WO2018003391A1 - Component-embedded substrate, method for manufacturing same, and high-frequency module - Google Patents
Component-embedded substrate, method for manufacturing same, and high-frequency module Download PDFInfo
- Publication number
- WO2018003391A1 WO2018003391A1 PCT/JP2017/020382 JP2017020382W WO2018003391A1 WO 2018003391 A1 WO2018003391 A1 WO 2018003391A1 JP 2017020382 W JP2017020382 W JP 2017020382W WO 2018003391 A1 WO2018003391 A1 WO 2018003391A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- component
- resist
- electrode
- resin substrate
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 137
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- 239000011347 resin Substances 0.000 claims abstract description 80
- 229920005989 resin Polymers 0.000 claims abstract description 80
- 238000000059 patterning Methods 0.000 claims abstract description 22
- 239000007772 electrode material Substances 0.000 claims abstract description 11
- 238000007789 sealing Methods 0.000 claims abstract description 4
- 239000004020 conductor Substances 0.000 claims description 31
- 239000000945 filler Substances 0.000 claims description 24
- 230000003746 surface roughness Effects 0.000 claims description 14
- 230000000149 penetrating effect Effects 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 22
- 238000000926 separation method Methods 0.000 abstract 2
- 239000010408 film Substances 0.000 description 27
- 239000002184 metal Substances 0.000 description 27
- 229910052751 metal Inorganic materials 0.000 description 27
- 239000000463 material Substances 0.000 description 7
- 230000005611 electricity Effects 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4846—Leads on or in insulating or insulated substrates, e.g. metallisation
- H01L21/4853—Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4846—Leads on or in insulating or insulated substrates, e.g. metallisation
- H01L21/486—Via connections through the substrate with or without pins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/565—Moulds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
- H01L23/295—Organic, e.g. plastic containing a filler
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5384—Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5386—Geometry or layout of the interconnection structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5389—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/60—Protection against electrostatic charges or discharges, e.g. Faraday shields
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/64—Impedance arrangements
- H01L23/66—High-frequency adaptations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L24/19—Manufacturing methods of high density interconnect preforms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L24/20—Structure, shape, material or disposition of high density interconnect preforms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/50—Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/182—Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
- H05K1/185—Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/40—Forming printed elements for providing electric connections to or between printed circuits
- H05K3/42—Plated through-holes or plated via connections
- H05K3/423—Plated through-holes or plated via connections characterised by electroplating method
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/568—Temporary substrate used as encapsulation process aid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/58—Structural electrical arrangements for semiconductor devices not otherwise provided for
- H01L2223/64—Impedance arrangements
- H01L2223/66—High-frequency adaptations
- H01L2223/6605—High-frequency electrical connections
- H01L2223/6616—Vertical connections, e.g. vias
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04105—Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/16235—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L2224/20—Structure, shape, material or disposition of high density interconnect preforms
- H01L2224/21—Structure, shape, material or disposition of high density interconnect preforms of an individual HDI interconnect
- H01L2224/214—Connecting portions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/96—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/10—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/1011—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
- H01L2225/1017—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
- H01L2225/1035—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the device being entirely enclosed by the support, e.g. high-density interconnect [HDI]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/10—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/1011—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
- H01L2225/1047—Details of electrical connections between containers
- H01L2225/1058—Bump or bump-like electrical connections, e.g. balls, pillars, posts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/10—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
- H01L25/105—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
- H01L2924/141—Analog devices
- H01L2924/142—HF devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15313—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a land array, e.g. LGA
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10431—Details of mounted components
- H05K2201/10507—Involving several components
- H05K2201/10515—Stacked components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/07—Treatments involving liquids, e.g. plating, rinsing
- H05K2203/0703—Plating
- H05K2203/0733—Method for plating stud vias, i.e. massive vias formed by plating the bottom of a hole without plating on the walls
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/30—Details of processes not otherwise provided for in H05K2203/01 - H05K2203/17
- H05K2203/308—Sacrificial means, e.g. for temporarily filling a space for making a via or a cavity or for making rigid-flexible PCBs
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/007—Manufacture or processing of a substrate for a printed circuit board supported by a temporary or sacrificial carrier
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4644—Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
- H05K3/4647—Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits by applying an insulating layer around previously made via studs
Definitions
- the present invention relates to a component-embedded substrate, a manufacturing method thereof, and a high-frequency module.
- Patent Document 1 discloses a component-embedded substrate that enables three-dimensional mounting of electronic components.
- a through-via electrode that penetrates the component-embedded substrate is often formed.
- the through via electrode is used to connect an electronic component mounted on the component built-in substrate to a wiring on the printed circuit board via the component built-in substrate.
- the through via electrode is generally formed by forming a through hole in a resin substrate constituting the component built-in substrate and filling the through hole with an electrode material.
- the resin used for forming the resin substrate contains a filler made of a hard material such as silicon oxide in order to make the linear expansion coefficient of the resin substrate uniform.
- the surface roughness on the side surface (the surface in contact with the resin substrate) of the through via electrode is large.
- a laser is often used to form a through-hole in a resin substrate, but it is difficult to partially scrape off the filler with a laser.
- the filler exposed to the inner surface of the through hole when the through hole is formed is left as it is in a state of protruding from the inner surface, or is detached from the inner surface to form a depression (filler mark). Therefore, unevenness due to the filler is formed on the inner surface of the through hole. Therefore, unevenness is formed on the side surface of the through via electrode formed by filling the through hole with the electrode material in the same manner as the inner surface of the through hole.
- an object of the present invention is to provide a component-embedded substrate having a small surface roughness on the side surface of the through via electrode, a manufacturing method thereof, and a high-frequency module.
- the method for manufacturing a component-embedded substrate includes a resist formation step, a patterning step, a first electrode formation step, a resist removal step, a component placement step, a substrate formation step, and a peeling step.
- a resist for patterning is formed on the support.
- a through-hole penetrating the resist is formed by patterning the resist.
- the through via electrode is formed by filling the through hole with an electrode material.
- the resist is removed in the resist removal process, and the electronic component is placed in the part placement process.
- the substrate forming step the electronic component is resin-sealed to form a resin substrate.
- the peeling step the support is peeled from the resin substrate.
- a 1st electrode formation process is implemented before a board
- the resist for patterning formed by the photolithography technique does not include a filler that is generally included in a sealing resin, and is designed so that a smooth surface can be obtained in the formed resist. For this reason, the inner surface of the through-hole formed in the resist is not formed with irregularities due to the filler, and the inner surface becomes smooth. Therefore, the side surface of the through via electrode formed by filling the through hole with the electrode material is smooth with few irregularities like the inner surface of the through hole.
- the resist forming step preferably includes a step of supporting the base conductor on the support and a step of forming a resist for patterning on the base conductor.
- the patterning step the surface of the base conductor is exposed by forming a through hole.
- an electronic component is placed on the base conductor.
- the substrate forming step a resin substrate is formed on the base conductor.
- the peeling step when the support is peeled from the resin substrate, the base conductor is left on the resin substrate. And in such a method, it is preferable to further perform the conductor removal process which removes a base conductor from a resin substrate after a peeling process.
- the through via electrode in the first electrode formation step, can be formed by electrolytic plating such as filling plating using the base conductor as an electrode for plating. Further, by leaving the base conductor on the resin substrate in the peeling step, static electricity that can be generated at the time of peeling can be released to the outside through the base conductor. Therefore, electrostatic breakdown of the electronic component in the peeling process can be prevented.
- the base conductor can be removed without generating static electricity. Therefore, electrostatic breakdown of the electronic component in the conductor removing process can be prevented.
- the electronic component is sealed with a resin containing a filler in the substrate forming step.
- the linear expansion coefficient of the resin substrate can be made uniform, and as a result, the reliability of the manufactured component-embedded substrate can be improved.
- a second electrode is formed on the main surface on the support side of the resin substrate, after the peeling step, to connect the wiring component electrode and the through-via electrode to each other. It is preferable to further perform an electrode formation process.
- the component-embedded substrate manufactured by this method when another electronic component is mounted on the component-embedded substrate, the other electronic component is connected to the electronic component embedded in the component-embedded substrate. Is possible.
- the component-embedded substrate according to the present invention includes a resin substrate, an electronic component embedded in the resin substrate, a through via conductor, and a wiring electrode.
- the resin substrate is a substrate formed of a resin containing a filler, and the through via electrode penetrates the resin substrate.
- the wiring electrode is an electrode formed on at least one main surface of the resin substrate, and connects the terminal of the electronic component and the through via electrode to each other.
- the parameter representing the surface roughness of the side surface in contact with the resin substrate in the through via electrode is smaller than the parameter representing the size of the filler.
- the side surface of the through via electrode is smooth with few irregularities.
- a high-frequency module according to the present invention includes the above-described component-embedded substrate and another electronic component.
- the other electronic component is mounted on one main surface of a resin substrate included in the component-embedded substrate, and is connected to the through via electrode on the one main surface.
- the surface roughness on the side surface of the through via electrode is reduced.
- FIG. 1 is a sectional view conceptually showing a component built-in substrate according to an embodiment of the present invention. It is sectional drawing which showed notionally the high frequency module which concerns on embodiment of this invention.
- FIGS. 4A to 4C are diagrams sequentially illustrating steps performed when manufacturing a component-embedded substrate.
- FIGS. 4A to 4C are diagrams sequentially illustrating steps performed when manufacturing a component-embedded substrate, following FIG.
- FIG. 5A to FIG. 5C are diagrams sequentially illustrating steps performed when manufacturing the component-embedded substrate, following FIG. 4C. It is the cross-sectional image which showed a part of side surface of the penetration via electrode in the component built-in board
- FIG. 1 is a sectional view conceptually showing a component-embedded substrate 101 according to an embodiment of the present invention.
- the component-embedded substrate 101 includes a resin substrate 1, an electronic component 2, through via electrodes 3A and 3B, and wiring electrodes 4A and 4B.
- the resin substrate 1 is a substrate formed of a resin containing a filler made of a hard material such as silicon oxide, and has a first main surface 1a and a second main surface 1b located on opposite sides.
- the electronic component 2 is a high-frequency device, for example, and is built in the resin substrate 1.
- the electronic component 2 has two terminals 21 ⁇ / b> A and 21 ⁇ / b> B, and these terminals 21 ⁇ / b> A and 21 ⁇ / b> B are exposed on the second main surface 1 b of the resin substrate 1.
- the number of terminals of the electronic component 2 exposed on the second main surface 1b is not limited to two, and may be one, or may be three or more.
- the through via electrodes 3A and 3B penetrate the resin substrate 1 from the first main surface 1a to the second main surface 1b at positions on both sides of the electronic component 2, respectively.
- the positions and number of through via electrodes formed on the resin substrate 1 are the number of terminals of the electronic component 2 exposed on the second main surface 1b and other electrons mounted on the first main surface 1a.
- the number may be appropriately changed according to the number of terminals of the component 102 (see FIG. 2).
- the number of through-via electrodes is not limited to two, but may be one or a plurality of three or more.
- the parameter P1 representing the surface roughness on the side surfaces 3Aa and 3Ba constitutes the resin substrate 1. It is smaller than the parameter P2 representing the size of the filler contained in the resin.
- the parameter P1 is a value measured using a length measuring function of a microscope, and is 1 ⁇ m to 3 ⁇ m.
- the parameter P2 is a value measured by the same method, and is 2 ⁇ m to 20 ⁇ m.
- the wiring electrodes 4A and 4B are planar electrodes formed in regions separated from each other on the second main surface 1b.
- the wiring electrode 4A connects the terminal 21A of the electronic component 2 and the through via electrode 3A to each other at the second main surface 1b
- the wiring electrode 4B includes the terminal 21B of the electronic component 2 and the through via electrode. 3B are connected to each other by the second main surface 1b.
- the position and number of wiring electrodes formed on the second main surface 1b are the positions and number of terminals of the electronic component 2 exposed on the second main surface 1b, and further, the through vias formed on the resin substrate 1. It may be appropriately changed according to the position and number of electrodes. Further, the number of wiring electrodes is not limited to two, but may be one or may be three or more. Further, the wiring electrode is not limited to connecting the terminal of the electronic component 2 and the through via electrode, but may be connected to only the terminal or the through via electrode.
- FIG. 2 is a sectional view conceptually showing the high frequency module according to the embodiment of the present invention.
- a high frequency module can be configured by mounting another electronic component 102 on the component-embedded substrate 101 described above.
- the electronic component 102 is mounted on the first main surface 1a of the resin substrate 1 and connected to the through via electrodes 3A and 3B by solder or the like on the first main surface 1a.
- FIGS. 3A to 3C, FIGS. 4A to 4C, and FIGS. 5A to 5C are diagrams showing these steps in order.
- the resist formation process includes two processes.
- a support 51 having a flat surface 51a and a metal film 52 are prepared.
- the metal film 52 is attached to the flat surface 51 a of the support 51, thereby supporting the metal film 52 on the support 51.
- a substrate having an appropriate rigidity such as a printed circuit board or a silicon substrate
- a metal film 52 for example, copper foil is used.
- a sticking material 511 that can be peeled off from the support 51 or the metal film 52 such as a double-sided tape is used for sticking the metal film 52.
- the flat surface 51a of the support 51 is not limited to the metal film 52 such as copper foil, and various conductive thin films (including sheets and plates) may be attached.
- Various thin films including the metal film 52 correspond to the base conductor in the claims.
- a patterning resist 53 is formed on the surface 52a of the metal film 52 (a flat surface opposite to the support 51). At this time, the resist 53 is formed with a predetermined thickness T corresponding to the length of the through via electrodes 3A and 3B to be formed in the component-embedded substrate 101.
- a solder resist is used as the resist 53 for patterning.
- the patterning step as shown in FIG. 3C, by patterning the resist 53, through holes 54A and 54B penetrating the resist 53 are formed. Thereby, the surface 52a of the metal film 52 is exposed.
- a photolithography technique is used for patterning.
- These through holes 54A and 54B correspond to the through via electrodes 3A and 3B to be formed, respectively.
- high accuracy is not required for the absolute position in the resist 53. That is, when the through holes 54A and 54B are formed, even if the actual formation positions of the through holes 54A and 54B are deviated from the target position, it is permissible as long as it is deviated from the target position by the same distance in the same direction. This is because, unlike the conventional manufacturing method, the electronic component 2 (described later) is arranged (positioned) after the through via electrodes 3A and 3B are formed.
- the resist 53 for patterning formed by the photolithography technique does not include a filler that is generally included in a sealing resin, and is designed so that a smooth surface can be obtained in the formed resist 53. Therefore, the inner surfaces of the through holes 54A and 54B formed in the resist 53 are not formed with irregularities due to the filler, and the inner surfaces are smooth.
- the through holes 54A and 54B for the through via electrodes 3A and 3B are formed using the resist 53. This is important in reducing the surface roughness of the side surfaces 3Aa and 3Ba of the through via electrodes 3A and 3B.
- the through-hole electrodes 3A and 3B are formed by filling the through-holes 54A and 54B with an electrode material.
- electrolytic plating such as filling plating is used to fill the through holes 54A and 54B with the electrode material.
- the metal film 52 is used as an electrode for plating.
- the electrode material a material having high conductivity such as copper (Cu), nickel (Ni), tin (Sn), gold (Au), or the like is used.
- the electrodes formed by plating grow along the patterned resist in this way, the side surfaces 3Aa and 3Ba of the through via electrodes 3A and 3B are less uneven as the inner surfaces of the through holes 54A and 54B. It will be smooth. As a result, in the manufactured component-embedded substrate 101, the surface roughness on the side surfaces 3Aa and 3Ba of the through via electrodes 3A and 3B is reduced. In this way, following the patterning step of forming the through holes 54A and 54B in the resist 53, the first electrode forming step of filling the through holes 54A and 54B with the electrode material is further performed, whereby the surfaces on the side surfaces 3Aa and 3Ba Roughness can be remarkably improved.
- a resist removing step is performed as shown in FIG.
- the resist 53 is removed from the surface 52a of the metal film 52.
- the metal film 52 is in a state where the surface 52a is exposed and the through via electrodes 3A and 3B are erected on the surface 52a.
- a component placement step is performed as shown in FIG.
- the electronic component 2 is placed on the surface 52a of the metal film 52 using a fixing material or the like.
- the electronic component 2 is disposed at a predetermined position set in advance in relation to the positions of the through via electrodes 3A and 3B.
- the electronic component 2 is positioned at a predetermined position after the electronic component is built in the resin substrate by a conventional manufacturing method and the formation position of the through hole in the resin substrate is determined in relation to the position of the electronic component. Compared to the case, it can be performed easily and accurately.
- a substrate formation process is performed as shown in FIG.
- the electronic component 2 is resin-sealed on the surface 52a of the metal film 52.
- the resin substrate 1 is formed on the surface 52 a of the metal film 52.
- the resin substrate 1 incorporates the electronic component 2, and the through via electrodes 3 ⁇ / b> A and 3 ⁇ / b> B are formed on the surface of the resin substrate 1 (surface opposite to the metal film 52. Surface that becomes the first main surface 1 a). It is formed so that the end face is exposed.
- the resin substrate 1 is formed using a resin containing a filler. Thereby, the linear expansion coefficient of the resin substrate 1 can be made uniform, and as a result, the reliability of the component-embedded substrate 101 to be manufactured can be improved. In the case where sufficient reliability can be obtained without a filler, a resin that does not contain a filler may be used for forming the resin substrate 1.
- the support 51 is peeled from the resin substrate 1 while leaving the metal film 52 on the resin substrate 1. That is, the support 51 and the metal film 52 are separated at the location of the adhesive material 511 such as a double-sided tape.
- the adhesive material 511 such as a double-sided tape.
- a conductor removing process is performed as shown in FIG.
- the metal film 52 is chemically removed from the resin substrate 1.
- wet etching is used to remove the metal film 52.
- a second electrode forming step is performed (see FIG. 1).
- the electrode 4A and the wiring electrode 4B that connects the terminal 21B of the electronic component 2 and the through via electrode 3B to each other are formed.
- the side surfaces 3Aa and 3Ba of the through via electrodes 3A and 3B are smooth with few irregularities. That is, in any of the through via electrodes 3A and 3B, the parameter P1 representing the surface roughness on the side surfaces 3Aa and 3Ba is smaller than the parameter P2 representing the size of the filler contained in the resin constituting the resin substrate 1. Become.
- FIG. 6 is a cross-sectional image showing a part of the side surface of the through via electrode in the component built-in substrate 101 actually manufactured. From this cross-sectional image, it can be seen that the size of the unevenness on the side surface is sufficiently smaller than the diameter of the filler. Therefore, according to the manufacturing method, it can be seen that the side surface of the through via electrode becomes smooth.
- the surface roughness on the side surfaces 3Aa and 3Ba of the through via electrodes 3A and 3B is reduced.
- the current flows through the surface layer portion including the side surface 3Aa of the through via electrode 3A.
- the surface roughness on the side surface 3Aa is small as in the present embodiment, the current flow is not inhibited in the through via electrode 3A, and as a result, the resistance value in the through via electrode 3A remains low.
- the through via electrode 3B Therefore, when the component-embedded substrate 101 is applied to a high frequency module, excellent frequency characteristics can be obtained in the high frequency module.
- the resist 53 is formed directly on the support 51 or indirectly through the adhesive 511. May be formed.
- a method that does not require the metal film 52 such as electroless plating is used for filling the through holes 54A and 54B with the electrode material.
- the support 51 is peeled from the resin substrate 1 in an environment where static electricity is unlikely to occur.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Geometry (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
This method for manufacturing a component-embedded substrate comprises: a resist formation step; a patterning step; a first electrode formation step; a resist removal step; a component arrangement step; a substrate formation step; and a separation step. In the resist formation step, a resist (53) for patterning is formed on a support (51). In the patterning step, patterning is applied to the resist (53) to form a through-hole that runs through the resist. In the first electrode formation step, a through-via electrode is formed by filling the through-hole with an electrode material. The resist (53) is removed in the resist removal step, and an electronic component is arranged in the component arrangement step. In the substrate formation step, a resin substrate is formed by sealing the electronic component with resin. In the separation step, the support (51) is separated from the resin substrate. In this manufacturing method, the first electrode formation step is performed before the substrate formation step.
Description
本発明は、部品内蔵基板及びその製造方法、並びに高周波モジュールに関する。
The present invention relates to a component-embedded substrate, a manufacturing method thereof, and a high-frequency module.
プリント基板には、電子部品が平面的に搭載されることが多い。近年、電子機器の小型化及び高機能化に伴い、プリント基板に対して電子部品を高密度で搭載することが必要になっている。そこで、その様な電子部品の高密度化を実現するべく、電子部品を立体的に搭載する技術が提案されている。例えば、特許文献1には、電子部品の立体的な搭載を可能にする部品内蔵基板が開示されている。
In many cases, electronic components are mounted on a printed circuit board in a planar manner. In recent years, with the miniaturization and high functionality of electronic devices, it is necessary to mount electronic components on a printed circuit board at high density. Therefore, in order to realize such a high-density electronic component, a technology for mounting electronic components in three dimensions has been proposed. For example, Patent Document 1 discloses a component-embedded substrate that enables three-dimensional mounting of electronic components.
そして、特許文献1に開示されている様に、部品内蔵基板には、これを貫通する貫通ビア電極が形成されることが多い。この貫通ビア電極は、部品内蔵基板上に搭載された電子部品を、当該部品内蔵基板を介してプリント基板上の配線に接続するために用いられる。そして、貫通ビア電極は、一般的に、部品内蔵基板を構成する樹脂基板に貫通孔を形成し、その貫通孔を電極材料で埋めることにより形成される。又、樹脂基板の形成に用いられる樹脂には、樹脂基板の線膨張率を均一にするために、酸化ケイ素等の硬質な材料から成るフィラーが含まれている。
And, as disclosed in Patent Document 1, a through-via electrode that penetrates the component-embedded substrate is often formed. The through via electrode is used to connect an electronic component mounted on the component built-in substrate to a wiring on the printed circuit board via the component built-in substrate. The through via electrode is generally formed by forming a through hole in a resin substrate constituting the component built-in substrate and filling the through hole with an electrode material. The resin used for forming the resin substrate contains a filler made of a hard material such as silicon oxide in order to make the linear expansion coefficient of the resin substrate uniform.
しかしながら、部品内蔵基板において貫通ビア電極を形成する従来の方法では、貫通ビア電極の側面(樹脂基板と接する面)における表面粗さが大きくなっていた。理由は、次の通りである。樹脂基板への貫通孔の形成にはレーザが用いられることが多いが、レーザでは、フィラーを部分的に削り取ることが困難である。このため、貫通孔を形成した際に貫通孔の内面に露出したフィラーは、内面から突出した状態でそのまま残置するか、又は、内面から脱離して窪み(フィラー痕)を形成する。従って、貫通孔の内面には、フィラーに起因した凹凸が形成されることになる。よって、貫通孔を電極材料で埋めて形成される貫通ビア電極の側面には、貫通孔の内面と同様に凹凸が形成されることになる。
However, in the conventional method of forming the through via electrode in the component built-in substrate, the surface roughness on the side surface (the surface in contact with the resin substrate) of the through via electrode is large. The reason is as follows. A laser is often used to form a through-hole in a resin substrate, but it is difficult to partially scrape off the filler with a laser. For this reason, the filler exposed to the inner surface of the through hole when the through hole is formed is left as it is in a state of protruding from the inner surface, or is detached from the inner surface to form a depression (filler mark). Therefore, unevenness due to the filler is formed on the inner surface of the through hole. Therefore, unevenness is formed on the side surface of the through via electrode formed by filling the through hole with the electrode material in the same manner as the inner surface of the through hole.
貫通ビア電極に高周波領域の電流が流れた場合、その電流は、貫通ビア電極の側面を含む表層部を流れることになる。このため、貫通ビア電極の側面における表面粗さが大きいと、貫通ビア電極における電流の流れが阻害され、その結果として貫通ビア電極での抵抗値が増大してしまう。従って、部品内蔵基板が高周波モジュールに適用された場合、貫通ビア電極の側面において表面粗さが大きいことは、高周波特性を低下させる原因となる。
When a current in a high frequency region flows through the through via electrode, the current flows through the surface layer including the side surface of the through via electrode. For this reason, if the surface roughness on the side surface of the through via electrode is large, the current flow in the through via electrode is hindered, and as a result, the resistance value at the through via electrode increases. Therefore, when the component-embedded substrate is applied to a high-frequency module, a large surface roughness on the side surface of the through via electrode causes a decrease in high-frequency characteristics.
そこで本発明の目的は、貫通ビア電極の側面における表面粗さが小さい部品内蔵基板及びその製造方法、並びに高周波モジュールを提供することである。
Therefore, an object of the present invention is to provide a component-embedded substrate having a small surface roughness on the side surface of the through via electrode, a manufacturing method thereof, and a high-frequency module.
本発明に係る部品内蔵基板の製造方法は、レジスト形成工程と、パターニング工程と、第1の電極形成工程と、レジスト除去工程と、部品配置工程と、基板形成工程と、剥離工程と、を有する。レジスト形成工程では、支持体にパターニング用のレジストを形成する。パターニング工程では、レジストにパターニングを施すことにより、レジストを貫通する貫通孔を形成する。第1の電極形成工程では、貫通孔を電極材料で埋めることにより、貫通ビア電極を形成する。レジスト除去工程ではレジストを除去し、部品配置工程では電子部品を配置する。基板形成工程では、電子部品を樹脂封止して樹脂基板を形成する。剥離工程では、樹脂基板から支持体を剥離する。そして、この製造方法では、基板形成工程の前に第1の電極形成工程を実施する。
The method for manufacturing a component-embedded substrate according to the present invention includes a resist formation step, a patterning step, a first electrode formation step, a resist removal step, a component placement step, a substrate formation step, and a peeling step. . In the resist forming step, a resist for patterning is formed on the support. In the patterning step, a through-hole penetrating the resist is formed by patterning the resist. In the first electrode formation step, the through via electrode is formed by filling the through hole with an electrode material. The resist is removed in the resist removal process, and the electronic component is placed in the part placement process. In the substrate forming step, the electronic component is resin-sealed to form a resin substrate. In the peeling step, the support is peeled from the resin substrate. And in this manufacturing method, a 1st electrode formation process is implemented before a board | substrate formation process.
フォトリソグラフィ技術によって形成されるパターニング用のレジストは、封止樹脂に一般的に含まれる様なフィラーを含まず、形成したレジストにおいて滑らかな表面が得られる様に設計されている。このため、レジストに形成された貫通孔の内面には、フィラーに起因した凹凸が形成されることがなく、それらの内面は滑らかになる。よって、貫通孔を電極材料で埋めることで形成される貫通ビア電極の側面は、貫通孔の内面と同様に凹凸が少ない滑らかなものとなる。
The resist for patterning formed by the photolithography technique does not include a filler that is generally included in a sealing resin, and is designed so that a smooth surface can be obtained in the formed resist. For this reason, the inner surface of the through-hole formed in the resist is not formed with irregularities due to the filler, and the inner surface becomes smooth. Therefore, the side surface of the through via electrode formed by filling the through hole with the electrode material is smooth with few irregularities like the inner surface of the through hole.
本発明に係る部品内蔵基板の製造方法では、レジスト形成工程は、支持体にベース導体を支持させる工程と、ベース導体上にパターニング用のレジストを形成する工程と、を含んでいることが好ましい。この場合、パターニング工程では、貫通孔を形成することによりベース導体の表面を露出させる。部品配置工程では、ベース導体上に電子部品を配置する。基板形成工程では、ベース導体上に樹脂基板を形成する。剥離工程では、樹脂基板から支持体を剥離する際、樹脂基板にベース導体を残置させる。そして、この様な方法においては、剥離工程の後、樹脂基板からベース導体を除去する導体除去工程を更に実行することが好ましい。
In the method for manufacturing a component-embedded substrate according to the present invention, the resist forming step preferably includes a step of supporting the base conductor on the support and a step of forming a resist for patterning on the base conductor. In this case, in the patterning step, the surface of the base conductor is exposed by forming a through hole. In the component placement step, an electronic component is placed on the base conductor. In the substrate forming step, a resin substrate is formed on the base conductor. In the peeling step, when the support is peeled from the resin substrate, the base conductor is left on the resin substrate. And in such a method, it is preferable to further perform the conductor removal process which removes a base conductor from a resin substrate after a peeling process.
この方法によれば、第1の電極形成工程において、ベース導体をメッキ用の電極として、フィリングメッキ等の電解メッキで貫通ビア電極を形成することができる。又、剥離工程において、樹脂基板にベース導体を残置させることにより、剥離時に生じ得る静電気を、ベース導体を通じて外部に逃がすことができる。よって、剥離工程での電子部品の静電破壊を防止することができる。
According to this method, in the first electrode formation step, the through via electrode can be formed by electrolytic plating such as filling plating using the base conductor as an electrode for plating. Further, by leaving the base conductor on the resin substrate in the peeling step, static electricity that can be generated at the time of peeling can be released to the outside through the base conductor. Therefore, electrostatic breakdown of the electronic component in the peeling process can be prevented.
本発明に係る部品内蔵基板の製造方法では、導体除去工程において、樹脂基板からベース導体を化学的に除去することが好ましい。この方法によれば、静電気を発生させることなくベース導体を除去することが可能になる。よって、導体除去工程での電子部品の静電破壊を防止することができる。
In the method for manufacturing a component-embedded substrate according to the present invention, it is preferable to chemically remove the base conductor from the resin substrate in the conductor removing step. According to this method, the base conductor can be removed without generating static electricity. Therefore, electrostatic breakdown of the electronic component in the conductor removing process can be prevented.
本発明に係る部品内蔵基板の製造方法では、基板形成工程において、フィラーを含んだ樹脂を用いて電子部品を樹脂封止することが好ましい。この方法によれば、樹脂基板の線膨張率を均一にすることができ、その結果として、製造される部品内蔵基板の信頼性を向上させることができる。
In the method for manufacturing a component-embedded substrate according to the present invention, it is preferable that the electronic component is sealed with a resin containing a filler in the substrate forming step. According to this method, the linear expansion coefficient of the resin substrate can be made uniform, and as a result, the reliability of the manufactured component-embedded substrate can be improved.
本発明に係る部品内蔵基板の製造方法では、樹脂基板のうちの支持体側の主面に、剥離工程の後、電子部品の端子と貫通ビア電極とを互いに接続する配線電極を形成する第2の電極形成工程を更に実行することが好ましい。この方法で製造される部品内蔵基板によれば、その部品内蔵基板上に別の電子部品を搭載したときに、当該別の電子部品を、部品内蔵基板に内蔵されている電子部品と接続することが可能となる。
In the method of manufacturing a component-embedded substrate according to the present invention, a second electrode is formed on the main surface on the support side of the resin substrate, after the peeling step, to connect the wiring component electrode and the through-via electrode to each other. It is preferable to further perform an electrode formation process. According to the component-embedded substrate manufactured by this method, when another electronic component is mounted on the component-embedded substrate, the other electronic component is connected to the electronic component embedded in the component-embedded substrate. Is possible.
本発明に係る部品内蔵基板は、樹脂基板と、樹脂基板に内蔵された電子部品と、貫通ビア導体と、配線電極とを備える。樹脂基板は、フィラーを含んだ樹脂で形成された基板であり、貫通ビア電極は、樹脂基板を貫通している。配線電極は、樹脂基板の少なくとも一方の主面に形成された電極であって、電子部品の端子と貫通ビア電極とを互いに接続している。そして、貫通ビア電極における樹脂基板と接する側面の表面粗さを表すパラメータが、フィラーのサイズを表すパラメータより小さい。
The component-embedded substrate according to the present invention includes a resin substrate, an electronic component embedded in the resin substrate, a through via conductor, and a wiring electrode. The resin substrate is a substrate formed of a resin containing a filler, and the through via electrode penetrates the resin substrate. The wiring electrode is an electrode formed on at least one main surface of the resin substrate, and connects the terminal of the electronic component and the through via electrode to each other. The parameter representing the surface roughness of the side surface in contact with the resin substrate in the through via electrode is smaller than the parameter representing the size of the filler.
上記部品内蔵基板によれば、貫通ビア電極の側面は、凹凸が少ない滑らかなものとなる。
According to the component-embedded substrate, the side surface of the through via electrode is smooth with few irregularities.
本発明に係る高周波モジュールは、上記部品内蔵基板と、別の電子部品とを備える。当該別の電子部品は、部品内蔵基板が備える樹脂基板の一方の主面上に搭載されると共に、当該一方の主面にて貫通ビア電極に接続されている。
A high-frequency module according to the present invention includes the above-described component-embedded substrate and another electronic component. The other electronic component is mounted on one main surface of a resin substrate included in the component-embedded substrate, and is connected to the through via electrode on the one main surface.
上記高周波モジュールによれば、貫通ビア電極の側面における表面粗さが小さいため、優れた周波数特性が得られる。
According to the above high frequency module, since the surface roughness on the side surface of the through via electrode is small, excellent frequency characteristics can be obtained.
本発明に係る部品内蔵基板及びその製造方法、並びに高周波モジュールによれば、貫通ビア電極の側面における表面粗さが小さくなる。
According to the component-embedded substrate, the manufacturing method thereof, and the high frequency module according to the present invention, the surface roughness on the side surface of the through via electrode is reduced.
[1]部品内蔵基板の構成
図1は、本発明の実施形態に係る部品内蔵基板101を概念的に示した断面図である。図1に示される様に、部品内蔵基板101は、樹脂基板1と、電子部品2と、貫通ビア電極3A及び3Bと、配線電極4A及び4Bと、を備える。 [1] Configuration of Component-embedded Substrate FIG. 1 is a sectional view conceptually showing a component-embeddedsubstrate 101 according to an embodiment of the present invention. As shown in FIG. 1, the component-embedded substrate 101 includes a resin substrate 1, an electronic component 2, through via electrodes 3A and 3B, and wiring electrodes 4A and 4B.
図1は、本発明の実施形態に係る部品内蔵基板101を概念的に示した断面図である。図1に示される様に、部品内蔵基板101は、樹脂基板1と、電子部品2と、貫通ビア電極3A及び3Bと、配線電極4A及び4Bと、を備える。 [1] Configuration of Component-embedded Substrate FIG. 1 is a sectional view conceptually showing a component-embedded
樹脂基板1は、酸化ケイ素等の硬質な材料から成るフィラーを含んだ樹脂で形成された基板であり、互いに反対側に位置する第1の主面1a及び第2の主面1bを有する。
The resin substrate 1 is a substrate formed of a resin containing a filler made of a hard material such as silicon oxide, and has a first main surface 1a and a second main surface 1b located on opposite sides.
電子部品2は、例えば高周波デバイスであって樹脂基板1に内蔵されている。本実施形態では、電子部品2は、2つの端子21A及び21Bを有し、それらの端子21A及び21Bを樹脂基板1の第2の主面1bに露出させている。尚、第2の主面1bに露出する電子部品2の端子の数は、2つに限らず、1つであってもよいし、3つ以上の複数であってもよい。
The electronic component 2 is a high-frequency device, for example, and is built in the resin substrate 1. In this embodiment, the electronic component 2 has two terminals 21 </ b> A and 21 </ b> B, and these terminals 21 </ b> A and 21 </ b> B are exposed on the second main surface 1 b of the resin substrate 1. Note that the number of terminals of the electronic component 2 exposed on the second main surface 1b is not limited to two, and may be one, or may be three or more.
貫通ビア電極3A及び3Bはそれぞれ、電子部品2の両側の位置において、第1の主面1aから第2の主面1bまで樹脂基板1を貫通している。尚、樹脂基板1に形成される貫通ビア電極の位置や本数は、第2の主面1bに露出する電子部品2の端子の数や、第1の主面1a上に搭載される別の電子部品102(図2参照)の端子の数などに応じて、適宜変更されてもよい。又、貫通ビア電極の本数に関しては、2本に限らず、1本であってもよいし、3本以上の複数本であってもよい。
The through via electrodes 3A and 3B penetrate the resin substrate 1 from the first main surface 1a to the second main surface 1b at positions on both sides of the electronic component 2, respectively. Note that the positions and number of through via electrodes formed on the resin substrate 1 are the number of terminals of the electronic component 2 exposed on the second main surface 1b and other electrons mounted on the first main surface 1a. The number may be appropriately changed according to the number of terminals of the component 102 (see FIG. 2). Further, the number of through-via electrodes is not limited to two, but may be one or a plurality of three or more.
そして、本実施形態では、貫通ビア電極3A及び3Bの何れにおいても、それらの側面3Aa及び3Ba(樹脂基板1と接する面)における表面粗さを表すパラメータP1が、樹脂基板1を構成している樹脂に含まれるフィラーのサイズを表すパラメータP2より小さくなっている。一例として、パラメータP1は、マイクロスコープの測長機能を用いて計測したときの値であって、1μm~3μmである。又、パラメータP2は、同様の方法で計測したときの値であって、2μm~20μmである。
In this embodiment, in any of the through via electrodes 3A and 3B, the parameter P1 representing the surface roughness on the side surfaces 3Aa and 3Ba (the surface in contact with the resin substrate 1) constitutes the resin substrate 1. It is smaller than the parameter P2 representing the size of the filler contained in the resin. As an example, the parameter P1 is a value measured using a length measuring function of a microscope, and is 1 μm to 3 μm. The parameter P2 is a value measured by the same method, and is 2 μm to 20 μm.
配線電極4A及び4Bは、第2の主面1bにおける互いに離間した領域に形成された平面電極である。本実施形態では、配線電極4Aは、電子部品2の端子21Aと貫通ビア電極3Aとを第2の主面1bにて互いに接続し、配線電極4Bは、電子部品2の端子21Bと貫通ビア電極3Bとを第2の主面1bにて互いに接続している。
The wiring electrodes 4A and 4B are planar electrodes formed in regions separated from each other on the second main surface 1b. In the present embodiment, the wiring electrode 4A connects the terminal 21A of the electronic component 2 and the through via electrode 3A to each other at the second main surface 1b, and the wiring electrode 4B includes the terminal 21B of the electronic component 2 and the through via electrode. 3B are connected to each other by the second main surface 1b.
尚、第2の主面1bに形成される配線電極の位置や数は、第2の主面1bに露出する電子部品2の端子の位置や数、更には樹脂基板1に形成される貫通ビア電極の位置や数などに応じて、適宜変更されてもよい。又、配線電極の数に関しては、2つに限らず、1つであってもよいし、3つ以上の複数であってもよい。更に、配線電極は、電子部品2の端子と貫通ビア電極とを接続するものに限らず、端子又は貫通ビア電極の何れかにのみ接続されたものであってもよい。
The position and number of wiring electrodes formed on the second main surface 1b are the positions and number of terminals of the electronic component 2 exposed on the second main surface 1b, and further, the through vias formed on the resin substrate 1. It may be appropriately changed according to the position and number of electrodes. Further, the number of wiring electrodes is not limited to two, but may be one or may be three or more. Further, the wiring electrode is not limited to connecting the terminal of the electronic component 2 and the through via electrode, but may be connected to only the terminal or the through via electrode.
[2]高周波モジュールの構成
図2は、本発明の実施形態に係る高周波モジュールを概念的に示した断面図である。図2に示される様に、上述した部品内蔵基板101上に別の電子部品102を搭載することにより、高周波モジュールを構成することができる。具体的には、電子部品102は、樹脂基板1の第1の主面1a上に搭載されると共に、当該第1の主面1aにて半田等により貫通ビア電極3A及び3Bに接続される。 [2] Configuration of High Frequency Module FIG. 2 is a sectional view conceptually showing the high frequency module according to the embodiment of the present invention. As shown in FIG. 2, a high frequency module can be configured by mounting anotherelectronic component 102 on the component-embedded substrate 101 described above. Specifically, the electronic component 102 is mounted on the first main surface 1a of the resin substrate 1 and connected to the through via electrodes 3A and 3B by solder or the like on the first main surface 1a.
図2は、本発明の実施形態に係る高周波モジュールを概念的に示した断面図である。図2に示される様に、上述した部品内蔵基板101上に別の電子部品102を搭載することにより、高周波モジュールを構成することができる。具体的には、電子部品102は、樹脂基板1の第1の主面1a上に搭載されると共に、当該第1の主面1aにて半田等により貫通ビア電極3A及び3Bに接続される。 [2] Configuration of High Frequency Module FIG. 2 is a sectional view conceptually showing the high frequency module according to the embodiment of the present invention. As shown in FIG. 2, a high frequency module can be configured by mounting another
[3]部品内蔵基板の製造方法
[3-1]第1の実施形態
上述した部品内蔵基板101を製造する際には、レジスト形成工程、パターニング工程、第1の電極形成工程、レジスト除去工程、部品配置工程、基板形成工程、剥離工程、導体除去工程、及び第2の電極形成工程が順に実行される。図3(A)~(C)、図4(A)~(C)、及び図5(A)~(C)は、これらの工程を順に示した図である。 [3] Manufacturing Method of Component Embedded Substrate [3-1] First Embodiment When manufacturing the component embeddedsubstrate 101 described above, a resist forming step, a patterning step, a first electrode forming step, a resist removing step, A component placement process, a board forming process, a peeling process, a conductor removing process, and a second electrode forming process are sequentially performed. FIGS. 3A to 3C, FIGS. 4A to 4C, and FIGS. 5A to 5C are diagrams showing these steps in order.
[3-1]第1の実施形態
上述した部品内蔵基板101を製造する際には、レジスト形成工程、パターニング工程、第1の電極形成工程、レジスト除去工程、部品配置工程、基板形成工程、剥離工程、導体除去工程、及び第2の電極形成工程が順に実行される。図3(A)~(C)、図4(A)~(C)、及び図5(A)~(C)は、これらの工程を順に示した図である。 [3] Manufacturing Method of Component Embedded Substrate [3-1] First Embodiment When manufacturing the component embedded
レジスト形成工程には、2つの工程が含まれている。第1の工程では、平坦面51aを有する支持体51と、金属膜52とを用意する。そして、図3(A)に示される様に、支持体51の平坦面51aに金属膜52を貼り付けることにより、支持体51に金属膜52を支持させる。
The resist formation process includes two processes. In the first step, a support 51 having a flat surface 51a and a metal film 52 are prepared. Then, as shown in FIG. 3A, the metal film 52 is attached to the flat surface 51 a of the support 51, thereby supporting the metal film 52 on the support 51.
支持体51には、例えばプリント基板やシリコン基板など、適度な剛性を持った基板が用いられる。金属膜52には、例えば銅箔が用いられる。又、金属膜52の貼付けには、両面テープ等、支持体51や金属膜52からの剥離が可能な貼付け材511が用いられる。
For the support 51, a substrate having an appropriate rigidity, such as a printed circuit board or a silicon substrate, is used. For the metal film 52, for example, copper foil is used. Further, a sticking material 511 that can be peeled off from the support 51 or the metal film 52 such as a double-sided tape is used for sticking the metal film 52.
尚、支持体51の平坦面51aには、銅箔等の金属膜52に限らず、導電性を有する種々の薄膜(シートや板状のものを含む)が貼り付けられてもよい。金属膜52を含む種々の薄膜は、特許請求の範囲においてベース導体に対応するものである。
The flat surface 51a of the support 51 is not limited to the metal film 52 such as copper foil, and various conductive thin films (including sheets and plates) may be attached. Various thin films including the metal film 52 correspond to the base conductor in the claims.
第2の工程では、図3(B)に示される様に、金属膜52の表面52a(支持体51と反対側の平坦面)上にパターニング用のレジスト53を形成する。このとき、レジスト53は、部品内蔵基板101において形成しようとする貫通ビア電極3A及び3Bの長さに応じた所定の厚さTで形成される。パターニング用のレジスト53には、例えばソルダーレジストが用いられる。
In the second step, as shown in FIG. 3B, a patterning resist 53 is formed on the surface 52a of the metal film 52 (a flat surface opposite to the support 51). At this time, the resist 53 is formed with a predetermined thickness T corresponding to the length of the through via electrodes 3A and 3B to be formed in the component-embedded substrate 101. As the resist 53 for patterning, for example, a solder resist is used.
パターニング工程では、図3(C)に示される様に、レジスト53にパターニングを施すことにより、レジスト53を貫通する貫通孔54A及び54Bを形成する。これにより、金属膜52の表面52aを露出させる。一例として、パターニングにはフォトリソグラフィ技術が用いられる。
In the patterning step, as shown in FIG. 3C, by patterning the resist 53, through holes 54A and 54B penetrating the resist 53 are formed. Thereby, the surface 52a of the metal film 52 is exposed. As an example, a photolithography technique is used for patterning.
これらの貫通孔54A及び54Bは、形成しようとする貫通ビア電極3A及び3Bのそれぞれに対応するものである。貫通孔54A及び54Bの形成位置に関して、互いの相対的な位置関係が高い精度で維持されていれば、レジスト53における絶対的な位置については高い精度は要求されない。即ち、貫通孔54A及び54Bを形成した際に、それぞれの実際の形成位置が目標位置からずれたとしても、目標位置から同じ方向へ同じ距離だけずれたものであれば許容される。なぜなら、従来の製造方法とは異なり、貫通ビア電極3A及び3Bの形成後に、後述する電子部品2の配置(位置決め)が行われるからである。
These through holes 54A and 54B correspond to the through via electrodes 3A and 3B to be formed, respectively. As long as the relative positions of the through holes 54A and 54B are maintained with high accuracy, high accuracy is not required for the absolute position in the resist 53. That is, when the through holes 54A and 54B are formed, even if the actual formation positions of the through holes 54A and 54B are deviated from the target position, it is permissible as long as it is deviated from the target position by the same distance in the same direction. This is because, unlike the conventional manufacturing method, the electronic component 2 (described later) is arranged (positioned) after the through via electrodes 3A and 3B are formed.
フォトリソグラフィ技術によって形成されるパターニング用のレジスト53は、封止樹脂に一般的に含まれる様なフィラーを含まず、形成したレジスト53において滑らかな表面が得られる様に設計されている。このため、レジスト53に形成された貫通孔54A及び54Bの内面には、フィラーに起因した凹凸が形成されることがなく、それらの内面は滑らかになる。この様に、フィラーを含む樹脂基板1を形成する前(即ち、後述する基板形成工程の前)に、レジスト53を用いて貫通ビア電極3A及び3B用の貫通孔54A及び54Bを形成することが、貫通ビア電極3A及び3Bのそれぞれの側面3Aa及び3Baにおける表面粗さを小さくする上で重要である。
The resist 53 for patterning formed by the photolithography technique does not include a filler that is generally included in a sealing resin, and is designed so that a smooth surface can be obtained in the formed resist 53. Therefore, the inner surfaces of the through holes 54A and 54B formed in the resist 53 are not formed with irregularities due to the filler, and the inner surfaces are smooth. Thus, before forming the resin substrate 1 containing the filler (that is, before the substrate forming step described later), the through holes 54A and 54B for the through via electrodes 3A and 3B are formed using the resist 53. This is important in reducing the surface roughness of the side surfaces 3Aa and 3Ba of the through via electrodes 3A and 3B.
第1の電極形成工程では、図4(A)に示される様に、貫通孔54A及び54Bを電極材料で埋めることにより、貫通ビア電極3A及び3Bを形成する。一例として、貫通孔54A及び54Bへの電極材料の充填には、フィリングメッキ等の電解メッキが用いられる。このとき、金属膜52が、メッキ用の電極として用いられる。又、電極材料には、銅(Cu)、ニッケル(Ni)、スズ(Sn)、金(Au)等、導電率の高い材料が用いられる。
In the first electrode formation step, as shown in FIG. 4A, the through- hole electrodes 3A and 3B are formed by filling the through- holes 54A and 54B with an electrode material. As an example, electrolytic plating such as filling plating is used to fill the through holes 54A and 54B with the electrode material. At this time, the metal film 52 is used as an electrode for plating. As the electrode material, a material having high conductivity such as copper (Cu), nickel (Ni), tin (Sn), gold (Au), or the like is used.
この様にメッキで形成される電極は、パターニングされたレジストに沿って成長するため、貫通ビア電極3A及び3Bのそれぞれの側面3Aa及び3Baは、貫通孔54A及び54Bの内面と同様に凹凸が少ない滑らかなものとなる。その結果、製造される部品内蔵基板101において、貫通ビア電極3A及び3Bのそれぞれの側面3Aa及び3Baにおける表面粗さが小さくなる。この様に、レジスト53に貫通孔54A及び54Bを形成するパターニング工程に続けて、更に貫通孔54A及び54Bを電極材料で埋める第1の電極形成工程を実施することにより、側面3Aa及び3Baにおける表面粗さを顕著に改善することができる。
Since the electrodes formed by plating grow along the patterned resist in this way, the side surfaces 3Aa and 3Ba of the through via electrodes 3A and 3B are less uneven as the inner surfaces of the through holes 54A and 54B. It will be smooth. As a result, in the manufactured component-embedded substrate 101, the surface roughness on the side surfaces 3Aa and 3Ba of the through via electrodes 3A and 3B is reduced. In this way, following the patterning step of forming the through holes 54A and 54B in the resist 53, the first electrode forming step of filling the through holes 54A and 54B with the electrode material is further performed, whereby the surfaces on the side surfaces 3Aa and 3Ba Roughness can be remarkably improved.
第1の電極形成工程の後、図4(B)に示される様に、レジスト除去工程を行う。この工程では、金属膜52の表面52a上からレジスト53を除去する。これにより、金属膜52は、表面52aが露出すると共に、その表面52aに貫通ビア電極3A及び3Bが立設された状態となる。
After the first electrode forming step, a resist removing step is performed as shown in FIG. In this step, the resist 53 is removed from the surface 52a of the metal film 52. Thereby, the metal film 52 is in a state where the surface 52a is exposed and the through via electrodes 3A and 3B are erected on the surface 52a.
レジスト除去工程の後、図4(C)に示される様に、部品配置工程を行う。この工程では、金属膜52の表面52a上に、固定材等を用いて電子部品2を配置する。このとき、電子部品2は、貫通ビア電極3A及び3Bのそれぞれの位置との関係で予め設定された所定の位置に配置される。このときの所定の位置への電子部品2の位置決めは、従来の製造方法にて電子部品を樹脂基板に内蔵した後に当該電子部品の位置との関係で樹脂基板への貫通孔の形成位置を決める場合に比べて、容易に且つ精度良く行うことができる。
After the resist removal step, a component placement step is performed as shown in FIG. In this step, the electronic component 2 is placed on the surface 52a of the metal film 52 using a fixing material or the like. At this time, the electronic component 2 is disposed at a predetermined position set in advance in relation to the positions of the through via electrodes 3A and 3B. At this time, the electronic component 2 is positioned at a predetermined position after the electronic component is built in the resin substrate by a conventional manufacturing method and the formation position of the through hole in the resin substrate is determined in relation to the position of the electronic component. Compared to the case, it can be performed easily and accurately.
部品配置工程の後、図5(A)に示される様に、基板形成工程を行う。この工程では、金属膜52の表面52a上にて電子部品2を樹脂封止する。これにより、金属膜52の表面52a上に樹脂基板1を形成する。このとき、樹脂基板1は、電子部品2を内蔵すると共に、樹脂基板1の表面(金属膜52とは反対側の面。第1の主面1aとなる面)に貫通ビア電極3A及び3Bの端面が露出する様に形成される。
After the component placement process, a substrate formation process is performed as shown in FIG. In this step, the electronic component 2 is resin-sealed on the surface 52a of the metal film 52. Thereby, the resin substrate 1 is formed on the surface 52 a of the metal film 52. At this time, the resin substrate 1 incorporates the electronic component 2, and the through via electrodes 3 </ b> A and 3 </ b> B are formed on the surface of the resin substrate 1 (surface opposite to the metal film 52. Surface that becomes the first main surface 1 a). It is formed so that the end face is exposed.
樹脂基板1の形成には、フィラーを含んだ樹脂が用いられる。これにより、樹脂基板1の線膨張率を均一にすることができ、その結果として、製造される部品内蔵基板101の信頼性を向上させることができる。尚、フィラーがなくても十分な信頼性が得られる場合には、樹脂基板1の形成に、フィラーを含まない樹脂が用いられてもよい。
The resin substrate 1 is formed using a resin containing a filler. Thereby, the linear expansion coefficient of the resin substrate 1 can be made uniform, and as a result, the reliability of the component-embedded substrate 101 to be manufactured can be improved. In the case where sufficient reliability can be obtained without a filler, a resin that does not contain a filler may be used for forming the resin substrate 1.
剥離工程では、図5(B)に示される様に、樹脂基板1に金属膜52を残置させつつ、樹脂基板1から支持体51を剥離する。即ち、両面テープ等の貼付け材511の箇所で、支持体51と金属膜52とを分離させる。この様に樹脂基板1に金属膜52を残置させることにより、剥離時に生じ得る静電気を、金属膜52を通じて外部に逃がすことができる。よって、剥離工程での電子部品2の静電破壊を防止することができる。
In the peeling process, as shown in FIG. 5B, the support 51 is peeled from the resin substrate 1 while leaving the metal film 52 on the resin substrate 1. That is, the support 51 and the metal film 52 are separated at the location of the adhesive material 511 such as a double-sided tape. In this way, by leaving the metal film 52 on the resin substrate 1, static electricity that may be generated at the time of peeling can be released to the outside through the metal film 52. Therefore, electrostatic breakdown of the electronic component 2 in the peeling process can be prevented.
剥離工程の後、図5(C)に示される様に、導体除去工程を行う。この工程では、樹脂基板1から金属膜52を化学的に除去する。一例として、金属膜52の除去には、ウェットエッチングが用いられる。この様に化学的な除去処理を行うことにより、静電気を発生させることなく金属膜52を除去することが可能になる。よって、導体除去工程での電子部品2の静電破壊を防止することができる。
After the peeling process, a conductor removing process is performed as shown in FIG. In this step, the metal film 52 is chemically removed from the resin substrate 1. As an example, wet etching is used to remove the metal film 52. By performing the chemical removal process in this way, the metal film 52 can be removed without generating static electricity. Therefore, electrostatic breakdown of the electronic component 2 in the conductor removing step can be prevented.
導体除去工程の後、第2の電極形成工程を行う(図1参照)。この工程では、樹脂基板1の第2の主面1b(剥離工程の前において支持体51側に位置していた面)に、電子部品2の端子21Aと貫通ビア電極3Aとを互いに接続する配線電極4Aと、電子部品2の端子21Bと貫通ビア電極3Bとを互いに接続する配線電極4Bとを形成する。
After the conductor removing step, a second electrode forming step is performed (see FIG. 1). In this step, wiring for connecting the terminal 21A of the electronic component 2 and the through via electrode 3A to the second main surface 1b of the resin substrate 1 (the surface located on the support 51 side before the peeling step). The electrode 4A and the wiring electrode 4B that connects the terminal 21B of the electronic component 2 and the through via electrode 3B to each other are formed.
第1の実施形態に係る部品内蔵基板101の製造方法によれば、基板形成工程の前に第1の電極形成工程が実施されるため、樹脂基板1の形成に用いられる樹脂の種類やフィラーの有無に関係なく、貫通ビア電極3A及び3Bのそれぞれの側面3Aa及び3Baは、凹凸が少ない平滑なものとなる。即ち、貫通ビア電極3A及び3Bの何れにおいても、それらの側面3Aa及び3Baにおける表面粗さを表すパラメータP1が、樹脂基板1を構成している樹脂に含まれるフィラーのサイズを表すパラメータP2より小さくなる。
According to the manufacturing method of the component-embedded substrate 101 according to the first embodiment, since the first electrode forming step is performed before the substrate forming step, the type of resin used for forming the resin substrate 1 and the filler Regardless of the presence or absence, the side surfaces 3Aa and 3Ba of the through via electrodes 3A and 3B are smooth with few irregularities. That is, in any of the through via electrodes 3A and 3B, the parameter P1 representing the surface roughness on the side surfaces 3Aa and 3Ba is smaller than the parameter P2 representing the size of the filler contained in the resin constituting the resin substrate 1. Become.
図6は、実際に製造された部品内蔵基板101における貫通ビア電極の側面の一部を示した断面画像である。この断面画像から、側面の凹凸の大きさがフィラーの径より十分に小さいことが分かる。よって、上記製造方法によれば、貫通ビア電極の側面が平滑になることが分かる。
FIG. 6 is a cross-sectional image showing a part of the side surface of the through via electrode in the component built-in substrate 101 actually manufactured. From this cross-sectional image, it can be seen that the size of the unevenness on the side surface is sufficiently smaller than the diameter of the filler. Therefore, according to the manufacturing method, it can be seen that the side surface of the through via electrode becomes smooth.
従って、製造される部品内蔵基板101において、貫通ビア電極3A及び3Bのそれぞれの側面3Aa及び3Baにおける表面粗さが小さくなる。ここで、貫通ビア電極3Aに高周波領域の電流が流れた場合、その電流は、貫通ビア電極3Aの側面3Aaを含む表層部を流れることになる。本実施形態の様に側面3Aaにおける表面粗さが小さいと、貫通ビア電極3Aにおいて電流の流れが阻害されることがなく、その結果として貫通ビア電極3Aでの抵抗値は低いままである。貫通ビア電極3Bについても同様である。よって、部品内蔵基板101が高周波モジュールに適用された場合、その高周波モジュールにおいて優れた周波数特性が得られる。
Therefore, in the component-embedded substrate 101 to be manufactured, the surface roughness on the side surfaces 3Aa and 3Ba of the through via electrodes 3A and 3B is reduced. Here, when a current in a high frequency region flows through the through via electrode 3A, the current flows through the surface layer portion including the side surface 3Aa of the through via electrode 3A. When the surface roughness on the side surface 3Aa is small as in the present embodiment, the current flow is not inhibited in the through via electrode 3A, and as a result, the resistance value in the through via electrode 3A remains low. The same applies to the through via electrode 3B. Therefore, when the component-embedded substrate 101 is applied to a high frequency module, excellent frequency characteristics can be obtained in the high frequency module.
[3-2]第2の実施形態
第2の実施形態として、上述した製造方法において、金属膜52を用いずに、支持体51上に直接的又は貼付け材511を介して間接的にレジスト53を形成してもよい。この場合、第1の電極形成工程では、貫通孔54A及び54Bへの電極材料の充填に、無電解メッキ等、金属膜52を必要としない方法が用いられる。又、剥離工程では、静電気が発生し難い環境下で、樹脂基板1から支持体51が剥離される。 [3-2] Second Embodiment As a second embodiment, in the manufacturing method described above, without using themetal film 52, the resist 53 is formed directly on the support 51 or indirectly through the adhesive 511. May be formed. In this case, in the first electrode formation step, a method that does not require the metal film 52 such as electroless plating is used for filling the through holes 54A and 54B with the electrode material. In the peeling process, the support 51 is peeled from the resin substrate 1 in an environment where static electricity is unlikely to occur.
第2の実施形態として、上述した製造方法において、金属膜52を用いずに、支持体51上に直接的又は貼付け材511を介して間接的にレジスト53を形成してもよい。この場合、第1の電極形成工程では、貫通孔54A及び54Bへの電極材料の充填に、無電解メッキ等、金属膜52を必要としない方法が用いられる。又、剥離工程では、静電気が発生し難い環境下で、樹脂基板1から支持体51が剥離される。 [3-2] Second Embodiment As a second embodiment, in the manufacturing method described above, without using the
上述の実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。更に、本発明の範囲には、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
The description of the above-described embodiment is an example in all respects, and should be considered as not restrictive. The scope of the present invention is shown not by the above embodiments but by the claims. Further, the scope of the present invention is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
1 樹脂基板
1a 第1の主面
1b 第2の主面
2 電子部品
3A、3B 貫通ビア電極
3Aa、3Ba 側面
4A、4B 配線電極
21A、21B 端子
51 支持体
51a 平坦面
52 金属膜
52a 表面
53 レジスト
54A、54B 貫通孔
101 部品内蔵基板
102 電子部品
511 貼付け材
P1、P2 パラメータ
T 所定の厚さ DESCRIPTION OFSYMBOLS 1 Resin board | substrate 1a 1st main surface 1b 2nd main surface 2 Electronic component 3A, 3B Through-via electrode 3Aa, 3Ba Side surface 4A, 4B Wiring electrode 21A, 21B Terminal 51 Support body 51a Flat surface 52 Metal film 52a Surface 53 Resist 54A, 54B Through-hole 101 Component-embedded substrate 102 Electronic component 511 Pasting material P1, P2 Parameter T Predetermined thickness
1a 第1の主面
1b 第2の主面
2 電子部品
3A、3B 貫通ビア電極
3Aa、3Ba 側面
4A、4B 配線電極
21A、21B 端子
51 支持体
51a 平坦面
52 金属膜
52a 表面
53 レジスト
54A、54B 貫通孔
101 部品内蔵基板
102 電子部品
511 貼付け材
P1、P2 パラメータ
T 所定の厚さ DESCRIPTION OF
Claims (7)
- 支持体にパターニング用のレジストを形成するレジスト形成工程と、
前記レジストにパターニングを施すことにより、レジストを貫通する貫通孔を形成するパターニング工程と、
前記貫通孔を電極材料で埋めることにより、貫通ビア電極を形成する第1の電極形成工程と、
前記レジストを除去するレジスト除去工程と、
電子部品を配置する部品配置工程と、
前記電子部品を樹脂封止して樹脂基板を形成する基板形成工程と、
前記樹脂基板から前記支持体を剥離する剥離工程と、
を備え、
前記基板形成工程の前に前記第1の電極形成工程を実施する、部品内蔵基板の製造方法。 A resist forming step of forming a resist for patterning on the support;
Patterning the resist to form a through hole penetrating the resist; and
A first electrode forming step of forming a through via electrode by filling the through hole with an electrode material;
A resist removing step for removing the resist;
A component placement process for placing electronic components;
A substrate forming step of resin-sealing the electronic component to form a resin substrate;
A peeling step of peeling the support from the resin substrate;
With
A method for manufacturing a component-embedded substrate, wherein the first electrode forming step is performed before the substrate forming step. - 前記レジスト形成工程は、
前記支持体にベース導体を支持させる工程と、
前記ベース導体上に前記レジストを形成する工程と、
を含み、
前記パターニング工程では、前記貫通孔を形成することにより前記ベース導体の表面を露出させ、
前記部品配置工程では、前記ベース導体上に前記電子部品を配置し、
前記基板形成工程では、前記ベース導体上に前記樹脂基板を形成し、
前記剥離工程では、前記樹脂基板から前記支持体を剥離する際、前記樹脂基板に前記ベース導体を残置させ、
前記剥離工程の後、前記樹脂基板から前記ベース導体を除去する導体除去工程を更に有する、請求項1に記載の部品内蔵基板の製造方法。 The resist forming step includes
Supporting the base conductor on the support,
Forming the resist on the base conductor;
Including
In the patterning step, the surface of the base conductor is exposed by forming the through hole,
In the component placement step, the electronic component is placed on the base conductor,
In the substrate forming step, the resin substrate is formed on the base conductor,
In the peeling step, when peeling the support from the resin substrate, the base conductor is left on the resin substrate,
The method for manufacturing a component built-in substrate according to claim 1, further comprising a conductor removing step of removing the base conductor from the resin substrate after the peeling step. - 前記導体除去工程では、前記樹脂基板から前記ベース導体を化学的に除去する、請求項2に記載の部品内蔵基板の製造方法。 The method for manufacturing a component-embedded substrate according to claim 2, wherein, in the conductor removing step, the base conductor is chemically removed from the resin substrate.
- 前記基板形成工程では、フィラーを含んだ樹脂を用いて前記電子部品を樹脂封止する、請求項1~3の何れか1つに記載の部品内蔵基板の製造方法。 The method for manufacturing a component-embedded substrate according to any one of claims 1 to 3, wherein, in the substrate forming step, the electronic component is resin-sealed using a resin containing a filler.
- 前記樹脂基板のうちの前記支持体側の主面に、前記剥離工程の後、前記電子部品の端子と前記貫通ビア電極とを互いに接続する配線電極を形成する第2の電極形成工程
を更に有する、請求項1~4の何れか1つに記載の部品内蔵基板の製造方法。 A second electrode forming step of forming a wiring electrode that connects the terminal of the electronic component and the through via electrode to the main surface of the resin substrate on the support side after the peeling step; The method for manufacturing a component-embedded substrate according to any one of claims 1 to 4. - フィラーを含んだ樹脂で形成された樹脂基板と、
前記樹脂基板に内蔵された電子部品と、
前記樹脂基板を貫通する貫通ビア電極と、
前記樹脂基板の少なくとも一方の主面に形成された配線電極であって、前記電子部品の端子と前記貫通ビア電極とを互いに接続する配線電極と、
を備え、
前記貫通ビア電極における前記樹脂基板と接する側面の表面粗さを表すパラメータが、前記フィラーのサイズを表すパラメータより小さい、部品内蔵基板。 A resin substrate formed of a resin containing a filler;
An electronic component built in the resin substrate;
A through via electrode penetrating the resin substrate;
A wiring electrode formed on at least one main surface of the resin substrate, the wiring electrode connecting the terminal of the electronic component and the through via electrode to each other;
With
A component-embedded substrate, wherein a parameter representing a surface roughness of a side surface in contact with the resin substrate in the through via electrode is smaller than a parameter representing a size of the filler. - 請求項6に記載の部品内蔵基板と、
前記部品内蔵基板が備える前記樹脂基板の前記一方の主面上に搭載されると共に、当該一方の主面にて前記貫通ビア電極に接続された別の電子部品と、
を備える、高周波モジュール。 The component-embedded substrate according to claim 6,
Another electronic component mounted on the one main surface of the resin substrate included in the component-embedded substrate and connected to the through via electrode on the one main surface;
A high frequency module comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/212,750 US10707172B2 (en) | 2016-06-29 | 2018-12-07 | Component-embedded substrate, method of manufacturing the same, and high-frequency module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016128673 | 2016-06-29 | ||
JP2016-128673 | 2016-06-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/212,750 Continuation US10707172B2 (en) | 2016-06-29 | 2018-12-07 | Component-embedded substrate, method of manufacturing the same, and high-frequency module |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018003391A1 true WO2018003391A1 (en) | 2018-01-04 |
Family
ID=60785136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/020382 WO2018003391A1 (en) | 2016-06-29 | 2017-06-01 | Component-embedded substrate, method for manufacturing same, and high-frequency module |
Country Status (2)
Country | Link |
---|---|
US (1) | US10707172B2 (en) |
WO (1) | WO2018003391A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018116799A1 (en) * | 2016-12-21 | 2018-06-28 | 株式会社村田製作所 | Method for manufacturing electronic component-incorporating substrate, electronic component-incorporating substrate, electronic component device, and communication module |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006114621A (en) * | 2004-10-13 | 2006-04-27 | Dt Circuit Technology Co Ltd | Wiring plate with built-in component and manufacturing method thereof |
US20080189942A1 (en) * | 2007-02-12 | 2008-08-14 | Unitest, Inc. | Method For Manufacturing Bump Of Probe Card |
WO2008136251A1 (en) * | 2007-05-02 | 2008-11-13 | Murata Manufacturing Co., Ltd. | Component-incorporating module and its manufacturing method |
JP2008277750A (en) * | 2007-04-30 | 2008-11-13 | Samsung Electro Mech Co Ltd | Method of manufacturing printed circuit board having embedded electronic component |
WO2009072482A1 (en) * | 2007-12-05 | 2009-06-11 | Murata Manufacturing Co., Ltd. | Module with built-in component and method for manufacturing the same |
WO2010150522A1 (en) * | 2009-06-22 | 2010-12-29 | 株式会社村田製作所 | Method for producing module having built-in component and module having built-in component |
WO2014188760A1 (en) * | 2013-05-21 | 2014-11-27 | 株式会社村田製作所 | Module |
WO2015119396A1 (en) * | 2014-02-06 | 2015-08-13 | 엘지이노텍 주식회사 | Printed circuit board, package substrate and production method for same |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3598060B2 (en) | 1999-12-20 | 2004-12-08 | 松下電器産業株式会社 | CIRCUIT COMPONENT MODULE, MANUFACTURING METHOD THEREOF, AND RADIO DEVICE |
US6512182B2 (en) * | 2001-03-12 | 2003-01-28 | Ngk Spark Plug Co., Ltd. | Wiring circuit board and method for producing same |
EP2455991B1 (en) * | 2009-07-17 | 2017-05-10 | Denka Company Limited | Led chip assembly, led package, and manufacturing method of led package |
KR20120026855A (en) * | 2010-09-10 | 2012-03-20 | 삼성전기주식회사 | Embedded ball grid array substrate and manufacturing method thereof |
WO2013161527A1 (en) * | 2012-04-26 | 2013-10-31 | 日本特殊陶業株式会社 | Multilayer wiring substrate and manufacturing method thereof |
JP6303443B2 (en) * | 2013-11-27 | 2018-04-04 | Tdk株式会社 | IC built-in substrate manufacturing method |
US20150371916A1 (en) * | 2014-06-23 | 2015-12-24 | Rohm And Haas Electronic Materials Llc | Pre-applied underfill |
KR102004795B1 (en) * | 2014-07-18 | 2019-07-29 | 삼성전기주식회사 | Semiconductor Package and Method of Manufacturing the same |
TWI552282B (en) * | 2014-11-03 | 2016-10-01 | 矽品精密工業股份有限公司 | Package structure and manufacturing method thereof |
WO2016166835A1 (en) * | 2015-04-15 | 2016-10-20 | 三菱電機株式会社 | Semiconductor device |
-
2017
- 2017-06-01 WO PCT/JP2017/020382 patent/WO2018003391A1/en active Application Filing
-
2018
- 2018-12-07 US US16/212,750 patent/US10707172B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006114621A (en) * | 2004-10-13 | 2006-04-27 | Dt Circuit Technology Co Ltd | Wiring plate with built-in component and manufacturing method thereof |
US20080189942A1 (en) * | 2007-02-12 | 2008-08-14 | Unitest, Inc. | Method For Manufacturing Bump Of Probe Card |
JP2008277750A (en) * | 2007-04-30 | 2008-11-13 | Samsung Electro Mech Co Ltd | Method of manufacturing printed circuit board having embedded electronic component |
WO2008136251A1 (en) * | 2007-05-02 | 2008-11-13 | Murata Manufacturing Co., Ltd. | Component-incorporating module and its manufacturing method |
WO2009072482A1 (en) * | 2007-12-05 | 2009-06-11 | Murata Manufacturing Co., Ltd. | Module with built-in component and method for manufacturing the same |
WO2010150522A1 (en) * | 2009-06-22 | 2010-12-29 | 株式会社村田製作所 | Method for producing module having built-in component and module having built-in component |
WO2014188760A1 (en) * | 2013-05-21 | 2014-11-27 | 株式会社村田製作所 | Module |
WO2015119396A1 (en) * | 2014-02-06 | 2015-08-13 | 엘지이노텍 주식회사 | Printed circuit board, package substrate and production method for same |
Also Published As
Publication number | Publication date |
---|---|
US10707172B2 (en) | 2020-07-07 |
US20190109091A1 (en) | 2019-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8618424B2 (en) | Multilayer wiring substrate and method of manufacturing the same | |
US7377030B2 (en) | Wiring board manufacturing method | |
US20170265300A1 (en) | Double-sided printed circuit board and method for manufacturing same | |
US20090288873A1 (en) | Wiring board and method of manufacturing the same | |
US7698813B2 (en) | Method for fabricating conductive blind via of circuit substrate | |
JP5363417B2 (en) | Interconnection of dense arrays and flex circuits | |
JP2018078133A (en) | Built-in coil glass substrate and build-up substrate | |
JP2013206707A (en) | Mounting adaptor, printed circuit board and manufacturing method therefor | |
CN105210462A (en) | Method for manufacturing component-embedded substrate, and component-embedded substrate | |
JP5715237B2 (en) | Flexible multilayer board | |
KR20160019297A (en) | Printed circuit board and manufacturing method thereof | |
WO2018003391A1 (en) | Component-embedded substrate, method for manufacturing same, and high-frequency module | |
KR101048515B1 (en) | Electronic printed circuit board and its manufacturing method | |
CN106851977B (en) | Printed circuit board and preparation method thereof | |
JP2007042977A (en) | Semiconductor device | |
JP2010073725A (en) | Electronic part and manufacturing method of electronic part | |
KR20150136914A (en) | Manufacturing method of printed circuit board | |
US20120043121A1 (en) | Printed circuit board and method of manufacturing the same | |
KR101084776B1 (en) | Substrate having embedded electronic devices and method of manufacturing the same | |
JP5896522B2 (en) | Wiring substrate and chip component suitable for sealing component, and manufacturing method thereof | |
JP2006228953A (en) | Surface mounted package | |
JP2015070105A (en) | Method for manufacturing wiring board | |
JP2007059777A (en) | Multilayered printed circuit board and method for manufacturing the same | |
JP2004072027A (en) | Method of manufacturing wiring board with bump electrode | |
JP2012114312A (en) | Tape carrier for semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17819757 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17819757 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |