfer agent is preferably a thiol compound, more preferably a monothiol, dithiol, trithiol, or tetrathiol compound, and even more preferably a trithiol compound.
  • compounds represented by the following general formulas (8-1) to (8-13) are preferable.
  • R 65 represents an alkyl group having 2 to 18 carbon atoms, and the alkyl group may be linear or branched, and one or more methylene groups in the alkyl group are oxygen atoms.
  • a sulfur atom that is not directly bonded to each other may be substituted with an oxygen atom, a sulfur atom, —CO—, —OCO—, —COO—, or —CH ⁇ CH—
  • R 66 is a carbon atom Represents an alkylene group of 2 to 18, and one or more methylene groups in the alkylene group are oxygen atoms, sulfur atoms, —CO—, —OCO—, wherein oxygen atoms and sulfur atoms are not directly bonded to each other.
  • —COO—, or —CH ⁇ CH— may be substituted.
  • the addition amount of the chain transfer agent is preferably 0.5 to 10 parts by mass, preferably 1.0 to 5.0 parts per 100 parts by mass of the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition. More preferably, it is part by mass.
  • the polymerizable liquid crystal composition of the present invention may contain a dye as necessary.
  • the dye to be used is not particularly limited, and may include known and commonly used dyes as long as the orientation is not disturbed.
  • the dye examples include a dichroic dye and a fluorescent dye.
  • examples of such dyes include polyazo dyes, anthraquinone dyes, cyanine dyes, phthalocyanine dyes, perylene dyes, perinone dyes, squarylium dyes, etc.
  • the dye is preferably a liquid crystal dye.
  • dichroic dye examples include the following formulas (d-1) to (d-8)
  • the addition amount of the dichroic dye or the like is preferably 0.001 to 10 parts by mass, and 0.01 to 5 parts by mass with respect to 100 parts by mass of the total amount of the polymerizable liquid crystal compound contained in the powder mixture. More preferably, it is a part.
  • the polymerizable liquid crystal composition of the present invention may contain a filler as necessary.
  • the filler to be used is not particularly limited, and may contain known and commonly used fillers as long as the thermal conductivity of the obtained polymer is not lowered.
  • inorganic fillers such as alumina, titanium white, aluminum hydroxide, talc, clay, mica, barium titanate, zinc oxide, glass fiber, metal powder such as silver powder, copper powder, aluminum nitride, boron nitride, Examples thereof include thermally conductive fillers such as silicon nitride, gallium nitride, silicon carbide, magnesia (aluminum oxide), alumina (aluminum oxide), crystalline silica (silicon oxide), fused silica (silicon oxide), and silver nanoparticles. .
  • additives such as polymerizable compounds that do not have liquid crystallinity, thixotropic agents, ultraviolet absorbers, infrared absorbers, antioxidants, surface treatment agents, etc., do not significantly reduce the alignment ability of liquid crystals. To the extent that can be added.
  • Optical anisotropic body manufacturing method Optical anisotropic
  • the optical anisotropic body produced using the polymerizable liquid crystal composition of the present invention is obtained by sequentially laminating a base material, if necessary, an alignment film, and a polymer of the polymerizable liquid crystal composition.
  • the substrate used for the optical anisotropic body of the present invention is a substrate that is usually used for liquid crystal devices, displays, optical components and optical films, and is heated during drying after the application of the polymerizable liquid crystal composition of the present invention. If it is the material which has heat resistance which can endure, there will be no restriction
  • a substrate include organic materials such as a glass substrate, a metal substrate, a ceramic substrate, and a plastic substrate.
  • the substrate when the substrate is an organic material, examples thereof include cellulose derivatives, polyolefins, polyesters, polycarbonates, polyacrylates (acrylic resins), polyarylate, polyether sulfone, polyimide, polyphenylene sulfide, polyphenylene ether, nylon, and polystyrene.
  • plastic base materials such as polyester, polystyrene, polyacrylate, polyolefin, cellulose derivative, polyarylate, and polycarbonate are preferable, and base materials such as polyacrylate, polyolefin, and cellulose derivative are more preferable, and COP (cycloolefin polymer) is used as the polyolefin.
  • TAC triacetyl cellulose
  • PMMA polymethyl methacrylate
  • these substrates may be subjected to surface treatment.
  • the surface treatment include ozone treatment, plasma treatment, corona treatment, silane coupling treatment, and the like.
  • an organic thin film, an inorganic oxide thin film, a metal thin film, etc. are provided on the surface of the substrate by a method such as vapor deposition, or in order to add optical added value.
  • the material may be a pickup lens, a rod lens, an optical disk, a retardation film, a light diffusion film, a color filter, or the like.
  • a pickup lens, a retardation film, a light diffusion film, and a color filter that have higher added value are preferable.
  • Orientation treatment In addition, as the substrate, a glass substrate alone or an alignment film is provided on the substrate so that the polymerizable liquid crystal composition is aligned when the polymerizable liquid crystal composition of the present invention is applied and dried. Also good. Examples of the alignment treatment include stretching treatment, rubbing treatment, polarized ultraviolet visible light irradiation treatment, ion beam treatment, and the like. When the alignment film is used, a known and conventional alignment film is used.
  • a hydrophilic polymer containing polyimide, polyamide, lecithin, hydroxyl group, carboxylic acid group or sulfonic acid group, a hydrophilic inorganic compound, a photo-alignment film, or the like can be used.
  • the hydrophilic polymer include polyvinyl alcohol, polyacrylic acid, polyacrylic acid soda, polymethacrylic acid, sodium polyalginate, polycarboxymethylcellulose soda salt, pullulan, and polystyrene sulfonic acid.
  • hydrophilic inorganic compounds include oxides such as Si, Al, Mg, and Zr, and inorganic compounds such as fluoride.
  • the hydrophilic base material is effective for orienting the optical axis of the optical anisotropic body almost parallel to the normal direction with respect to the base material, it is preferable for obtaining the optical anisotropic body of the positive C plate.
  • the rubbing treatment adversely affects the vertical alignment in the hydrophilic polymer layer, so that an optical anisotropic body of a positive C plate is obtained. Is not preferred.
  • Application methods for obtaining the optical anisotropic body of the present invention include applicator method, bar coating method, spin coating method, roll coating method, direct gravure coating method, reverse gravure coating method, flexo coating method, ink jet method, and die coating.
  • a publicly known method such as a method, a cap coating method, a dip coating method, or a slit coating method can be used. After coating the polymerizable liquid crystal composition, the solvent contained in the polymerizable liquid crystal composition is dried by heating as necessary.
  • the liquid crystal compound in the polymerizable liquid crystal composition is generally in a state in which it is horizontally aligned, vertically aligned, hybrid aligned, or cholesteric aligned (planar aligned) with respect to the substrate. It is performed by irradiation with light such as ultraviolet rays or by heating.
  • irradiation with ultraviolet light specifically, irradiation with ultraviolet light of 390 nm or less is preferable, and irradiation with light having a wavelength of 250 to 370 nm is most preferable.
  • the polymerizable liquid crystal composition causes decomposition or the like due to ultraviolet light of 390 nm or less, it may be preferable to perform polymerization treatment with ultraviolet light of 390 nm or more.
  • This light is preferably diffused light and unpolarized light.
  • Examples of the method for polymerizing the polymerizable liquid crystal composition of the present invention include a method of irradiating active energy rays and a thermal polymerization method. However, since the reaction proceeds at room temperature without requiring heating, active energy rays are used. A method of irradiating is preferable, and among them, a method of irradiating light such as ultraviolet rays is preferable because the operation is simple.
  • the temperature at the time of irradiation is preferably set to 30 ° C. or less as much as possible in order to avoid the induction of thermal polymerization of the polymerizable liquid crystal composition so that the polymerizable liquid crystal composition of the present invention can maintain the liquid crystal phase.
  • the liquid crystal composition usually exhibits a nematic phase-only liquid crystal phase by phase transition in the order of Cr (crystal) -N (nematic) -I (isotropic liquid) in the temperature rising process.
  • the polymerizable liquid crystal composition has a characteristic of exhibiting smectic liquid crystallinity.
  • the liquid crystal composition in a supercooled state is also included in the state in which the liquid crystal phase is retained.
  • the smectic phase has a layer structure, it has a structure closer to the crystal than the nematic phase, so it irradiates ultraviolet rays in the smectic phase state rather than the optical anisotropic body obtained by irradiating ultraviolet rays in the nematic phase state.
  • the optically anisotropic body obtained in this manner is preferable because it becomes an optically anisotropic body having a structure closer to a crystal, and orientation order and / or heat resistance is improved.
  • the smectic phase is roughly classified into two types depending on whether the molecular long axis is perpendicular or inclined with respect to the layer normal.
  • the smectic phase in which the molecular long axis is perpendicular to the layer normal includes a smectic A phase (SmA) and a smectic B phase (SmB), and the smectic phase whose molecular long axis is inclined with respect to the layer normal is smectic C.
  • a phase (SmC), a smectic F phase (SmF), a smectic G phase (SmG), a smectic I phase (SmI), and a smectic J phase (SmJ) are known.
  • the smectic phase in which the molecular long axis is perpendicular to the layer normal specifically smectic A In the phase (SmA) and smectic B (SmB)
  • the molecular major axis in the layer is oriented along the rubbing direction, and therefore, the occurrence of orientation defects is small and favorable orientation is preferable.
  • the method of irradiating light such as ultraviolet rays is preferably irradiated with ultraviolet light having a wavelength of 390 nm or less, and most preferably irradiated with light having a wavelength of 250 to 370 nm.
  • the polymerizable composition causes decomposition or the like due to ultraviolet light of 390 nm or less
  • This light is preferably diffused light and unpolarized light.
  • Ultraviolet irradiation intensity in the range of 0.05kW / m 2 ⁇ 10kW / m 2 is preferred.
  • the range of 0.2 kW / m 2 to 2 kW / m 2 is preferable. If UV intensity is less than 0.05 kW / m 2, it takes much time to complete the polymerization. On the other hand, when the strength exceeds 2 kW / m 2 , liquid crystal molecules in the polymerizable liquid crystal composition tend to be photodegraded, or a large amount of polymerization heat is generated to increase the temperature during polymerization. The parameter may change, and the retardation of the film after polymerization may be distorted.
  • the orientation state of the unpolymerized part is changed by applying an electric field, a magnetic field or temperature, and then the unpolymerized part is polymerized.
  • An optical anisotropic body having a plurality of regions having orientation directions can also be obtained.
  • the alignment was regulated in advance by applying an electric field, magnetic field or temperature to the unpolymerized polymerizable liquid crystal composition, and the state was maintained.
  • An optical anisotropic body having a plurality of regions having different orientation directions can also be obtained by irradiating light from above the mask and polymerizing it.
  • the optical anisotropic body obtained by polymerizing the polymerizable liquid crystal composition of the present invention can be peeled off from the substrate and used alone as an optical anisotropic body, or it can be used as an optical anisotropic body as it is without peeling off from the substrate. You can also In particular, since it is difficult to contaminate other members, it is useful when used as a laminated substrate or by being attached to another substrate. (Retardation film)
  • the retardation film of the present invention is prepared in the same manner as the optical anisotropic body of the present invention.
  • the obtained cured product is a retardation film of a positive A plate.
  • the obtained cured product can be used as When polymerized in a state where the molecular long axis of the polymerizable liquid crystal compound is aligned perpendicular to the substrate, the obtained cured product can be used as a retardation film of a positive C plate.
  • the obtained cured product is used as a retardation film of a negative C plate. can do.
  • the cured product obtained by polymerization in a state where the molecular length of the polymerizable liquid crystal compound is inclined at a certain angle (tilted orientation) with respect to the substrate can be used as a retardation film of an O plate.
  • Polymerization can also be performed in a state (hybrid orientation) in which the molecular long axis is perpendicular to the substrate as it is perpendicular to the substrate near the interface and closer to the air interface.
  • the substrate has a retardation
  • a retardation film having birefringence obtained by adding the birefringence of the substrate and the birefringence of the retardation film of the present invention can be obtained.
  • the birefringence of the base material and the birefringence of the retardation film may be in the same direction or different directions in the plane of the base material.
  • the liquid crystal device, the display, the optical element, the optical component, the colorant, the marking for security, the member for laser emission, the optical film, and the compensation film are applied in a form suitable for the application.
  • the viewing angle compensation film of the present invention is produced in the same manner as the optical anisotropic body of the present invention.
  • the viewing angle compensation film which is a homeotropically aligned liquid crystal film, is incorporated in an IPS (In-Plane Switching) type liquid crystal display device, and the color tone and contrast of an image viewed when the liquid crystal display device is viewed from an oblique direction. Is used to reduce the problem of changing.
  • IPS In-Plane Switching
  • the antireflection film of the present invention is prepared in the same manner as the optical anisotropic body of the present invention.
  • the circularly polarizing plate When a circularly polarizing plate in which a polarizing plate and a quarter-wave plate are laminated is applied to an organic EL element, the circularly polarizing plate functions ideally for incident light from a direction perpendicular to the circularly polarizing plate, For incident light from an oblique direction, a deviation from a quarter wavelength occurs, and the light does not function as an ideal circularly polarizing plate.
  • the optically anisotropic body that is homeotropically aligned is used in a circularly polarizing plate for the purpose of preventing external light reflection, the viewing angle dependency in black display can be reduced even for incident light from an oblique direction.
  • the polarizing plate of the present invention is prepared in the same manner as the optical anisotropic body of the present invention.
  • An optical anisotropic body obtained by adding a dye or a pigment to the polymerizable liquid crystal composition of the present invention comprises infrared light having a wavelength of 800 nm or more, ultraviolet light having a wavelength of 250 nm or less, and visible light having a wavelength of 250 to 800 nm.
  • the polymerizable liquid crystal composition of the present invention is preferably used for a coating type polarizing plate, and the optical anisotropic body of the present invention is preferably used as a coating type polarizing plate. .
  • Tables 1 and 2 show specific compositions of the polymerizable liquid crystal compositions (1) to (13) and comparative polymerizable liquid crystal compositions (14) to (15) of the present invention.
  • Irgacure 907 C-1) Irgacure OXE02 (C-2) MEHQ (D-1) Liquid paraffin (E-1) Mega Fuck F-554 (E-2) Dicyclopentanyl acrylate (F-1) 2-Hydroxy-3-phenoxypropyl acrylate (F-2) Cyclopentanone (G-1) Toluene (G-2) MIBK (G-3) MEK (G-4)
  • Example 1 (Orientation) The prepared polymerizable liquid crystal composition (1) was rubbed on a glass substrate with a horizontal alignment polyimide (SE-6514 manufactured by Nissan Chemical Co., Ltd.) using a bar coater # 4 and dried at 60 ° C. for 2 minutes.
  • Example 1 After leaving at 25 ° C. for 1 minute, a thin film of Example 1 was obtained by irradiating UV light set so that the amount of light was 300 mJ / cm 2 using a conveyor type high-pressure mercury lamp. . (Double-circle): There is no defect visually and there is no defect also by polarization microscope observation. A: There are no defects visually, but a non-oriented portion exists in part by observation with a polarizing microscope. ⁇ : There are no defects visually, but there are non-oriented portions as a whole by observation with a polarizing microscope. X: Some defects are visually observed, and non-oriented portions are present as a whole by observation with a polarizing microscope.
  • the thin film obtained in the orientation evaluation test was held at 85 ° C. for 500 hours to obtain a thin film for durability measurement.
  • Change of less than 3%
  • Reduction of 3% to less than 7%
  • Reduction of 7% to less than 10%
  • Reduction of 10% or more (repel evaluation)
  • the repellency of the coating film whose orientation was measured was visually observed.
  • the thin film of this polymerizable liquid crystal composition is heated to an isotropic liquid with a polarizing microscope with a hot stage, and then observed while cooling at minus 2 ° C./min, whereby the transition temperature from the isotropic liquid to the nematic phase ( Tni) and the temperature (Tna) at which the nematic phase transitions to the smectic phase were measured.
  • Tni transition temperature from the isotropic liquid to the nematic phase
  • Tna the temperature at which the nematic phase transitions to the smectic phase
  • Examples 2 to 13, Comparative Examples 1 and 2 A thin film was prepared using the polymerizable liquid crystal compositions (2) to (15), and the orientation, durability, and repellency were measured. The results are shown in the above table as Examples 2 to 12 and Comparative Examples 1 and 2, respectively.
  • Example 2 to 13 and Comparative Examples 1 and 2 as a base material for evaluation of orientation, a rubbed polyimide for horizontal alignment (SE-made by Nissan Chemical Co., Ltd.) as in Example 1. 6514)
  • the application and curing conditions of the polymerizable liquid crystal composition were as follows: each polymerizable liquid crystal composition was applied at room temperature using a bar coater # 4, dried at 60 ° C. for 2 minutes, and then 25 ° C. in after standing for 1 minute, using a high pressure mercury lamp of conveyor type, quantity is a condition for irradiating UV light was set to give 300 mJ / cm 2.
  • the phase transition temperature of the polymerizable liquid crystal material comprising the polymerizable liquid crystal composition (14) used in Comparative Example 1 was measured by the same method as in Example (1), Tni was 72.0 ° C., Tna was 51.
  • the polymerizable liquid crystal material comprising the polymerizable liquid crystal composition (15) used in Comparative Example 2 had a Tni of 68.0 ° C. and a Tna of 55.0 ° C.
  • COP cycloolefin polymer
  • a polymerizable liquid crystal composition containing the polymerizable liquid crystal compound represented by the general formula (I-1) of the present invention represented by the formula (A-1) to the formula (A-2) (Example 1).
  • -Example 13) is an isotropic liquid as compared with the polymerizable liquid crystal compositions not containing the polymerizable liquid crystal compound represented by the general formula (I-1) of the present invention (Comparative Examples 1 to 6). Since the polymerizable liquid crystal material has a high transition temperature (Tni) and a high upper limit temperature (Tna) for forming a smectic phase, it has a good homogeneous alignment or homeotropic alignment, and has excellent durability.
  • Tni transition temperature
  • Tna high upper limit temperature
  • the polymerizable liquid crystal composition not containing the polymerizable liquid crystal compound represented by the general formula (I-1) of the present invention forms a smectic phase although the transition temperature (Tni) to the isotropic liquid is high. Since the polymerizable liquid crystal material does not have a high maximum temperature (Tna), the orientation is poor, and repellency defects are generated, so that it is not possible to obtain an optically anisotropic body having good homogeneous alignment or homeotropic alignment.
  • the polymerizable liquid crystal compound represented by the general formula (I-1) of the present invention the polymerizable liquid crystal compound represented by the general formula (II-1) of the present invention, and the general formula (I-2) of the present invention.
  • the polymerizable liquid crystal composition used in combination with the polymerizable liquid crystal compound represented by the formula can have an optically anisotropic body having better homogeneous alignment or homeotropic alignment, excellent durability, and few repelling defects. .

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

室温でスメクチック相を示す重合性液晶材料の中でも、等方性液体への転移温度(Tni)が高く、且つ、スメクチック相を形成する上限温度(Tna)が高い重合性液晶材料を含有する、空気中で光重合可能な重合性液晶組成物を提供することである。更に、当該重合性液晶組成物を重合することにより得られる、配向性が良好で耐久性(位相差保持率)が高く、ハジキが少ない重合体及び当該重合体を用いた光学異方体を提供することである。本発明は、分子内に2個の重合性官能基を有する重合性液晶化合物を少なくとも2種以上含有し、そのうちの1種が一般式(I-1)で表される重合性液晶化合物から選択される重合性液晶組成物を提供し、当該重合性液晶組成物を重合させることにより得られる重合体及び当該重合体を用いた光学異方体を提供する。

Description

重合性液晶組成物
 本願発明は、液晶デバイス、ディスプレイ、光学部品、着色剤、セキュリティ用マーキング、レーザー発光用部材、又は、液晶ディスプレイ等の光学補償に用いられる光学異方体の構成部材として有用な重合性液晶組成物、及び該組成物からなる光学異方体、位相差膜、視野角補償膜、反射防止膜、偏光板及び表示素子に関する。
 重合性液晶組成物は光学異方体の構成部材として有用であり、重合性液晶組成物に含有する重合性液晶材料を基板に塗布した後に、配向させた状態で光重合させることにより位相差フィルムなどの光学異方体を製造することができる。重合性液晶材料がスメクチック相を呈する状態で光重合させると、スメクチック相の層構造が光学異方体中に固定化されることにより、ネマチック相で固定化したときよりも、より結晶構造に近い高次構造を有する光学異方体を得ることが可能となる。一般的に、均一性に優れる光学異方体を製造するためには、不必要な熱重合の誘起を抑制し、室温でスメクチック相を呈する重合性液晶材料が好ましい。このような室温でスメクチック相を呈する重合性液晶材料は特許文献1に記載されているが、単官能液晶性アクリレートを中心に構成されているため、空気中で光重合させることは困難であり、窒素雰囲気下で光重合する必要がある。そのため製造工程における取扱が煩雑となり、製造コストを増大させるという問題があった。この問題を解決するため、単官能重合性液晶化合物と2官能重合性液晶化合物を混合した重合性液晶組成物を用いることにより、当該問題を解決する方法が特許文献2に記載されている。しかし、特許文献2に記載されている方法では、ネマチック相から等方性液体への転移温度(Tni)を高くすると、スメクチック相の上限温度が低下する問題があった。このため、ネマチック相よりも結晶構造に近いレイヤー構造をもつスメクチック相状態をより低い温度でしか維持できないため、得られる光学異方体の耐熱性が低下する問題があった。
特開平08-283718号公報 特開2005-272561号公報
 本発明が解決しようとする課題は、室温でスメクチック相を示す重合性液晶材料の中でも、等方性液体への転移温度(Tni)が高く、且つ、スメクチック相を形成する上限温度(Tna)が高い重合性液晶材料を含有する、空気中で光重合可能な重合性液晶組成物を提供することである。更に、当該重合性液晶組成物を重合することにより得られる、配向性が良好で耐久性(位相差保持率)が高く、ハジキが少ない重合体及び当該重合体を用いた光学異方体を提供することである。
 本発明者らは、上記課題を解決すべく、鋭意研究を行った結果、特定の構造を有する重合性液晶化合物を含有する重合性液晶組成物の開発に至った。すなわち本発明は、分子内に2個の重合性官能基を有する重合性液晶化合物を少なくとも2種以上含有し、そのうちの1種が一般式(I-1)で表される重合性液晶化合物から選択される重合性液晶組成物を提供し、当該重合性液晶組成物を重合させることにより得られる重合体及び当該重合体を用いた光学異方体を提供する。
 本発明の重合性液晶組成物は等方性液体への転移温度(Tni)が高く、且つ、スメクチック相を形成する上限温度(Tna)が高い重合性液晶材料を含有する、空気中で光重合可能な重合性液晶組成物を提供する。本発明の重合性液晶組成物は、ネマチック液晶よりも配向秩序が高い状態のスメクチック液晶へ相転移したスメクチック相に由来する層構造を得られることから、配向性が良好で、耐久性(位相差保持率)が高く、ハジキが少ない光学異方体を得ることができることから、位相差膜等の光学材料の用途に有用である。
 以下に本発明による重合性液晶組成物の最良の形態について説明するが、本発明において、重合性液晶組成物の「液晶」とは、重合性液晶組成物を基質に塗布後、有機溶剤を除去した状態において液晶性を示すことを意図する。また、本発明において、重合性液晶化合物の「液晶」とは、用いる重合性液晶化合物1種のみの化合物で液晶性を示すことを意図する場合や、その他の液晶化合物と混合し混合物とした場合に液晶性を示すことを意図する。なお、重合性液晶組成物は紫外線等の光照射、加熱又はそれらの併用によって重合処理を行うことでポリマー化(フィルム化)することができる。
(2官能重合性液晶化合物)
(一般式(I-1)で表される2官能重合性液晶化合物)
 本発明の重合性液晶組成物には、分子内に2個の重合性官能基を有する重合性液晶化合物(2官能重合性液晶化合物)を少なくとも2種以上含有するが、そのうちの1種が、必須成分として、下記一般式(I-1)で表される重合性液晶化合物から選択されることを特徴とする。
Figure JPOXMLDOC01-appb-C000004
(式中、P111及びP112はそれぞれ独立して重合性官能基を表し、Sp111及びSp112はそれぞれ独立して炭素原子数1~18のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子又はCN基によって置換されても良く、X111及びX112はそれぞれ独立して、-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表し(ただし、P111-Sp111、P112-Sp112、Sp111-X111及びSp112-X112において、酸素原子同士の直接結合を含まない。)、Y111、Y112及びY113はそれぞれ独立して-COO-又は-OCO-を表し、q111及びq112はそれぞれ独立して0から5の整数を表す。)
 一般式(I-1)において、P111及びP112はそれぞれ独立して重合性官能基を表すが、下記の式(P-1)から式(P-20)
Figure JPOXMLDOC01-appb-C000005
から選ばれる基を表すことが好ましく、これらの重合性基はラジカル重合、ラジカル付加重合、カチオン重合及びアニオン重合により重合する。特に重合方法として紫外線重合を行う場合には、式(P-1)、式(P-2)、式(P-3)、式(P-4)、式(P-5)、式(P-7)、式(P-11)、式(P-13)、式(P-15)又は式(P-18)が好ましく、式(P-1)、式(P-2)、式(P-7)、式(P-11)又は式(P-13)がより好ましく、式(P-1)、式(P-2)又は式(P-3)がさらに好ましく、式(P-1)又は式(P-2)が特に好ましい。
 一般式(I-1)において、q111及びq112はそれぞれ独立して0から5の整数を表すが、0から2の整数を表すことがより好ましく、1を表すことが特に好ましい。
 一般式(I-1)において、Sp111及びSp112はそれぞれ独立して炭素原子数1~18のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCN基によって置換されても良い。また、Sp111及びSp112はそれぞれ独立して、炭素原子数1~12のアルキレン基を表すことがより好ましく、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良い。さらに、Sp111及びSp112はそれぞれ独立して、炭素原子数1~8のアルキレン基を表すことが特に好ましい。
 一般式(I-1)において、X111及びX112はそれぞれ独立して、-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表す。また、X111及びX112はそれぞれ独立して、-O-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-O-CO-O-、-CFO-、-OCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-CF=CF-、-C≡C-又は単結合を表すことがより好ましい。さらに、X111及びX112はそれぞれ独立して、-O-又は単結合を表すことが特に好ましい。
 一般式(I-1)において、Y111、Y112及びY113はそれぞれ独立して-COO-又は-OCO-を表す。
 一般式(I-1)で表される2官能重合性液晶化合物は1種又は2種以上用いても良いが、一般式(I-1)で表される2官能重合性液晶化合物の合計含有量は、重合性液晶組成物に用いる重合性液晶化合物の合計量のうち、1~70質量%含有することが好ましく、1~60質量%含有することがより好ましく、5~55質量%含有することが特に好ましい。得られる光学異方体にスメクチック相由来の結晶構造に近い高次構造をもたせることを重視する場合には下限値を5質量%以上にすることが好ましく、10質量%以上にすることがより好ましく、得られる重合性液晶組成物の低融点化を重視する場合には上限値を40質量%以下とすることが好ましく、30質量%以下とすることがより好ましい。
 一般式(I-1)で表される化合物として具体的には、下記の式(I-1-1)から式(I-1-12)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
(一般式(I-2)で表される2官能重合性液晶化合物)
 本発明の重合性液晶組成物には、分子内に2個の重合性官能基を有する重合性液晶化合物(2官能重合性液晶化合物)を少なくとも2種以上含有するが、上記一般式(I-1)で表される重合性液晶化合物と共に、下記一般式(I-2)で表される重合性液晶化合物から選択される1種又は2種以上の重合性液晶化合物を併用することが好ましい。
Figure JPOXMLDOC01-appb-C000008
(式中、P121及びP122はそれぞれ独立して重合性官能基を表し、Sp121及びSp122はそれぞれ独立して、炭素原子数1~18のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子又はCN基によって置換されても良く、X121及びX122はそれぞれ独立して、-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表し(ただし、P121-Sp121、P122-Sp122、Sp121-X121及びSp122-X122において、酸素原子同士の直接結合を含まない。)、Y121及びY122はそれぞれ独立して-COO-又は-OCO-を表し、q121及びq122はそれぞれ独立して0又は1を表す。)
 一般式(I-2)において、P121及びP122はそれぞれ独立して重合性官能基を表すが、下記の式(P-1)から式(P-20)
Figure JPOXMLDOC01-appb-C000009
から選ばれる基を表すことが好ましく、これらの重合性基はラジカル重合、ラジカル付加重合、カチオン重合及びアニオン重合により重合する。特に重合方法として紫外線重合を行う場合には、式(P-1)、式(P-2)、式(P-3)、式(P-4)、式(P-5)、式(P-7)、式(P-11)、式(P-13)、式(P-15)又は式(P-18)が好ましく、式(P-1)、式(P-2)、式(P-7)、式(P-11)又は式(P-13)がより好ましく、式(P-1)、式(P-2)又は式(P-3)がさらに好ましく、式(P-1)又は式(P-2)が特に好ましい。
 一般式(I-2)において、q121及びq122はそれぞれ独立して0から5の整数を表すが、0から2の整数を表すことがより好ましく、1を表すことが特に好ましい。。
 一般式(I-2)において、Sp121及びSp122はそれぞれ独立して炭素原子数1~18のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCN基によって置換されても良い。また、Sp121及びSp122はそれぞれ独立して、炭素原子数1~12のアルキレン基を表すことがより好ましく、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良い。さらに、Sp121及びSp122はそれぞれ独立して、炭素原子数1~8のアルキレン基を表すことが特に好ましい。
 一般式(I-2)において、X121及びX122はそれぞれ独立して、-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表す。また、X121及びX122はそれぞれ独立して、-O-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-O-CO-O-、-CFO-、-OCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-CF=CF-、-C≡C-又は単結合を表すことがより好ましい。さらに、X121及びX122はそれぞれ独立して、-O-又は単結合を表すことが特に好ましい。
 一般式(I-2)において、Y121及びY122はそれぞれ独立して-COO-又は-OCO-を表す。
 一般式(I-2)で表される2官能重合性液晶化合物は1種又は2種以上用いても良いが、一般式(I-2)で表される2官能重合性液晶化合物の合計含有量は、重合性液晶組成物に用いる重合性液晶化合物の合計量のうち、0~80質量%含有することが好ましく、0~75質量%含有することがより好ましく、5~60質量%含有することが特に好ましい。得られる光学異方体にスメクチック相由来の結晶構造に近い高次構造をもたせることを重視する場合には下限値を10質量%以上にすることが好ましく、20質量%以上にすることがより好ましく、得られる重合性液晶組成物の低融点化を重視する場合には上限値を60質量%未満とすることが好ましく、50質量%以下とすることがより好ましい。
 また、一般式(I-1)で表される2官能重合性液晶化合物と一般式(I-2)で表される2官能重合性液晶化合物の合計含有量との質量比[一般式(I-1)/一般式(I-2)]は1/2~7/1の範囲であることが等方性液体への転移温度(Tni)が高く、且つ、スメクチック相を形成する上限温度(Tna)が高い重合性液晶材料となる点から好ましい。
 一般式(I-2)で表される化合物として具体的には、下記の式(I-2-1)から式(I-2-12)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
(その他の2官能重合性液晶化合物)
 本発明の重合性液晶組成物には、分子内に2個の重合性官能基を有する重合性液晶化合物(2官能重合性液晶化合物)を少なくとも2種以上含有するが、上記一般式(I-1)で表される重合性液晶化合物と共に、上記一般式(I-2)で表される重合性液晶化合物及び/又は下記一般式(I-3)で表される重合性液晶化合物を併用することが好ましい。
Figure JPOXMLDOC01-appb-C000012
(式中、P131及びP132はそれぞれ独立して、重合性官能基を表し、Sp131及びSp132はそれぞれ独立して、炭素原子数1~18のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCN基によって置換されても良く、X131及びX132はそれぞれ独立して、-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表し(ただし、P131-Sp131、P132-Sp132、Sp131-X131及びSp132-X132において、酸素原子同士の直接結合を含まない。)、q131及びq132はそれぞれ独立して、0又は1を表し、MG131はメソゲン基を表すが、上記一般式(I-1)及び一般式(I-2)で表される化合物を除く。)
 一般式(I-3)において、P131及びP132はそれぞれ独立して、下記式(P-2-1)から式(P-2-20)で表される重合性基から選ばれる置換基を表すのが好ましい。
Figure JPOXMLDOC01-appb-C000013
 これらの重合性官能基のうち、重合性を高める観点から、式(P-2-1)、(P-2-2)、(P-2-7)、(P-2-12)、(P-2-13)が好ましく、式(P-2-1)、(P-2-2)がより好ましい。
 一般式(I-3)において、q131及びq132はそれぞれ独立して、0又は1を表すが、q131及びq132は1が好ましい。
 一般式(I-3)において、Sp131及びSp132はそれぞれ独立して、炭素原子数1~15のアルキレン基を表すことが好ましく、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCN基によって置換されても良く、Sp131及びSp132はそれぞれ独立して、炭素原子数1~12のアルキレン基を表すことがより好ましく、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良い。
 一般式(I-3)において、X131及びX132はそれぞれ独立して、-O-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CFO-、-OCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すことが好ましく、X131及びX132はそれぞれ独立して、-O-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-O-CO-O-、-CFO-、-OCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-CF=CF-、-C≡C-又は単結合を表すことがより好ましい。
 一般式(I-3)において、MG131はメソゲン基を表し、一般式(I-3-b)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000014
 式中、A1、A2及びA3はそれぞれ独立的に、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、テトラヒドロチオピラン-2,5-ジイル基、1,4-ビシクロ(2,2,2)オクチレン基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、チオフェン-2,5-ジイル基-、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基、フェナントレン-2,7-ジイル基、9,10-ジヒドロフェナントレン-2,7-ジイル基、1,2,3,4,4a,9,10a-オクタヒドロフェナントレン-2,7-ジイル基、1,4-ナフチレン基、ベンゾ[1,2-b:4,5-b‘]ジチオフェン-2,6-ジイル基、ベンゾ[1,2-b:4,5-b‘]ジセレノフェン-2,6-ジイル基、[1]ベンゾチエノ[3,2-b]チオフェン-2,7-ジイル基、[1]ベンゾセレノフェノ[3,2-b]セレノフェン-2,7-ジイル基、又はフルオレン-2,7-ジイル基を表し、置換基として1個以上のF、Cl、CF、OCF、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、及び/又は、炭素原子数2~8のアルケノイルオキシ基を有していても良く、Z1及びZ2はそれぞれ独立して、-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-C=N-、-N=C-、-CONH-、-NHCO-、-C(CF-、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)を有してもよい炭素原子数2~10のアルキル基又は単結合を表し、Z1及びZ2はそれぞれ独立して-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-又は単結合であることが好ましく、-COO-、-OCO-、-OCH-、-CHO-、-CHCHO-、-CHCHOCO-、-COOCHCH-、-OCOCHCH-又は単結合であることがより好ましく、r1は0、1、2又は3を表し、A1、及びZ1が複数存在する場合は、それぞれ、同一であっても、異なっていても良い。このうち、A1、A2及びA3はそれぞれ独立的に、1,4-フェニレン基、1,4-シクロヘキシレン基、2,6-ナフチレン基を表すことが好ましい。
 一般式(I-3)で表される2官能重合性液晶化合物は1種又は2種以上用いても良いが、一般式(I-3)で表される2官能重合性液晶化合物の合計含有量は、重合性液晶組成物に用いる重合性液晶化合物の合計量のうち、0~40質量%含有することが好ましく、0~30質量%含有することがより好ましく、10~20質量%含有することが特に好ましい。得られる光学異方体の硬化性を重視する場合には下限値を5質量%以上にすることが好ましく、10質量%以上にすることがより好ましく、得られる光学異方体の柔軟性を重視する場合には上限値を30質量%以下とすることが好ましく、20質量%以下とすることがより好ましい。
 上記一般式(I-3)で表される重合性液晶化合物のうち、硬化性を維持しながら重合性液晶組成物の粘性を低下させる場合には、以下の一般式(I-3-1)で表される重合性液晶化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000015
(式中、P1311及びP1312はそれぞれ独立して重合性官能基を表し、Sp1311及びSp1312はそれぞれ独立して炭素原子数1~18のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCN基によって置換されても良く、X1311及びX1312はそれぞれ独立して、-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表し(ただし、P1311-Sp1311、P1312-Sp1312、Sp1311-X1311及びSp1312-X1312において、酸素原子同士の直接結合を含まない。)、Y1311は-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-C=N-、-N=C-、-CONH-、-NHCO-、-C(CF-、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)を有してもよい炭素原子数2~10のアルキル基又は単結合を表し、q1311及びq1312はそれぞれ独立して0又は1を表す。)
 一般式(I-3-1)において、P1311及びP1312はそれぞれ独立して、上記式(P-2-1)から式(P-2-20)で表される重合性基から選ばれる置換基を表すのが好ましく、重合性を高める観点から、式(P-2-1)、(P-2-2)、(P-2-7)、(P-2-12)、(P-2-13)が好ましく、式(P-2-1)、(P-2-2)がより好ましい。
 一般式(I-3-1)において、q1311及びq1312はそれぞれ独立して、0又は1を表すが、q1311及びq1312は1が好ましい。
 一般式(I-3-1)において、Sp1311及びSp1312はそれぞれ独立して、炭素原子数1~15のアルキレン基を表すことが好ましく、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCN基によって置換されても良く、Sp1311及びSp1312はそれぞれ独立して、炭素原子数1~12のアルキレン基を表すことがより好ましく、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良い。
 一般式(I-3-1)において、X1311及びX1312はそれぞれ独立して、-O-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CFO-、-OCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すことが好ましく、X1311及びX1312はそれぞれ独立して、-O-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-O-CO-O-、-CFO-、-OCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-CF=CF-、-C≡C-又は単結合を表すことがより好ましい。
 一般式(I-3-1)において、Y1311は-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-C=N-、-N=C-、-CONH-、-NHCO-、-C(CF-、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)を有してもよい炭素原子数2~10のアルキル基又は単結合を表すが、Y1311は-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-又は単結合が好ましく、Y1311は-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-又は単結合がより好ましく、Y1311は-COO-、-OCO-又は単結合が特に好ましい。
 一般式(I-3-1)で表される2官能重合性液晶化合物は1種又は2種以上用いても良いが、一般式(I-3-1)で表される2官能重合性液晶化合物の合計含有量は、重合性液晶組成物に用いる重合性液晶化合物の合計量のうち、0~40質量%含有することが好ましく、0~30質量%含有することがより好ましく、10~20質量%含有することが特に好ましい。得られる光学異方体の硬化性性を重視する場合には下限値を5質量%以上にすることが好ましく、10質量%以上にすることがより好ましく、得られる光学異方体の柔軟性を重視する場合には上限値を30質量%以下とすることが好ましく、20質量%以下とすることがより好ましい。
 一般式(I-3-1)で表される化合物として具体的には、下記の式(I-3-1-1)から式(I-3-1-12)で表される化合物が好ましい。式(I-3-1-1)から式(I-3-1-12)の中では、式式(I-3-1-1)から式(I-3-1-4)が好ましく、式(I-3-1-1)が特に好ましい。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 上記一般式(I-3-1)~一般式(I-3-6)中、nは各々独立して1~18の整数を表すが、nは各々独立して1~10の整数が好ましく、nは各々独立して3~6の整数が特に好ましい。
 式(I-3-1-1)として具体的には下記式(I-3-1-1-1)~(I-3-1-1-6)が特に好ましい。
Figure JPOXMLDOC01-appb-C000018
 また、上記一般式(I-3)で表される化合物として具体的には、上記式(I-3-1)で表される化合物以外には、下記一般式(I-3-2-1)から一般式(I-3-2-34)で表される化合物を挙げることができるが、下記の一般式に限定されるわけではない。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 上記一般式(I-3-2-1)から一般式(I-3-2-34)中、R及びRは、それぞれ独立して水素原子又はメチル基を表し、
 上記環状基は、置換基として1個以上のF、Cl、CF3、OCF3、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、炭素原子数2~8のアルケノイルオキシ基を有していても良く、
m1、m2は、それぞれ独立して0~18の整数を表し、n1、n2、n3、n4はそれぞれ独立して0又は1を表す。
 上記一般式(I-1)、一般式(I-2)及び一般式(I-3)で表される分子内に2個の重合性官能基を有する2官能重合性液晶化合物の合計含有量は、重合性液晶組成物に用いる重合性液晶化合物の合計量のうち、20~100質量%含有することが好ましく、40~100質量%含有することがより好ましく、65~85質量%含有することが特に好ましい。
(3官能重合性液晶化合物)
 本発明の重合性液晶組成物には、物性を損なわない範囲で、分子内に3個の重合性官能基を有する重合性液晶化合物を含有していてもよい。分子内に3個の重合性官能基を有する重合性液晶化合物としては、下記一般式(III)で表される化合物を例示できる。
Figure JPOXMLDOC01-appb-C000025
(式中、P31~P33はそれぞれ独立して、重合性官能基を表し、Sp31~S33はそれぞれ独立して、炭素原子数1~18のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCN基によって置換されても良く、X31~X33はそれぞれ独立して、-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表し(ただし、P31-Sp31、P32-Sp32、Sp31-X31、Sp32-X32、Sp33-X33、及びSp33-X33において、酸素原子同士の直接結合を含まない。)、q31、q32、q34、及びq35はそれぞれ独立して、0又は1を表し、MG31はメソゲン基を表す。)
 一般式(III)において、P31~P33はそれぞれ独立して、下記の式(P-2-1)から式(P-2-20)で表される重合性基から選ばれる置換基を表すのが好ましい。
Figure JPOXMLDOC01-appb-C000026
 これらの重合性官能基のうち、重合性を高める観点から、式(P-2-1)、(P-2-2)、(P-2-7)、(P-2-12)、(P-2-13)が好ましく、式(P-2-1)、(P-2-2)がより好ましい。
 一般式(III)において、Sp31~Sp33はそれぞれ独立して、炭素原子数1~15のアルキレン基を表すことが好ましく、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCN基によって置換されても良く、Sp31~Sp33はそれぞれ独立して、炭素原子数1~12のアルキレン基を表すことがより好ましく、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良い。X31~X33はそれぞれ独立して、-O-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CFO-、-OCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すことが好ましく、X11~X13はそれぞれ独立して、-O-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-O-CO-O-、-CFO-、-OCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-CF=CF-、-C≡C-又は単結合を表すことがより好ましい。
 一般式(III)において、MG31はメソゲン基を表し、一般式(III-A)
Figure JPOXMLDOC01-appb-C000027
 式中、A1、A2及びA3はそれぞれ独立的に、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、テトラヒドロチオピラン-2,5-ジイル基、1,4-ビシクロ(2,2,2)オクチレン基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、チオフェン-2,5-ジイル基-、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基、フェナントレン-2,7-ジイル基、9,10-ジヒドロフェナントレン-2,7-ジイル基、1,2,3,4,4a,9,10a-オクタヒドロフェナントレン-2,7-ジイル基、1,4-ナフチレン基、ベンゾ[1,2-b:4,5-b‘]ジチオフェン-2,6-ジイル基、ベンゾ[1,2-b:4,5-b‘]ジセレノフェン-2,6-ジイル基、[1]ベンゾチエノ[3,2-b]チオフェン-2,7-ジイル基、[1]ベンゾセレノフェノ[3,2-b]セレノフェン-2,7-ジイル基、又はフルオレン-2,7-ジイル基を表し、置換基として1個以上のF、Cl、CF、OCF、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、及び/又は、炭素原子数2~8のアルケノイルオキシ基を有していても良いが、存在するA1、A2及びA3のいずれかに-(X33q35-(Sp33q34-P33基を有する。Z1及びZ2はそれぞれ独立して、-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-C=N-、-N=C-、-CONH-、-NHCO-、-C(CF-、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)を有してもよい炭素原子数2~10のアルキル基又は単結合を表し、Z1及びZ2はそれぞれ独立して-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-又は単結合であることが好ましく、r1は0、1、2又は3を表し、A1、及びZ1が複数存在する場合は、それぞれ、同一であっても、異なっていても良い。)で表される。このうち、A1、A2及びA3はそれぞれ独立的に、1,4-フェニレン基、1,4-シクロヘキシレン基、2,6-ナフチレン基を表すことが好ましい。
一般式(III)の例として、下記一般式(III-1)~(III-8)で表される化合物を挙げることができるが、下記の一般式に限定されるわけではない。
Figure JPOXMLDOC01-appb-C000028
 式中、P31、Sp31、X31、q31、X32、Sp32、q32、P32、X33、q35、Sp33、q34、P33は、それぞれ、上記一般式(III)の定義と同じものを表し、
A11とA12とA13、A2、A3は、それぞれ、上記一般式(III-A)のA1~A3の定義と同じものを表し、それぞれ、同一であっても、異なっていても良く、
Z11とZ12とZ13、Z2は、それぞれ、上記一般式(III-A)のZ1、Z2の定義と同じものを表し、それぞれ、同一であっても、異なっていても良い。
 上記一般式(III-1)~(III-8)で表される化合物としては、以下の一般式(III-9-1)~(III-9-6)で表される化合物を例示されるが、これらに限定される訳ではない。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 一般式(III-9-1)~(III-9-6)中、R、R及びRは、それぞれ独立して水素原子又はメチル基を表し、R、R及びRはそれぞれ独立して水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基を表し、これらの基が炭素数1~6のアルキル基、あるいは炭素数1~6のアルコキシ基の場合、全部が未置換であるか、あるいは1つまたは2つ以上のハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)により置換されていてもよく、上記環状基は、置換基として1個以上のF、Cl、CF3、OCF3、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、炭素原子数2~8のアルケノイルオキシ基を有していても良い。
m4~m9はそれぞれ独立して0~18の整数を表し、n4~n10はそれぞれ独立して0又は1を表す。
 3個の重合性官能基を有する多官能重合性液晶化合物は、1種又は2種以上用いることができる。
 分子内に3個の重合性官能基を有する多官能重合性液晶化合物の合計含有量は、重合性液晶組成物に用いる重合性液晶化合物の合計量のうち、0~20質量%含有することが好ましく、0~10質量%含有することがより好ましく、0~5質量%含有することが特に好ましい。
(単官能重合性液晶化合物)
 本発明の重合性液晶組成物には、得られる光学異方体にスメクチック相由来の晶構造に近い高次構造性を持たせるために、分子内に1個の重合性官能基を有する単官能重合性液晶化合物を1種又は2種以上含有することが好ましい。分子内に1個の重合性官能基を有する単官能重合性液晶化合物として下記一般式(II-1)で表される群から選択される重合性液晶化合物を1種又は2種以上用いることが特に好ましい。
Figure JPOXMLDOC01-appb-C000031
(式中、P21は重合性官能基を表し、Sp21は、炭素原子数1~18のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子又はCN基によって置換されても良く、X21は、-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表し(ただし、P21-Sp21及びSp21-X21において、酸素原子同士の直接結合を含まない。)、Y21は-COO-、-OCO-又は単結合を表し、q21は0又は1を表し、T21は-OH、-SH、-CN、-COOH、-NH、-NO、-COCH、-O(CHCH、又は-(CHCHを表し、nは0~20の整数を表す。)
 一般式(II-1)において、P21は重合性官能基を表すが、下記の式(P-2-1)から式(P-2-20)で表される重合性基から選ばれる置換基を表すのが好ましい。
Figure JPOXMLDOC01-appb-C000032
 これらの重合性官能基のうち、重合性を高める観点から、式(P-2-1)、(P-2-2)、(P-2-7)、(P-2-12)、(P-2-13)が好ましく、式(P-2-1)、(P-2-2)がより好ましい。
 一般式(II-1)において、q21は0又は1を表すが、q21は1が好ましい。
 一般式(II-1)において、Sp21は、炭素原子数1~18のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子又はCN基によって置換されても良い。Sp21は炭素原子数1~12のアルキレン基又は単結合を表すことがより好ましく、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良い。Sp21は炭素原子数1~8のアルキレン基又は単結合を表すことがさらに好ましく、Sp21は炭素原子数1~8のアルキレン基を表すことが特に好ましい。
 一般式(II-1)において、Y21は-COO-、-OCO-又は単結合を表すが、Y21は単結合が好ましい。
 一般式(II-1)において、T21は-OH、-SH、-CN、-COOH、-NH、-NO又は-COCH、-O(CHCH、又は-(CHCHを表し、nは0~20の整数を表すが、本発明の重合性液晶組成物がスメクチック性を発現する観点から、T21は-OH、-SH、-CN、-COCH、-O(CHCH、又は-(CHCH(nは0または5以上20以下の整数)が好ましく、T21は-CN、-OCH、-CO(CHCH、又は-CS(CHCH(nは0または8以上20以下の整数)がより好ましく、T21は-CN、-OCHがさらに好ましく、T21は-CNが特に好ましい。
 一般式(II-1)で表される単官能重合性液晶化合物の合計含有量は、重合性液晶組成物に用いる重合性液晶化合物の合計量のうち、0~80質量%含有することが好ましく、0~75質量%含有することがより好ましく、5~60質量%含有することがさらに好ましく、10~40質量%含有することが特に好ましい。得られる光学異方体にスメクチック相由来の結晶構造に近い高次構造をもたせることを重視する場合には下限値を10質量%以上にすることが好ましく、15質量%以上にすることがより好ましく、得られる光学異方体の硬化性を重視する場合には上限値を65質量%未満とすることが好ましく、40質量%以下とすることがより好ましい。
 また、一般式(II-1)で表される単官能重合性液晶化合物は、一般式(I-1)で表される2官能重合性液晶化合物及び一般式(I-2)で表される2官能重合性液晶化合物と共に併用することが等方性液体への転移温度(Tni)及びスメクチック相を形成する上限温度(Tna)がより高くなる点から好ましく、この場合、一般式(I-1)で表される2官能重合性液晶化合物と、一般式(I-2)で表される2官能重合性液晶化合物と、一般式(II-1)で表される単官能重合性液晶化合物との配合割合[(I-1)/(I-2)/(II-1)]が、質量基準で、(10~60)/(5~40)/(20~40)となる割合であることが等方性液体への転移温度(Tni)及びスメクチック相を形成する上限温度(Tna)がより高くなる点から好ましい。
 一般式(II-1)で表される化合物として具体的には、下記の式(II-1-1)から式(II-1-25)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
(その他の単官能重合性液晶化合物)
 本発明の重合性液晶組成物には、分子内に1個の重合性官能基を有する単官能重合性液晶化合物を1種又は2種以上含有することが好ましく、上記一般式(II-1)で表される重合性液晶化合物と共に、下記一般式(II-2)で表される重合性液晶化合物を併用することが好ましい。
Figure JPOXMLDOC01-appb-C000038
(式中、P22は重合性官能基を表し、Sp22は炭素原子数1~18のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCN基によって置換されても良く、X22は-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表し(ただし、P22-Sp22、及びSp22-X22において、酸素原子同士の直接結合を含まない。)、q22は0又は1を表し、MG22はメソゲン基を表し、R22は、水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、炭素原子数1から12の直鎖又は分岐アルキル基、炭素原子数1から12の直鎖又は分岐アルケニル基を表し、該アルキル基及びアルケニル基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-NH-、-N(CH)-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-によって置換されても良く、該アルキル基及び該アルケニル基の有する1個又は2個以上の水素原子はそれぞれ独立して、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はシアノ基によって置換されても良く、複数置換されている場合それぞれ同一であっても、異なっていても良いが、一般式(II-2)で表される重合性液晶化合物には、上記一般式(II-1)で表される重合性液晶化合物を含まない。
 一般式(II-2)において、P22は、下記の式(P-2-1)から式(P-2-20)で表される重合性基から選ばれる置換基を表すのが好ましい。
Figure JPOXMLDOC01-appb-C000039
 これらの重合性官能基のうち、重合性を高める観点から、式(P-2-1)、(P-2-2)、(P-2-7)、(P-2-12)、(P-2-13)が好ましく、式(P-2-1)、(P-2-2)がより好ましい。
 一般式(II-2)において、Sp22は炭素原子数1~15のアルキレン基を表すことが好ましく、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCN基によって置換されても良く、Sp22は炭素原子数1~12のアルキレン基を表すことがより好ましく、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良い。
 一般式(II-2)において、X22は-O-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CFO-、-OCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すことが好ましく、X22は-O-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-O-CO-O-、-CFO-、-OCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-CF=CF-、-C≡C-又は単結合を表すことがより好ましい。
 一般式(II-2)において、MG22はメソゲン基を表し、下記一般式(II-2-b)を表すことが好ましい。
Figure JPOXMLDOC01-appb-C000040
一般式(II-2-b)中、A1、A2及びA3はそれぞれ独立的に、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、テトラヒドロチオピラン-2,5-ジイル基、1,4-ビシクロ(2,2,2)オクチレン基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、チオフェン-2,5-ジイル基-、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基、フェナントレン-2,7-ジイル基、9,10-ジヒドロフェナントレン-2,7-ジイル基、1,2,3,4,4a,9,10a-オクタヒドロフェナントレン-2,7-ジイル基、1,4-ナフチレン基、ベンゾ[1,2-b:4,5-b‘]ジチオフェン-2,6-ジイル基、ベンゾ[1,2-b:4,5-b‘]ジセレノフェン-2,6-ジイル基、[1]ベンゾチエノ[3,2-b]チオフェン-2,7-ジイル基、[1]ベンゾセレノフェノ[3,2-b]セレノフェン-2,7-ジイル基、又はフルオレン-2,7-ジイル基を表し、置換基として1個以上のF、Cl、CF、OCF、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、及び/又は、炭素原子数2~8のアルケノイルオキシ基を有していても良く、このうち、A1、A2及びA3はそれぞれ独立的に、上記置換基を有していても良い1,4-フェニレン基、1,4-シクロヘキシレン基、2,6-ナフチレン基を表すことが好ましい。
 一般式(II-2-b)中、Z1及びZ2はそれぞれ独立して、-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-C=N-、-N=C-、-CONH-、-NHCO-、-C(CF-、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)を有してもよい炭素原子数2~10のアルキル基又は単結合を表し、Z1及びZ2はそれぞれ独立して-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-又は単結合であることが好ましい。
 一般式(II-2-b)中、r1は0、1、2又は3を表し、A1、及びZ1が複数存在する場合は、それぞれ、同一であっても、異なっていても良い。
 一般式(II-2)において、R22は、水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、炭素原子数1から8の直鎖又は分岐アルキル基、炭素原子数1から8の直鎖又は分岐アルケニル基を表すことがより好ましく、該アルキル基及びアルケニル基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-CO-、-COO-、-OCO-、-O-CO-O-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、又は-C≡C-によって置換されても良く、該アルキル基及び該アルケニル基の有する1個又は2個以上の水素原子はそれぞれ独立して、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はシアノ基によって置換されても良く、複数置換されている場合それぞれ同一であっても、異なっていても良い。
 ただし、一般式(II-2)で表される重合性液晶化合物には、上記一般式(II-1)で表される重合性液晶化合物を含まない。
一般式(II-2)の例として、下記一般式(II-2-1)~(II-2-4)で表される化合物を挙げることができるが、下記の一般式に限定されるわけではない。
Figure JPOXMLDOC01-appb-C000041
 式中、P22、Sp22、X22、q1、及び、R22は、それぞれ、上記一般式(II-2)の定義と同じものを表し、
A11、A12、A13、A2、A3は、上記一般式(II-2-b)のA1~A3の定義と同じものを表し、それぞれ、同一であっても、異なっていても良く、
Z11、Z12、Z13、Z2は、上記一般式(II-2-b)のZ1~Z3の定義と同じものを表し、それぞれ、同一であっても、異なっていても良く、
 上記一般式(II-2-1)~(II-2-4)で表される化合物としては、以下の式(II-2-1-1)~式(II-2-1-24)で表される化合物を例示されるが、これらに限定される訳ではない。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
 上記式(II-2-1-1)~式(II-2-1-24)中、Rは水素原子又はメチル基を表し、mは0~18の整数を表し、nは0又は1を表し、R21は、上記一般式(II-2-1)~(II-2-4)の定義と同じものを表すが、R21は、水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、1個の-CH-が-O-、-CO-、-COO-、-OCO-、によって置換されても良い、炭素原子数1から6の直鎖アルキル基又は炭素原子数1から6の直鎖アルケニル基を表すことが好ましい。
 上記式(II-2-1-1)~式(II-2-1-24)中、環状基は、置換基として1個以上のF、Cl、CF3、OCF3、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、炭素原子数2~8のアルケノイルオキシ基を有していても良い。
 一般式(II-2)で表される単官能重合性液晶化合物は1種又は2種以上用いても良いが、一般式(II-2)で表される単官能重合性液晶化合物の合計含有量は、重合性液晶組成物に用いる重合性液晶化合物の合計量のうち、0~80質量%含有することが好ましく、0~60質量%含有することがより好ましく、5~40質量%含有することが特に好ましい。得られる光学異方体と基材との密着性を重視する場合には下限値を5質量%以上にすることが好ましく、10質量%以上にすることがより好ましく、得られる光学異方体の硬化性を重視する場合には上限値を40質量%以下とすることが好ましく、20質量%以下とすることがより好ましい。
 一般式(II-1)及び一般式(II-2)で表される分子内に1個の重合性官能基を有する単官能重合性液晶化合物の合計含有量は、重合性液晶組成物に用いる重合性液晶化合物の合計量のうち、0~80質量%含有することが好ましく、5~75質量%含有することがより好ましく、5~70質量%含有することが特に好ましい。得られる塗膜の基材との密着性を重視する場合には下限値を5質量%以上にすることが好ましく、10質量%以上にすることがより好ましく、得られる塗膜の硬化性を重視する場合には上限値を50質量%以下とすることが好ましく、40質量%以下とすることがより好ましい。
(その他の液晶化合物)
 また、本発明の重合性液晶組成物には、重合性基を有さないメソゲン基を含有する化合物を添加しても良く、通常の液晶デバイス、例えばSTN(スーパー・ツイステッド・ネマチック)液晶や、TN(ツイステッド・ネマチック)液晶、TFT(薄膜トランジスター)液晶等に使用される化合物が挙げられる。
 重合性官能基を有さないメソゲン基を含有する化合物は、具体的には以下の一般式(5)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000047
 MG3で表されるメソゲン基又はメソゲン性支持基は、一般式(5-b)
Figure JPOXMLDOC01-appb-C000048
(式中、A1、A2及びA3はそれぞれ独立的に、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、テトラヒドロチオピラン-2,5-ジイル基、1,4-ビシクロ(2,2,2)オクチレン基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、チオフェン-2,5-ジイル基-、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基、フェナントレン-2,7-ジイル基、9,10-ジヒドロフェナントレン-2,7-ジイル基、1,2,3,4,4a,9,10a-オクタヒドロフェナントレン-2,7-ジイル基、1,4-ナフチレン基、ベンゾ[1,2-b:4,5-b‘]ジチオフェン-2,6-ジイル基、ベンゾ[1,2-b:4,5-b‘]ジセレノフェン-2,6-ジイル基、[1]ベンゾチエノ[3,2-b]チオフェン-2,7-ジイル基、[1]ベンゾセレノフェノ[3,2-b]セレノフェン-2,7-ジイル基、又はフルオレン-2,7-ジイル基を表し、置換基として1個以上のF、Cl、CF、OCF、CN基、炭素原子数1~8のアルキル基、アルコキシ基、アルカノイル基、アルカノイルオキシ基、炭素原子数2~8のアルケニル基、アルケニルオキシ基、アルケノイル基、アルケノイルオキシ基を有していても良く、
Z0、Z1、Z2及びZ3はそれぞれ独立して、-COO-、-OCO-、-CH CH-、-OCH-、-CHO-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CHCHCOO-、-CHCHOCO-、-COOCHCH-、-OCOCHCH-、-CONH-、-NHCO-、炭素数2~10のハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)を有してもよいアルキレン基又は単結合を表し、
は0、1又は2を表し、
51及びR52はそれぞれ独立して水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基又は炭素原子数1~18のアルキル基を表すが、該アルキル基は1つ以上のハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCNにより置換されていても良く、この基中に存在する1つのCH基又は隣接していない2つ以上のCH基はそれぞれ相互に独立して、酸素原子が相互に直接結合しない形で、-O-、-S-、-NH-、-N(CH)-、-CO-、-COO-、-OCO-、-OCOO-、-SCO-、-COS-又は-C≡C-により置き換えられていても良い。)で表される化合物が挙げられる。
 具体的には、以下に示されるが、これらに限定される訳ではない。
Figure JPOXMLDOC01-appb-C000049
 Ra及びRbはそれぞれ独立して水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルケニル基、シアノ基を表し、これらの基が炭素数1~6のアルキル基、あるいは炭素数1~6のアルコキシ基の場合、全部が未置換であるか、あるいは1つまたは2つ以上のハロゲン原子により置換されていてもよい。
 メソゲン基を有する化合物の総含有量は、重合性液晶組成物の総量に対して0質量%以上20質量%以下であることが好ましく、用いる場合は、1質量%以上であることが好ましく、2質量%以上であることが好ましく、5質量%以上であることが好ましく、また、15質量%以下であることが好ましく、10質量%以下であることが好ましい。
(有機溶剤)
 本発明における重合性液晶組成物に有機溶剤を添加してもよい。用いる有機溶剤としては特に限定はないが、重合性液晶化合物が良好な溶解性を示す有機溶剤が好ましく、100℃以下の温度で乾燥できる有機溶剤であることが好ましい。そのような溶剤としては、例えば、トルエン、キシレン、クメン、メシチレン等の芳香族系炭化水素、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル系溶剤、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロヘキサノン、シクロペンタノン等のケトン系溶剤、テトラヒドロフラン、1,2-ジメトキシエタン、アニソール等のエーテル系溶剤、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、等のアミド系溶剤、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、γ-ブチロラクトン及びクロロベンゼン等が挙げられる。これらは、単独で使用することもできるし、2種類以上混合して使用することもできるが、ケトン系溶剤、エーテル系溶剤、エステル系溶剤及び芳香族炭化水素系溶剤のうちのいずれか1種類以上を用いることが溶液安定性の点から好ましい。
 本発明に用いられる組成物は有機溶媒の溶液とすると基板に対して塗布することができ、重合性液晶組成物に用いる有機溶剤の比率は、塗布した状態を著しく損なわない限りは特に制限はないが、重合性液晶組成物中に含有する有機溶剤の合計量が10~95質量%であることが好ましく、12~90質量%であることが更に好ましく、15~85質量%であることが特に好ましい。
 有機溶剤に重合性液晶組成物を溶解する際には、均一に溶解させるために、加熱攪拌することが好ましい。加熱攪拌時の加熱温度は、用いる組成物の有機溶剤に対する溶解性を考慮して適宜調節すればよいが、生産性の点から15℃~110℃が好ましく、15℃~105℃がより好ましく、15℃~100℃がさらに好ましく、20℃~90℃とするのが特に好ましい。
 また、溶媒を添加する際には分散攪拌機により攪拌混合することが好ましい。分散攪拌機として具体的には、ディスパー、プロペラ、タービン翼等攪拌翼を有する分散機、ペイントシェイカー、遊星式攪拌装置、振とう機、シェーカー又はロータリーエバポレーター等が使用できる。その他には、超音波照射装置が使用できる。
 溶媒を添加する際の攪拌回転数は、用いる攪拌装置により適宜調整することが好ましいが、均一な重合性液晶組成物溶液とするために攪拌回転数を10rpm~1000rpmとするのが好ましく、50rpm~800rpmとするのがより好ましく、150rpm~600rpmとするのが特に好ましい。
(重合禁止剤)
 本発明における重合性液晶組成物には、重合禁止剤を添加することが好ましい。重合禁止剤としては、フェノール系化合物、キノン系化合物、アミン系化合物、チオエーテル系化合物、ニトロソ化合物、等が挙げられる。
 フェノール系化合物としては、p-メトキシフェノール、クレゾール、t-ブチルカテコール、3.5-ジ-t-ブチル-4-ヒドロキシトルエン、2.2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、2.2'-メチレンビス(4-エチル-6-t-ブチルフェノール)、4.4'-チオビス(3-メチル-6-t-ブチルフェノール)、4-メトキシ-1-ナフトール、4,4’-ジアルコキシ-2,2’-ビ-1-ナフトール、等が挙げられる。
 キノン系化合物としては、ヒドロキノン、メチルヒドロキノン、tert-ブチルヒドロキノン、p-ベンゾキノン、メチル-p-ベンゾキノン、tert-ブチル-p-ベンゾキノン、2,5-ジフェニルベンゾキノン、2-ヒドロキシ-1,4-ナフトキノン、1,4-ナフトキノン、2,3-ジクロロ-1,4-ナフトキノン、アントラキノン、ジフェノキノン等が挙げられる。
 アミン系化合物としては、p-フェニレンジアミン、4-アミノジフェニルアミン、N.N'-ジフェニル-p-フェニレンジアミン、N-i-プロピル-N'-フェニル-p-フェニレンジアミン、N-(1.3-ジメチルブチル)-N'-フェニル-p-フェニレンジアミン、N.N'-ジ-2-ナフチル-p-フェニレンジアミン、ジフェニルアミン、N-フェニル-β-ナフチルアミン、4.4'-ジクミル-ジフェニルアミン、4.4'-ジオクチル-ジフェニルアミン等が挙げられる。
 チオエーテル系化合物としては、フェノチアジン、ジステアリルチオジプロピオネート等が挙げられる。
 ニトロソ系化合物としては、N-ニトロソジフェニルアミン、N-ニトロソフェニルナフチルアミン、N-ニトロソジナフチルアミン、p-ニトロソフェノール、ニトロソベンゼン、p-ニトロソジフェニルアミン、α-ニトロソ-β-ナフトール等、N、N-ジメチルp-ニトロソアニリン、p-ニトロソジフェニルアミン、p-ニトロンジメチルアミン、p-ニトロン-N、N-ジエチルアミン、N-ニトロソエタノールアミン、N-ニトロソジ-n-ブチルアミン、N-ニトロソ-N-n-ブチル-4-ブタノールアミン、N-ニトロソ-ジイソプロパノールアミン、N-ニトロソ-N-エチル-4-ブタノールアミン、5-ニトロソ-8-ヒドロキシキノリン、N-ニトロソモルホリン、N-二トロソーN-フェニルヒドロキシルアミンアンモニウム塩、二トロソベンゼン、2,4.6-トリーtert-ブチルニトロンベンゼン、N-ニトロソ-N-メチル-p-トルエンスルホンアミド、N-ニトロソ-N-エチルウレタン、N-ニトロソ-N-n-プロピルウレタン、1-ニトロソ-2-ナフトール、2-ニトロソー1-ナフトール、1-ニトロソ-2-ナフトール-3,6-スルホン酸ナトリウム、2-ニトロソ-1-ナフトール-4-スルホン酸ナトリウム、2-ニトロソ-5-メチルアミノフェノール塩酸塩、2-ニトロソ-5-メチルアミノフェノール塩酸塩等が挙げられる。
 重合禁止剤の添加量は重合性液晶組成物に対して0.01~1.0質量%であることが好ましく、0.05~0.5質量%であることがより好ましい。
(光重合開始剤)
 本発明における重合性液晶組成物は光重合開始剤を含有することが好ましい。光重合開始剤は少なくとも1種類以上含有することが好ましい。具体的には、BASF社製の「イルガキュア651」、「イルガキュア184」、「ダロキュア1173」、「イルガキュア907」、「イルガキュア127」、「イルガキュア369」、「イルガキュア379」、「イルガキュア819」、「イルガキュア2959」、「イルガキュア1800」、「イルガキュア250」、「イルガキュア754」、「イルガキュア784」、「イルガキュアOXE01」、「イルガキュアOXE02」、「ルシリンTPO」、「ダロキュア1173」、「ダロキュアMBF」やLAMBSON社製の「エサキュア1001M」、「エサキュアKIP150」、「スピードキュアBEM」、「スピードキュアBMS」、「スピードキュアMBP」、「スピードキュアPBZ」、「スピードキュアITX」、「スピードキュアDETX」、「スピードキュアEBD」、「スピードキュアMBB」、「スピードキュアBP」や日本化薬社製の「カヤキュアDMBI」、日本シイベルヘグナー社製(現DKSH社)の「TAZ-A」、ADEKA社製の「アデカオプトマーSP-152」、「アデカオプトマーSP-170」、「アデカオプトマーN-1414」、「アデカオプトマーN-1606」、「アデカオプトマーN-1717」、「アデカオプトマーN-1919」、UCC社製の「サイラキュアーUVI-6990」、「サイラキュアーUVI-6974」や「サイラキュアーUVI-6992」、旭電化工業社製の「アデカオプトマーSP-150、SP-152、SP-170、SP-172」やローディア製の「PHOTOINITIATOR2074」、BASF社製の「イルガキュア250」、GEシリコンズ社製の 「UV-9380C」、みどり化学社製の「DTS-102」等が挙げられる。
 光重合開始剤の使用量は重合性液晶組成物中に含有する重合性液晶化合物の含有量100質量部に対して0.1~10質量部であることが好ましく、0.5~7質量部が特に好ましい。光学異方体の硬化性を高めるためには重合性液晶化合物の含有量100質量部に対して3質量部以上の光重合開始剤を用いることが好ましい。これらは、単独で使用することもできるし、2種類以上混合して使用することもでき、また、増感剤等を添加しても良い。
(熱重合開始剤)
 本発明における重合性液晶組成物には、光重合開始剤とともに、熱重合開始剤を併用してもよい。熱重合開始剤としては公知慣用のものが使用でき、例えば、メチルアセトアセテイトパーオキサイド、キュメンハイドロパーオキサイド、ベンゾイルパーオキサイド、ビス(4-t-ブチルシクロヘキシル)パ-オキシジカーボネイト、t-ブチルパーオキシベンゾエイト、メチルエチルケトンパーオキサイド、1,1-ビス(t-ヘキシルパ-オキシ)3,3,5-トリメチルシクロヘキサン、p-ペンタハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、ジクミルパーオキサイド、イソブチルパーオキサイド、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネイト、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン等の有機過酸化物、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾニトリル化合物、2,2’-アゾビス(2-メチル-N-フェニルプロピオン-アミヂン)ジハイドロクロライド等のアゾアミヂン化合物、2,2’アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}等のアゾアミド化合物、2,2’アゾビス(2,4,4-トリメチルペンタン)等のアルキルアゾ化合物等を使用することができる。具体的には、和光純薬工業株式会社製の「V-40」、「VF-096」、日本油脂株式会社(現日油株式会社)の「パーへキシルD」、「パーへキシルI」等が挙げられる。
 熱重合開始剤の使用量は重合性液晶組成物中に含有する重合性液晶化合物の含有量100質量部に対して0.1~10質量部が好ましく、0.5~5質量部が特に好ましい。これらは、単独で使用することもできるし、2種類以上混合して使用することもできる。
(界面活性剤)
 本発明における重合性液晶組成物は、光学異方体とした場合の膜厚むらを低減させるために界面活性剤を少なくとも1種類以上含有してもよい。含有することができる界面活性剤としては、アルキルカルボン酸塩、アルキルリン酸塩、アルキルスルホン酸塩、フルオロアルキルカルボン酸塩、フルオロアルキルリン酸塩、フルオロアルキルスルホン酸塩、ポリオキシエチレン誘導体、フルオロアルキルエチレンオキシド誘導体、ポリエチレングリコール誘導体、アルキルアンモニウム塩、フルオロアルキルアンモニウム塩類等をあげることができ、特に含フッ素界面活性剤が好ましい。
 具体的には、「メガファック F-251」、「メガファック F-444」、「メガファック F-477」、「メガファック F-510」、「メガファック F-552」、「メガファック F-553」、「メガファック F-554」、「メガファック F-555」、「メガファック F-556」、「メガファック F-557」、「メガファック F-558」、「メガファック F-559」、「メガファック F-560」、「メガファック F-561」、「メガファック F-562」、「メガファック F-563」、「メガファック F-565」、「メガファック F-567」、「メガファック F-568」、「メガファック F-569」、「メガファック F-570」、「メガファック F-571」、「メガファック R-40」、「メガファック R-41」、「メガファック R-43」、「メガファック R-94」、「メガファック RS-72-K」、「メガファック RS-75」、「メガファック RS-76-E」、「メガファック RS-90」、(以上、DIC株式会社製)、
「フタージェント100」、「フタージェント100C」、「フタージェント110」、「フタージェント150」、「フタージェント150CH」、「フタージェントA」、「フタージェント100A-K」、「フタージェント501」、「フタージェント300」、「フタージェント310」、「フタージェント320」、「フタージェント400SW」、「FTX-400P」、「フタージェント251」、「フタージェント215M」、「フタージェント212MH」、「フタージェント250」、「フタージェント222F」、「フタージェント212D」、「FTX-218」、「FTX-209F」、「FTX-213F」、「FTX-233F」、「フタージェント245F」、「FTX-208G」、「FTX-240G」、「FTX-206D」、「FTX-220D」、「FTX-230D」、「FTX-240D」、「FTX-207S」、「FTX-211S」、「FTX-220S」、「FTX-230S」、「FTX-750FM」、「FTX-730FM」、「FTX-730FL」、「FTX-710FS」、「FTX-710FM」、「FTX-710FL」、「FTX-750LL」、「FTX-730LS」、「FTX-730LM」、「FTX-730LL」、「FTX-710LL」(以上、株式会社ネオス製)、
「BYK-300」、「BYK-302」、「BYK-306」、「BYK-307」、「BYK-310」、「BYK-315」、「BYK-320」、「BYK-322」、「BYK-323」、「BYK-325」、「BYK-330」、「BYK-331」、「BYK-333」、「BYK-337」、「BYK-340」、「BYK-344」、「BYK-370」、「BYK-375」、「BYK-377」、「BYK-350」、「BYK-352」、「BYK-354」、「BYK-355」、「BYK-356」、「BYK-358N」、「BYK-361N」、「BYK-357」、「BYK-390」、「BYK-392」、「BYK-UV3500」、「BYK-UV3510」、「BYK-UV3570」、「BYK-Silclean3700」(以上、ビックケミー・ジャパン社製)、
「TEGO Rad2100」、「TEGO Rad2200N」、「TEGO Rad2250」、「TEGO Rad2300」、「TEGO Rad2500」、「TEGO Rad2600」、「TEGO Rad2700」(以上、テゴ社製)
「N215」、「N535」、「N605K」、「N935」(以上、ソルベイソレクシス社製)等の例をあげることができる。
 本発明において界面活性剤は、必須成分ではないが、添加する場合、界面活性剤の添加量は重合性液晶組成物中に含有する重合性液晶化合物の含有量100質量部に対して、0.01~2質量部であることが好ましく、0.05~0.5質量部であることがより好ましい。
 また、上記界面活性剤を使用することで、本発明の重合性液晶組成物を光学異方体とした場合、空気界面のチルト角を効果的に減じることができる。
 本発明における重合性液晶組成物は、光学異方体とした場合の空気界面のチルト角を効果的に減じる効果を持つ、上記界面活性剤以外として、下記一般式(7)で表される繰り返し単位を有する重量平均分子量が100以上である化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000050
 式中、R11、R12、R13及びR14はそれぞれ独立的に水素原子、ハロゲン原子又は炭素原子数1~20の炭化水素基を表し、該炭化水素基中の水素原子は1つ以上のハロゲン原子で置換されていても良い。
 一般式(7)で表される好適な化合物として、例えばポリエチレン、ポリプロピレン、ポリイソブチレン、パラフィン、流動パラフィン、塩素化ポリプロピレン、塩素化パラフィン、塩素化流動パラフィン等を挙げることができる。
 一般式(7)で表される化合物の添加量は重合性液晶組成物中に含有する重合性液晶化合物の含有量100質量部に対して、0.01~1質量部であることが好ましく、0.05~0.5質量部であることがより好ましい。
(重合性基を有する非液晶性化合物)
本発明の重合性組成物は、重合性基を有するが液晶化合物ではない化合物を添加することもできる。このような化合物としては、通常、この技術分野で重合性モノマーあるいは重合性オリゴマーとして認識されるものであれば特に制限なく使用することができる。重合性基を有する非液晶性化合物の添加量は重合性液晶組成物中に含有する重合性液晶化合物の含有量100質量部に対して、0.01~5質量部であることが好ましく、0.05~1質量部であることがより好ましく、特に0.05~0.5質量部が好ましい。
具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、2-ヒドロキシエチルアクリレート、プロピル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニルオキシルエチル(メタ)アクリレート、イソボルニルオキシルエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ジメチルアダマンチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-フェノキシジエチレングリコール(メタ)アクリレート、ω-カルボキシ-ポリカプロラクトン(n≒2)モノアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、2-ヒドロキシ-3-フェノキシエチル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレート、o-フェニルフェノールエトキシ(メタ)アクリレート、ジメチルアミノ(メタ)アクリレート、ジエチルアミノ(メタ)アクリレート、2,2,3,3,3-ペンタフルオロプロピル(メタ)アクリレート、2,2,3,4,4,4-ヘキサフルオロブチル(メタ)アクリレート、2,2,3,3,4,4,4-ヘプタフルオロブチル(メタ)アクリレート、2-(パーフルオロブチル)エチル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレート、1H,1H,3H-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、1H,1H,7H-ドデカフルオロヘプチル(メタ)アクリレート、1H-1-(トリフルオロメチル)トリフルオロエチル(メタ)アクリレート、1H,1H,3H-ヘキサフルオロブチル(メタ)アクリレート、1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル(メタ)アクリレート、1H,1H-ペンタデカフルオロオクチル(メタ)アクリレート、1H,1H,2H,2H-トリデカフルオロオクチル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルフタル酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、グリシジル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルりん酸、アクリロイルモルホリン、ジメチルアクリルアミド、ジメチルアミノプロピルアクリルアミド、イロプロピルアクリルアミド、ジエチルアクリルアミド、ヒドロキシエチルアクリルアミド、N-アクリロイルオキシエチルヘキサヒドロフタルイミド等のモノ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-アクロイルオキシプロピルメタクリレート、1,6-ヘキサンジオールジグリシジルエーテルのアクリル酸付加物、1,4-ブタンジオールジグリシジルエーテルのアクリル酸付加物、等のジアクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化イソシアヌル酸トリアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ε-カプロラクトン変性トリス-(2-アクリロイルオキシエチル)イソシアヌレート、等のトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、等のテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、オリゴマー型の(メタ)アクリレート、各種ウレタンアクリレート、各種マクロモノマー、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、等のエポキシ化合物、マレイミド等が挙げられる。これらは単独で使用することもできるし、2種類以上混合して使用することもできる。
(連鎖移動剤)
 本発明における重合性液晶組成物は、光学異方体とした場合の基材との密着性をより向上させるため、連鎖移動剤を添加することも好ましい。連鎖移動剤としては、チオール化合物が好ましく、モノチオール、ジチオール、トリチオール、テトラチオール化合物がより好ましく、トリチオール化合物が更により好ましい。具体的には下記一般式(8-1)~(8-13)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
 式中、R65は炭素原子数2~18のアルキル基を表し、該アルキル基は直鎖であっても分岐鎖であっても良く、該アルキル基中の1つ以上のメチレン基は酸素原子、及び硫黄原子が相互に直接結合しないものとして、酸素原子、硫黄原子、-CO-、-OCO-、-COO-、又は-CH=CH-で置換されていてもよく、R66は炭素原子数2~18のアルキレン基を表し、該アルキレン基中の1つ以上のメチレン基は酸素原子、及び硫黄原子が相互に直接結合しないものとして、酸素原子、硫黄原子、-CO-、-OCO-、-COO-、又は-CH=CH-で置換されていてもよい。
 連鎖移動剤の添加量は重合性液晶組成物中に含有する重合性液晶化合物の含有量100質量部に対して、0.5~10質量部であることが好ましく、1.0~5.0質量部であることがより好ましい。
(色素)
 本発明の重合性液晶組成物には、必要に応じて色素を含有することができる。用いる色素は、特に限定はなく、配向性を乱さない範囲で公知慣用のものを含有することができる。
 前記色素としては、例えば、2色性色素、蛍光色素等が挙げられる。そのような色素としては、例えば、ポリアゾ色素、アントラキノン色素、シアニン色素、フタロシアニン色素、ペリレン色素、ペリノン色素、スクアリリウム色素等が挙げられるが、添加する観点から、前記色素は液晶性を示す色素が好ましい。例えば、米国特許第2,400,877号公報、DreyerJ. F., Phys. and Colloid Chem., 1948, 52, 808., "The Fixing of MolecularOrientation"、Dreyer J. F., Journal de Physique, 1969, 4, 114., "LightPolarization from Films of Lyotropic Nematic Liquid Crystals"、及び、J.Lydon, "Chromonics" in "Handbook of Liquid Crystals Vol.2B: Low MolecularWeight Liquid Crystals II", D. Demus,J. Goodby, G. W. Gray, H. W. Spiessm,V. Vill ed, Willey-VCH, P.981-1007(1998) 、Dichroic Dyes for Liquid Crystal Display A.V.lvashchenko
CRC Press、1994年、および「機能性色素市場の新展開」、第一章、1頁、1994年、CMC株式会社発光、等に記載の色素を使用することができる。
 2色性色素としては、例えば、以下の式(d-1)~式(d-8)
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
が挙げられる。前記2色性色素等の色素の添加量は、粉体混合物に含まれる重合性液晶化合物の総量100質量部に対し、0.001~10質量部であることが好ましく、0.01~5質量部であることがより好ましい。
(フィラー)
 本発明の重合性液晶組成物には、必要に応じてフィラーを含有することができる。用いるフィラーは、特に限定はなく、得られた重合物の熱伝導性が低下しない範囲で公知慣用のものを含有することができる。具体的には、アルミナ、チタンホワイト、水酸化アルミニウム、タルク、クレイ、マイカ、チタン酸バリウム、酸化亜鉛、ガラス繊維等の無機質充填材、銀粉、銅粉などの金属粉末や窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化ガリウム、炭化ケイ素、マグネシア(酸化アルミニウム)、アルミナ(酸化アルミニウム)、結晶性シリカ(酸化ケイ素)、溶融シリカ(酸化ケイ素)等などの熱伝導性フィラー、銀ナノ粒子等が挙げられる。
(その他の添加剤)
 更に物性調整のため、目的に応じて、液晶性のない重合性化合物、チキソ剤、紫外線吸収剤、赤外線吸収剤、抗酸化剤、表面処理剤等の添加剤を液晶の配向能を著しく低下させない程度添加することができる。
(光学異方体の製造方法)
(光学異方体)
 本発明の重合性液晶組成物を用いて作製した光学異方体は、基材、必要に応じて配向膜、及び、重合性液晶組成物の重合体を順次積層したものである。
(基材)
 本発明の光学異方体に用いられる基材は、液晶デバイス、ディスプレイ、光学部品や光学フィルムに通常使用する基材であって、本発明の重合性液晶組成物の塗布後の乾燥時における加熱に耐えうる耐熱性を有する材料であれば、特に制限はない。そのような基材としては、ガラス基材、金属基材、セラミックス基材やプラスチック基材等の有機材料が挙げられる。特に基材が有機材料の場合、セルロース誘導体、ポリオレフィン、ポリエステル、ポリカーボネート、ポリアクリレート(アクリル樹脂)、ポリアリレート、ポリエーテルサルホン、ポリイミド、ポリフェニレンスルフィド、ポリフェニレンエーテル、ナイロン又はポリスチレン等が挙げられる。中でもポリエステル、ポリスチレン、ポリアクリレート、ポリオレフィン、セルロース誘導体、ポリアリレート、ポリカーボネート等のプラスチック基材が好ましく、ポリアクリレート、ポリオレフィン、セルロース誘導体等の基材がさらに好ましく、ポリオレフィンとしてCOP(シクロオレフィンポリマー)を用い、セルロース誘導体としてTAC(トリアセチルセルロース)を用い、ポリアクリレートとしてPMMA(ポリメチルメタクリレート)を用いることが特に好ましい。基材の形状としては、平板の他、曲面を有するものであっても良い。これらの基材は、必要に応じて、電極層、反射防止機能、反射機能を有していてもよい。
 本発明の重合性液晶組成物の塗布性や接着性向上のために、これらの基材の表面処理を行っても良い。表面処理として、オゾン処理、プラズマ処理、コロナ処理、シランカップリング処理などが挙げられる。また、光の透過率や反射率を調節するために、基材表面に有機薄膜、無機酸化物薄膜や金属薄膜等を蒸着など方法によって設ける、あるいは、光学的な付加価値をつけるために、基材がピックアップレンズ、ロッドレンズ、光ディスク、位相差フィルム、光拡散フィルム、カラーフィルター、等であっても良い。中でも付加価値がより高くなるピックアップレンズ、位相差フィルム、光拡散フィルム、カラーフィルターは好ましい。
(配向処理)
 また、上記基材としては、本発明の重合性液晶組成物を塗布乾燥した際に重合性液晶組成物が配向するように、ガラス基材単独、あるいは基材上に配向膜が設けられていても良い。配向処理としては、延伸処理、ラビング処理、偏光紫外可視光照射処理、イオンビーム処理等が挙げられる。配向膜を用いる場合、配向膜は公知慣用のものが用いられる。そのような配向膜としては、ポリイミド、ポリアミド、レシチン、水酸基、カルボン酸基またはスルホン酸基を含有する親水性ポリマーや、また親水性の無機化合物、光配向膜などが利用できる。親水性ポリマーとしては、ポリビニルアルコール、ポリアクリル酸、ポリアクリル酸ソーダ、ポリメタクリル酸、ポリアルギン酸ソーダ、ポリカルボキシメチルセルロースソーダ塩、プルラン、ポリスチレンスルホン酸が挙げられる。また、親水性の無機化合物としては、Si、Al、Mg、Zr等の酸化物やフッ化物等の無機化合物が上げられる。親水性の基材は光学異方体の光学軸を基材に対して法線方向にほぼ平行に配向させるために有効なものであるため、ポジティブCプレートの光学異方体を得るために好ましいが、親水性の基材にラビング処理した場合には水平配向膜として作用するため、親水性ポリマー層においてラビング処理は垂直配向性に悪影響を及ぼすためポジティブCプレートの光学異方体を得るためには好ましくない。
(塗布)
 本発明の光学異方体を得るための塗布法としては、アプリケーター法、バーコーティング法、スピンコーティング法、ロールコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、フレキソコーティング法、インクジェット法、ダイコーティング法、キャップコーティング法、ディップコーティング法、スリットコーティング法等、公知慣用の方法を行うことができる。重合性液晶組成物を塗布後、必要に応じて重合性液晶組成物に含有される溶剤を加熱乾燥させる。
(重合工程)
 本発明の重合性液晶組成物の重合操作については、重合性液晶組成物中の液晶化合物が基材に対して水平配向、垂直配向、又はハイブリッド配向、あるいはコレステリック配向(平面配向)した状態で一般に紫外線等の光照射、あるいは加熱によって行われる。重合を光照射で行う場合は、具体的には390nm以下の紫外光を照射することが好ましく、250~370nmの波長の光を照射することが最も好ましい。但し、390nm以下の紫外光により重合性液晶組成物が分解などを引き起こす場合は、390nm以上の紫外光で重合処理を行ったほうが好ましい場合もある。この光は、拡散光で、かつ偏光していない光であることが好ましい。
(重合方法)
 本発明の重合性液晶組成物を重合させる方法としては、活性エネルギー線を照射する方法や熱重合法等が挙げられるが、加熱を必要とせず、室温で反応が進行することから活性エネルギー線を照射する方法が好ましく、中でも、操作が簡便なことから、紫外線等の光を照射する方法が好ましい。
 照射時の温度は、本発明の重合性液晶組成物が液晶相を保持できる温度とし、重合性液晶組成物の熱重合の誘起を避けるため、可能な限り30℃以下とすることが好ましい。尚、液晶組成物は、通常、昇温過程において、Cr(結晶)-N(ネマチック)-I(等方性液体)の順序で相転移してネマチック相のみの液晶相を示すが、本発明の重合性液晶組成物の場合、スメクチック液晶性を示す特徴があるため、昇温過程において、Cr(結晶)-Sm(スメクチック)-N(ネマチック)―I(等方性液体)の相転移を示すため、スメクチック相とネマチック相の2つの液晶相を示す。一方、降温過程においては、熱力学的に非平衡状態を取るため、Cr(結晶)-N(ネマチック)あるいはCr(結晶)-Sm(スメクチック)転移温度以下でも結晶化せずネマチック液晶状態あるいはスメクチック液晶状態を保つ場合がある。この状態を過冷却状態という。本発明においては、過冷却状態にある液晶組成物も液晶相を保持している状態に含めるものとする。スメクチック相は、層構造をもつためにネマチック相よりも結晶に近い構造を持つため、ネマチック相の状態で紫外線を照射して得られた光学異方体よりも、スメクチック相の状態で紫外線を照射して得られた光学異方体の方が、より結晶に近い構造をもった光学異方体となるため、配向秩序および/または耐熱性が向上するため好ましい。スメクチック相は、層法線に対して分子長軸が垂直、あるいは傾くかによって大きく2つに分類される。層法線に対して分子長軸が垂直となるスメクチック相は、スメクチックA相(SmA)、スメクチックB相(SmB)があり、層法線に対して分子長軸が傾くスメクチック相は、スメクチックC相(SmC)、スメクチックF相(SmF)、スメクチックG相(SmG)、スメクチックI相(SmI)、スメクチックJ相(SmJ)が知られている。ホモジニアス配向においてポリイミド配向膜のラビング方向に分子長軸が配向したネマチック相からスメクチック相に相転移したときに、分子長軸が層法線に対して垂直となるスメクチック相、具体的にはスメクチックA相(SmA)、スメクチックB(SmB)では、層内にある分子長軸がラビング方向に沿って配向するために配向欠陥の発生が少なく良好な配向となるために好ましい。
紫外線等の光を照射する方法は、具体的には390nm以下の紫外光を照射することが好ましく、250~370nmの波長の光を照射することが最も好ましい。但し、390nm以下の紫外光により重合性組成物が分解などを引き起こす場合は、390nm以上の紫外光で重合処理を行ったほうが好ましい場合もある。この光は、拡散光で、かつ偏光していない光であることが好ましい。紫外線照射強度は、0.05kW/m~10kW/mの範囲が好ましい。特に、0.2kW/m~2kW/mの範囲が好ましい。紫外線強度が0.05kW/m未満の場合、重合を完了させるのに多大な時間がかかる。一方、2kW/mを超える強度では、重合性液晶組成物中の液晶分子が光分解する傾向にあることや、重合熱が多く発生して重合中の温度が上昇し、重合性液晶のオーダーパラメーターが変化して、重合後のフィルムのリタデーションに狂いが生じる可能性がある。
 マスクを使用して特定の部分のみを紫外線照射で重合させた後、該未重合部分の配向状態を、電場、磁場又は温度等をかけて変化させ、その後該未重合部分を重合させると、異なる配向方向をもった複数の領域を有する光学異方体を得ることもできる。
 また、マスクを使用して特定の部分のみを紫外線照射で重合させる際に、予め未重合状態の重合性液晶組成物に電場、磁場又は温度等をかけて配向を規制し、その状態を保ったままマスク上から光を照射して重合させることによっても、異なる配向方向をもった複数の領域を有する光学異方体を得ることができる。
 本発明の重合性液晶組成物を重合させて得られる光学異方体は、基板から剥離して単体で光学異方体として使用することも、基板から剥離せずにそのまま光学異方体として使用することもできる。特に、他の部材を汚染し難いので、被積層基板として使用したり、他の基板に貼り合わせて使用したりするときに有用である。
(位相差膜)
 本発明の位相差膜は、本発明の光学異方体と同様にして作成される。具体的には、重合性液晶組成物中の重合性液晶化合物の分子長軸が基板に対して水平に配向した状態で重合した場合は、得られた硬化物は、ポジティブAプレートの位相差膜として使用することができる。重合性液晶化合物の分子長軸が基板に対して垂直に配向した状態で重合した場合は、得られた硬化物は、ポジティブCプレートの位相差膜として使用することができる。重合性液晶化合物、及び、重合性キラル化合物が螺旋を形成し、螺旋軸が基板に対して垂直となる状態で重合した場合は、得られた硬化物は、ネガティブCプレートの位相差膜として使用することができる。この他、重合性液晶化合物の分子長が基板に対して一定の角度で傾いた状態(傾斜配向)で重合は、得られた硬化物は、Oプレートの位相差膜として使用することができる。基板に対して界面付近では基板に垂直となり、空気界面に近くなるほど分子長軸が基板に対して垂直となる状態(ハイブリッド配向)で重合することもできる。スメクチック相の液晶状態ではホメオトロピック配向あるいはホモジニアス配向で重合することが好ましい。また、基材が位相差を有する場合には、基材の有する複屈折性、及び、本発明の位相差膜の複屈折性を加算した複屈折性を有する位相差膜が得られる。前記位相差膜は、基材の有する複屈折性と位相差膜の有する複屈折性が基材の面内で同じ方向の場合もあれば、異なる方向の場合もある。液晶デバイス、ディスプレイ、光学素子、光学部品、着色剤、セキュリティ用マーキング、レーザー発光用部材、光学フィルム、及び、補償フィルム等の用途に応じて、用途に適した形で適用される。
(視野角補償膜)
 本発明の視野角補償膜は、本発明の光学異方体と同様にして作成される。ホメオトロピック配向した液晶フィルムである前記視野角補償膜は、IPS(In-PlaneSwitching)方式の液晶表示装置に組み込まれ、液晶表示装置を斜め方向から見た場合において視認される画像の色味やコントラストが変化する問題を低減する目的で使用される。
(反射防止膜)
 本発明の反射防止膜は、本発明の光学異方体と同様にして作成される。偏光板と1/4波長板を積層した円偏光板を有機EL素子に適用した場合、円偏光板に対して垂直方向からの入射光に対して前記円偏光板は理想的に機能するが、斜め方向からの入射光に対しては、1/4波長からのズレが生じ、理想的な円偏光板として機能しない。ホメオトロピック配向した前記光学異方体を外光反射防止目的で円偏光板に使用した場合、斜め方向からの入射光に対しても黒表示における視野角依存性を低減できる。
(偏光板)
本発明の偏光板は、本発明の光学異方体と同様にして作成される。色素や顔料を本発明の重合性液晶組成物に添加して得られた光学異方体は、波長が800nm以上の赤外光、波長が250nm以下の紫外光、波長が250~800nmの可視光に対して2色性を示すのに好ましく、特に本発明の重合性液晶組成物は塗布型偏光板用途に用いることが好ましく、本発明の光学異方体は塗布型偏光板として用いることが好ましい。
 以下に本発明を合成例、実施例、及び、比較例によって説明するが、もとより本発明はこれらに限定されるものではない。なお、特に断りのない限り、「部」及び「%」は質量基準である。
(重合性液晶組成物の調製)
 表1~表2に示す式(A-1)~式(A-7)、式(B-1)~式(B-3)で表される化合物合計量100質量部に対し、(C-1)~(C-2)、(D-1)、(E-1)~(E-3)、(F-1)、(F-2)及び、有機溶媒である(G-1)~(G-4)をそれぞれ、表1~表2に示す割合(質量部)で配合し重合性液晶組成物(1)~(15)を調製した。
(重合性液晶組成物(1)の調製)
 表1に示す通り、式(A-1)で表される化合物15質量部、式(A-4)で表される化合物28.3質量部、式(A-5)で表される化合物22.7質量部、式(B-1)で表される化合物34質量部の合計値100質量部に対して、重合開始剤(C-1)3質量部、重合禁止剤であるp-メトキシフェノール(MEHQ)(D-1)0.1質量部、界面活性剤(E-1)0.2質量部、及び、有機溶媒であるトルエン(G-2)70質量部を用い、攪拌プロペラを有する攪拌装置を使用し、攪拌速度が500rpm、溶液温度が60℃の条件下で1時間攪拌後、0.2μmのメンブランフィルターで濾過して重合性液晶組成物(1)を得た。
(重合性液晶組成物(2)~(13)、比較用重合性液晶組成物(14)~(15)の調製)
 本発明の重合性液晶組成物(1)の調製と同様に、表1~表3に示す式(A-1)~式(A-7)で表される化合物、式(B-1)~式(B-3)で表される化合物、重合開始剤(C-1)~式(C-2)、重合禁止剤(D-1)、界面活性剤(E-1)~式(E-2)、重合性基を有する非液晶性化合物(F-1)、(F-2)、及び、有機溶媒(G-1)~(G-4)の各成分をそれぞれ表1~表2に示す割合に変更した以外は重合性液晶組成物(1)の調製と同一条件で、それぞれ、重合性液晶組成物(2)~(13)、比較用重合性液晶組成物(14)~(15)を得た。
 表1~表2に、本発明の重合性液晶組成物(1)~(13)、比較用重合性液晶組成物(14)~(15)の具体的な組成を示す。


























Figure JPOXMLDOC01-appb-T000056
























Figure JPOXMLDOC01-appb-T000057

Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
イルガキュア907(C-1)
イルガキュアOXE02(C-2)
MEHQ(D-1)
流動パラフィン(E-1)
メガファック F-554(E-2)
ジシクロペンタニルアクリレート(F-1)
2-ヒドロキシ-3-フェノキシプロピルアクリレート(F-2)
シクロペンタノン(G-1)
トルエン(G-2)
MIBK(G-3)
MEK(G-4)
(実施例1)
(配向性)
 調製した重合性液晶組成物(1)をラビングした水平配向用のポリイミド(日産化学社製SE-6514)付ガラス基板上にバーコーター♯4を用いて室温で塗布し、60℃で2分乾燥後、25℃で1分放置した後に、コンベア式の高圧水銀ランプを使用して、光量が300mJ/cmとなるようにセットしたUV光を照射することにより、実施例1の薄膜を得た。
◎:目視で欠陥が全くなく、偏光顕微鏡観察でも欠陥が全くない。
〇:目視では欠陥がないが、偏光顕微鏡観察で一部に無配向部分が存在している。
△:目視では欠陥がないが、偏光顕微鏡観察で全体的に無配向部分が存在している。
×:目視で一部欠陥が生じており、偏光顕微鏡観察でも全体的に無配向部分が存在している。
(耐久性)
 上記配向性評価試験において得られた薄膜を85℃で500時間保持して耐久性測定用薄膜を得た。
<位相差変化(率)測定>
 上記加熱試験前後の入射光θ=50°の位相差Reを大塚電子製のRETS-100にて測定し(波長は550nm)、加熱前の位相差を100%とした場合の加熱後の位相差変化率を評価した。
◎:3%未満の変化
〇:3%以上~7%未満の低下
△:7%以上~10%未満の低下
×:10%以上の低下
(ハジキ評価)
 上記配向性を測定した塗膜のハジキ具合を目視にて観察した。
◎:塗膜表面にハジキ欠陥が全く観察されない。
〇:塗膜表面にハジキ欠陥が極僅かに観察される。
△:塗膜表面にハジキ欠陥が少し観察される。
×:塗膜表面にハジキ欠陥が多数観察される。
得られた結果を以下の表に示す。
(Tni、Tna測定)
 調製した重合性液晶組成物(1)をラビングした水平配向用のポリイミド(日産化学社製SE-6514)付ガラス基板の上にスピンコート(2000rpm×15秒)で塗布した後、80℃で1分間乾燥して重合性液晶組成物の薄膜を得た。この重合性液晶組成物の薄膜をホットステージ付偏光顕微鏡で等方性液体まで加熱した後、マイナス2℃/minで冷却しながら観察することにより、等方性液体からネマチック相への転移温度(Tni)及びネマチック相からスメクチック相に転移する温度(Tna)を測定した。その結果、Tniは97.1℃であり、Tna59.7℃であった。
Figure JPOXMLDOC01-appb-T000061
(実施例2~13、比較例1~2)
 重合性液晶組成物(2)~(15)を用いて、薄膜を作製し、配向性、耐久性、ハジキを測定した。結果を、それぞれ、実施例2~12、比較例1~2とし、上記表に示す。
 なお、実施例2~実施例13及び比較例1、比較例2では、配向性評価用等の基材として、実施例1と同様に、ラビングした水平配向用のポリイミド(日産化学社製SE-6514)付ガラス基板を用い、重合性液晶組成物の塗布・硬化条件は、各重合性液晶組成物を、バーコーター♯4を用いて室温で塗布し、60℃で2分乾燥後、25℃で1分放置した後に、コンベア式の高圧水銀ランプを使用して、光量が300mJ/cmとなるようにセットしたUV光を照射する条件とした。位相差変化(率)測定は、上記加熱試験前後の入射光θ=50°の位相差Reを大塚電子製のRETS-100にて測定し(波長は550nm)、加熱前の位相差を100%とした場合の加熱後の位相差変化率を評価した。比較例1で用いた重合性液晶組成物(14)からなる重合性液晶材料の相転移温度は実施例(1)と同様の方法で測定を行い、Tniは72.0℃、Tnaは51.0℃であり、比較例2で用いた重合性液晶組成物(15)からなる重合性液晶材料のTniは68.0℃、Tnaは55.0℃であった。
 実施例13は、COP(シクロオレフィンポリマー)基板上にシランカップリング系垂直配向膜を積層したものを用い、重合性液晶組成物の塗布・硬化条件は、各重合性液晶組成物を、バーコーター♯4を用いて室温で塗布し、60℃で2分乾燥後、25℃で1分放置した後に、コンベア式の高圧水銀ランプを使用して、光量が300mJ/cmとなるようにセットしてUV光を照射する条件とした。位相差変化(率)測定は、上記加熱試験前後の入射光θ=50°の位相差Reを大塚電子製のRETS-100にて測定し(波長は550nm)、加熱前の位相差を100%とした場合の加熱後の位相差変化率を評価した。
 その結果、式(A-1)~式(A-2)で表される本発明の一般式(I-1)で表される重合性液晶化合物を含有する重合性液晶組成物(実施例1~実施例13)は、本発明の一般式(I-1)で表される重合性液晶化合物を含有しない重合性液晶組成物(比較例1~比較例6)に比べ、等方性液体への転移温度(Tni)が高く、且つ、スメクチック相を形成する上限温度(Tna)が高い重合性液晶材料であることから、良好なホモジニアス配向またはホメオトロピック配向性を有し、耐久性に優れ、ハジキ欠陥が少ない光学異方体を得ることができる。一方、本発明の一般式(I-1)で表される重合性液晶化合物を含有しない重合性液晶組成物は、等方性液体への転移温度(Tni)は高いものの、スメクチック相を形成する上限温度(Tna)が高くない重合性液晶材料であることから、配向性が悪く、ハジキ欠陥が生じることから良好なホモジニアス配向またはホメオトロピック配向した光学異方体を得ることができない。
 特に、本発明の一般式(I-1)で表される重合性液晶化合物、本発明の一般式(II-1)で表される重合性液晶化合物及び本発明の一般式(I-2)で表される重合性液晶化合物を併用する重合性液晶組成物は、より良好なホモジニアス配向またはホメオトロピック配向性を有し、耐久性に優れ、ハジキ欠陥が少ない光学異方体を得ることができる。

Claims (11)

  1.  分子内に2個の重合性官能基を有する重合性液晶化合物を少なくとも2種以上含有し、そのうちの1種が一般式(I-1)
    Figure JPOXMLDOC01-appb-C000001

    (式中、P111及びP112はそれぞれ独立して重合性官能基を表し、Sp111及びSp112はそれぞれ独立して炭素原子数1~18のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子又はCN基によって置換されても良く、X111及びX112はそれぞれ独立して、-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表し(ただし、P111-Sp111、P112-Sp112、Sp111-X111及びSp112-X112において、酸素原子同士の直接結合を含まない。)、Y111、Y112及びY113はそれぞれ独立して-COO-又は-OCO-を表し、q111及びq112はそれぞれ独立して0から5の整数を表す。)で表される重合性液晶化合物から選択される重合性液晶組成物。
  2. 一般式(II-1)
    Figure JPOXMLDOC01-appb-C000002
    (式中、P21は重合性官能基を表し、Sp21は、炭素原子数1~18のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子又はCN基によって置換されても良く、X21は、-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表し(ただし、P21-Sp21及びSp21-X21において、酸素原子同士の直接結合を含まない。)、Y21は-COO-、-OCO-又は単結合を表し、q21は0又は1を表し、T21は-OH、-SH、-CN、-COOH、-NH、-NO、-COCH、-O(CHCH、又は-(CHCHを表し、nは0~20の整数を表す。)で表される重合性液晶化合物を1種または2種以上含有する請求項1に記載の重合性液晶組成物。
  3.  前記分子内に2個の重合性官能基を有する重合性液晶化合物として、更に、一般式(I-2)
    Figure JPOXMLDOC01-appb-C000003
    (式中、P121及びP122はそれぞれ独立して重合性官能基を表し、Sp121及びSp122はそれぞれ独立して、炭素原子数1~18のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子又はCN基によって置換されても良く、X121及びX122はそれぞれ独立して、-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表し(ただし、P121-Sp121、P122-Sp122、Sp121-X121及びSp122-X122において、酸素原子同士の直接結合を含まない。)、Y121及びY122はそれぞれ独立して-COO-又は-OCO-を表し、q121及びq122はそれぞれ独立して0から5の整数を表す。)で表される重合性液晶化合物を1種または2種以上含有する請求項1又は請求項2に記載の重合性液晶組成物。
  4.  前記一般式(I-1)で表される重合性液晶化合物を重合性液晶組成物中に用いる重合性液晶化合物の全量に対し1~70質量%含有する、請求項1~請求項3のいずれか一項に記載の重合性液晶組成物。
  5.  請求項1~請求項4のいずれか一項に記載の重合性液晶組成物を重合させることにより得られる重合体。
  6.  請求項1~請求項4のいずれか一項に記載の重合性液晶組成物を用いてなる光学異方体。
  7.  請求項1~請求項4のいずれか一項に記載の重合性液晶組成物を用いてなる位相差膜。
  8.  請求項1~請求項4のいずれか一項に記載の重合性液晶組成物を用いてなる視野角補償膜。
  9.  請求項1~請求項4のいずれか一項に記載の重合性液晶組成物を用いてなる反射防止膜。
  10.  請求項1~請求項4のいずれか一項に記載の重合性液晶組成物を用いてなる偏光板。
  11.  請求項1~請求項4のいずれか一項に記載の重合性液晶組成物を用いてなる表示素子。
PCT/JP2017/022076 2016-06-28 2017-06-15 重合性液晶組成物 WO2018003514A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780038201.2A CN109415632A (zh) 2016-06-28 2017-06-15 聚合性液晶组合物
JP2018525037A JP6414367B2 (ja) 2016-06-28 2017-06-15 重合性液晶組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-127578 2016-06-28
JP2016127578 2016-06-28

Publications (1)

Publication Number Publication Date
WO2018003514A1 true WO2018003514A1 (ja) 2018-01-04

Family

ID=60786330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022076 WO2018003514A1 (ja) 2016-06-28 2017-06-15 重合性液晶組成物

Country Status (3)

Country Link
JP (1) JP6414367B2 (ja)
CN (1) CN109415632A (ja)
WO (1) WO2018003514A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6414367B2 (ja) * 2016-06-28 2018-10-31 Dic株式会社 重合性液晶組成物
JP6414368B2 (ja) * 2016-06-28 2018-10-31 Dic株式会社 重合性液晶組成物
JPWO2021059819A1 (ja) * 2019-09-27 2021-04-01

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263789A (ja) * 2004-02-18 2005-09-29 Asahi Denka Kogyo Kk 重合性化合物及び該化合物を含有する重合性液晶組成物
JP2008239569A (ja) * 2007-03-28 2008-10-09 Dic Corp 重合性化合物
JP2009276664A (ja) * 2008-05-16 2009-11-26 Dic Corp パターン化位相差フィルム
JP2010090277A (ja) * 2008-10-08 2010-04-22 Dic Corp 高分子安定化強誘電性液晶組成物、及び液晶素子及び当該表示素子の製造方法
JP2013014538A (ja) * 2011-07-04 2013-01-24 Dic Corp 重合性液晶化合物
JP2013112631A (ja) * 2011-11-28 2013-06-10 Dic Corp 重合性液晶化合物
JP2013253041A (ja) * 2012-06-07 2013-12-19 Dic Corp 化合物の製造方法
WO2014192657A1 (ja) * 2013-05-29 2014-12-04 Dic株式会社 重合性液晶組成物、位相差膜、位相差パターニング膜、及びホモジニアス配向液晶フィルム
JP2014231568A (ja) * 2013-05-29 2014-12-11 Dic株式会社 重合性液晶組成物、位相差膜、位相差パターニング膜、及びホモジニアス配向液晶フィルム
JP2014231560A (ja) * 2013-05-29 2014-12-11 Dic株式会社 重合性組成物溶液、および、それを用いた光学異方体
WO2015133331A1 (ja) * 2014-03-04 2015-09-11 Dic株式会社 メソゲン基を有する化合物を含有する混合物
WO2016043087A1 (ja) * 2014-09-19 2016-03-24 Dic株式会社 重合性組成物、及び、それを用いたフィルム
WO2016204020A1 (ja) * 2015-06-17 2016-12-22 Dic株式会社 重合性組成物及びそれを用いた光学異方体
WO2016208574A1 (ja) * 2015-06-25 2016-12-29 Dic株式会社 重合性液晶組成物及び光学異方体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105658679B (zh) * 2013-10-17 2018-06-22 Dic株式会社 聚合性液晶组合物的制造方法
CN109415632A (zh) * 2016-06-28 2019-03-01 Dic株式会社 聚合性液晶组合物

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263789A (ja) * 2004-02-18 2005-09-29 Asahi Denka Kogyo Kk 重合性化合物及び該化合物を含有する重合性液晶組成物
JP2008239569A (ja) * 2007-03-28 2008-10-09 Dic Corp 重合性化合物
JP2009276664A (ja) * 2008-05-16 2009-11-26 Dic Corp パターン化位相差フィルム
JP2010090277A (ja) * 2008-10-08 2010-04-22 Dic Corp 高分子安定化強誘電性液晶組成物、及び液晶素子及び当該表示素子の製造方法
JP2013014538A (ja) * 2011-07-04 2013-01-24 Dic Corp 重合性液晶化合物
JP2013112631A (ja) * 2011-11-28 2013-06-10 Dic Corp 重合性液晶化合物
JP2013253041A (ja) * 2012-06-07 2013-12-19 Dic Corp 化合物の製造方法
WO2014192657A1 (ja) * 2013-05-29 2014-12-04 Dic株式会社 重合性液晶組成物、位相差膜、位相差パターニング膜、及びホモジニアス配向液晶フィルム
JP2014231568A (ja) * 2013-05-29 2014-12-11 Dic株式会社 重合性液晶組成物、位相差膜、位相差パターニング膜、及びホモジニアス配向液晶フィルム
JP2014231560A (ja) * 2013-05-29 2014-12-11 Dic株式会社 重合性組成物溶液、および、それを用いた光学異方体
WO2015133331A1 (ja) * 2014-03-04 2015-09-11 Dic株式会社 メソゲン基を有する化合物を含有する混合物
WO2016043087A1 (ja) * 2014-09-19 2016-03-24 Dic株式会社 重合性組成物、及び、それを用いたフィルム
WO2016204020A1 (ja) * 2015-06-17 2016-12-22 Dic株式会社 重合性組成物及びそれを用いた光学異方体
WO2016208574A1 (ja) * 2015-06-25 2016-12-29 Dic株式会社 重合性液晶組成物及び光学異方体

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6414367B2 (ja) * 2016-06-28 2018-10-31 Dic株式会社 重合性液晶組成物
JP6414368B2 (ja) * 2016-06-28 2018-10-31 Dic株式会社 重合性液晶組成物
JPWO2018003515A1 (ja) * 2016-06-28 2018-12-20 Dic株式会社 重合性液晶組成物
JPWO2018003514A1 (ja) * 2016-06-28 2018-12-27 Dic株式会社 重合性液晶組成物
JPWO2021059819A1 (ja) * 2019-09-27 2021-04-01
WO2021059819A1 (ja) * 2019-09-27 2021-04-01 富士フイルム株式会社 偏光子形成用組成物、偏光子、積層体、および画像表示装置
JP7449301B2 (ja) 2019-09-27 2024-03-13 富士フイルム株式会社 偏光子形成用組成物、偏光子、積層体、および画像表示装置

Also Published As

Publication number Publication date
CN109415632A (zh) 2019-03-01
JPWO2018003514A1 (ja) 2018-12-27
JP6414367B2 (ja) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6172556B2 (ja) 重合性組成物及びそれを用いた光学異方体
JP6590075B2 (ja) 重合性液晶組成物、及び、それを用いた光学フィルム
US10253125B2 (en) Polymerizable liquid crystal composition and optically anisotropic body, retardation film, and patterned retardation film using the same
JP6292355B2 (ja) 重合性組成物及びそれを用いた光学異方体
JP7082127B2 (ja) 重合性液晶組成物、それを用いた光学フィルム、及びその製造方法。
KR20170105012A (ko) 중합성 조성물 및 그것을 사용한 광학 이방체
JPWO2016114066A1 (ja) 重合性組成物及びそれを用いた光学異方体
JPWO2016114348A1 (ja) 重合性組成物及び光学異方体
KR20170105041A (ko) 중합성 조성물 및 이를 이용한 광학 이방체
KR102154219B1 (ko) 중합성 조성물, 및 그것을 이용한 필름
WO2018225579A1 (ja) 重合性液晶組成物、それを用いた光学フィルム、及びその製造方法
JP6452012B2 (ja) 重合性組成物及びそれを用いた光学異方体
JPWO2019102922A1 (ja) 重合性液晶組成物、その重合体、光学異方体、及び表示素子
JP6414367B2 (ja) 重合性液晶組成物
KR20190022774A (ko) 중합성 조성물 및 그것을 이용한 광학 이방체
WO2018101122A1 (ja) 重合性組成物及びそれを用いた光学異方体
US20170190819A1 (en) Polymerizable composition and film using the same
JP6288536B2 (ja) 重合性組成物及びそれを用いた光学異方体
JP6414368B2 (ja) 重合性液晶組成物
JP6547912B2 (ja) 重合性組成物、及び、それを用いた光学異方体
JPWO2019124090A1 (ja) 位相差フィルム、楕円偏光板及びそれを用いた表示装置
TW201930281A (zh) 聚合性組成物及使用其之光學異向體

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018525037

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819874

Country of ref document: EP

Kind code of ref document: A1