JP2007059777A - Multilayered printed circuit board and method for manufacturing the same - Google Patents

Multilayered printed circuit board and method for manufacturing the same Download PDF

Info

Publication number
JP2007059777A
JP2007059777A JP2005245655A JP2005245655A JP2007059777A JP 2007059777 A JP2007059777 A JP 2007059777A JP 2005245655 A JP2005245655 A JP 2005245655A JP 2005245655 A JP2005245655 A JP 2005245655A JP 2007059777 A JP2007059777 A JP 2007059777A
Authority
JP
Japan
Prior art keywords
sided
double
hole
board
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005245655A
Other languages
Japanese (ja)
Inventor
Hidenori Moriya
英紀 守屋
Katsuhiko Takahashi
克彦 高橋
Shoji Ito
彰二 伊藤
Koji Tsurusaki
幸司 鶴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005245655A priority Critical patent/JP2007059777A/en
Publication of JP2007059777A publication Critical patent/JP2007059777A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a conduction resistance value of a conductor that fills a through-hole in a double-faced board and copper foil, to improve reliability in connection between layers, and to prevent the breakage of a dielectric material. <P>SOLUTION: A multilayered printed circuit board 1 is constituted such that at least one sheet of single-sided boards 20, 30 is laminated one by one on both sides of the double-faced board 10, a conductor 18 is coated on the surface of the foil 12 around the through-hole 14 of the board 10, the coating range of the conductor 18 that coats the surface of the foil 12 is of a width w from the outer periphery of the through-hole 14 in the board 10 of 10-50 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、多層プリント配線板及びその製造方法に関する。   The present invention relates to a multilayer printed wiring board and a method for manufacturing the same.

近年の電子機器は、高周波信号、デジタル信号化に加え、小型化、軽量化が進んでいる。これに伴い、電子機器に搭載されるプリント配線板においても小型化、高密度実装化が要求される。これらの要求に応えるプリント配線板として、多層プリント配線板が広く用いられており、特に、一括積層工法は製造工程数及び不良率を低減できる特長があるため、開発が進められている。   In recent years, electronic devices are becoming smaller and lighter in addition to high-frequency signals and digital signals. Accordingly, printed wiring boards mounted on electronic devices are also required to be downsized and mounted with high density. As printed wiring boards that meet these requirements, multilayer printed wiring boards are widely used. In particular, the batch lamination method is being developed because it has the advantage of reducing the number of manufacturing steps and the defect rate.

従来、この種の多層プリント配線板としては、基板の片面のみに銅箔を有する片面板を一括積層したものが主流である。また、基板の両面に銅箔を有する両面板の片側又は両側に片面板を一括積層したものも知られている。   Conventionally, as this type of multilayer printed wiring board, one in which a single-sided board having a copper foil is laminated on only one side of a board is mainly used. Moreover, what laminated | stacked the single-sided board collectively on the one side or both sides of the double-sided board which has copper foil on both surfaces of a board | substrate is also known.

特許文献1には、両面板の貫通穴に充填された導電性ペーストが貫通穴の開口側の銅箔上にフランジ状に拡張された拡張部を含み、前記両面板の両側に片面板が積層された多層プリント配線板が記載されている。
特許文献2には、貫通穴に導電物を充填した両面版に、片面板を一括積層して多層プリント配線板を製造する手法が記載されている。
特許文献3及び4には、一括積層による多層プリント配線板の製造方法について、貫通穴の周囲の銅箔を溝型や歯車型等にエッチングした後、貫通穴に導電物を充填することにより、導電物と銅箔との間の接触面積を増加させ、両者の電気的接続を向上させている。
特許文献5〜12には、回路形成後の銅張積層板(CCL)の貫通穴にスクリーン印刷で導電物を充填し、一括積層して多層プリント配線板を製造する手法が記載されている。
特許文献13には、貫通穴を開口した感光性レジストをマスクした後に導電物を充填することによって、膜厚を均一かつ薄層に形成する手法が記載されている。
特開2004−221192号公報 特開2004−363325号公報 特開2003−338668号公報 特開2004−014559号公報 特開2002−353619号公報 特開2002−353620号公報 特開2002−353621号公報 特開2002−353622号公報 特開2003−092469号公報 特開2003−092470号公報 特開2003−092471号公報 特開2003−092473号公報 特開2003−309367号公報
Patent Document 1 includes an expanded portion in which a conductive paste filled in a through hole of a double-sided plate is expanded in a flange shape on a copper foil on the opening side of the through-hole, and single-sided plates are laminated on both sides of the double-sided plate. A multilayer printed wiring board is described.
Patent Document 2 describes a method of manufacturing a multilayer printed wiring board by laminating single-sided boards collectively on a double-sided plate in which through holes are filled with a conductive material.
In Patent Documents 3 and 4, for a method of manufacturing a multilayer printed wiring board by batch lamination, after etching the copper foil around the through hole into a groove shape or a gear type, the conductive material is filled into the through hole, The contact area between the conductive material and the copper foil is increased, and the electrical connection between the two is improved.
Patent Documents 5 to 12 describe a method of manufacturing a multilayer printed wiring board by filling a through hole of a copper clad laminate (CCL) after circuit formation with a conductive material by screen printing and laminating them at once.
Patent Document 13 describes a method of forming a uniform and thin film by filling a conductive material after masking a photosensitive resist having through holes.
JP 2004-221192 A JP 2004-363325 A JP 2003-338668 A JP 2004-014559 A JP 2002-353619 A JP 2002-353620 A JP 2002-353621 A JP 2002-353622 A Japanese Patent Laid-Open No. 2003-092469 JP 2003-092470 A JP 2003-092471 A Japanese Patent Laid-Open No. 2003-092473 JP 2003-309367 A

図5及び図6に示す多層プリント配線板100及びその製造方法のように、絶縁性基材111、121、131の片面に銅箔112、122、132を有する片面板110、120、130を一括積層した場合、貫通穴123、133に充填された導電物124、134が銅箔112、122と広い面積で直接接触するため、層間抵抗値が低く接続信頼性も良好である。なお、符号140、150は接着シートを示す。   The single-sided boards 110, 120, and 130 having the copper foils 112, 122, and 132 on one side of the insulating base materials 111, 121, and 131 as in the multilayer printed wiring board 100 and the manufacturing method thereof shown in FIGS. When stacked, the conductors 124 and 134 filled in the through holes 123 and 133 are in direct contact with the copper foils 112 and 122 over a wide area, so that the interlayer resistance value is low and the connection reliability is also good. Reference numerals 140 and 150 denote adhesive sheets.

しかしながら、図7及び図8に示す多層プリント配線板200及びその製造方法のように、絶縁性基材211の両面に銅箔212、213を有する両面板210、並びに絶縁性基材221、231の片面に銅箔222、232を有する片面板220、230のそれぞれに貫通穴214、223、233を明け、貫通穴214、223、233に導電物215、224、234を充填したのち、従来の技術を用いて両面板210の両側に片面板220、230を一括積層した場合、両面板210の貫通穴214に充填された導電物215は貫通穴214の側面の厚み数μmから十数μmの銅箔213の断面のみで接触する。このため、両面板210の表裏の導通抵抗値が高くなるという問題がある。さらに耐環境特性に劣ることが懸念される。なお、符号240、250は接着シートを示す。   However, as in the multilayer printed wiring board 200 and the manufacturing method thereof shown in FIGS. 7 and 8, the double-sided board 210 having the copper foils 212 and 213 on both sides of the insulating base material 211, and the insulating base materials 221 and 231. After the through holes 214, 223, 233 are formed in each of the single side plates 220, 230 having the copper foils 222, 232 on one side, and the conductors 215, 224, 234 are filled in the through holes 214, 223, 233, the prior art When the single-sided plates 220 and 230 are collectively laminated on both sides of the double-sided plate 210, the conductive material 215 filled in the through-hole 214 of the double-sided plate 210 is copper having a thickness of several μm to several tens of μm on the side surface of the through-hole 214. Contact is made only at the cross section of the foil 213. For this reason, there exists a problem that the conduction resistance value of the front and back of the double-sided board 210 becomes high. Furthermore, there is a concern that the environmental resistance is inferior. Reference numerals 240 and 250 denote adhesive sheets.

特許文献1に記載された構成の場合、貫通穴の導電性ペーストと貫通穴の開口側の銅箔層との導通接続は、銅箔層の内周面に加えて、導電性ペーストの拡張部と銅箔層の上面との比較的広い接触面積をもって行われる(特許文献1の段落0032参照)。しかしながら、当該文献1中では問題とされていないが、拡張部を形成する導電性ペーストは、基板を構成する絶縁性基材や銅箔などに比べて柔らかい材料であるため、一括積層の際の温度変化や加圧等により、拡張部が破れるという問題がある。この問題に対して、特許文献1には何の対策も示されていない。   In the case of the configuration described in Patent Document 1, the conductive connection between the conductive paste in the through hole and the copper foil layer on the opening side of the through hole is an extension of the conductive paste in addition to the inner peripheral surface of the copper foil layer. And a relatively wide contact area between the upper surface of the copper foil layer (see paragraph 0032 of Patent Document 1). However, although it is not considered as a problem in the document 1, the conductive paste that forms the extended portion is a soft material compared to the insulating base material or copper foil that constitutes the substrate. There is a problem that the expansion portion is broken due to temperature change, pressurization, or the like. No countermeasure is shown in Patent Document 1 for this problem.

特許文献2〜4に記載された構成の場合、貫通穴に充填された導電物と貫通穴側面の銅箔断面のみで接触し電気的接続がなされているので、両面板表裏の導通抵抗値が若干高くなるという問題は避けられない。またこの問題への対策も示されていない。   In the case of the configuration described in Patent Documents 2 to 4, since the conductive material filled in the through hole and the copper foil cross section on the side surface of the through hole are in contact with each other and are electrically connected, the conduction resistance value on the front and back of the double-sided plate is The problem of being slightly higher is inevitable. Also, no countermeasures for this problem are shown.

特許文献5〜12は、すべて片面板の一括積層に関するものである。すなわち、これらの公知文献には、両面板の一括積層に関する問題に言及しているものは見当たらない。
特許文献13には、貫通穴への導電物の充填方法に関するものであり、両面板の一括積層における電気的接続向上についての記述は見当たらない。
Patent Documents 5 to 12 all relate to batch lamination of single-sided plates. That is, in these known documents, there is no document that mentions a problem related to the simultaneous lamination of double-sided boards.
Patent Document 13 relates to a method for filling a through hole with a conductive material, and does not include a description of electrical connection improvement in batch lamination of double-sided boards.

本発明は、上記事情に鑑みてなされたものであり、両面板の貫通穴を充填する導電物と銅箔との導通抵抗値の低減及び層間の接続信頼性の向上とともに、導電物の破れ防止が可能な多層プリント配線板及びその製造方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and reduces the conductive resistance between the conductive material filling the through hole of the double-sided plate and the copper foil, improves the connection reliability between the layers, and prevents the breakage of the conductive material. It is an object of the present invention to provide a multilayer printed wiring board and a method for manufacturing the same.

前記課題を解決するため、本発明は、両面板の両側のそれぞれに少なくとも1枚の片面板が積層された多層プリント配線板であって、両面板の貫通穴の周囲の銅箔表面上に導電物が被覆されており、前記導電物の被覆範囲が両面板の貫通穴の外周から幅10〜50μmであることを特徴とする多層プリント配線板を提供する。   In order to solve the above problems, the present invention is a multilayer printed wiring board in which at least one single-sided board is laminated on each side of a double-sided board, and is electrically conductive on the copper foil surface around the through hole of the double-sided board. Provided is a multilayer printed wiring board characterized in that a covering range of the conductive material is 10 to 50 μm in width from the outer periphery of the through hole of the double-sided board.

また本発明は、両面板の両側のそれぞれに少なくとも1枚の片面板が積層された多層プリント配線板の製造方法であって、両面板の貫通穴の周囲の銅箔表面上に、被覆範囲が両面板の貫通穴の外周から幅10〜50μmとなるように導電物を被覆したのち、両面板の両側のそれぞれに少なくとも1枚の片面板を一括積層することを特徴とする多層プリント配線板の製造方法を提供する。   The present invention also relates to a method for manufacturing a multilayer printed wiring board in which at least one single-sided board is laminated on each side of a double-sided board, and the covering area is on the copper foil surface around the through hole of the double-sided board. A multilayer printed wiring board characterized in that a conductive material is coated so as to have a width of 10 to 50 μm from the outer periphery of the through hole of the double-sided board, and then at least one single-sided board is collectively laminated on both sides of the double-sided board. A manufacturing method is provided.

また本発明は、両面板の両側のそれぞれに少なくとも1枚の片面板が積層された多層プリント配線板の製造方法であって、両面板の貫通穴の周囲の銅箔表面と対向する箇所にある片面板の貫通穴の周囲に、被覆範囲が片面板の貫通穴の外周から幅10〜50μmとなるように導電物を被覆したのち、両面板の両側のそれぞれに少なくとも1枚の片面板を一括積層して、前記導電物を前記両面板の貫通穴の周囲の銅箔表面上に接触させることを特徴とする多層プリント配線板の製造方法を提供する。   The present invention is also a method for producing a multilayer printed wiring board in which at least one single-sided board is laminated on each side of the double-sided board, and is located at a location facing the copper foil surface around the through hole of the double-sided board. After coating the conductive material around the through hole of the single-sided plate so that the covering area is 10 to 50 μm wide from the outer periphery of the through-hole of the single-sided plate, collect at least one single-sided plate on both sides of the double-sided plate A method for producing a multilayer printed wiring board is provided, wherein the conductive material is laminated and brought into contact with the copper foil surface around the through hole of the double-sided board.

本発明によれば、両面板の貫通穴の周囲の銅箔表面上に導電物が被覆され、銅箔表面上の導電体の被覆範囲が貫通穴の外周から幅10〜50μmとされているので、両面板の貫通穴を充填する導電物と銅箔との導通抵抗値の低減及び層間の接続信頼性の向上を達成できるのはもちろんのこと、銅箔の表面上を被覆する導電物の破れを確実に防止することができる。   According to the present invention, the conductive material is coated on the surface of the copper foil around the through hole of the double-sided plate, and the coverage of the conductor on the surface of the copper foil is 10 to 50 μm wide from the outer periphery of the through hole. In addition to reducing the conduction resistance between the conductive material filling the through holes of the double-sided board and the copper foil and improving the connection reliability between the layers, the conductive material covering the surface of the copper foil is broken. Can be reliably prevented.

以下、最良の形態に基づき、図面を参照して本発明を説明する。
図1は、本発明の多層プリント配線板の一例を示す部分断面図である。図1に示す多層プリント配線板1は、絶縁性基材11の両面に銅箔12、13を有する両面板10と、絶縁性基材21、31の片面に銅箔22、32を有する片面板20、30とを積層したものであり、両面板10と各片面板20、30との間には接着のため接着シート40、50が設けられている。各銅箔12、13、22、32は回路(図示せず)が形成されている。絶縁性基材11、21、31としては、プリント配線板の分野で使用されているものであれば特に限定されないが、例えばポリイミドなどが挙げられる。
The present invention will be described below with reference to the drawings based on the best mode.
FIG. 1 is a partial cross-sectional view showing an example of the multilayer printed wiring board of the present invention. A multilayer printed wiring board 1 shown in FIG. 1 includes a double-sided board 10 having copper foils 12 and 13 on both sides of an insulating substrate 11, and a single-sided board having copper foils 22 and 32 on one side of the insulating bases 21 and 31. 20 and 30 are laminated, and adhesive sheets 40 and 50 are provided between the double-sided plate 10 and the single-sided plates 20 and 30 for adhesion. Each copper foil 12, 13, 22, 32 is formed with a circuit (not shown). The insulating base materials 11, 21, and 31 are not particularly limited as long as they are used in the field of printed wiring boards, and examples thereof include polyimide.

なお、本形態例では、両面板10の一方の側に第1の片面板20を積層するとともに、両面板10の他方の側に第2の片面板30を積層した例を示したが、第1の片面板20及び/又は第2の片面板30の上に、さらに他の片面板を1枚以上積層してもよい。両面板10と片面板20、30とを積層する際は、製造工程数及び不良率を低減できる特長があるため、これら3枚以上の基板を一括して積層する、一括積層工法が好ましい。   In this embodiment, the first single-sided plate 20 is laminated on one side of the double-sided plate 10 and the second single-sided plate 30 is laminated on the other side of the double-sided plate 10. One or more other single-side plates may be laminated on one single-side plate 20 and / or the second single-side plate 30. When laminating the double-sided plate 10 and the single-sided plates 20 and 30, since the number of manufacturing steps and the defect rate can be reduced, a collective laminating method in which these three or more substrates are laminated together is preferable.

層間導通のため、両面板10及び片面板20、30のそれぞれの絶縁性基材11、21、31には貫通穴14、23、33が形成されており、それぞれの貫通穴14、23、33には、導電物15、24、34が充填されている。両面板10の一方の銅箔12には、両面板10の貫通穴14を形成するため、両面板10の貫通穴14と同じ直径を有する開口部16が形成されている。これに対して、片面板20、30の銅箔22、32並びに両面板10の他方の銅箔13には、貫通穴14、23、33よりも直径が小さい小穴17、25、35が穿設されている。   Through holes 14, 23, 33 are formed in the insulating base materials 11, 21, 31 of the double-sided plate 10 and single-sided plates 20, 30 for interlayer conduction, and the through-holes 14, 23, 33 are formed. Is filled with conductive materials 15, 24, 34. In one copper foil 12 of the double-sided plate 10, an opening 16 having the same diameter as the through-hole 14 of the double-sided plate 10 is formed in order to form the through-hole 14 of the double-sided plate 10. On the other hand, small holes 17, 25, 35 having smaller diameters than the through holes 14, 23, 33 are formed in the copper foils 22, 32 of the single-sided plates 20, 30 and the other copper foil 13 of the double-sided plate 10. Has been.

両面板10の一方の銅箔12と第1の片面板20の絶縁性基材21との間に積層された第1の接着シート40には、両面板10の貫通穴14及び銅箔12の開口部16よりも大きな開口部41が形成されている。また、両面板10の貫通穴14と同じ直径を有する開口部41が形成されている。また、両面板10の他方の銅箔13と第2の片面板30の絶縁性基材31との間に積層された第2の接着シート50には、両面板10の貫通穴14及び第2の片面板30の貫通穴33と同じ大きさの開口部51が形成されている。貫通穴14、23、33に充填された導電物15、24、34は上記開口部16、41、51並びに小穴17、25、35にも充填され、さらに、一方の銅箔12の表面上を被覆する導電物18は貫通穴14、23、33に充填された導電物と接触しており、これら導電物15、18、24、34間の電気的接続が確保されている。   The first adhesive sheet 40 laminated between one copper foil 12 of the double-sided board 10 and the insulating base material 21 of the first single-sided board 20 has the through holes 14 of the double-sided board 10 and the copper foil 12. An opening 41 larger than the opening 16 is formed. Further, an opening 41 having the same diameter as the through hole 14 of the double-sided board 10 is formed. In addition, the second adhesive sheet 50 laminated between the other copper foil 13 of the double-sided plate 10 and the insulating base 31 of the second single-sided plate 30 includes the through hole 14 and the second of the double-sided plate 10. An opening 51 having the same size as the through hole 33 of the single-sided plate 30 is formed. The conductive materials 15, 24, 34 filled in the through holes 14, 23, 33 are also filled in the openings 16, 41, 51 and the small holes 17, 25, 35, and on the surface of one copper foil 12. The conductor 18 to be covered is in contact with the conductor filled in the through holes 14, 23, 33, and electrical connection between these conductors 15, 18, 24, 34 is ensured.

貫通穴14、23、33に充填される導電物15、24、34、並びに一方の銅箔12の表面上を被覆する導電物18は、銅箔12、13、22、32とは種類や性質が異なる材料から構成される。充填及び被覆に用いる導電物15、18、24、34としては、導電材料にバインダーを配合したものが好ましく、多層プリント配線板1が使用される温度域において高粘性液体、流動性液体、ペースト、ゲル、ワックス、ねり状物質といった形態が好ましい。導電物として用いられる材料の具体例としては、銅(Cu)、銀(Ag)、金(Au)等の金属やカーボンなどの導電材料が使用され、導電材料のバインダーとして、アクリル樹脂、エポキシ樹脂、フェノール樹脂、ウレタン樹脂などが使用される。導電材料の形状(粒子の形状)は球形、不定形など、特に限定されない。また、複数種類の導電材料が単体で配合されていてもよく、合金状となっていてもよい。   The conductive materials 15, 24, 34 filled in the through holes 14, 23, 33 and the conductive material 18 covering the surface of one copper foil 12 are different from the copper foils 12, 13, 22, 32 in terms of types and properties. Are made of different materials. As the conductive materials 15, 18, 24, and 34 used for filling and coating, a material in which a binder is blended with a conductive material is preferable, and a highly viscous liquid, fluid liquid, paste, and the like in a temperature range where the multilayer printed wiring board 1 is used. Forms such as gels, waxes, and pastes are preferred. Specific examples of the material used as the conductive material include conductive materials such as copper (Cu), silver (Ag), and gold (Au), and conductive materials such as carbon, and acrylic resins and epoxy resins as binders for the conductive materials. Phenol resin, urethane resin, etc. are used. The shape of the conductive material (particle shape) is not particularly limited, such as a spherical shape or an indefinite shape. A plurality of kinds of conductive materials may be blended alone or in an alloy form.

さらに、導電材料のバインダー自身が導電性を有している材料を導電物として用いてもよい。導電性を有するバインダーとしては、金属やポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェンなどの有機化合物がその代表例である。一方の銅箔12の表面上を被覆する導電物18は、図1に示すように、貫通穴14、23、33に充填される導電物15、24、34と同一の材料であってもよく、また、図4に示すように、貫通穴14、23、33に充填される導電物15、24、34と異なる種類の材料であってもよい。また、導電物15、18、24、34として、複数の種類の導電物が混在していてもよい。   Furthermore, a material in which the binder of the conductive material itself has conductivity may be used as the conductive material. Typical examples of the conductive binder include metals and organic compounds such as polyacetylene, polyaniline, polypyrrole, and polythiophene. The conductor 18 covering the surface of one copper foil 12 may be made of the same material as the conductors 15, 24, 34 filled in the through holes 14, 23, 33 as shown in FIG. Further, as shown in FIG. 4, the material may be a different type from the conductive materials 15, 24, 34 filled in the through holes 14, 23, 33. In addition, as the conductive materials 15, 18, 24, and 34, a plurality of types of conductive materials may be mixed.

小穴17、25、35を有する銅箔13、22、32と貫通穴14、23、33に充填された導電物15、24、34との導通については、小穴17、25、35の直径と貫通穴14、23、33の直径との差により、導電物15、24、34は、小穴17、25、35の内周面となる銅箔13、22、32の断面のみならず、小穴17、25、35の周囲の表面においても銅箔13、22、32と直接接触しており、導電物15、24、34と銅箔13、22、32との導通が広面積でなされている。   Regarding the conduction between the copper foils 13, 22, 32 having the small holes 17, 25, 35 and the conductive materials 15, 24, 34 filled in the through holes 14, 23, 33, the diameters and the through holes of the small holes 17, 25, 35 are used. Due to the difference from the diameters of the holes 14, 23, 33, the conductors 15, 24, 34 are not only the cross-sections of the copper foils 13, 22, 32 that are the inner peripheral surfaces of the small holes 17, 25, 35, but also the small holes 17, The surfaces around 25 and 35 are also in direct contact with the copper foils 13, 22, and 32, and electrical conduction between the conductive materials 15, 24, and 34 and the copper foils 13, 22, and 32 is made in a large area.

また、両面板10の一方の銅箔12と導電物との導通については、第1の接着シート40の開口部41に充填された導電物18が、両面板10の貫通穴14の周囲で銅箔12の表面上に被覆されている。このため、両面板10の一方の銅箔12と導電物15、18との導通は、導電物15が開口部16の内周面となる銅箔12の断面と接触するのみならず、貫通穴14の周囲の表面においても導電物18と一方の銅箔12の表面とが直接接触しており、導通が広面積でなされている。このため、導通抵抗値を低減させ、長期接続信頼性を向上させることができる。   Further, regarding the conduction between one copper foil 12 of the double-sided board 10 and the conductive material, the conductive material 18 filled in the opening 41 of the first adhesive sheet 40 is copper around the through hole 14 of the double-sided board 10. The surface of the foil 12 is coated. For this reason, the conduction between one copper foil 12 of the double-sided board 10 and the conductors 15, 18 is not only in contact with the cross section of the copper foil 12 where the conductor 15 becomes the inner peripheral surface of the opening 16, but also through holes The conductive material 18 and the surface of one of the copper foils 12 are in direct contact with each other on the surface around 14, and electrical conduction is made in a large area. For this reason, a conduction resistance value can be reduced and long-term connection reliability can be improved.

多層プリント配線板の基板を構成する材料の種類によって、線膨張係数が異なることが知られている。よって温度変化によって各構成材料の体積変化(寸法変化)は異なる。したがって貫通穴14の外周を基準とした場合、それよりも若干大きめの被覆範囲が必要になるわけである。導電物18により十分な被覆がなされないと、導体部に接触不良等が発生して電気抵抗が変わるおそれがある。このため本発明では、導電物18の被覆範囲において両面板10の貫通穴14の外周からの幅wは、少なくとも10μm以上と規定する。   It is known that the linear expansion coefficient varies depending on the type of material constituting the substrate of the multilayer printed wiring board. Therefore, the volume change (dimensional change) of each constituent material varies depending on the temperature change. Therefore, when the outer periphery of the through hole 14 is used as a reference, a slightly larger covering range is required. If the conductor 18 is not sufficiently covered, contact failure or the like may occur in the conductor portion, and the electrical resistance may change. For this reason, in the present invention, the width w from the outer periphery of the through hole 14 of the double-sided board 10 is defined as at least 10 μm or more in the covering range of the conductive material 18.

これに加えて、導電物18の被覆幅は必要以上に大きすぎた場合にはデメリットが発生する。一般に、被覆材料となる導電物18は、基板を構成する絶縁性基材や銅箔に比べて柔らかい材料である。このため、温度変化によって各構成材料の体積変化(寸法変化)が発生した際に、その外力(応力)が被覆用の導電物18にかかることにより、被覆破れが発生するおそれがある。被覆破れが発生した場合には、当該箇所の保護ができなくなったり、銅箔等に対する導通不良の問題が発生するおそれがある。このため本発明では、導電物18の被覆範囲において両面板10の貫通穴14の外周からの幅wは、50μmを上限と規定する。
なお、被覆破れによる導通不良は、本明細書の実施例の欄中に記載している気相熱衝撃処理の前後での導通抵抗値で検証することができる。また、JEITA(日本情報技術産業協会)のEIAJ ED4701/100 試験方法102「高温高湿バイアス試験」など、公知の試験方法によっても検証が可能である。
In addition to this, a demerit occurs when the covering width of the conductive material 18 is too large. In general, the conductive material 18 serving as a coating material is a softer material than an insulating base material or copper foil constituting the substrate. For this reason, when a volume change (dimensional change) of each constituent material occurs due to a temperature change, the external force (stress) is applied to the covering conductive material 18, which may cause a coating tear. If the coating breaks, the portion cannot be protected, or there may be a problem of poor conduction with respect to the copper foil or the like. For this reason, in the present invention, the upper limit of the width w from the outer periphery of the through hole 14 of the double-sided plate 10 in the covering range of the conductive material 18 is defined as 50 μm.
In addition, the conduction failure due to the coating breakage can be verified by the conduction resistance value before and after the vapor phase thermal shock treatment described in the example column of this specification. Further, it can be verified by a known test method such as EIAJ ED4701 / 100 test method 102 “high temperature and high humidity bias test” of JEITA (Japan Information Technology Industry Association).

すなわち本発明は、両面板10の一方の銅箔12の表面上を被覆する導電物18の被覆範囲は、両面板10の貫通穴14の外周からの幅wが10〜50μmの範囲内であることを特徴とする。これにより、両面板10の貫通穴14に充填された導電物15と両面板10の銅箔12、13との導通抵抗値の低減及び層間の接続信頼性の向上を達成できるのはもちろんのこと、両面板10の一方の銅箔12の表面上を被覆する導電物18の破れを確実に防止することができる。   That is, in the present invention, the covering range of the conductive material 18 covering the surface of one copper foil 12 of the double-sided board 10 is such that the width w from the outer periphery of the through hole 14 of the double-sided board 10 is in the range of 10 to 50 μm. It is characterized by that. As a result, it is possible to reduce the conductive resistance value between the conductive material 15 filled in the through hole 14 of the double-sided board 10 and the copper foils 12 and 13 of the double-sided board 10 and improve the connection reliability between the layers. Further, it is possible to reliably prevent the conductor 18 that covers the surface of the one copper foil 12 of the double-sided board 10 from being broken.

図2は、図1に示す多層プリント配線板1の製造方法の一例を示す説明図である。図2に示す製造方法では、両面板10の貫通穴14の周囲の銅箔12の表面上に、被覆範囲が両面板10の貫通穴14の外周から幅10〜50μmとなるように導電物18を被覆したのち、両面板10の両側に片面板20、30を一括積層するものである。この場合の製造手順の具体例としては、例えば下記の(1)〜(15)に示す手順が挙げられる。   FIG. 2 is an explanatory view showing an example of a manufacturing method of the multilayer printed wiring board 1 shown in FIG. In the manufacturing method shown in FIG. 2, the conductor 18 is formed on the surface of the copper foil 12 around the through hole 14 of the double-sided plate 10 so that the covering range is 10 to 50 μm wide from the outer periphery of the through-hole 14 of the double-sided plate 10. After coating, the single-sided plates 20 and 30 are collectively laminated on both sides of the double-sided plate 10. Specific examples of the production procedure in this case include, for example, procedures shown in the following (1) to (15).

<第1の片面板20の加工>
(1)第1の片面板20の銅箔22を回路形成して第1の回路L1を形成する。
(2)第1の片面板20の絶縁性基材21側からCOレーザを用いて貫通穴23を穴明けする。
(3)第1の片面板20の銅箔22側からYAGレーザを用いて空気逃げのための小穴25を穴明けする。
(4)第1の片面板20の貫通穴23に導電物24を印刷法により充填する。
<Processing of the first single-sided plate 20>
(1) A circuit is formed on the copper foil 22 of the first single-sided plate 20 to form the first circuit L1.
(2) The through hole 23 is drilled from the insulating base 21 side of the first single-sided plate 20 using a CO 2 laser.
(3) A small hole 25 for air escape is drilled from the copper foil 22 side of the first single-sided plate 20 using a YAG laser.
(4) The conductive material 24 is filled in the through hole 23 of the first single-sided plate 20 by a printing method.

<第2の片面板30と第2の接着シート50との積層体2の加工>
(5)第2の片面板30の銅箔32を回路形成して第4の回路L4を形成する。
(6)第2の片面板30の絶縁性基材31上に第2の接着シート50をラミネートする。
(7)第2の片面板30の絶縁性基材31の貫通穴33及び第2の接着シート50の開口部51を、第2の接着シート50側からCOレーザを用いて穴明けする。
(8)第2の片面板30の銅箔32側からYAGレーザを用いて空気逃げのための小穴35を穴明けする。
(9)第2の片面板30の貫通穴33に導電物34を印刷法により充填する。
<Processing of Laminated Body 2 of Second Single-Sided Plate 30 and Second Adhesive Sheet 50>
(5) A circuit is formed on the copper foil 32 of the second single-sided plate 30 to form a fourth circuit L4.
(6) The second adhesive sheet 50 is laminated on the insulating base 31 of the second single-sided plate 30.
(7) The through hole 33 of the insulating base 31 of the second single-sided plate 30 and the opening 51 of the second adhesive sheet 50 are drilled from the second adhesive sheet 50 side using a CO 2 laser.
(8) A small hole 35 for air escape is drilled from the copper foil 32 side of the second single-sided plate 30 using a YAG laser.
(9) The conductive material 34 is filled into the through hole 33 of the second single-sided plate 30 by a printing method.

<両面板10と第1の接着シート40との積層体3の加工>
(10)両面板10の銅箔12、13を回路形成して第2の回路L2及び第3の回路L3を形成する。このとき同時に一方の銅箔12の開口部16をも形成しておく
(11)両面板10の一方の銅箔12上に、あらかじめ開口部41が形成された第1の接着シート40をラミネートし、第1の接着シート40の開口部41の中央に一方の銅箔12の開口部16が位置するように合わせる。
(12)両面板10の絶縁性基材11の貫通穴14を、第1の接着シート40側からCOレーザを用いて穴明けする。
(13)両面板10の他方の銅箔13側からYAGレーザを用いて空気逃げのための小穴17を穴明けする。
(14)両面板10の貫通穴14に導電物15を印刷法により充填する。このとき同時に一方の銅箔12上にも導電物18を被覆する。
<Processing of Laminated Body 3 of Double-Sided Plate 10 and First Adhesive Sheet 40>
(10) The copper foils 12 and 13 of the double-sided board 10 are formed to form the second circuit L2 and the third circuit L3. At the same time, the opening 16 of one copper foil 12 is also formed. (11) On the one copper foil 12 of the double-sided board 10, a first adhesive sheet 40 having an opening 41 previously formed is laminated. The first adhesive sheet 40 is aligned so that the opening 16 of one copper foil 12 is positioned at the center of the opening 41 of the first adhesive sheet 40.
(12) The through hole 14 of the insulating base material 11 of the double-sided board 10 is drilled from the first adhesive sheet 40 side using a CO 2 laser.
(13) A small hole 17 for air escape is drilled from the other copper foil 13 side of the double-sided board 10 using a YAG laser.
(14) Fill the through hole 14 of the double-sided board 10 with the conductive material 15 by a printing method. At the same time, the conductive material 18 is also coated on one copper foil 12.

<一括積層>
(15)第1の片面板20の絶縁性基材21側の面と積層体3の接着シート40側の面、及び積層体2の接着シート50側の面と積層体3の銅箔13側の面を対向させ、一括積層する。
<Batch lamination>
(15) The surface on the insulating base 21 side of the first single-sided plate 20 and the surface on the adhesive sheet 40 side of the laminate 3, the surface on the adhesive sheet 50 side of the laminate 2 and the copper foil 13 side of the laminate 3 The two surfaces are opposed to each other and laminated together.

図3は、図1に示す多層プリント配線板1の製造方法の他の例を示す説明図である。図3に示す製造方法では、両面板10の貫通穴14の周囲の銅箔12表面と対向する箇所にある片面板20の貫通穴23の周囲に、被覆範囲が片面板20の貫通穴23の外周から幅10〜50μmとなるように導電物18を被覆したのち、両面板10の両側に片面板20、30を一括積層して、前記導電物18を両面板10の貫通穴14の周囲の銅箔12表面上に接触させるものである。この場合の製造手順の具体例としては、例えば下記の(1)〜(15)に示す手順が挙げられる。   FIG. 3 is an explanatory view showing another example of the method for manufacturing the multilayer printed wiring board 1 shown in FIG. In the manufacturing method shown in FIG. 3, the covering area of the through-hole 23 of the single-sided plate 20 is around the through-hole 23 of the single-sided plate 20 at a position facing the surface of the copper foil 12 around the through-hole 14 of the double-sided plate 10. After covering the conductive material 18 so as to have a width of 10 to 50 μm from the outer periphery, the single-sided plates 20 and 30 are laminated together on both sides of the double-sided plate 10, and the conductive material 18 is placed around the through hole 14 of the double-sided plate 10. It is made to contact on the surface of the copper foil 12. Specific examples of the production procedure in this case include, for example, procedures shown in the following (1) to (15).

<第1の片面板20と第1の接着シート40との積層体4の加工>
(1)第1の片面板20の銅箔22を回路形成して第1の回路L1を形成する。
(2)第1の片面板20の絶縁性基材21上に、あらかじめ開口部41が形成された第1の接着シート40をラミネートする。
(3)第1の片面板20の絶縁性基材21の貫通穴23を、第1の接着シート40側からCOレーザを用いて穴明けする。
(4)第1の片面板20の銅箔22側からYAGレーザを用いて空気逃げのための小穴25を穴明けする。
(5)第1の片面板20の貫通穴23に導電物24を印刷法により充填する。
このとき同時に第1の片面板20上にも導電物18を被覆する。
<Processing of Laminated Body 4 of First Single-Sided Plate 20 and First Adhesive Sheet 40>
(1) A circuit is formed on the copper foil 22 of the first single-sided plate 20 to form the first circuit L1.
(2) On the insulating base material 21 of the 1st single-sided board 20, the 1st adhesive sheet 40 in which the opening part 41 was formed previously is laminated.
(3) The through hole 23 of the insulating base material 21 of the first single-sided plate 20 is drilled from the first adhesive sheet 40 side using a CO 2 laser.
(4) A small hole 25 for air escape is drilled from the copper foil 22 side of the first single-sided plate 20 using a YAG laser.
(5) The conductive material 24 is filled in the through hole 23 of the first single-sided plate 20 by a printing method.
At the same time, the conductive material 18 is also coated on the first single-sided plate 20.

<第2の片面板30と第2の接着シート50との積層体2の加工>
(6)第2の片面板30の銅箔32を回路形成して第4の回路L4を形成する。
(7)第2の片面板30の絶縁性基材31上に第2の接着シート50をラミネートする。
(8)第2の片面板30の絶縁性基材31の貫通穴33及び第2の接着シート50の開口部51を、第2の接着シート50側からCOレーザを用いて穴明けする。
(9)第2の片面板30の銅箔32側からYAGレーザを用いて空気逃げのための小穴35を穴明けする。
(10)第2の片面板30の貫通穴33に導電物34を印刷法により充填する。
<Processing of Laminated Body 2 of Second Single-Sided Plate 30 and Second Adhesive Sheet 50>
(6) A circuit is formed on the copper foil 32 of the second single-sided plate 30 to form a fourth circuit L4.
(7) The second adhesive sheet 50 is laminated on the insulating base 31 of the second single-sided plate 30.
(8) The through holes 33 of the insulating base 31 of the second single-sided plate 30 and the openings 51 of the second adhesive sheet 50 are drilled from the second adhesive sheet 50 side using a CO 2 laser.
(9) A small hole 35 for air escape is drilled from the copper foil 32 side of the second single-sided plate 30 using a YAG laser.
(10) The conductive material 34 is filled in the through hole 33 of the second single-sided plate 30 by a printing method.

<両面板10の加工>
(11)両面板10の銅箔12、13を回路形成して第2の回路L2及び第3の回路L3を形成する。このとき同時に一方の銅箔12の開口部16をも形成しておく。
(12)両面板10の絶縁性基材11の貫通穴14を、一方の銅箔12側からCOレーザを用いて穴明けする。
(13)両面板10の他方の銅箔13側からYAGレーザを用いて空気逃げのための小穴17を穴明けする。
(14)両面板10の貫通穴14に導電物15を印刷法により充填する。
<Processing of double-sided board 10>
(11) The copper foils 12 and 13 of the double-sided board 10 are formed to form the second circuit L2 and the third circuit L3. At the same time, the opening 16 of one copper foil 12 is also formed.
(12) The through hole 14 of the insulating base material 11 of the double-sided board 10 is drilled from one copper foil 12 side using a CO 2 laser.
(13) A small hole 17 for air escape is drilled from the other copper foil 13 side of the double-sided board 10 using a YAG laser.
(14) Fill the through hole 14 of the double-sided board 10 with the conductive material 15 by a printing method.

<一括積層>
(15)積層体4の接着シート40側の面と両面板10の一方の銅箔12側の面、及び積層体2の接着シート50側の面と両面板10の銅箔13側の面を対向させ、一括積層する。このとき、第1の片面板20上に被覆された導電物18が両面板10の貫通穴14の周囲の銅箔12表面上に接触し、該導電物18が貫通穴14の周囲で銅箔12の表面上を被覆する。
<Batch lamination>
(15) The surface on the adhesive sheet 40 side of the laminate 4 and the surface on the one copper foil 12 side of the double-sided plate 10, and the surface on the adhesive sheet 50 side of the laminate 2 and the surface on the copper foil 13 side of the double-sided plate 10 Make them face each other and stack them together. At this time, the conductive material 18 coated on the first single-sided plate 20 contacts the surface of the copper foil 12 around the through hole 14 of the double-sided plate 10, and the conductive material 18 is copper foil around the through hole 14. 12 surfaces are coated.

以上のように、本発明の多層プリント配線板は、銅箔12表面上を被覆する導電物18をあらかじめ両面板10に形成してから片面板20、30との一括積層を行うことによっても、片面板20の貫通穴23の周囲に被覆した導電物18を一括積層と同時に両面板10の銅箔12表面上に被覆することによっても、製造が可能である。
本発明では、両面板10の銅箔12の表面上を被覆する導電物18の幅wを10〜50μmの範囲内とすることが必須であり、貫通穴14の周囲の銅箔12がランドを形成している場合には、ランド幅を導電物18の幅wと同径とする必要はない。ランド幅は、導電物18の幅wよりも広くすること(換言すれば、導電物18の幅wをランド幅よりも狭くすること)が好ましい。
As described above, the multilayer printed wiring board of the present invention can be obtained by forming the conductor 18 covering the surface of the copper foil 12 on the double-sided board 10 in advance and then performing batch lamination with the single-sided boards 20 and 30. Manufacture is also possible by covering the surface of the copper foil 12 of the double-sided board 10 with the conductor 18 coated around the through hole 23 of the single-sided board 20 at the same time as the batch lamination.
In the present invention, it is essential that the width w of the conductive material 18 covering the surface of the copper foil 12 of the double-sided board 10 is in the range of 10 to 50 μm, and the copper foil 12 around the through hole 14 covers the land. If formed, the land width need not be the same diameter as the width w of the conductor 18. The land width is preferably wider than the width w of the conductor 18 (in other words, the width w of the conductor 18 is narrower than the land width).

以下、実施例をもって本発明を具体的に説明する。なお、本発明は、これらの実施例のみに限定されるものではない。
本実施例では、図1に示す構成の多層プリント配線板1を製造した。ただし、比較例である被覆の幅が0μm(被覆なし)の場合は、図7に示す構成の多層プリント配線板200を作製した。
Hereinafter, the present invention will be specifically described with reference to examples. In addition, this invention is not limited only to these Examples.
In this example, a multilayer printed wiring board 1 having the configuration shown in FIG. 1 was manufactured. However, when the coating width as a comparative example was 0 μm (no coating), a multilayer printed wiring board 200 having the configuration shown in FIG. 7 was produced.

(回路パターン)
回路パターンは、デイジーチェーンパターン(ランド径300μm、貫通穴径100μm、ランド間ピッチ600μm、穴数3000穴)を採用した。
(Circuit pattern)
The circuit pattern was a daisy chain pattern (land diameter 300 μm, through hole diameter 100 μm, land-to-land pitch 600 μm, number of holes 3000 holes).

(基板構成)
片面板20、30としては、絶縁性基材21、31がポリイミド(厚さ25μm)であり、図示略の接着剤(厚さ10μm)を介して片面に銅箔22、32(厚さ18μm)が接着された片面CCLを採用した。
両面板10としては、絶縁性基材11がポリイミド(厚さ25μm)であり、図示略の接着剤(厚さ10μm)を介して両面に銅箔12、13(厚さ18μm)が接着された両面CCLを採用した。
接着シート40、50としては、京セラケミカル製のTFA−890(厚さ25μm)を採用した。
(Board configuration)
As the single-sided plates 20 and 30, the insulating base materials 21 and 31 are polyimide (thickness 25 μm), and copper foils 22 and 32 (thickness 18 μm) are provided on one side via an unillustrated adhesive (thickness 10 μm). Adopted single-sided CCL with bonded.
As the double-sided board 10, the insulating base material 11 is polyimide (thickness 25 μm), and copper foils 12 and 13 (thickness 18 μm) are bonded to both sides via an adhesive (not shown) (thickness 10 μm). Adopted double-sided CCL.
As the adhesive sheets 40 and 50, TFA-890 (thickness 25 μm) manufactured by Kyocera Chemical was adopted.

(導電物)
貫通穴14、23、33に充填する導電物15、24、34並びに銅箔表面上を被覆する導電物18としては、東洋紡製DW−250H−5を用いた。導電物18の被覆厚は約25μmとした。導電物18の貫通穴外周からの被覆幅wが表1に示す被覆範囲の値となる基板サンプルを各100ピース作製した。サンプルの作製は、図2を参照して説明した上述の製造方法により行ったので、本実施例では重複する説明を省略する。
(Conductive material)
DW-250H-5 manufactured by Toyobo was used as the conductors 15, 24, 34 filled in the through holes 14, 23, 33 and the conductor 18 covering the copper foil surface. The coating thickness of the conductive material 18 was about 25 μm. 100 pieces of substrate samples were prepared in which the coating width w from the outer periphery of the through hole of the conductive material 18 was a value in the coating range shown in Table 1. Since the sample was manufactured by the above-described manufacturing method described with reference to FIG. 2, redundant description is omitted in this embodiment.

(基板の評価方法)
配線板や半導体デバイス等の電子部品の信頼性試験方法として、HAST(Highly−Accelerated Temperature and Humidity Stress Test、高度加速耐湿性評価試験方法)が知られており、JEDEC(電子素子技術連合評議会)などによって規格化されている(HAST規格#22−A110)。そこで本評価でも同HAST規格を採用して基板の評価試験を行った。
(Substrate evaluation method)
HAST (Highly-Accelerated Temperature and Humidity Stress Test) is known as a reliability test method for electronic components such as wiring boards and semiconductor devices. JEDEC (Electronic Device Technology Federation) (HAST standard # 22-A110). Therefore, in this evaluation, the same HAST standard was adopted to perform an evaluation test of the substrate.

不飽和型プレッシャークッカを用い、完成した基板をHAST条件(120℃/85%RH)で24時間処理した後、気相熱衝撃処理(−55℃⇔120℃の温度サイクル、60分/サイクル、1000サイクル)を行い、完成基板の処理前と処理後の導通抵抗値を測定した。使用した導通抵抗値測定装置の測定精度保証値が±2%であったため、処理後の導通抵抗値が処理前の導通抵抗値と比較して5%以上増加しているサンプルでは何らかの不具合が発生していると判断し、これを不良品と規定して不良率(%)をカウントした。また、被覆破れ(%)の項目については、上記HAST条件による処理後のサンプルにおいて銅箔表面上を被覆する導電物18の破れが発生しているものをカウントした。サンプル数は、各100ピースを評価した。   Using an unsaturated pressure cooker, the completed substrate was treated under HAST conditions (120 ° C./85% RH) for 24 hours, followed by gas phase thermal shock treatment (temperature cycle of −55 ° C. to 120 ° C., 60 minutes / cycle, 1000 cycles), and the conduction resistance value before and after the finished substrate was measured. Since the measurement accuracy guarantee value of the used conduction resistance measurement device was ± 2%, some trouble occurred in the sample in which the conduction resistance value after treatment increased by 5% or more compared to the conduction resistance value before treatment. It was determined that the product was defective, and this was defined as a defective product, and the defective rate (%) was counted. In addition, regarding the item of coating breakage (%), samples in which breakage of the conductive material 18 covering the copper foil surface occurred in the samples after the treatment under the HAST condition were counted. The number of samples was evaluated for 100 pieces each.

Figure 2007059777
Figure 2007059777

(評価結果)
表1に示す結果から明らかなとおり、両面板10の銅箔12の表面上を被覆する導電物18の被覆範囲が幅10〜50μm(ただし、幅は、両面板10の貫通穴14の外周からの幅wである。)である場合、不良率及び被覆破れがともに0%となり、極めて好適であることを確認した。また、被覆破れがない場合には、金属部分の錆は認められなかったが、被覆破れが生じた場合には、金属部分に錆が発生したものもあった。
以上の試験結果から、本発明において被覆範囲が幅10〜50μmの範囲とすることにより、信頼性が向上された、優れた多層プリント配線板が得られることがわかる。
(Evaluation results)
As is apparent from the results shown in Table 1, the covering range of the conductive material 18 covering the surface of the copper foil 12 of the double-sided board 10 is 10 to 50 μm wide (however, the width is from the outer periphery of the through hole 14 of the double-sided board 10. ), Both the defect rate and the coating tear were 0%, confirming that it was extremely suitable. Further, when the coating was not broken, no rust was observed on the metal part, but when the coating was broken, some metal parts were rusted.
From the above test results, it is understood that an excellent multilayer printed wiring board with improved reliability can be obtained by setting the covering range to a range of 10 to 50 μm in the present invention.

本発明は、種々の電子機器に搭載される多層プリント配線板及びその製造方法として、好適に利用することができる。   The present invention can be suitably used as a multilayer printed wiring board mounted on various electronic devices and a manufacturing method thereof.

本発明の多層プリント配線板の一例を示す部分断面図である。It is a fragmentary sectional view showing an example of the multilayer printed wiring board of the present invention. 図1の多層プリント配線板の製造方法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of the multilayer printed wiring board of FIG. 図1の多層プリント配線板の製造方法の他の一例を示す説明図である。It is explanatory drawing which shows another example of the manufacturing method of the multilayer printed wiring board of FIG. 本発明の多層プリント配線板の改変例を示す部分断面図である。It is a fragmentary sectional view which shows the modification of the multilayer printed wiring board of this invention. 従来の多層プリント配線板の一例を示す部分断面図である。It is a fragmentary sectional view showing an example of the conventional multilayer printed wiring board. 図5の多層プリント配線板の製造方法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of the multilayer printed wiring board of FIG. 従来の多層プリント配線板の他の例を示す部分断面図である。It is a fragmentary sectional view which shows the other example of the conventional multilayer printed wiring board. 図7の多層プリント配線板の製造方法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of the multilayer printed wiring board of FIG.

符号の説明Explanation of symbols

w…導電物の被覆幅、1…多層プリント配線板、5…多層プリント配線板、10…両面板、12…銅箔、13…銅箔、14…貫通穴、15…導電物、18…銅箔表面上を被覆する導電物、20…片面板、22…銅箔、23…貫通穴、24…導電物、30…片面板、32…銅箔、33…貫通穴、34…導電物。 w ... Cover width of conductive material, 1 ... Multilayer printed wiring board, 5 ... Multilayer printed wiring board, 10 ... Double-sided board, 12 ... Copper foil, 13 ... Copper foil, 14 ... Through hole, 15 ... Conductive material, 18 ... Copper Conductive material covering the foil surface, 20 ... single-sided plate, 22 ... copper foil, 23 ... through hole, 24 ... conductive material, 30 ... single-sided plate, 32 ... copper foil, 33 ... through hole, 34 ... conductive material.

Claims (3)

両面板の両側のそれぞれに少なくとも1枚の片面板が積層された多層プリント配線板であって、
両面板の貫通穴の周囲の銅箔表面上に導電物が被覆されており、前記導電物の被覆範囲が両面板の貫通穴の外周から幅10〜50μmであることを特徴とする多層プリント配線板。
A multilayer printed wiring board in which at least one single-sided board is laminated on each side of the double-sided board,
A multilayer printed wiring characterized in that a conductive material is coated on the surface of the copper foil around the through hole of the double-sided board, and the covering range of the conductive material is 10 to 50 μm wide from the outer periphery of the through-hole of the double-sided board Board.
両面板の両側のそれぞれに少なくとも1枚の片面板が積層された多層プリント配線板の製造方法であって、
両面板の貫通穴の周囲の銅箔表面上に、被覆範囲が両面板の貫通穴の外周から幅10〜50μmとなるように導電物を被覆したのち、両面板の両側のそれぞれに少なくとも1枚の片面板を一括積層することを特徴とする多層プリント配線板の製造方法。
A method for producing a multilayer printed wiring board in which at least one single-sided board is laminated on both sides of a double-sided board,
After covering the surface of the copper foil around the through hole of the double-sided plate with a conductive material so that the covering range is 10 to 50 μm wide from the outer periphery of the through-hole of the double-sided plate, at least one sheet on each side of the double-sided plate A method for producing a multilayer printed wiring board, characterized in that single-sided boards are laminated together.
両面板の両側のそれぞれに少なくとも1枚の片面板が積層された多層プリント配線板の製造方法であって、
両面板の貫通穴の周囲の銅箔表面と対向する箇所にある片面板の貫通穴の周囲に、被覆範囲が片面板の貫通穴の外周から幅10〜50μmとなるように導電物を被覆したのち、両面板の両側のそれぞれに少なくとも1枚の片面板を一括積層して、前記導電物を前記両面板の貫通穴の周囲の銅箔表面上に接触させることを特徴とする多層プリント配線板の製造方法。
A method for producing a multilayer printed wiring board in which at least one single-sided board is laminated on both sides of a double-sided board,
The conductive material was coated around the through-hole of the single-sided plate at a position facing the copper foil surface around the through-hole of the double-sided plate so that the covering range was 10 to 50 μm wide from the outer periphery of the through-hole of the single-sided plate. And then laminating at least one single-sided board on both sides of the double-sided board, and bringing the conductive material into contact with the copper foil surface around the through-hole of the double-sided board. Manufacturing method.
JP2005245655A 2005-08-26 2005-08-26 Multilayered printed circuit board and method for manufacturing the same Pending JP2007059777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005245655A JP2007059777A (en) 2005-08-26 2005-08-26 Multilayered printed circuit board and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005245655A JP2007059777A (en) 2005-08-26 2005-08-26 Multilayered printed circuit board and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2007059777A true JP2007059777A (en) 2007-03-08

Family

ID=37922976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005245655A Pending JP2007059777A (en) 2005-08-26 2005-08-26 Multilayered printed circuit board and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2007059777A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018082103A (en) * 2016-11-17 2018-05-24 パナソニックIpマネジメント株式会社 Printed wiring board, method for manufacturing the same, and method for manufacturing resist pattern
CN113709994A (en) * 2021-11-01 2021-11-26 四川英创力电子科技股份有限公司 Production equipment and method for forming conducting layer on resistance welding surface of circuit board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221192A (en) * 2003-01-10 2004-08-05 Fujikura Ltd Multilayer substrate, base material therefor and its manufacturing method
JP2004335921A (en) * 2003-05-12 2004-11-25 Fujikura Ltd Multilayer wiring board, substrate for multilayer wiring board, and method for manufacturing these

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221192A (en) * 2003-01-10 2004-08-05 Fujikura Ltd Multilayer substrate, base material therefor and its manufacturing method
JP2004335921A (en) * 2003-05-12 2004-11-25 Fujikura Ltd Multilayer wiring board, substrate for multilayer wiring board, and method for manufacturing these

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018082103A (en) * 2016-11-17 2018-05-24 パナソニックIpマネジメント株式会社 Printed wiring board, method for manufacturing the same, and method for manufacturing resist pattern
CN113709994A (en) * 2021-11-01 2021-11-26 四川英创力电子科技股份有限公司 Production equipment and method for forming conducting layer on resistance welding surface of circuit board
CN113709994B (en) * 2021-11-01 2022-01-25 四川英创力电子科技股份有限公司 Production equipment and method for forming conducting layer on resistance welding surface of circuit board

Similar Documents

Publication Publication Date Title
JP6149920B2 (en) Rigid flexible substrate and manufacturing method thereof
JP4767269B2 (en) Method for manufacturing printed circuit board
EP1601053A1 (en) Wired circuit board and connection structure of wired circuit board
US20170265300A1 (en) Double-sided printed circuit board and method for manufacturing same
JP2008085089A (en) Resin wiring board and semiconductor device
JP2007142399A (en) Printed circuit board using paste bump and method of manufacturing same
JP2007073866A (en) Wiring board with built-in component
US20080128911A1 (en) Semiconductor package and method for manufacturing the same
JP2008085310A (en) Multilayer printed wiring board
WO2009131182A1 (en) Flex-rigid wiring board and method for manufacturing the same
US20060191133A1 (en) Multilayer board and its manufacturing method
WO2012124421A1 (en) Flexible multilayer substrate
JP2009147026A (en) Circuit board and manufacturing method thereof
JP2007088058A (en) Multilayer substrate and method of manufacturing same
JP2007059777A (en) Multilayered printed circuit board and method for manufacturing the same
JP5176500B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
WO2011001900A1 (en) Printed-wiring board and process for manufacture thereof
JP5515210B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2007035716A (en) Manufacturing method of printed circuit board
JP2007201034A (en) Interlayer connection structure of multilayer wiring board
JP2002374068A (en) Method for manufacturing multilayered printed circuit board
JP2623980B2 (en) Manufacturing method of substrate with lead for semiconductor mounting
JP2019057694A (en) Manufacturing method of multilayer substrate, manufacturing method of component mounting substrate, multilayer substrate and component mounting substrate
JPWO2007037075A1 (en) Wiring board manufacturing method and wiring board
JP2000133943A (en) Manufacture of multilayered board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A977 Report on retrieval

Effective date: 20101210

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20101220

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110412

Free format text: JAPANESE INTERMEDIATE CODE: A02