WO2018003394A1 - 振動ドライバ - Google Patents

振動ドライバ Download PDF

Info

Publication number
WO2018003394A1
WO2018003394A1 PCT/JP2017/020456 JP2017020456W WO2018003394A1 WO 2018003394 A1 WO2018003394 A1 WO 2018003394A1 JP 2017020456 W JP2017020456 W JP 2017020456W WO 2018003394 A1 WO2018003394 A1 WO 2018003394A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
magnet
coil
support member
connecting portion
Prior art date
Application number
PCT/JP2017/020456
Other languages
English (en)
French (fr)
Inventor
藤本 圭祐
祐史 荻野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018524979A priority Critical patent/JP6928791B2/ja
Publication of WO2018003394A1 publication Critical patent/WO2018003394A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details

Definitions

  • This disclosure relates to a vibration driver.
  • Patent Document 1 discloses a bone conduction speaker including a composite vibration device as a vibration driver.
  • the diaphragm on which the voice coil is installed and the vibration conductive sheet installed on the magnet are engaged with each other and connected to the panel.
  • the bone conduction speaker is connected to the outside by a panel and transmits vibration generated by the voice coil to the human bone.
  • the present disclosure provides a vibration driver that simplifies a support structure by a vibration plate and a vibration plate that supports a relatively movable voice coil, magnet, and panel.
  • the vibration driver includes a coil, a magnet, a vibration transmission plate that transmits vibration between the coil and the magnet, and a support member that supports the coil, magnet, and vibration transmission plate.
  • the support member includes a first connection portion connected to the magnet, a second connection portion connected to the vibration transmission plate, a third connection portion connected to the coil, a first connection portion, and a second connection portion.
  • the connecting portion and the third connecting portion are connected to each other and have an elastic connecting portion.
  • the first connection portion, the second connection portion, and the third connection portion are arranged side by side and in a plane.
  • a vibration driver includes a coil, a magnet, a vibration transmission plate that transmits vibration between the coil and the magnet, and a support member that supports the coil, magnet, and vibration transmission plate.
  • the support member includes a first connection portion connected to the magnet, a second connection portion connected to the vibration transmission plate, a third connection portion connected to the coil, a first connection portion, and a second connection portion.
  • the connection portion and the third connection portion are integrally connected to each other and elastically connected.
  • the first connection portion, the second connection portion, and the third connection portion are arranged side by side.
  • the support structure can be simplified.
  • FIG. 1 is a perspective view of the vibration driver according to the first embodiment when viewed obliquely from above.
  • FIG. 2 is an exploded perspective view of the vibration driver of FIG.
  • FIG. 3 is a perspective view showing a state in which a part of the vibration driver of FIG. 1 is cut so that the inside can be seen.
  • 4 is a cross-sectional side view of the vibration driver taken along the radial direction of the outer yoke of FIG.
  • FIG. 5 is a plan view of the support member of FIG. 6 is an enlarged perspective view of the vibration transmission plate of FIG.
  • FIG. 7 is a perspective view of the vibration driver according to the second embodiment when viewed obliquely from above.
  • FIG. 8 is an exploded perspective view of the vibration driver of FIG. FIG.
  • FIG. 9 is a perspective view showing a state in which a part of the vibration driver in FIG. 7 is cut so that the inside can be seen.
  • 10 is a cross-sectional side view of the vibration driver taken along the radial direction of the outer yoke of FIG.
  • FIG. 11 is a plan view of the support member of FIG. 12 is a plan view of the vibration transmission plate of FIG.
  • FIG. 13 is a plan view of a support member according to a modification.
  • FIG. 14 is a perspective view illustrating an application example of the vibration driver of the present disclosure.
  • FIG. 1 is a perspective view of the vibration driver 100 according to the first embodiment as viewed obliquely from above.
  • FIG. 2 is an exploded perspective view of the vibration driver 100 of FIG.
  • FIG. 3 is a perspective view showing a state in which a part of the vibration driver 100 of FIG. 1 is cut so that the inside can be seen.
  • FIG. 4 is a cross-sectional side view of the vibration driver 100 taken along the radial direction of the outer yoke 4 of the vibration driver 100 of FIG.
  • the vibration driver 100 includes a disk-shaped vibration transmission plate 1 that contacts an external object and transmits a vibration excitation force as an example of vibration generated by the vibration driver 100 to the object. Further, the vibration driver 100 is a disk-like shape that supports the cylindrical coil 2, the columnar magnet 3 disposed inside the coil 2, and the vibration transmission plate 1, the coil 2, and the magnet 3 and is connected to each other.
  • the supporting member 10 is provided.
  • the vibration transmission plate 1 is made of a material having a predetermined mechanical strength such as a resin such as polycarbonate.
  • the coil 2 is formed by, for example, winding a winding around a cylindrical core material.
  • the magnet 3 is, for example, a permanent magnet, but may be an electromagnet.
  • the support member 10 is a member having elasticity, for example, a leaf spring.
  • the leaf spring forming the support member 10 can be made of a metal material such as phosphor bronze having spreadability and fatigue resistance.
  • the support member 10 may be made of an elastic material such as resin.
  • the vibration driver 100 includes an outer yoke 4 and an inner yoke 5 that are assembled to the magnet 3 so as to hold the magnet.
  • the bottomed cylindrical outer yoke 4 and the disk-shaped inner yoke 5 are made of a magnetic material, for example, ferromagnetic stainless steel.
  • the inner yoke 5 is disposed such that one flat surface thereof is in contact with one flat surface of the magnet 3, and the outer yoke 4 is disposed on the inner surface of the flat bottom wall portion 4 a forming the bottom of the magnet 3. It arrange
  • a cylindrical peripheral wall portion 4b of the outer yoke 4 surrounds the periphery of the magnet 3 and the inner yoke 5, and extends to face the cylindrical outer peripheral surface 3a of the magnet 3 and the cylindrical outer peripheral surface 5a of the inner yoke 5. .
  • the magnet 3, the outer yoke 4, and the inner yoke 5 assembled to each other are fixed to the support member 10 by a connecting shaft 6 that passes through the cylindrical or cylindrical axis.
  • the inner yoke 5 is positioned adjacent to the support member 10 via a cylindrical spacer 7 that is interposed between the inner yoke 5 and the support member 10 and separates them from each other.
  • the spacer 7 can be made of a non-magnetic material such as a resin such as polycarbonate.
  • the connecting shaft 6 whose one end is expanded in diameter sequentially passes through the center of the support member 10, the spacer 7, the inner yoke 5, the magnet 3 and the outer yoke 4, and the end of the connecting shaft 6 protruding from the outer yoke 4 is the outer yoke. 4 is fixed.
  • the end portion of the connecting shaft 6 may be fixed to the outer yoke 4 by screw connection using a nut, and fixed to the outer yoke 4 by being subjected to caulking that undergoes plastic deformation so as to expand the diameter.
  • the fixing method between the end of the connecting shaft 6 and the outer yoke 4 is not limited.
  • the connecting shaft 6 fixes the support member 10, the spacer 7, the inner yoke 5, the magnet 3, and the outer yoke 4 to each other so as to be clamped at both ends thereof.
  • the coil 2 is disposed so as to be inserted into a cylindrical gap between the peripheral wall portion 4 b of the outer yoke 4 and the magnet 3 and the inner yoke 5.
  • the coil 2 is positioned to face the peripheral wall portion 4 b of the outer yoke 4 and the outer peripheral surface 5 a of the inner yoke 5.
  • the coil 2 is supported by an annular holding member 8 that engages with an axial end portion thereof.
  • the holding member 8 is fixed to the support member 10 by fitting a fitting protrusion 8 a formed on the opposite side of the coil 2 to the support member 10.
  • the magnet 3, the outer yoke 4, the inner yoke 5 and the coil 2 as described above are positioned on the main surface 10a side of the two main surfaces 10a and 10b of the support member 10 positioned in the axial direction of the connecting shaft 6.
  • the vibration transmission plate 1 is located on the main surface 10b side opposite to the main surface 10a.
  • the support member 10 is shown in detail. 5 is a plan view of the support member 10 of FIG.
  • the support member 10 has a thin disk-shaped outer shape.
  • the support member 10 can be formed by, for example, punching from a metal plate, resin molding, or the like.
  • the support member 10 surrounds a circular magnet fixing portion 11 positioned at the center in the radial direction, an annular vibration transmission plate fixing portion 12 surrounding the outer periphery of the magnet fixing portion 11, and an outer periphery of the vibration transmission plate fixing portion 12.
  • An annular coil fixing portion 13 is included in a state of being separated from each other.
  • the support member 10 further includes a magnet support spring portion 14 that connects the magnet fixing portion 11 and the vibration transmission plate fixing portion 12, and a coil support spring portion 15 that connects the vibration transmission plate fixing portion 12 and the coil fixing portion 13.
  • the magnet fixing part 11, the vibration transmission plate fixing part 12, the coil fixing part 13, the magnet support spring part 14 and the coil support spring part 15 are integrated and extend continuously from one another. An uninterrupted member is formed.
  • the magnet fixing part 11 is an example of a first connection part
  • the vibration transmission plate fixing part 12 is an example of a second connection part
  • the coil fixing part 13 is an example of a third connection part.
  • the magnet support spring part 14 is an example of a first connection part of the connection part
  • the coil support spring part 15 is an example of a second connection part of the connection part.
  • the magnet fixing portion 11 is formed of a thin disk in the axial direction, and has a through hole 11a through which the connecting shaft 6 can be inserted.
  • the magnet fixing portion 11 is assembled and fixed to the magnet 3, the outer yoke 4, the inner yoke 5, and the spacer 7 by the connecting shaft 6 that passes through the through hole 11 a.
  • the magnet fixing portion 11 forms a magnet mass portion 30 that vibrates integrally with the assembled magnet 3, outer yoke 4, inner yoke 5, connecting shaft 6 and spacer 7.
  • the vibration transmission plate fixing portion 12 is formed of a thin and elongated plate material extending in an annular shape, and is thin in the axial direction of the ring and the magnet fixing portion 11.
  • the vibration transmission plate fixing portion 12 is assembled and fixed to the vibration transmission plate 1.
  • the vibration transmission plate fixing portion 12 forms a vibration transmission plate mass portion 40 that vibrates integrally with the vibration transmission plate 1.
  • the coil fixing portion 13 is formed of a thin and elongated plate material extending in an annular shape, and is thin in the axial direction of the ring and the magnet fixing portion 11.
  • the coil fixing part 13 is assembled and fixed to the coil 2 via the holding member 8. Further, the coil fixing portion 13 forms a coil mass portion 20 that vibrates integrally with the coil 2 and the holding member 8 that holds the coil 2.
  • the magnet fixing part 11, the vibration transmission plate fixing part 12, and the coil fixing part 13 are arranged coaxially.
  • a plurality of magnet support spring portions 14 extend radially from the magnet fixing portion 11 to the vibration transmission plate fixing portion 12 in the radial direction of the magnet fixing portion 11.
  • three magnet support spring portions 14 are arranged.
  • the three magnet support spring portions 14 are arranged rotationally symmetric about the center of the through hole 11a of the magnet fixing portion 11, specifically, rotationally symmetric at an angle of 120 °. That is, the three magnet support spring portions 14 are arranged at substantially equal intervals in the circumferential direction of the through hole 11a.
  • the n magnet support spring portions 14 are arranged rotationally symmetrically at an angle of 360 ° / n around the through hole 11a.
  • Each magnet support spring portion 14 is formed of a linear thin and elongated plate material, and is thin in the axial direction of the magnet fixing portion 11.
  • the center of the through hole 11 a constitutes the center of the support member 10.
  • a plurality of coil support spring portions 15 extend radially from the vibration transmission plate fixing portion 12 to the coil fixing portion 13 in the radial direction of the magnet fixing portion 11 and the coil fixing portion 13.
  • three coil support spring portions 15 are arranged.
  • the three coil support spring portions 15 are arranged rotationally symmetrically about the through hole 11a of the magnet fixing portion 11, specifically, rotationally symmetrical at an angle of 120 °. That is, the three coil support spring portions 15 are arranged at substantially equal intervals in the circumferential direction of the through hole 11a.
  • Each coil support spring portion 15 is connected to the vibration transmission plate fixing portion 12 at a position different from the magnet support spring portion 14. That is, each coil support spring portion 15 is disposed at a position shifted from the magnet support spring portion 14 in the circumferential direction of the through hole 11 a of the magnet fixing portion 11. Specifically, each coil support spring portion 15 is disposed at an intermediate position between the two magnet support spring portions 14 in the circumferential direction of the through hole 11a. The position of the connection portion between the vibration transmission plate fixing portion 12 and the magnet support spring portion 14 is different from the position of the connection portion between the vibration transmission plate fixing portion 12 and the coil support spring portion 15, thereby causing the vibration transmission plate fixing portion 12. The stress at the connecting portion is reduced.
  • Each coil support spring portion 15 is formed of a linear thin and elongated plate material and is thin in the axial direction of the magnet fixing portion 11.
  • the vibration transmitting plate fixing portion 12 has an irregular ring shape, and includes three arc-shaped first portions 12 a extending along the inner periphery of the coil fixing portion 13 and the chord direction of the coil fixing portion 13. It includes three linear second portions 12b extending. Three second parts 12b are arranged between three first parts 12a that are spaced apart from each other.
  • the vibration transmission plate fixing portion 12 has a plane shape that is rotationally symmetric about the through hole 11a of the magnet fixing portion 11, specifically, rotationally symmetric at an angle of 120 °.
  • the planar shape is a shape when the support member 10 is viewed in the axial direction of the through hole 11a that is the axial direction of the connecting shaft 6.
  • a single magnet support spring portion 14 is connected to each first portion 12a.
  • One coil support spring portion 15 is connected to each second portion 12b.
  • the first part 12a is located farther from the magnet fixing part 11 than the second part 12b, so that the length of the magnet support spring part 14 can be increased. Since the 2nd site
  • a fitting hole 12 c penetrating the vibration transmission plate fixing portion 12 is formed in each connection portion of the magnet support spring portion 14 and the coil support spring portion 15.
  • six fitting holes 12c are arranged. Forming the fitting hole 12c in the connecting portion secures the width of the member around the fitting hole 12c, compared to the case where the fitting hole 12c is formed in other parts of the first part 12a and the second part 12b. The member strength around 12c can be increased.
  • the fitting hole 12 c is fitted with a fitting protrusion 1 d (see FIG. 2) formed on the vibration transmission plate 1, thereby fixing the support member 10 to the vibration transmission plate 1.
  • the tip of the fitting protrusion 1d may be subjected to caulking processing that undergoes plastic deformation so as to expand the diameter.
  • the method for fixing the support member 10 to the vibration transmission plate 1 is not limited to the above, and any method such as adhesion, screw fastening, or integral molding may be used.
  • a fitting hole 13 a penetrating the coil fixing portion 13 is formed in each connection portion of the coil support spring portion 15.
  • three fitting holes 13a are arranged. Forming the fitting hole 13a in the connecting portion secures the width of the member around the fitting hole 13a and increases the strength of the member around the fitting hole 13a, as compared with the case where it is formed in other parts. Can do.
  • the fitting hole 13 a is fitted with a fitting protrusion 8 a (see FIG. 2) formed on the holding member 8, thereby fixing the holding member 8 to the support member 10. After the fitting, the tip of the fitting protrusion 8a may be subjected to a caulking process that undergoes plastic deformation so as to expand the diameter.
  • the fixing method of the holding member 8 is not limited to the above, For example, any methods, such as adhesion
  • the magnet fixing part 11, the vibration transmission plate fixing part 12, the coil fixing part 13, the magnet support spring part 14, and the coil support spring part 15 as described above are arranged horizontally and flat in the radial direction of the through hole 11 a of the magnet fixing part 11.
  • fixed part 13, the magnet support spring part 14, and the coil support spring part 15 are arrange
  • the magnet fixing part 11, the vibration transmission plate fixing part 12, the coil fixing part 13, the magnet support spring part 14, and the coil support spring part 15 are arranged on the same plane. Thereby, the support member 10 can be thinned.
  • the magnet fixing part 11, the vibration transmission plate fixing part 12, the coil fixing part 13, the magnet support spring part 14, and the coil support spring part 15 are positioned so as to be shifted from each other in the axial direction of the through hole 11 a of the magnet fixing part 11. May be.
  • FIG. 6 is an enlarged perspective view of the vibration transmission plate 1 of FIG.
  • the vibration transmission plate 1 protrudes from the surface of the disk portion 1a, the circular support member fixing portion 1b protruding from the flat surface of the disk portion 1a, and the surface of the disk portion 1a. And a plurality of stiffening portions 1c.
  • the support member fixing portion 1b is an example of a support member connecting portion.
  • the support member fixing portion 1 b is a belt-like protrusion that surrounds the periphery of the through hole 1 aa and has a planar shape similar to that of the vibration transmission plate fixing portion 12 of the support member 10.
  • the support member fixing portion 1b has a flat support surface 1ba on which the entirety of the vibration transmission plate fixing portion 12 is placed as its upper surface.
  • fixed part 12 of the supporting member 10 has a planar shape which follows the support surface 1ba, and extends along the support surface 1ba.
  • a plurality of fitting protrusions 1d are integrally formed on the support surface 1ba of the support member fixing portion 1b.
  • Each fitting protrusion 1d is disposed at a position aligned with each fitting hole 12c of the vibration transmission plate fixing portion 12 of the support member 10, and can be fitted into each fitting hole 12c.
  • the plurality of stiffening portions 1c are linear belt-like protrusions that extend radially from the support member fixing portion 1b to the radially outer side of the disc portion 1a.
  • Each stiffening portion 1c is integrated with the disc portion 1a and the support member fixing portion 1b.
  • the plurality of stiffening portions 1c improve the rigidity of the connection portion between the disk portion 1a and the support member fixing portion 1b and the rigidity of the disk portion 1a. Thereby, the vibration excitation force given to the support member fixing
  • the vibration transmission plate mass portion 40 is connected to the magnet mass portion 30 via the magnet support spring portion 14 of the support member 10 inside the vibration transmission plate fixing portion 12. Elastically connected.
  • the vibration transmission plate mass portion 40 is elastically connected to the coil mass portion 20 via the coil support spring portion 15 of the support member 10 outside the vibration transmission plate fixing portion 12. And each connection part is located on the substantially same plane.
  • the vibration transmitting plate mass unit 40, the coil mass unit 20, and the magnet mass unit 30 can move with elasticity in the axial direction of the connecting shaft 6 with respect to each other.
  • the magnetic field generated by the coil 2 when an electric signal is sent interacts with the magnetic field between the outer yoke 4 and the inner yoke 5, whereby the coil mass unit 20, the magnet mass unit 30, and the like. During this period, vibration excitation force is generated.
  • This vibration excitation force is transmitted to the vibration transmission plate mass portion 40 via the magnet support spring portion 14 and the coil support spring portion 15 of the support member 10 to elastically vibrate the vibration transmission plate 1. Is transmitted to an object in contact with the vibration transmitting plate 1.
  • the electrical signal sent to the coil 2 is an audio signal and the object is a human head
  • the vibration of the vibration transmission plate 1 is transmitted as a sound through a human head tissue such as skin or skull having elasticity. Transmit to the auditory nerve.
  • the vibration transmission plate transmits the vibration of the voice of the uttered person via the human head tissue. 1 is vibrated, whereby the coil mass part 20 and the magnet mass part 30 are relatively vibrated, and an induced electromotive force is generated in the coil 2.
  • the vibration driver 100 can be operated as a means for collecting sound generated by a person wearing the vibration driver 100. In these operations, in the vibration driver 100, the three mass parts of the coil mass part 20, the magnet mass part 30, and the vibration transmission plate mass part 40 are connected by the magnet support spring part 14 and the coil support spring part 15.
  • a three-degree-of-freedom vibration system is formed.
  • the vibration transmission plate mass portion 40 is connected to the human body
  • the coil mass portion 20 is connected by the vibration transmission plate mass portion 40 and the coil support portion spring portion
  • the magnet mass portion 30 is the vibration transmission plate.
  • the mass portion 40 and the magnet support spring portion 14 are connected.
  • the vibration excitation force and the induced electromotive force are generated due to the relative motion of the coil mass unit 20 and the magnet mass unit 30.
  • the mass of the three mass parts is the smallest in the coil mass part 20 and increases in the order of the vibration transmission plate mass part 40 and the magnet mass part 30.
  • the spring rigidity of the support member 10 is set so that the coil support spring portion 15 is larger than the magnet support spring portion 14.
  • the vibration driver 100 includes the coil 2, the magnet 3, the vibration transmission plate 1 that transmits the vibration excitation force as vibration between the coil 2 and the magnet 3, the coil 2, And a support member 10 that supports the magnet 3 and the vibration transmission plate 1.
  • the support member 10 includes a magnet fixing portion 11 as a first connection portion connected to the magnet 3, a vibration transmission plate fixing portion 12 as a second connection portion connected to the vibration transmission plate 1, and the coil 2.
  • a coil fixing portion 13 as a third connecting portion to be connected, a magnet fixing portion 11, a vibration transmitting plate fixing portion 12 and a coil fixing portion 13 are connected to each other and a magnet supporting spring portion 14 as an elastic connecting portion and Coil support spring portion 15.
  • the magnet fixing part 11, the vibration transmission plate fixing part 12, and the coil fixing part 13 are arranged side by side and in a plane.
  • the coil fixing portion 13 may have an annular shape so as to support the entire coil 2.
  • the support member 10 includes the magnet fixing portion 11, the vibration transmission plate fixing portion 12, and the coil fixing portion 13 that are arranged horizontally and planarly, and the magnet supporting spring portion 14 and the coil supporting spring portion 15. It has only the structure connected. Thereby, the structure of the support member 10 can be simplified. Furthermore, the magnet fixing part 11, the vibration transmission plate fixing part 12 and the coil fixing part 13 which are arranged side by side and the connection structure of the magnet 3, the vibration transmission plate 1 and the coil 2 are also simplified without interfering with each other. can do.
  • the magnet fixing portion 11, the vibration transmission plate fixing portion 12, and the coil fixing portion 13 are arranged in a plane, it is possible to reduce the height of the support member 10 in a direction perpendicular to the side-by-side direction. Thereby, the support member 10 can have a planar simple structure.
  • the support member 10 includes the magnet fixing portion 11, the vibration transmission plate fixing portion 12, the coil fixing portion 13, the magnet support spring portion 14, and the coil support spring portion 15.
  • the magnet fixing part 11, the vibration transmission plate fixing part 12, and the coil fixing part 13 are arranged side by side.
  • the magnet fixing part 11, the vibration transmission plate fixing part 12, and the coil fixing part 13 may be arranged in a plane.
  • the support member 10 has a configuration including the magnet fixing portion 11, the vibration transmission plate fixing portion 12, and the coil fixing portion 13 that are arranged side by side and integrated.
  • the structure of the support member 10 is simplified, and the connection structure between the magnet fixing portion 11, the vibration transmission plate fixing portion 12 and the coil fixing portion 13 and the magnet 3, the vibration transmission plate 1 and the coil 2 is improved. Simplification is possible. Moreover, since the support member 10 can be formed from one member, its manufacture becomes easy.
  • the magnet fixing portion 11, the vibration transmission plate fixing portion 12, the coil fixing portion 13, the magnet support spring portion 14, and the coil support spring portion 15 have a plate shape. Have. In the above-described configuration, the support member 10 can be thinned.
  • the magnet support spring portion 14 as the first connecting portion includes two of the magnet fixing portion 11, the vibration transmission plate fixing portion 12, and the coil fixing portion 13.
  • the coil support spring portion 15 as the second connection portion is a combination different from the two to which the magnet support spring portion 14 of the magnet fixing portion 11, the vibration transmitting plate fixing portion 12 and the coil fixing portion 13 is connected. Are connected.
  • the magnet support spring portion 14 and the coil support spring portion 15 are connected to the vibration transmitting plate fixing portion 12 to which the magnet support spring portion 14 and the coil support spring portion 15 are connected at different positions.
  • the magnet support spring portion 14 and the coil support spring portion 15 are arranged so as not to be aligned in a line at the vibration transmission plate fixing portion 12, so that the size of the support member 10 is determined. Even in the case, the respective lengths can be set in a state where the influence on each other is reduced. For example, the magnet support spring portion 14 and the coil support spring portion 15 that are aligned in a row are affected by each other when the length is increased because the size of the support member 10 is determined. Therefore, the freedom degree of design of the magnet support spring part 14 and the coil support spring part 15 improves.
  • the lengths of the magnet support spring portion 14 and the coil support spring portion 15 constitute parameters of resonance frequencies of three resonances generated between the magnet mass portion 30, the vibration transmission plate mass portion 40, and the coil mass portion 20. .
  • the degree of freedom in designing the lengths of the magnet support spring part 14 and the coil support spring part 15 is improved, the degree of freedom in the resonance frequency that can be generated is improved.
  • a plurality of magnet support spring portions 14 and a plurality of coil support spring portions 15 are provided.
  • the plurality of magnet support spring portions 14 and the plurality of coil support spring portions 15 are arranged rotationally symmetrically with respect to the center of the support member 10.
  • force and vibration are biased between the magnet fixing portion 11, the vibration transmission plate fixing portion 12, and the coil fixing portion 13 via the plurality of magnet support spring portions 14 and the plurality of coil support spring portions 15. Reduce and transmit almost uniformly.
  • the vibration transmission plate fixing portion 12 has a shape that is rotationally symmetric with respect to the center of the support member 10.
  • the vibration transmission plate fixing portion 12 when the vibration excitation force is transmitted to the vibration transmission plate fixing portion 12 via the plurality of magnet support spring portions 14 and the plurality of coil support spring portions 15, the spring reaction force of the vibration transmission plate fixing portion 12 is reduced.
  • the bias is reduced and the linearity of the vibration direction of the vibration transmitting plate 1, the coil 2, and the magnet 3 is improved.
  • the vibration transmission plate fixing portion 12 is disposed between the magnet fixing portion 11 and the coil fixing portion 13, and the magnet support spring portion 14 is fixed to the vibration transmission plate.
  • the part 12 and the magnet fixing part 11 are connected, and the coil support spring part 15 connects the vibration transmission plate fixing part 12 and the coil fixing part 13.
  • the first part 12 a as a connection part with the magnet support spring part 14 in the vibration transmission plate fixing part 12 is more magnet than the second part 12 b as a connection part with the coil support spring part 15 in the vibration transmission plate fixing part 12. It is located away from the fixed part 11.
  • the first part 12a of the vibration transmission plate fixing part 12 is located farther from the magnet fixing part 11 than the second part 12b, that is, the second part 12b is more than the first part 12a. It is located away from the coil fixing part 13. Therefore, it is possible to increase the lengths of the magnet support spring portion 14 and the coil support spring portion 15.
  • the magnet fixing portion 11, the vibration transmission plate fixing portion 12, and the coil fixing portion 13 are arranged coaxially.
  • the magnet 3, the vibration transmission plate 1, and the coil 2 can be vibrated in substantially the same direction. Thereby, it becomes easy to make the gravity center position of the vibration transmission plate 1, the coil 2, and the magnet 3 coincide with the vibration direction, and for example, it is possible to suppress the occurrence of unintended resonance among them.
  • the vibration transmission plate 1 has a support member fixing portion 1b as a support member connecting portion connected to the support member 10, and the vibration transmission plate fixing portion 12 is fixed to the support member. It extends along the part 1b. Furthermore, the support member fixing portion 1b may extend so as to form a continuous ring. In the above-described configuration, the contact area between the support member fixing portion 1b and the vibration transmission plate fixing portion 12 can be increased. Thereby, the transmission of vibration between the vibration transmission plate 1 and the support member 10 becomes efficient.
  • FIG. 7 is a perspective view of the vibration driver 200 according to the second embodiment as viewed obliquely from above.
  • FIG. 8 is an exploded perspective view of the vibration driver 200 of FIG.
  • FIG. 9 is a perspective view showing a state in which a part of the vibration driver 200 of FIG. 7 is cut so that the inside can be seen.
  • FIG. 10 is a cross-sectional side view of the cross section of the vibration driver 200 along the radial direction of the outer yoke 4 of the vibration driver 200 of FIG.
  • FIG. 11 is a plan view of the support member 210 of FIG. 12 is a plan view of the vibration transmitting plate 21 of FIG.
  • constituent elements having the same reference numerals as those in FIGS. 1 to 6 are the same or similar constituent elements, and thus detailed description thereof is omitted. Further, the description of the same points as those of the above-described embodiment will be omitted.
  • the vibration driver 200 according to the second embodiment is mainly different in the configuration of the connecting shaft and the connection configuration between the support member and the vibration transmission plate.
  • the vibration driver 200 includes the magnet 3, the outer yoke 4, and the inner yoke 25 that are arranged in the same manner as the vibration driver 100 according to the first embodiment.
  • a cylindrical portion 25b that protrudes in the opposite direction to the magnet 3 is integrally formed at the center of the inner yoke 25 in the radial direction.
  • a female screw hole is formed inside the cylindrical portion 25b.
  • the connecting shaft 26 has a shaft portion having a male screw formed on the outer peripheral surface and an end portion having an enlarged diameter.
  • the connecting shaft 26 is, for example, a screw.
  • the magnet 3, the outer yoke 4 and the inner yoke 25 are joined to each other by a joining method such as adhesion, fitting, and screwing.
  • the connecting shaft 26 passes through the through hole 11a of the magnet fixing portion 11 of the support member 210, and is disposed by screwing the shaft portion of the connecting shaft 26 into the female screw of the cylindrical portion 25b of the inner yoke 25.
  • the connecting shaft 26 is fastened to the inner yoke 25 to fix the support member 210 to the inner yoke 25. Therefore, the cylindrical portion 25b of the inner yoke 25 is interposed between the disc portion of the inner yoke 25 and the support member 210 and separates them from each other.
  • the support member 210 includes a magnet fixing portion 11, a vibration transmission plate fixing portion 212, a coil fixing portion 13, a magnet supporting spring portion 14, and a coil supporting spring portion 15 that are arranged in a plane.
  • the first part 212a of the vibration transmission plate fixing part 212 to which the magnet support spring part 14 is connected has the same configuration as the first part 12a of the vibration transmission plate fixing part 12 according to the first embodiment. Does not have a hole.
  • the second portion 212 b of the vibration transmitting plate fixing portion 212 to which the coil support spring portion 15 is connected is curved so as to form a convex arc toward the magnet fixing portion 11.
  • the fitting hole 212c is formed in the connection part of the coil support spring part 15 in the 2nd site
  • three fitting holes 212c are arranged.
  • the vibration transmission plate 21 includes a disc portion 21a that contacts an object that transmits vibration, and a plurality of support members that protrude from the flat surface of the disc portion 21a.
  • the fixing portion 21b and the stiffening portion 21c protruding from the surface of the disc portion 21a are integrally included.
  • a through hole 21aa into which the connecting shaft 26 can be inserted is formed at the center of the disc portion 21a. Accordingly, the connection shaft 26 can be installed and removed via the through hole 21aa.
  • the plurality of support member fixing portions 21b are band-shaped protrusions arranged along the periphery of the through hole 21aa. In the present embodiment, three support member fixing portions 21b are arranged so as to form a discontinuous ring. Each support member fixing portion 21b is disposed at a position corresponding to the second portion 212b of the vibration transmission plate fixing portion 212 of the support member 210, and has the same planar shape as the second portion 212b.
  • Each support member fixing portion 21b has a support surface 21ba on which at least a part of the second portion 212b is placed as its upper surface. Furthermore, one fitting protrusion 21d is integrally formed on the support surface 21ba of each support member fixing portion 21b. Each fitting protrusion 21d is disposed at a position that is aligned with the fitting hole 212c (see FIG. 11) of the second portion 212b, and engages with the fitting hole 212c.
  • the stiffening portion 21c is a belt-like protrusion that extends over the entire disc portion 21a, and protrudes lower than the support member fixing portion 21b.
  • the stiffening portion 21c extends in the circumferential direction and the radial direction of the disc portion 21a, and further extends so as to follow the shape of the vibration transmission plate fixing portion 212 of the support member 210.
  • the rigidity of the support member fixing portion 21b is increased.
  • the magnet fixing portion 11 of the support member 210 includes a magnet mass portion 31 that vibrates integrally with the assembled magnet 3, outer yoke 4, inner yoke 25, and connecting shaft 26.
  • the second portion 212b of the vibration transmission plate fixing portion 212 (see FIG. 11) of the support member 210 forms a vibration transmission plate mass portion 41 that vibrates integrally with the vibration transmission plate 21.
  • the vibration transmission plate fixing portion 212 of the support member 210 is a part other than the connection portion of the magnet support spring portion 14 and is fixed and supported by the support member fixing portion 21 b of the vibration transmission plate 21.
  • fixed part 212 becomes large. Therefore, the amplitude when the magnet fixing portion 11 vibrates with respect to the vibration transmitting plate fixing portion 212 is increased.
  • the spring constant of the support member 210 that connects the vibration transmission plate fixing portion 212 and the magnet fixing portion 11 is also lowered. Therefore, the vibration driver 200 according to the second embodiment can vibrate the vibration transmission plate 21 with a larger amplitude and can be vibrated at a lower frequency than the vibration driver 100 according to the first embodiment.
  • the vibration driver 200 according to the second embodiment since the other configuration and operation of the vibration driver 200 according to the second embodiment are the same as those of the first embodiment, the description thereof is omitted. Furthermore, according to the vibration driver 200 according to the second embodiment, the same effect as that of the vibration driver 100 according to the first embodiment can be obtained. Furthermore, in the vibration driver 200 according to Embodiment 2, the support member fixing portion 21b of the vibration transmission plate 21 extends so as to form a discontinuous ring. In the above-described configuration, the vibration transmission plate fixing portion 212 of the support member 210 is in partial contact with the support member fixing portion 21b.
  • the first portion 212a which is a non-contact portion with the support member fixing portion 21b in the vibration transmission plate fixing portion 212, can be bent together with the magnet support spring portion 14, the amplitude of the vibration transmission plate mass portion 41 with respect to the magnet mass portion 31. Can be increased, and the resonance frequency that can be generated by the vibration of the vibration transmitting plate mass portion 41 can be lowered. Therefore, the degree of freedom in designing the resonance frequency is improved.
  • FIG. 13 is a plan view of a support member 310 according to a modification. That is, the magnet support spring portion 314 and the coil support spring portion 315 of the support member 310 extend radially from the center of the support member 310 with bending.
  • each magnet support spring portion 314 of the support member 310 has a planar shape bent in a Z shape, and is connected to the magnet fixing portion 11 and the vibration transmitting plate fixing portion 12 at both ends thereof.
  • the connection part of the magnet support spring part 314 and the vibration transmission plate fixing part 12 is shifted in one circumferential direction A1 of the through hole 11a of the magnet fixing part 11 with respect to the connection part of the magnet support spring part 314 and the magnet fixing part 11. Is located.
  • the three magnet support spring portions 314 have a rotationally symmetric shape, size, and arrangement configuration around the through hole 11a at an angle of 120 °.
  • Each coil support spring portion 315 of the support member 310 has a planar shape bent in a Z shape, and is connected to the vibration transmission plate fixing portion 12 and the coil fixing portion 13 at both ends thereof.
  • the connection portion of the coil support spring portion 315 and the coil fixing portion 13 is shifted in the circumferential direction A2 opposite to the circumferential direction A1 of the through hole 11a with respect to the connection portion of the coil support spring portion 315 and the vibration transmission plate fixing portion 12.
  • the three coil support spring portions 315 have a rotationally symmetric shape, size, and arrangement configuration around the through hole 11a of the magnet fixing portion 11 at an angle of 120 °.
  • each magnet support spring portion 314 Since the displacement direction A1 of both ends of each magnet support spring portion 314 is opposite to the displacement direction A2 of each coil support spring portion 315, when vibration occurs between the coil 2 and the magnet 3, the support member 310 is unidirectional. It is suppressed that the rotational force acts on.
  • fitting holes 12c are formed in the connection portions of the magnet support spring portion 314 and the coil support spring portion 315, respectively.
  • a fitting hole 13 a is formed in each connection portion of the coil support spring portion 315.
  • the magnet support spring portion 314 and the coil support spring portion 315 extending with a bend increase their lengths, thereby reducing their spring constants. For this reason, it is possible to increase the amplitude of vibration when the magnet fixing portion 11 and the coil fixing portion 13 vibrate with respect to the vibration transmitting plate fixing portion 12, and it is also possible to reduce the frequency of vibration. Become.
  • the bent shape of the magnet support spring portion 314 and the coil support spring portion 315 is not limited to the Z shape, and may be any shape.
  • FIG. 14 is a perspective view illustrating an application example of the vibration drivers 100 and 200 of the present disclosure.
  • the headset 50 includes a headband 51 attached to a person's head, two speaker arms 52 extending from both ends of the headband 51, and one microphone arm 53 extending from one end of the headband 51. Yes. Further, the headset 50 includes the vibration driver 100 or 200 in the speaker housing 52 a at the end of each speaker arm 52, and the vibration driver 100 or 200 in the microphone housing 53 a at the end of the microphone arm 53.
  • the vibration driver 100 or 200 in the speaker housing 52a is connected to an output terminal of an output amplifier for audio signals, and functions as a bone conduction speaker for receiving means that transmits sound to the auditory nerve by vibration transmitted to the human head tissue.
  • the vibration driver 100 or 200 in the microphone housing 53a is connected to an input terminal of an input amplifier for audio signals, and is a bone conduction microphone for transmitting means for converting a vibration of a voice transmitted through a human head tissue into an electric signal. Function as.
  • the headset 50 may include only one of the speaker housing 52a and the microphone housing 53a.
  • the vibration driver 100 or 200 can function as either or both of a bone conduction speaker and a bone conduction microphone.
  • a bone conduction speaker and a bone-conduction microphone When operating as both a bone-conduction speaker and a bone-conduction microphone, half-duplex two-way audio communication is possible by switching the connection destination with an electrical switch.
  • a 2-wire 4-wire conversion circuit used for an analog telephone or the like or when signal processing hardware such as a DSP (digital signal processor) is provided and signal processing is performed by software such as an echo canceller, It is possible to mix / separate the transmitted transmission signal and the reception signal, and full duplex bidirectional voice communication is possible.
  • DSP digital signal processor
  • the vibration transmission plate fixing portions 12 and 212 and the coil fixing portion 13 of the support members 10, 210, and 310 have a continuous annular shape. It is not limited.
  • the vibration transmission plate fixing parts 12 and 212 and the coil fixing part 13 may be divided into a plurality of parts.
  • the vibration transmitting plate fixing parts 12 and 212 and the coil fixing part 13 divided into a plurality of parts are arranged rotationally symmetrically about the through hole 11a of the magnet fixing part 11, specifically, the through hole 11a. It is desirable to arrange them evenly in the circumferential direction. Thereby, the direction of vibration can be made uniform among the magnet fixing part 11, the vibration transmission plate fixing parts 12, 212 and the coil fixing part 13.
  • the magnet fixing part 11 and the coil fixing part 13 are connected to each other via the vibration transmitting plate fixing parts 12 and 212, but the present invention is not limited to this.
  • the vibration transmission plate fixing portions 12 and 212 are divided into a plurality of portions, only one of the magnet fixing portion 11 and the coil fixing portion 13 is connected to one portion of the vibration transmission plate fixing portions 12 and 212. Good.
  • the magnet fixing portion 11, the vibration transmission plate fixing portions 12 and 212, and the coil fixing portion 13 are arranged in this order in the support member 10, although it has been arranged from the center of 210, 310 toward the outside in the radial direction, it is not limited to this and may be arranged in any order.
  • the number of magnet support spring portions 14 and 314 and the number of coil support spring portions 15 and 315 are the same. , May be different.
  • the vibration transmitting plate fixing portions 12, 212 and the coil fixing portion 13 three or more magnet support spring portions 14, 314 and three or more It is desirable that the coil support spring portions 15 and 315 are provided.
  • the vibration transmission plates 1 and 21 are disposed on the side opposite to the coil 2 and the magnet 3 with the support members 10, 210, and 310 interposed therebetween, but this is not limitative. Not what is done.
  • the vibration transmission plates 1, 21, the coil 2, and the magnet 3 may be disposed on the same side of the support members 10, 210, 310, and any one of the vibration transmission plates 1, 21, the coil 2, and the magnet 3
  • the support members 10, 210 and 310 may be disposed on the opposite side to the other two.
  • the support members 10, 210, and 310 have a flat outer shape with no irregularities, but are not limited thereto. Folding or embossing of edge portions on part or all of the support members 10, 210, 310, preferably part or all of the magnet fixing part 11, the vibration transmission plate fixing parts 12, 212, and the coil fixing part 13. Further, mechanical processing such as coining may be performed to increase the strength of the connecting portion, thereby suppressing the occurrence of unintended resonance.
  • the present disclosure is useful for a vibration driver that transmits vibration via a vibration transmission plate.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

振動ドライバは、コイルと、マグネットと、コイル及びマグネット間の振動を伝達する振動伝達板と、コイル、マグネット及び振動伝達板を支持する支持部材(10)とを備える。支持部材(10)は、マグネットに接続されるマグネット固定部(11)と、振動伝達板に接続される振動伝達板固定部(12)と、コイルに接続されるコイル固定部(13)と、マグネット固定部(11)、振動伝達板固定部(12)及びコイル固定部(13)を互いに連結し且つ弾性を有するマグネット支持ばね部(14)及びコイル支持ばね部(15)とを含む。さらに、マグネット固定部(11)、振動伝達板固定部(12)及びコイル固定部(13)は、横並びに且つ平面的に配置される。

Description

振動ドライバ
 本開示は、振動ドライバに関する。
 特許文献1には、振動ドライバとしての複合振動装置を備える骨伝導スピーカが開示されている。開示される複合振動装置では、ボイスコイルが設置された振動板と、磁石に設置された振動伝導シートとが、互いに係合しパネルに接続されている。骨伝導スピーカは、パネルによって外部に接続され、ボイスコイルが発生する振動を人骨に伝える。
特表2015-505204号公報
 本開示は、相対的に可動であるボイスコイル、磁石及びパネルを支持する振動板及び振動伝導シートによる支持構造を簡易にする振動ドライバを提供する。
 本開示の一態様における振動ドライバは、コイルと、マグネットと、コイル及びマグネット間の振動を伝達する振動伝達板と、コイル、マグネット及び振動伝達板を支持する支持部材とを備える。支持部材は、マグネットに接続される第1の接続部と、振動伝達板に接続される第2の接続部と、コイルに接続される第3の接続部と、第1の接続部、第2の接続部及び第3の接続部を互いに連結し且つ弾性を有する連結部とを含む。第1の接続部、第2の接続部及び第3の接続部は、横並びに且つ平面的に配置される。
 本開示の別の態様における振動ドライバは、コイルと、マグネットと、コイル及びマグネット間の振動を伝達する振動伝達板と、コイル、マグネット及び振動伝達板を支持する支持部材とを備える。支持部材は、マグネットに接続される第1の接続部と、振動伝達板に接続される第2の接続部と、コイルに接続される第3の接続部と、第1の接続部、第2の接続部及び第3の接続部を互いに連結し且つ弾性を有する連結部とを一体的に含む。第1の接続部、第2の接続部及び第3の接続部は、横並びに配置される。
 本開示における振動ドライバによれば、支持構造を簡易にすることが可能になる。
図1は、実施の形態1に係る振動ドライバを斜め上方から見た斜視図である。 図2は、図1の振動ドライバの分解斜視図である。 図3は、図1の振動ドライバの一部が切断されて内部が見えるようにされた状態を示す斜視図である。 図4は、図1の振動ドライバの外ヨークの径方向に沿った振動ドライバの断面を方向IVに見た断面側面図である。 図5は、図2の支持部材の平面図である。 図6は、図2の振動伝達板を拡大した斜視図である。 図7は、実施の形態2に係る振動ドライバを斜め上方から見た斜視図である。 図8は、図7の振動ドライバの分解斜視図である。 図9は、図7の振動ドライバの一部が切断されて内部が見えるようにされた状態を示す斜視図である。 図10は、図7の振動ドライバの外ヨークの径方向に沿った振動ドライバの断面を方向Xに見た断面側面図である。 図11は、図8の支持部材の平面図である。 図12は、図8の振動伝達板の平面図である。 図13は、変形例に係る支持部材の平面図である。 図14は、本開示の振動ドライバの適用例を示す斜視図である。
 以下、適宜図面を参照しつつ、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。また、以下の実施の形態の説明において、略平行、略直交のような「略」を伴った表現が、用いられる場合がある。例えば、略平行とは、完全に平行であることを意味するだけでなく、実質的に平行である、すなわち、例えば数%程度の差異を含むことも意味する。他の「略」を伴った表現についても同様である。なお、発明者らは、当業者が本開示を十分に理解するために添付図面及び以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
 (実施の形態1)
 [1-1.振動ドライバ]
 以下、図1~図4を参照しつつ、実施の形態1に係る振動ドライバ100を説明する。なお、図1は、実施の形態1に係る振動ドライバ100を斜め上方から見た斜視図である。図2は、図1の振動ドライバ100の分解斜視図である。図3は、図1の振動ドライバ100の一部が切断されて内部が見えるようにされた状態を示す斜視図である。図4は、図1の振動ドライバ100の外ヨーク4の径方向に沿った振動ドライバ100の断面を方向IVに見た断面側面図である。
 振動ドライバ100は、外部の対象物と接触し且つ振動ドライバ100が発生する振動の一例としての振動加振力を対象物に伝達する、円板状の振動伝達板1を備えている。さらに、振動ドライバ100は、円筒状のコイル2と、コイル2の内側に配置される円柱状のマグネット3と、振動伝達板1、コイル2及びマグネット3を支持し且つ相互に連結する円板状の支持部材10とを備えている。振動伝達板1は、例えば、ポリカーボネート等の樹脂のような所定の機械的強度を有する材料で作製されている。コイル2は、例えば、円筒状の芯材の周りに巻き線を巻回することによって形成される。マグネット3は、例えば、永久磁石であるが、電磁石であってもよい。支持部材10は、弾性を有する部材であり、例えば、板ばねである。支持部材10を形成する板ばねは、展延性及び耐疲労性を有するリン青銅等の金属材料で作製され得る。支持部材10は、樹脂等の弾性を有する材料で作製されてもよい。
 さらに、振動ドライバ100は、マグネット3にこれを挟持するように組み付けられる外ヨーク4及び内ヨーク5を備えている。有底円筒状の外ヨーク4及び円板状の内ヨーク5は、磁性を有する材料で作製され、例えば、強磁性ステンレス鋼で作製される。内ヨーク5は、その一方の平坦面をマグネット3の一方の平坦面に当接して配置され、外ヨーク4は、その底部を形成する平坦な底壁部4aの内側表面をマグネット3の他方の平坦面に当接して配置される。外ヨーク4の筒状の周壁部4bは、マグネット3及び内ヨーク5の周囲を囲み、マグネット3の円筒状の外周面3a及び内ヨーク5の円筒状の外周面5aと対向して延在する。
 互いに組み付けられたマグネット3、外ヨーク4及び内ヨーク5は、これらの円柱又は円筒の軸心を通って貫通する連結シャフト6によって、支持部材10に固定される。内ヨーク5は、内ヨーク5と支持部材10との間に介在してこれらを互いに離す円筒状のスペーサ7を介して、支持部材10と隣り合って位置する。スペーサ7は、例えばポリカーボネートなどの樹脂等の磁性を有さない材料で作製され得る。一端が拡径した連結シャフト6は、支持部材10の中心、スペーサ7、内ヨーク5、マグネット3及び外ヨーク4を順次貫通し、外ヨーク4から突出する連結シャフト6の端部が、外ヨーク4に固定される。例えば、連結シャフト6の端部は、ナットを用いたねじ結合によって外ヨーク4に固定されてもよく、拡径するように塑性変形を受けるかしめ加工を施されることによって、外ヨーク4に固定されてもよく、連結シャフト6の端部と外ヨーク4との固定方法は、限定されない。連結シャフト6は、その両端で挟持するようにして、支持部材10、スペーサ7、内ヨーク5、マグネット3及び外ヨーク4を互いに固定する。
 コイル2は、外ヨーク4の周壁部4bと、マグネット3及び内ヨーク5との間の円筒状の間隙内に挿入されるように配置される。コイル2は、外ヨーク4の周壁部4bと内ヨーク5の外周面5aとに対向して位置する。コイル2は、その軸心方向の端部と係合する環状の保持部材8によって、支持される。保持部材8は、コイル2と反対側に形成された嵌合突起8aを支持部材10に嵌合させることによって、支持部材10に固定される。
 上述のようなマグネット3、外ヨーク4、内ヨーク5及びコイル2は、連結シャフト6の軸心方向に位置する支持部材10の2つの主面10a及び10bのうちの主面10a側に位置し、振動伝達板1は、主面10aと反対側の主面10b側に位置する。
 図5を参照すると、支持部材10が詳細に示されている。なお、図5は、図2の支持部材10の平面図である。支持部材10は、薄肉な円板状の外形を有している。支持部材10は、例えば、金属板からの打ち抜き加工、樹脂成形等によって形成され得る。支持部材10は、その径方向の中心に位置する円形状のマグネット固定部11と、マグネット固定部11の外周を囲む環状の振動伝達板固定部12と、振動伝達板固定部12の外周を囲む環状のコイル固定部13とを、互いに離れた状態で含む。支持部材10はさらに、マグネット固定部11と振動伝達板固定部12とを連結するマグネット支持ばね部14と、振動伝達板固定部12とコイル固定部13とを連結するコイル支持ばね部15とを含む。本実施の形態では、マグネット固定部11、振動伝達板固定部12、コイル固定部13、マグネット支持ばね部14及びコイル支持ばね部15は、一体化されて互いに連続して延在し、1つの途切れのない部材を形成する。ここで、マグネット固定部11は、第1の接続部の一例であり、振動伝達板固定部12は、第2の接続部の一例であり、コイル固定部13は、第3の接続部の一例であり、マグネット支持ばね部14は、連結部の第1の連結部の一例であり、コイル支持ばね部15は、連結部の第2の連結部の一例である。
 図3~図5を参照すると、マグネット固定部11は、その軸心方向で薄肉な円板によって形成されており、その中心に連結シャフト6を挿通可能な貫通孔11aを有している。マグネット固定部11は、貫通孔11aを通る連結シャフト6によって、マグネット3、外ヨーク4、内ヨーク5及びスペーサ7と相互に組み付け及び固定される。さらに、マグネット固定部11は、組み付けられたマグネット3、外ヨーク4、内ヨーク5、連結シャフト6及びスペーサ7と一体となって振動するマグネット質量部30を形成する。振動伝達板固定部12は、環状に延在する薄肉且つ細長の板材によって形成され、その環及びマグネット固定部11の軸心方向で薄肉である。振動伝達板固定部12は、振動伝達板1と相互に組み付け及び固定される。振動伝達板固定部12は、振動伝達板1と一体となって振動する振動伝達板質量部40を形成する。コイル固定部13は、円環状に延在する薄肉且つ細長の板材によって形成され、その円環及びマグネット固定部11の軸心方向で薄肉である。コイル固定部13は、保持部材8を介して、コイル2と相互に組み付け及び固定される。さらに、コイル固定部13は、コイル2とコイル2を保持する保持部材8と一体となって振動するコイル質量部20を形成する。マグネット固定部11、振動伝達板固定部12及びコイル固定部13は、同軸上に配置されている。
 図5を参照すると、複数のマグネット支持ばね部14が、マグネット固定部11から振動伝達板固定部12にまで、マグネット固定部11の径方向に放射状に延在している。本実施の形態では、3つのマグネット支持ばね部14が配置されている。3つのマグネット支持ばね部14は、マグネット固定部11の貫通孔11aの中心を中心として回転対称、具体的には120°の角度で回転対称に配置されている。つまり、3つのマグネット支持ばね部14は、貫通孔11aの周方向に略等間隔に配置されている。なお、2≦nとなるn個のマグネット支持ばね部14が配置される場合、n個のマグネット支持ばね部14は、貫通孔11aを中心に360°/nの角度で回転対称に配置される。各マグネット支持ばね部14は、直線状の薄肉且つ細長の板材によって形成され、マグネット固定部11の軸心方向で薄肉である。ここで、貫通孔11aの中心は、支持部材10の中心を構成している。
 複数のコイル支持ばね部15が、振動伝達板固定部12からコイル固定部13にまで、マグネット固定部11及びコイル固定部13の径方向に放射状に延在している。本実施の形態では、3つのコイル支持ばね部15が配置されている。3つのコイル支持ばね部15は、マグネット固定部11の貫通孔11aを中心に回転対称、具体的には120°の角度で回転対称に配置されている。つまり、3つのコイル支持ばね部15は、貫通孔11aの周方向に略等間隔に配置されている。
 各コイル支持ばね部15は、マグネット支持ばね部14と異なる位置で振動伝達板固定部12に接続している。つまり、各コイル支持ばね部15は、マグネット固定部11の貫通孔11aの周方向で、マグネット支持ばね部14からずれた位置に配置されている。具体的には、各コイル支持ばね部15は、貫通孔11aの周方向で、2つのマグネット支持ばね部14の中間位置に配置されている。振動伝達板固定部12とマグネット支持ばね部14との接続部分の位置と、振動伝達板固定部12とコイル支持ばね部15との接続部分の位置とが異なることによって、振動伝達板固定部12の接続部分における応力が低減する。さらに、マグネット支持ばね部14及びコイル支持ばね部15は、貫通孔11aの径方向に一列に並ぶ場合に互いから受ける長さの制約を、低減する。各コイル支持ばね部15は、直線状の薄肉且つ細長の板材によって形成され、マグネット固定部11の軸心方向で薄肉である。
 振動伝達板固定部12は、異形の環形状を有しており、コイル固定部13の内周に沿って延在する3つの円弧状の第一部位12aと、コイル固定部13の弦方向に延在する3つの直線状の第二部位12bとを含む。互いに間隔をあけて配置されている3つの第一部位12aの間に、3つの第二部位12bが配置されている。振動伝達板固定部12は、マグネット固定部11の貫通孔11aを中心に回転対称、具体的には120°の角度で回転対称な平面形状を有している。なお、平面形状とは、連結シャフト6の軸心方向である貫通孔11aの軸心方向で支持部材10を見たときの形状である。
 各第一部位12aには、1つのマグネット支持ばね部14が接続されている。各第二部位12bには、1つのコイル支持ばね部15が接続されている。振動伝達板固定部12において、第一部位12aは、第二部位12bよりもマグネット固定部11から離れて位置するため、マグネット支持ばね部14の長さを長くすることが可能になる。第二部位12bは、第一部位12aよりもコイル固定部13から離れて位置するため、コイル支持ばね部15の長さを長くすることが可能になる。これにより、振動伝達板固定部12に対するマグネット固定部11及びコイル固定部13の振動振幅が大きくなり、マグネット固定部11及びコイル固定部13に共振が発生する場合の共振周波数も変化する。
 振動伝達板固定部12において、マグネット支持ばね部14及びコイル支持ばね部15の各接続部分に、振動伝達板固定部12を貫通する嵌合孔12cが形成されている。本実施の形態では、6つの嵌合孔12cが配置されている。接続部分に嵌合孔12cを形成することは、第一部位12a及び第二部位12bのその他の部位に形成する場合よりも、嵌合孔12cの周囲の部材の幅を確保し、嵌合孔12cの周囲の部材強度を高くすることができる。嵌合孔12cは、振動伝達板1に形成された嵌合突起1d(図2参照)と嵌合し、それにより支持部材10を振動伝達板1に固定する。嵌合後、嵌合突起1dの先端は、拡径するように塑性変形を受けるかしめ加工を施されてもよい。なお、振動伝達板1への支持部材10の固定方法は、上記に限定されず、例えば、接着、ねじ締結、一体成形等のいかなる方法であってもよい。
 また、コイル固定部13において、コイル支持ばね部15の各接続部分に、コイル固定部13を貫通する嵌合孔13aが形成されている。本実施の形態では、3つの嵌合孔13aが配置されている。接続部分に嵌合孔13aを形成することは、その他の部位に形成する場合よりも、嵌合孔13aの周囲の部材の幅を確保し、嵌合孔13aの周囲の部材強度を高くすることができる。嵌合孔13aは、保持部材8に形成された嵌合突起8a(図2参照)と嵌合し、それにより保持部材8を支持部材10に固定する。嵌合後、嵌合突起8aの先端は、拡径するように塑性変形を受けるかしめ加工を施されてもよい。なお、保持部材8の固定方法は、上記に限定されず、例えば、接着、ねじ締結、一体成形等のいかなる方法であってもよい。
 上述のようなマグネット固定部11、振動伝達板固定部12、コイル固定部13、マグネット支持ばね部14及びコイル支持ばね部15は、マグネット固定部11の貫通孔11aの径方向に横並びに且つ平面的に配置され、薄い平坦な板状の支持部材10を形成する。そして、マグネット固定部11、振動伝達板固定部12、コイル固定部13、マグネット支持ばね部14及びコイル支持ばね部15は、1つの平面に沿って配置されている。本実施の形態では、マグネット固定部11、振動伝達板固定部12、コイル固定部13、マグネット支持ばね部14及びコイル支持ばね部15は、同一平面上に配置されている。これにより、支持部材10の薄型化が可能になる。しかしながら、マグネット固定部11、振動伝達板固定部12、コイル固定部13、マグネット支持ばね部14及びコイル支持ばね部15は、マグネット固定部11の貫通孔11aの軸心方向で互いにずれて位置してもよい。
 図6を参照すると、振動伝達板1が詳細に示されている。なお、図6は、図2の振動伝達板1を拡大した斜視図である。振動伝達板1は、振動を伝達する対象物と接触する円板部1aと、円板部1aの平坦な表面から突出する環状の支持部材固定部1bと、円板部1aの上記表面から突出する複数の補剛部1cとを、一体的に含む。ここで、支持部材固定部1bは、支持部材接続部の一例である。
 円板部1aの中心には、円板部1aを貫通する貫通孔1aaが形成されている。貫通孔1aaは、拡径した端部を含めて連結シャフト6を挿通できる形状及び寸法を有している。これにより、貫通孔1aaを介した連結シャフト6の設置及び撤去が可能である。支持部材固定部1bは、貫通孔1aaの周囲を囲む帯状の突起であり、支持部材10の振動伝達板固定部12と同様の平面形状を有している。支持部材固定部1bは、振動伝達板固定部12の全体が載る平坦な支持面1baを、その上面として有している。そして、支持部材10の振動伝達板固定部12は、支持面1baにならう平面形状を有し、支持面1baに沿って延在する。
 さらに、支持部材固定部1bの支持面1ba上には、複数の嵌合突起1dが一体的に形成されている。各嵌合突起1dは、支持部材10の振動伝達板固定部12の各嵌合孔12cと整合する位置に配置され、各嵌合孔12cに嵌合することができる。複数の補剛部1cは、支持部材固定部1bから円板部1aの径方向外側に放射状に延びる直線状の帯状突起である。各補剛部1cは、円板部1a及び支持部材固定部1bと一体化されている。複数の補剛部1cは、円板部1a及び支持部材固定部1bの接続部分の剛性と、円板部1aの剛性とを向上する。これにより、支持部材固定部1bに与えられた振動加振力は、円板部1aの全体にわたって分散して伝達し得る。
 図3~図6を参照すると、振動ドライバ100では、振動伝達板質量部40は、振動伝達板固定部12の内側で、支持部材10のマグネット支持ばね部14を介して、マグネット質量部30と弾性的に接続される。振動伝達板質量部40は、振動伝達板固定部12の外側で、支持部材10のコイル支持ばね部15を介して、コイル質量部20と弾性的に接続される。そして、各接続部分は、実質的に同一平面上に位置する。振動伝達板質量部40とコイル質量部20とマグネット質量部30とは、互いに対して連結シャフト6の軸心方向に弾性を伴った移動をすることができる。
 振動ドライバ100では、電気信号が送られることによってコイル2が発生する磁界と、外ヨーク4及び内ヨーク5間の磁界とが相互作用し、それにより、コイル質量部20と、マグネット質量部30との間に、振動加振力が発生する。この振動加振力は、支持部材10のマグネット支持ばね部14及びコイル支持ばね部15を介して振動伝達板質量部40に伝達し、振動伝達板1を弾性的に振動させ、振動伝達板1の振動は、振動伝達板1に接触する対象物に伝達する。コイル2に送られる電気信号が音声信号であり、対象物が人体頭部である場合、振動伝達板1の振動は、ばね性を有する皮膚や頭蓋骨などの人体頭部組織を介して、音として聴神経に伝達する。また、振動伝達板1が人体頭部に接触して配置される状態で、被接触者から声が発せられる場合に、発せられた人の声の振動が人体頭部組織を介して振動伝達板1を振動させ、それによりコイル質量部20と、マグネット質量部30とが相対的に振動し、コイル2に誘導起電力が発生する。この誘導起電力による電気信号を音声信号として処理することによって、振動ドライバ100は、それを装着した人が発する音声を収音する手段として動作させることもできる。これらの動作において、振動ドライバ100は、コイル質量部20と、マグネット質量部30と、振動伝達板質量部40の3つの質量部が、マグネット支持ばね部14と、コイル支持ばね部15とで連結された3自由度の振動系を形成する。3つの質量部では、それぞれ、振動伝達板質量部40が人体に接続され、コイル質量部20は振動伝達板質量部40とコイル支持部ばね部15で接続され、マグネット質量部30は振動伝達板質量部40とマグネット支持ばね部14で接続される。振動加振力及び誘導起電力は、コイル質量部20とマグネット質量部30の相対運動に起因して発生する。3つの質量部の質量は、コイル質量部20が最も小さく、振動伝達板質量部40、マグネット質量部30の順に大きくなる。また、支持部材10のばね剛性は、マグネット支持ばね部14よりもコイル支持ばね部15が大きくなるように設定されている。この構成にすると、3つの自由度に対応する3つの共振モードにおける振動伝達板質量部40の振動の位相には、反共振点が発生しないため、振動周波数に対してフラットな振動加振力伝達特性及び誘導起電力検出特性を得ることが出来る。
 [1-2.効果等]
 上述したように、実施の形態1に係る振動ドライバ100は、コイル2と、マグネット3と、コイル2及びマグネット3間の振動としての振動加振力を伝達する振動伝達板1と、コイル2、マグネット3及び振動伝達板1を支持する支持部材10とを備える。支持部材10は、マグネット3に接続される第1の接続部としてのマグネット固定部11と、振動伝達板1に接続される第2の接続部としての振動伝達板固定部12と、コイル2に接続される第3の接続部としてのコイル固定部13と、マグネット固定部11、振動伝達板固定部12及びコイル固定部13を互いに連結し且つ弾性を有する連結部としてのマグネット支持ばね部14及びコイル支持ばね部15とを含む。さらに、マグネット固定部11、振動伝達板固定部12及びコイル固定部13は、横並びに且つ平面的に配置される。例えば、コイル固定部13は、コイル2の全体を支持するように円環状形状を有してもよい。
 上述の構成において、支持部材10は、横並びに且つ平面的に配置されるマグネット固定部11、振動伝達板固定部12及びコイル固定部13が、マグネット支持ばね部14及びコイル支持ばね部15によって互いに連結される構成を有しているに過ぎない。これにより、支持部材10の構造の簡易化が可能になる。さらに、横並びに配置されるマグネット固定部11、振動伝達板固定部12及びコイル固定部13それぞれと、マグネット3、振動伝達板1及びコイル2との接続構造も、互いに干渉しないようにしつつ簡易にすることができる。また、マグネット固定部11、振動伝達板固定部12及びコイル固定部13が平面的に配置されるため、これらの横並び方向と垂直な方向での支持部材10の高さの低減が可能になる。これにより、支持部材10は、平面的な簡易な構成を有することができる。
 又は、実施の形態1に係る振動ドライバ100では、支持部材10は、マグネット固定部11と、振動伝達板固定部12と、コイル固定部13と、マグネット支持ばね部14及びコイル支持ばね部15とを一体的に含む。さらに、マグネット固定部11、振動伝達板固定部12及びコイル固定部13は、横並びに配置される。また、マグネット固定部11、振動伝達板固定部12及びコイル固定部13は、平面的に配置されてもよい。上述の構成において、支持部材10は、横並びに配置され且つ一体化されたマグネット固定部11、振動伝達板固定部12及びコイル固定部13を含む構成を有している。これにより、上述と同様に、支持部材10の構造の簡易化と、マグネット固定部11、振動伝達板固定部12及びコイル固定部13とマグネット3、振動伝達板1及びコイル2との接続構造の簡易化とが、可能になる。また、支持部材10は、1つの部材から形成することができるため、その製造も容易になる。
 実施の形態1に係る振動ドライバ100の支持部材10では、マグネット固定部11、振動伝達板固定部12、コイル固定部13、マグネット支持ばね部14及びコイル支持ばね部15は、板状の形状を有する。上述の構成において、支持部材10の薄型化が可能になる。
 実施の形態1に係る振動ドライバ100の支持部材10では、第1の連結部としてのマグネット支持ばね部14は、マグネット固定部11、振動伝達板固定部12及びコイル固定部13のうちの2つを連結し、第2の連結部としてのコイル支持ばね部15は、マグネット固定部11、振動伝達板固定部12及びコイル固定部13のうちのマグネット支持ばね部14が連結する2つとは異なる組み合わせの2つを連結する。マグネット支持ばね部14及びコイル支持ばね部15が接続する振動伝達板固定部12には、マグネット支持ばね部14及びコイル支持ばね部15が、互いに異なる位置で接続する。
 上述の構成において、マグネット支持ばね部14及びコイル支持ばね部15は、振動伝達板固定部12で一列に並ばずに位置ずれして配置されるため、支持部材10の大きさが定められている場合でも、互いに対する影響を低減した状態で、それぞれの長さを設定することができる。例えば、一列に並んでいる状態のマグネット支持ばね部14及びコイル支持ばね部15は、支持部材10の大きさが定められているため、長さを大きくする場合に互いの影響を受ける。よって、マグネット支持ばね部14及びコイル支持ばね部15の設計の自由度が向上する。例えば、マグネット支持ばね部14及びコイル支持ばね部15の長さは、マグネット質量部30、振動伝達板質量部40及びコイル質量部20の間に発生する3つの共振の共振周波数のパラメータを構成する。マグネット支持ばね部14及びコイル支持ばね部15の長さの設計の自由度が向上することによって、発生させ得る共振周波数の自由度が向上する。
 実施の形態1に係る振動ドライバ100の支持部材10では、複数のマグネット支持ばね部14と複数のコイル支持ばね部15とが設けられる。複数のマグネット支持ばね部14及び複数のコイル支持ばね部15は、支持部材10の中心に関して回転対称に配置される。上述の構成において、マグネット固定部11、振動伝達板固定部12及びコイル固定部13間では、力及び振動は、複数のマグネット支持ばね部14及び複数のコイル支持ばね部15を介して、偏りを低減して全体的に略均等に伝達する。
 さらに、実施の形態1に係る振動ドライバ100の支持部材10では、振動伝達板固定部12は、支持部材10の中心に関して回転対称である形状を有する。上述の構成において、複数のマグネット支持ばね部14及び複数のコイル支持ばね部15を介して振動伝達板固定部12に振動加振力が伝達する場合、振動伝達板固定部12におけるばね反力の偏りが低減し、振動伝達板1、コイル2及びマグネット3の振動方向の直線性が向上する。
 実施の形態1に係る振動ドライバ100の支持部材10では、振動伝達板固定部12は、マグネット固定部11とコイル固定部13との間に配置され、マグネット支持ばね部14は、振動伝達板固定部12とマグネット固定部11とを連結し、コイル支持ばね部15は、振動伝達板固定部12とコイル固定部13とを連結する。振動伝達板固定部12におけるマグネット支持ばね部14との接続部分としての第一部位12aは、振動伝達板固定部12におけるコイル支持ばね部15との接続部分としての第二部位12bよりも、マグネット固定部11から離れて位置する。上述の構成において、振動伝達板固定部12の第一部位12aは、第二部位12bよりも、マグネット固定部11から離れて位置する、つまり、第二部位12bは、第一部位12aよりも、コイル固定部13から離れて位置する。よって、マグネット支持ばね部14及びコイル支持ばね部15の長さを大きくすることが、可能になる。
 実施の形態1に係る振動ドライバ100の支持部材10では、マグネット固定部11、振動伝達板固定部12及びコイル固定部13は、同軸上に配置される。上述の構成において、マグネット3、振動伝達板1及びコイル2を略同方向に振動させることができる。これにより、振動伝達板1、コイル2及びマグネット3の、重心位置を振動方向と一致させることが容易になり、例えば、これらの間での意図しない共振の発生を抑えることが、可能になる。
 実施の形態1に係る振動ドライバ100では、振動伝達板1は、支持部材10と接続される支持部材接続部としての支持部材固定部1bを有し、振動伝達板固定部12は、支持部材固定部1bに沿って延在する。さらに、支持部材固定部1bは、連続する環を形成するように延在してもよい。上述の構成において、支持部材固定部1bと振動伝達板固定部12との接触面積の増加が可能になる。これにより、振動伝達板1と支持部材10との間の振動の伝達が、効率的になる。
 (実施の形態2)
 以下、図7~図12を参照して、実施の形態2に係る振動ドライバ200を説明する。なお、図7は、実施の形態2に係る振動ドライバ200を斜め上方から見た斜視図である。図8は、図7の振動ドライバ200の分解斜視図である。図9は、図7の振動ドライバ200の一部が切断されて内部が見えるようにされた状態を示す斜視図である。図10は、図7の振動ドライバ200の外ヨーク4の径方向に沿った振動ドライバ200の断面を方向Xに見た断面側面図である。図11は、図8の支持部材210の平面図である。図12は、図8の振動伝達板21の平面図である。以下の実施の形態の説明において、図1~図6における参照符号と同一の符号の構成要素は、同一又は同様な構成要素であるので、その詳細な説明は省略する。さらに、既出の実施の形態と同様の点に関しては説明を省略する。
 実施の形態2に係る振動ドライバ200では、実施の形態1に係る振動ドライバ100と比較して、連結シャフトの構成と、支持部材及び振動伝達板間の接続構成とが、主に異なっている。振動ドライバ200は、実施の形態1に係る振動ドライバ100と同様に配設されるマグネット3、外ヨーク4及び内ヨーク25を備えている。内ヨーク25の径方向中心には、マグネット3と反対方向に突出する筒部25bが一体に形成されている。筒部25bの内側には、雌ねじ孔が形成されている。連結シャフト26は、外周面に雄ねじが形成された軸部と、拡径した端部とを有している。連結シャフト26は、例えば、ねじである。
 マグネット3、外ヨーク4及び内ヨーク25は、接着、嵌合、螺合等の接合方法によって互いに接合される。連結シャフト26は、支持部材210のマグネット固定部11の貫通孔11aを通り、内ヨーク25の筒部25bの雌ねじにその軸部を螺合させて配置される。連結シャフト26は、内ヨーク25に対して締め付けられることによって、支持部材210を内ヨーク25に固定する。よって、内ヨーク25の筒部25bが、内ヨーク25の円板部分と支持部材210との間に介在しこれらを互いに離す。
 特に図11を参照すると、支持部材210は、平面的に配置されたマグネット固定部11、振動伝達板固定部212、コイル固定部13、マグネット支持ばね部14及びコイル支持ばね部15を有している。マグネット支持ばね部14が接続する振動伝達板固定部212の第一部位212aは、実施の形態1に係る振動伝達板固定部12の第一部位12aと同様の構成を有しているが、嵌合孔を有していない。コイル支持ばね部15が接続する振動伝達板固定部212の第二部位212bは、マグネット固定部11に向かって凸状の孤を形成するように湾曲している。そして、第二部位212bにおけるコイル支持ばね部15の接続部分には、嵌合孔212cが形成されている。本実施の形態では、3つの嵌合孔212cが配置されている。振動伝達板固定部212が上述のような構成を有することによって、コイル支持ばね部15は、実施の形態1に係る支持部材10のコイル支持ばね部15よりも大きい長さを有することができる。よって、振動伝達板固定部212に対してコイル固定部13が振動する場合の振幅が大きくなり得る。
 特に、図8、図9及び図12を参照すると、振動伝達板21は、振動を伝達する対象物と接触する円板部21aと、円板部21aの平坦な表面から突出する複数の支持部材固定部21bと、円板部21aの上記表面から突出する補剛部21cとを、一体的に含む。
 円板部21aの中心には、連結シャフト26が挿通可能な貫通孔21aaが形成されている。よって、貫通孔21aaを介した連結シャフト26の設置及び撤去が可能である。複数の支持部材固定部21bは、貫通孔21aaの周囲に沿って配置された帯状の突起である。本実施の形態では、不連続な環を形成するように3つの支持部材固定部21bが配置されている。各支持部材固定部21bは、支持部材210の振動伝達板固定部212の第二部位212bに対応する位置に配置され、第二部位212bと同様の平面形状を有している。各支持部材固定部21bは、第二部位212bの少なくとも一部が載る支持面21baを、その上面として有している。さらに、各支持部材固定部21bの支持面21ba上には、1つの嵌合突起21dが一体的に形成されている。各嵌合突起21dは、第二部位212bの嵌合孔212c(図11参照)と整合する位置に配置され、嵌合孔212cと嵌合する。補剛部21cは、円板部21aの全体にわたって延在する帯状突起であり、支持部材固定部21bよりも低く突出している。本実施の形態では、補剛部21cは、円板部21aの周方向及び径方向に延在し、さらに、支持部材210の振動伝達板固定部212の形状にならうようにも延在し、支持部材固定部21bの剛性を高めている。
 図9及び図10に示されるように、支持部材210のマグネット固定部11は、組み付けられたマグネット3、外ヨーク4、内ヨーク25及び連結シャフト26と一体となって振動するマグネット質量部31を形成する。支持部材210の振動伝達板固定部212(図11参照)の第二部位212bは、振動伝達板21と一体となって振動する振動伝達板質量部41を形成する。
 図11及び図12を参照すると、支持部材210の振動伝達板固定部212は、マグネット支持ばね部14の接続部分を除く一部で、振動伝達板21の支持部材固定部21bに固定及び支持される。これにより、振動伝達板固定部212に対するマグネット固定部11の自由度が大きくなる。よって、振動伝達板固定部212に対してマグネット固定部11が振動する場合の振幅が大きくなる。さらに、振動伝達板固定部212とマグネット固定部11とを連結する支持部材210のバネ定数が低くなることにもなる。従って、実施の形態2に係る振動ドライバ200は、実施の形態1に係る振動ドライバ100よりも、振動伝達板21を、大きい振幅で振動させることができ、且つ低い周波数で振動させることができる。
 また、実施の形態2に係る振動ドライバ200におけるその他の構成及び動作は、実施の形態1と同様であるため、その説明を省略する。さらに、実施の形態2に係る振動ドライバ200によると、実施の形態1に係る振動ドライバ100と同様の効果が得られる。さらに、実施の形態2に係る振動ドライバ200では、振動伝達板21の支持部材固定部21bは、不連続な環を形成するように延在する。上述の構成において、支持部材210の振動伝達板固定部212は、支持部材固定部21bと部分的に接触する。振動伝達板固定部212における支持部材固定部21bとの不接触部分である第一部位212aがマグネット支持ばね部14と共に撓むことができるため、マグネット質量部31に対する振動伝達板質量部41の振幅の増大が可能になると共に、振動伝達板質量部41の振動に発生させ得る共振周波数を下げることが可能になるため、共振周波数の設計の自由度が向上する。
 (支持部材の変形例)
 また、支持部材の変形例として、以下のような構成が挙げられる。具体的には、図13に示されるように、変形例に係る支持部材310では、実施の形態1に係る支持部材10と比較して、マグネット支持ばね部及びコイル支持ばね部の平面形状が異なっている。なお、図13は、変形例に係る支持部材310の平面図である。つまり、支持部材310のマグネット支持ばね部314及びコイル支持ばね部315が、支持部材310の中心から外方に向かって放射状に、曲がりを伴いつつ延在する。
 具体的には、支持部材310の各マグネット支持ばね部314は、Z形状に屈曲した平面形状を有し、その両端でマグネット固定部11及び振動伝達板固定部12と接続している。マグネット支持ばね部314及び振動伝達板固定部12の接続部分は、マグネット支持ばね部314及びマグネット固定部11の接続部分に対して、マグネット固定部11の貫通孔11aの一方の周方向A1にずれて位置している。3つのマグネット支持ばね部314は、貫通孔11aを中心に、120°の角度で回転対称な形状、寸法及び配置構成を有している。
 支持部材310の各コイル支持ばね部315は、Z形状に屈曲した平面形状を有し、その両端で振動伝達板固定部12及びコイル固定部13と接続している。コイル支持ばね部315及びコイル固定部13の接続部分は、コイル支持ばね部315及び振動伝達板固定部12の接続部分に対して、貫通孔11aの周方向A1と反対の周方向A2にずれて位置している。3つのコイル支持ばね部315は、マグネット固定部11の貫通孔11aを中心に、120°の角度で回転対称な形状、寸法及び配置構成を有している。
 各マグネット支持ばね部314の両端のずれ方向A1が、各コイル支持ばね部315のずれ方向A2と反対であるため、コイル2及びマグネット3間で振動が発生した場合に、支持部材310に一方向への回転力が作用することが抑制される。
 また、振動伝達板固定部12では、マグネット支持ばね部314及びコイル支持ばね部315の接続部分それぞれに、嵌合孔12cが形成されている。コイル固定部13では、コイル支持ばね部315の接続部分それぞれに、嵌合孔13aが形成されている。
 上述のような支持部材310では、曲がりを伴って延在するマグネット支持ばね部314及びコイル支持ばね部315は、それぞれの長さを大きくし、それによりそれらのバネ定数を低くする。このため、振動伝達板固定部12に対してマグネット固定部11及びコイル固定部13が振動する場合の振動の振幅を大きくすることが可能になり、さらに、振動の周波数を低くすることも可能になる。なお、マグネット支持ばね部314及びコイル支持ばね部315の曲がり形状は、Z形状に限定されず、いかなる形状でもよい。
 (振動ドライバの適用例)
 上記の実施の形態及び変形例に係る振動ドライバ100及び200の適用例として、図14に示すような音声通信のためのヘッドセット50が挙げられる。なお、図14は、本開示の振動ドライバ100及び200の適用例を示す斜視図である。ヘッドセット50は、人の頭に装着されるヘッドバンド51と、ヘッドバンド51の両端から延びる2つのスピーカアーム52と、ヘッドバンド51の1つの端部から延びる1つのマイクアーム53とを備えている。さらに、ヘッドセット50は、各スピーカアーム52の端部のスピーカハウジング52a内に振動ドライバ100又は200を備え、マイクアーム53の端部のマイクハウジング53a内に振動ドライバ100又は200を備える。ヘッドセット50が人の頭に装着されたとき、スピーカハウジング52aは、耳の近傍の骨に皮膚を介して当接し、マイクハウジング53aは、顎の骨に皮膚を介して当接する。スピーカハウジング52a内の振動ドライバ100又は200は、音声信号の出力アンプの出力端子に接続され、人体頭部組織に伝達する振動によって音を聴神経に伝達する受話手段のための骨伝導スピーカとして機能する。マイクハウジング53a内の振動ドライバ100又は200は、音声信号の入力アンプの入力端子に接続され、人体頭部組織を介して伝達する声の振動を電気信号に変換する送話手段ための骨伝導マイクとして機能する。なお、ヘッドセット50は、スピーカハウジング52a及びマイクハウジング53aの一方のみを備えてもよい。この場合、振動ドライバ100又は200は、骨伝導スピーカと骨伝導マイクのいずれか又は両方として機能することが可能である。骨伝導スピーカと骨伝導マイクの両方として動作する場合、電気的スイッチにより、接続先を切り替える事で、半二重の双方向音声通信が可能となる。また、アナログ電話機などに用いられる2線4線変換回路を備える場合や、DSP(デジタルシグナルプロセッサ)などの信号処理ハードウエアを備え、エコーキャンセラーなどのソフトウエアによる信号処理を施す場合には、同時に発音された送話信号と受話信号を混合/分離することが可能になり、全二重の双方向音声通信が可能となる。
 (他の実施の形態)
 以上のように、本開示における技術の例示として、上記の実施の形態及び変形例を説明した。しかしながら、本開示における技術は、これらに限定されず、適宜、変更、置換、付加、省略などを行った実施の形態にも適用可能である。また、上記実施の形態及び変形例並びに下記の他の実施形態で説明する各構成要素を組み合わせて、新たな実施の形態とすることも可能である。そこで、以下、他の実施の形態を例示する。
 上記実施の形態及び変形例に係る振動ドライバでは、支持部材10,210,310の振動伝達板固定部12,212及びコイル固定部13は、連続する環状の形状を有していたが、これに限定されるものでない。振動伝達板固定部12,212及びコイル固定部13は、複数の部分に分割されていてもよい。複数の部分に分割された振動伝達板固定部12,212及びコイル固定部13は、マグネット固定部11の貫通孔11aを中心に、回転対称に配置されること、具体的には、貫通孔11aの周方向に均等に配置されることが望ましい。これにより、マグネット固定部11、振動伝達板固定部12,212及びコイル固定部13間で、振動の向きを揃えることができる。
 さらに、支持部材10,210,310では、マグネット固定部11とコイル固定部13とは、振動伝達板固定部12,212を介して互いに連結されていたが、これに限定されるものでない。振動伝達板固定部12,212が複数の部分の分割される場合、振動伝達板固定部12,212の1つの部分に、マグネット固定部11及びコイル固定部13の一方のみが連結されていてもよい。
 上記実施の形態及び変形例に係る振動ドライバでは、支持部材10,210,310において、マグネット固定部11、振動伝達板固定部12,212及びコイル固定部13は、この順序で、支持部材10,210,310の中心から径方向外側に向かって、配置されていたが、これに限定されず、いかなる順序で配置されてもよい。なお、コイル2の振動が振動伝達板1,21に伝達しやすいように、振動伝達板固定部12,212とコイル固定部13とが隣り合って位置することが、望ましい。
 上記実施の形態及び変形例に係る振動ドライバでは、支持部材10,210,310において、マグネット支持ばね部14,314の数量と、コイル支持ばね部15,315の数量とは、同一であったが、異なっていてもよい。なお、マグネット固定部11、振動伝達板固定部12,212及びコイル固定部13の間で伝達する振動の偏りを抑えるために、3つ以上のマグネット支持ばね部14,314と、3つ以上のコイル支持ばね部15,315とが設けられることが、望ましい。
 上記実施の形態及び変形例に係る振動ドライバでは、振動伝達板1,21は、支持部材10,210,310を挟んで、コイル2及びマグネット3と反対側に配置されていたが、これに限定されるものでない。振動伝達板1,21、コイル2及びマグネット3が、支持部材10,210,310の同じ側に配置されてもよく、振動伝達板1,21、コイル2及びマグネット3のうちのいずれの1つも、支持部材10,210,310を挟んで、他の2つと反対側に配置されてもよい。
 上記実施の形態及び変形例に係る振動ドライバでは、支持部材10,210,310は、凹凸のない平板状外形を有していたが、これに限定されるものでない。支持部材10,210,310の一部又は全部、好適にはマグネット固定部11、振動伝達板固定部12,212、コイル固定部13の一部又は全部に、縁端部の折り返しや、エンボス加工、コイニングなどの機械加工を施して、接続部の強度を増加させて、意図しない共振の発生を抑えてもよい。
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面及び詳細な説明を提供した。
 したがって、添付図面及び詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 以上説明したように、本開示は、振動伝達板を介して振動を伝達する振動ドライバに有用である。
 1,21 振動伝達板
 1b,21b 支持部材固定部(支持部材接続部)
 2 コイル
 3 マグネット
 10,210,310 支持部材
 11 マグネット固定部(第1の接続部)
 12,212 振動伝達板固定部(第2の接続部)
 12a,212a 第一部位
 12b,212b 第二部位
 13 コイル固定部(第3の接続部)
 20 コイル質量部
 30,31 マグネット質量部
 40,41 振動伝達板質量部
 14,314 マグネット支持ばね部(連結部、第1の連結部)
 15,315 コイル支持ばね部(連結部、第2の連結部)
 100,200 振動ドライバ

Claims (14)

  1.  コイルと、
     マグネットと、
     前記コイル及び前記マグネット間の振動を伝達する振動伝達板と、
     前記コイル、前記マグネット及び前記振動伝達板を支持する支持部材と
    を備え、
     前記支持部材は、
     前記マグネットに接続される第1の接続部と、
     前記振動伝達板に接続される第2の接続部と、
     前記コイルに接続される第3の接続部と、
     前記第1の接続部、前記第2の接続部及び前記第3の接続部を互いに連結し且つ弾性を有する連結部と
    を含み、
     前記第1の接続部、前記第2の接続部及び前記第3の接続部は、横並びに且つ平面的に配置される振動ドライバ。
  2.  コイルと、
     マグネットと、
     前記コイル及び前記マグネット間の振動を伝達する振動伝達板と、
     前記コイル、前記マグネット及び前記振動伝達板を支持する支持部材と
    を備え、
     前記支持部材は、
     前記マグネットに接続される第1の接続部と、
     前記振動伝達板に接続される第2の接続部と、
     前記コイルに接続される第3の接続部と、
     前記第1の接続部、前記第2の接続部及び前記第3の接続部を互いに連結し且つ弾性を有する連結部と
    を一体的に含み、
     前記第1の接続部、前記第2の接続部及び前記第3の接続部は、横並びに配置される振動ドライバ。
  3.  前記第1の接続部、前記第2の接続部及び前記第3の接続部は、平面的に配置される
     請求項2に記載の振動ドライバ。
  4.  前記第1の接続部、前記第2の接続部、前記第3の接続部及び前記連結部は、板状の形状を有する
     請求項1~3のいずれか一項に記載の振動ドライバ。
  5.  前記連結部は、前記第1の接続部、前記第2の接続部及び前記第3の接続部のうちの2つを連結する第1の連結部と、前記第1の接続部、前記第2の接続部及び前記第3の接続部のうちの前記第1の連結部が連結する2つとは異なる組み合わせの2つを連結する第2の連結部とを含み、
     前記第1の接続部、前記第2の接続部及び前記第3の接続部のうちの前記第1の連結部及び前記第2の連結部が接続する接続部には、前記第1の連結部及び前記第2の連結部が、互いに異なる位置で接続する
     請求項1~4のいずれか一項に記載の振動ドライバ。
  6.  複数の前記第1の連結部と複数の前記第2の連結部とが設けられ、
     前記複数の第1の連結部及び前記複数の第2の連結部は、前記支持部材の中心に関して
    回転対称に配置される
     請求項5に記載の振動ドライバ。
  7.  前記第2の接続部は、前記支持部材の中心に関して回転対称である形状を有する
     請求項6に記載の振動ドライバ。
  8.  前記第2の接続部は、前記第1の接続部と前記第3の接続部との間に配置され、
     前記第1の連結部は、前記第2の接続部と前記第1の接続部とを連結し、
     前記第2の連結部は、前記第2の接続部と前記第3の接続部とを連結し、
     前記第2の接続部における前記第1の連結部との接続部分は、前記第2の接続部における前記第2の連結部との接続部分よりも、前記第1の接続部から離れて位置する
     請求項5~7のいずれか一項に記載の振動ドライバ。
  9.  前記第1の連結部及び前記第2の連結部の少なくとも一方は、前記支持部材の中心から外方に向かって放射状に、曲がりを伴いつつ延在する
     請求項5~8のいずれか一項に記載の振動ドライバ。
  10.  前記第3の接続部は、円環状形状を有する
     請求項1~9のいずれか一項に記載の振動ドライバ。
  11.  前記第1の接続部、前記第2の接続部及び前記第3の接続部は、同軸上に配置される
     請求項1~10のいずれか一項に記載の振動ドライバ。
  12.  前記振動伝達板は、前記支持部材と接続される支持部材接続部を有し、
     前記第2の接続部は、前記支持部材接続部に沿って延在する
     請求項1~11のいずれか一項に記載の振動ドライバ。
  13.  前記支持部材接続部は、連続する環を形成するように延在する
     請求項12に記載の振動ドライバ。
  14.  前記支持部材接続部は、不連続な環を形成するように延在する
     請求項12に記載の振動ドライバ。
PCT/JP2017/020456 2016-06-30 2017-06-01 振動ドライバ WO2018003394A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018524979A JP6928791B2 (ja) 2016-06-30 2017-06-01 振動ドライバ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-130931 2016-06-30
JP2016130931 2016-06-30

Publications (1)

Publication Number Publication Date
WO2018003394A1 true WO2018003394A1 (ja) 2018-01-04

Family

ID=60786854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020456 WO2018003394A1 (ja) 2016-06-30 2017-06-01 振動ドライバ

Country Status (2)

Country Link
JP (1) JP6928791B2 (ja)
WO (1) WO2018003394A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114173262A (zh) * 2021-11-18 2022-03-11 苏州清听声学科技有限公司 一种超声波发声器、显示器及电子设备
WO2024210179A1 (ja) * 2023-04-07 2024-10-10 株式会社オーディオテクニカ 電気音響変換器およびヘッドホン

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7467377B2 (ja) 2021-03-17 2024-04-15 株式会社東芝 音発生装置及び翼騒音低減装置
JP7413327B2 (ja) 2021-09-07 2024-01-15 株式会社東芝 音発生装置及び翼騒音低減装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536140A (ja) * 2002-08-16 2005-11-24 ファイコム・コーポレーション 振動板を用いた超小型骨導スピーカーおよびこれを備えた移動電話機
JP2011502456A (ja) * 2008-10-15 2011-01-20 ビーエスイー カンパニー リミテッド 多機能スピーカ
JP2014515891A (ja) * 2011-03-16 2014-07-03 コクレア リミテッド 径方向及び軸方向にギャップを有するバランス型電磁アクチュエータを備える骨伝導デバイス
JP2015505204A (ja) * 2011-12-23 2015-02-16 深▲セン▼市韶音科技有限公司 骨伝導スピーカー及びその複合振動装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092026A (ja) * 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd スピーカ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536140A (ja) * 2002-08-16 2005-11-24 ファイコム・コーポレーション 振動板を用いた超小型骨導スピーカーおよびこれを備えた移動電話機
JP2011502456A (ja) * 2008-10-15 2011-01-20 ビーエスイー カンパニー リミテッド 多機能スピーカ
JP2014515891A (ja) * 2011-03-16 2014-07-03 コクレア リミテッド 径方向及び軸方向にギャップを有するバランス型電磁アクチュエータを備える骨伝導デバイス
JP2015505204A (ja) * 2011-12-23 2015-02-16 深▲セン▼市韶音科技有限公司 骨伝導スピーカー及びその複合振動装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114173262A (zh) * 2021-11-18 2022-03-11 苏州清听声学科技有限公司 一种超声波发声器、显示器及电子设备
CN114173262B (zh) * 2021-11-18 2024-02-27 苏州清听声学科技有限公司 一种超声波发声器、显示器及电子设备
WO2024210179A1 (ja) * 2023-04-07 2024-10-10 株式会社オーディオテクニカ 電気音響変換器およびヘッドホン

Also Published As

Publication number Publication date
JPWO2018003394A1 (ja) 2019-04-18
JP6928791B2 (ja) 2021-09-01

Similar Documents

Publication Publication Date Title
CN109511043B (zh) 一种骨传导扬声器以及骨传导发声装置
WO2018003394A1 (ja) 振動ドライバ
US8890375B2 (en) Multi-function vibrating device
CA2330005A1 (en) Vibration actuator having magnetic circuit elastically supported by a spiral damper with increased compliance
JP2009501494A (ja) 耐衝撃及び振動隔離の電子音響変換器組立体
KR100786928B1 (ko) 다기능형 진동 액추에이터 및 휴대 단말기기
US20110150265A1 (en) Speaker
JPWO2003057375A1 (ja) 多機能型振動アクチュエータ
CN109195077B (zh) 扬声器
US8174345B2 (en) Vibration generator
US20060244400A1 (en) Electromagnetic exciter
JP2011119913A (ja) ハイブリッド型スピーカーユニットおよびハイブリッド型スピーカー
JP6482004B2 (ja) スピーカ
JPH0937536A (ja) 音声伝達装置の振動変換器
TWI846075B (zh) 發聲裝置
JP6253101B2 (ja) 動電型電気音響変換器、及びその振動板、並びに動電型電気音響変換器の製造方法
JP4952211B2 (ja) 骨伝導イヤホン
JP4792137B1 (ja) 振動ユニット
KR20080054323A (ko) 초소형 복합 진동 마이크로스피커
JPH10112897A (ja) 電気・機械振動変換器
CN112261556B (zh) 发声器件
WO2010106682A1 (ja) スピーカ装置
WO2024060006A1 (zh) 耳机及其换能装置
CN218976828U (zh) 一种传振片、骨导振子及可穿戴电子设备
CN213880250U (zh) 一种扬声器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018524979

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819760

Country of ref document: EP

Kind code of ref document: A1