JP2015070105A - Method for manufacturing wiring board - Google Patents

Method for manufacturing wiring board Download PDF

Info

Publication number
JP2015070105A
JP2015070105A JP2013202927A JP2013202927A JP2015070105A JP 2015070105 A JP2015070105 A JP 2015070105A JP 2013202927 A JP2013202927 A JP 2013202927A JP 2013202927 A JP2013202927 A JP 2013202927A JP 2015070105 A JP2015070105 A JP 2015070105A
Authority
JP
Japan
Prior art keywords
copper foil
ultrathin copper
resist layer
layer
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013202927A
Other languages
Japanese (ja)
Inventor
俊作 濱崎
Shunsaku Hamazaki
俊作 濱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Circuit Solutions Inc
Original Assignee
Kyocera Circuit Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Circuit Solutions Inc filed Critical Kyocera Circuit Solutions Inc
Priority to JP2013202927A priority Critical patent/JP2015070105A/en
Publication of JP2015070105A publication Critical patent/JP2015070105A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a wiring board having fine high-density wiring lines excellent in electric insulating property.SOLUTION: The method for manufacturing a wiring board includes the steps of: laminating an ultrathin copper foil 6 having a maximum height Rz of 1.5 to 2 μm on an exposed major surface thereof on a surface of an insulating layer 1; depositing a plating resist layer R on the exposed major surface of the ultrathin copper foil 6 so as to expose the ultrathin copper foil 6 along a pattern shape corresponding to a wiring conductor 2; depositing an electrolytic copper plating layer 9 for forming the wiring conductor 2 on the ultrathin copper foil 6 exposed from the plating resist layer R; peeling and removing the plating resist layer R from above the major surface of the ultrathin copper foil 6; and finally removing the ultrathin copper foil 6 in a part covered with the plating resist layer R by etching, so as to form the wiring conductor 2 comprising the remaining ultrathin copper foil 6 and the electrolytic copper plating layer 9 on the copper foil 6.

Description

本発明は、半導体素子を搭載するため等に用いられる配線基板の製造方法に関するものである。   The present invention relates to a method of manufacturing a wiring board used for mounting a semiconductor element.

従来、半導体集積回路素子等の半導体素子を搭載するための配線基板として、絶縁層の表面に極薄銅箔を下地金属としたセミアディティブ法により形成された銅から成る配線導体を備えた配線基板が知られている。   Conventionally, as a wiring board for mounting a semiconductor element such as a semiconductor integrated circuit element, a wiring board provided with a wiring conductor made of copper formed by a semi-additive method using an ultrathin copper foil as a base metal on the surface of an insulating layer It has been known.

このような配線基板は、例えば以下のようにして製造される。まず、図4(a)に示すように、絶縁層11の表面にキャリア付銅箔12を積層する。キャリア付銅箔12は、厚みが12〜35μm程度のキャリア銅箔13と厚みが1〜3μm程度の極薄銅箔14とから成り、極薄銅箔14が絶縁層11に密着している。極薄銅箔14の絶縁層11と密着する面は、最大高さRzが2〜3μm程度の粗化面であり、この粗化面の微小な凹凸が縁層11に食い込むことにより極薄銅箔14が絶縁層11に強固に密着する。極薄銅箔14のキャリア銅箔13と密着する面は、最大高さRzが0.5〜1μm程度の平滑面である。これらのキャリア銅箔13と極薄銅箔14とは互いに剥離可能に密着されている。   Such a wiring board is manufactured as follows, for example. First, as shown in FIG. 4A, a copper foil 12 with a carrier is laminated on the surface of the insulating layer 11. The carrier-attached copper foil 12 includes a carrier copper foil 13 having a thickness of about 12 to 35 μm and an ultrathin copper foil 14 having a thickness of about 1 to 3 μm, and the ultrathin copper foil 14 is in close contact with the insulating layer 11. The surface of the ultrathin copper foil 14 that is in close contact with the insulating layer 11 is a roughened surface having a maximum height Rz of about 2 to 3 μm. The foil 14 adheres firmly to the insulating layer 11. The surface of the ultrathin copper foil 14 in close contact with the carrier copper foil 13 is a smooth surface having a maximum height Rz of about 0.5 to 1 μm. The carrier copper foil 13 and the ultrathin copper foil 14 are in close contact with each other so as to be peeled from each other.

次に、図4(b)に示すように、極薄銅箔14からキャリア銅箔13を引き剥がして除去する。   Next, as shown in FIG. 4B, the carrier copper foil 13 is peeled off from the ultrathin copper foil 14 and removed.

次に、図4(c)に示すように、極薄銅箔14の表面に、極薄銅箔14を配線導体に対応する形状で露出させるめっきレジスト層Rを被着形成する。めっきレジスト層Rの厚みは、15〜50μmである。   Next, as shown in FIG. 4C, a plating resist layer R that exposes the ultrathin copper foil 14 in a shape corresponding to the wiring conductor is deposited on the surface of the ultrathin copper foil 14. The thickness of the plating resist layer R is 15 to 50 μm.

次に、図5(d)に示すように、めっきレジスト層Rから露出する極薄銅箔14の表面に電解銅めっき層15を被着させる。電解銅めっき層15の厚みは10〜30μm程度である。   Next, as shown in FIG. 5D, an electrolytic copper plating layer 15 is deposited on the surface of the ultrathin copper foil 14 exposed from the plating resist layer R. The thickness of the electrolytic copper plating layer 15 is about 10 to 30 μm.

次に、図5(e)に示すように、極薄銅箔14上からめっきレジスト層Rを剥離除去する。   Next, as shown in FIG. 5 (e), the plating resist layer R is peeled off from the ultrathin copper foil 14.

次に、図5(f)に示すように、めっきレジスト層Rで覆われていた部分の極薄銅箔14をエッチング除去することにより、絶縁層11の表面に残った極薄銅箔14およびその上の電解銅めっき層15から成る配線導体16を形成する。   Next, as shown in FIG. 5 (f), the ultrathin copper foil 14 remaining on the surface of the insulating layer 11 and the portion of the ultrathin copper foil 14 covered with the plating resist layer R are removed by etching. A wiring conductor 16 composed of an electrolytic copper plating layer 15 is formed thereon.

ところで、半導体素子のますますの高集積化や微細配線化に伴い、半導体素子を搭載する配線基板にも配線導体の微細高密度化が要求されており、配線導体の線幅や隣接間隔が20μm以下の微細高密度配線が必要とされるようになってきた。ところで、このように配線導体の線幅や隣接間隔が20μm以下の微細高密度配線を形成するためには、極薄銅箔の表面に被着させるめっきレジスト層においても、幅や間隔が20μm以下のレジストパターンを形成することが必要となる。しかしながら、極薄銅箔の表面に幅が20μm以下の細いレジストパターンを形成した場合、そのようなレジストパターンと極薄銅箔との密着面積が極めて小さいものとなることから、極薄銅箔とめっきレジスト層との間に剥離が発生しやすくなる。極薄銅箔とめっきレジスト層との間に剥離が発生すると、めっきレジスト層から露出する極薄銅箔の表面に電解銅めっき層を被着させる際に、極薄銅箔とめっきレジスト層との剥離した隙間に電解銅めっき液が侵入して、めっきレジスト層の下の極薄銅箔上にも電解銅めっき層が被着されてしまう。このように、めっきレジスト層の下の極薄銅箔上に電解銅めっき層が被着された場合、めっきレジスト層を剥離した後、めっきレジスト層で覆われていた部分の極薄銅箔をエッチング除去する際に、電解銅めっき層が被着された部分の極薄銅箔が十分にエッチング除去されずに配線導体のパターン間に残ってしまうことがある。このように配線導体のパターン間に極薄銅箔が残ってしまうと、配線導体のパターン間の電気的な絶縁性が低下したり、配線導体のパターン同士が電気的に短絡したりしてしまうという問題が発生する。   By the way, as semiconductor devices are increasingly integrated and miniaturized, wiring substrates on which semiconductor elements are mounted are also required to have finer and higher density wiring conductors. The following fine high density wiring has been required. By the way, in order to form a fine high-density wiring in which the line width and adjacent interval of the wiring conductor are 20 μm or less in this way, even in the plating resist layer deposited on the surface of the ultrathin copper foil, the width or interval is 20 μm or less. It is necessary to form a resist pattern. However, when a thin resist pattern having a width of 20 μm or less is formed on the surface of the ultrathin copper foil, the contact area between such a resist pattern and the ultrathin copper foil becomes extremely small. Peeling easily occurs between the plating resist layer. When peeling occurs between the ultrathin copper foil and the plating resist layer, when the electrolytic copper plating layer is deposited on the surface of the ultrathin copper foil exposed from the plating resist layer, the ultrathin copper foil and the plating resist layer The electrolytic copper plating solution penetrates into the separated gap, and the electrolytic copper plating layer is deposited on the ultrathin copper foil under the plating resist layer. In this way, when the electrolytic copper plating layer is deposited on the ultrathin copper foil under the plating resist layer, after peeling the plating resist layer, the portion of the ultrathin copper foil covered with the plating resist layer is removed. When etching away, the ultrathin copper foil in the portion where the electrolytic copper plating layer is deposited may remain between the wiring conductor patterns without being sufficiently etched away. If ultra-thin copper foil remains between the wiring conductor patterns in this way, the electrical insulation between the wiring conductor patterns decreases, or the wiring conductor patterns are electrically short-circuited. The problem occurs.

特開2011−278774号公報JP 2011-278774 A

本発明の課題は、配線導体における電気的な絶縁性低下や短絡の発生が少ない電気的絶縁性に優れる微細高密度配線の配線基板の製造方法を提供することにある。   The subject of this invention is providing the manufacturing method of the wiring board of the fine high-density wiring which is excellent in electrical insulation with few electrical insulation fall and short circuit generation | occurrence | production in a wiring conductor.

本発明の配線基板の製造方法は、絶縁層の表面に、露出する主面の最大高さRzが1.5〜2μm以上である極薄銅箔を積層する工程と、極薄銅箔の露出する主面に、極薄銅箔を配線導体に対応する形状に露出させるめっきレジスト層を被着する工程と、めっきレジスト層から露出する極薄銅箔上に配線導体を形成するための電解銅めっき層を被着する工程と、極薄銅箔の主面上からめっきレジスト層を剥離除去する工程と、めっきレジスト層で覆われていた部分の極薄銅箔をエッチング除去し、残った極薄銅箔およびその上の電解銅めっき層から成る配線導体を形成する工程と、を行うことを特徴とするものである。   The method for manufacturing a wiring board according to the present invention includes a step of laminating an ultrathin copper foil having a maximum height Rz of 1.5 to 2 μm or more on the surface of the insulating layer, and exposing the ultrathin copper foil. A plating resist layer that exposes an ultrathin copper foil in a shape corresponding to the wiring conductor on the main surface, and electrolytic copper for forming the wiring conductor on the ultrathin copper foil exposed from the plating resist layer The step of depositing the plating layer, the step of peeling off the plating resist layer from the main surface of the ultrathin copper foil, and the portion of the ultrathin copper foil covered with the plating resist layer by etching and removing the remaining electrode Forming a wiring conductor comprising a thin copper foil and an electrolytic copper plating layer thereon.

本発明の配線基板の製造方法によれば、めっきレジスト層が被着される極薄銅箔の主面の最大高さRzが1.5〜2μmと大きいことから、極薄銅箔の主面にめっきレジスト層を被着させる際に、極薄銅箔の主面の微細な凹凸がめっきレジスト層に食い込んで両者が良好に係止され、その結果、めっきレジスト層のレジストパターンの幅が20μm以下の細いものであったとしても、レジストパターンを極薄銅箔の主面に強固に密着させることができる。したがって、めっきレジスト層から露出する極薄銅箔の表面に電解銅めっき層を被着させる際に、めっきレジスト層の下に電解銅めっき液が浸入することはなく、その結果、電気的な絶縁低下や短絡のない電気絶縁信頼性に優れる微細高密度配線の配線基板を提供することができる。   According to the method for manufacturing a wiring board of the present invention, since the maximum height Rz of the main surface of the ultrathin copper foil to which the plating resist layer is deposited is as large as 1.5 to 2 μm, the main surface of the ultrathin copper foil is obtained. When depositing the plating resist layer on the surface, the fine irregularities on the main surface of the ultrathin copper foil bite into the plating resist layer and both are locked well. As a result, the width of the resist pattern of the plating resist layer is 20 μm. Even if it is the following thin things, a resist pattern can be firmly stuck to the main surface of ultra-thin copper foil. Therefore, when the electrolytic copper plating layer is deposited on the surface of the ultrathin copper foil exposed from the plating resist layer, the electrolytic copper plating solution does not enter under the plating resist layer, and as a result, electrical insulation is achieved. It is possible to provide a wiring substrate of fine high-density wiring that is excellent in electrical insulation reliability without a drop or short circuit.

図1は、本発明により製造される配線基板の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a wiring board manufactured according to the present invention. (a)〜(e)は、図1に示した配線基板を本発明の製造方法により製造する実施形態の一例を説明するための工程毎の概略断面図である。(A)-(e) is a schematic sectional drawing for every process for demonstrating an example of embodiment which manufactures the wiring board shown in FIG. 1 with the manufacturing method of this invention. (f)〜(j)は、図1に示した配線基板を本発明の製造方法により製造する実施形態の一例を説明するための工程毎の概略断面図である。(F)-(j) is a schematic sectional drawing for every process for demonstrating an example of embodiment which manufactures the wiring board shown in FIG. 1 with the manufacturing method of this invention. (a)〜(c)は、従来の配線基板の製造方法を説明するための工程毎の概略断面図である。(A)-(c) is a schematic sectional drawing for every process for demonstrating the manufacturing method of the conventional wiring board. (d)〜(f)は、従来の配線基板の製造方法を説明するための工程毎の概略断面図である。(D)-(f) is a schematic sectional drawing for every process for demonstrating the manufacturing method of the conventional wiring board.

次に、本発明の配線基板の製造方法における実施形態の一例について図1〜図3を基にして説明する。   Next, an example of an embodiment of the method for manufacturing a wiring board according to the present invention will be described with reference to FIGS.

図1は、本例の製造方法により製造される配線基板の一例を示す概略断面図であり、1は絶縁層、2は配線導体、3はソルダーレジスト層である。   FIG. 1 is a schematic cross-sectional view showing an example of a wiring board manufactured by the manufacturing method of this example, wherein 1 is an insulating layer, 2 is a wiring conductor, and 3 is a solder resist layer.

絶縁層1は、例えばガラスクロス基材にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含浸させて熱硬化させた厚みが30〜200μm程度の電気絶縁材料から成る。絶縁層1の上面から下面にかけては、直径が50〜300μm程度の複数のスルーホール4が形成されている。   The insulating layer 1 is made of, for example, an electrically insulating material having a thickness of about 30 to 200 μm obtained by impregnating a glass cloth base material with a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin. A plurality of through holes 4 having a diameter of about 50 to 300 μm are formed from the upper surface to the lower surface of the insulating layer 1.

絶縁層1におけるスルーホール4の内面および上下面には配線導体2が被着されている。配線導体2は、絶縁層1の上面において半導体素子Sの電極端子Tが接続される半導体素子接続パッド2aを有しているとともに、絶縁層1の下面において外部電気回路基板の配線導体に接続される外部接続パッド2bを有している。そして絶縁層1の上下面に被着された配線導体2同士がスルーホール4を介して互いに電気的に接続されている。   A wiring conductor 2 is attached to the inner surface and upper and lower surfaces of the through hole 4 in the insulating layer 1. The wiring conductor 2 has a semiconductor element connection pad 2a to which the electrode terminal T of the semiconductor element S is connected on the upper surface of the insulating layer 1, and is connected to the wiring conductor of the external electric circuit board on the lower surface of the insulating layer 1. External connection pad 2b. The wiring conductors 2 attached to the upper and lower surfaces of the insulating layer 1 are electrically connected to each other through the through hole 4.

さらに絶縁層1におけるスルーホール4の内部および上下面にはソルダーレジスト層3が被着されている。ソルダーレジスト層3は、スルーホール4内を充填するとともに上下面の配線導体2における半導体素子接続パッド2aおよび外部接続パッド2bを露出させるようにして被着されている。このソルダーレジスト層3は、配線導体2を保護するためのものである。   Further, a solder resist layer 3 is deposited on the inside and upper and lower surfaces of the through hole 4 in the insulating layer 1. The solder resist layer 3 is deposited so as to fill the through holes 4 and expose the semiconductor element connection pads 2a and the external connection pads 2b in the wiring conductors 2 on the upper and lower surfaces. This solder resist layer 3 is for protecting the wiring conductor 2.

次に、上述した配線基板を本例の製造方法により製造する方法について図2および図3を基にして説明する。   Next, a method for manufacturing the above-described wiring board by the manufacturing method of this example will be described with reference to FIGS.

まず、図2(a)に示すように、ガラスクロスに未硬化の熱硬化性樹脂を含浸させて成るプリプレグ1Pと、キャリア銅箔5の一方の主面に極薄銅箔6を剥離可能に積層してなるキャリア付銅箔7とを準備する。プリプレグ1Pは、硬化されて絶縁層1となるものであり、その厚みは30〜300μm程度である。キャリア銅箔5は、極薄銅箔6を支持するための支持体であり、その厚みは12〜35μm程度である。また、極薄銅箔6は、配線導体2を形成する際の下地金属となるものであり、その厚みは1〜3μm程度である。なお、極薄銅箔6は、露出する側の主面の最大高さRzが2〜3μm、キャリア銅箔5と接する側の主面の最大高さRzが1.5〜2μmとなっている。   First, as shown in FIG. 2 (a), a prepreg 1P formed by impregnating a glass cloth with an uncured thermosetting resin and an ultrathin copper foil 6 can be peeled off on one main surface of a carrier copper foil 5. A laminated copper foil 7 with a carrier is prepared. The prepreg 1P is cured to become the insulating layer 1, and has a thickness of about 30 to 300 μm. The carrier copper foil 5 is a support for supporting the ultrathin copper foil 6 and has a thickness of about 12 to 35 μm. Moreover, the ultra-thin copper foil 6 becomes a base metal at the time of forming the wiring conductor 2, The thickness is about 1-3 micrometers. The ultrathin copper foil 6 has a maximum height Rz of the exposed main surface of 2 to 3 μm and a maximum height Rz of the main surface in contact with the carrier copper foil 5 of 1.5 to 2 μm. .

次に、図2(b)に示すように、プリプレグ1Pの上下面にキャリア付銅箔7を、キャリア銅箔5が外側となるようにして積み重ねるとともに、これらを上下からプレスおよび加熱してプリプレグ1Pが熱硬化して成る絶縁層1の上下面にキャリア付銅箔7を積層一体化させる。このとき、極薄銅箔6の絶縁層1と接する主面は、最大高さRzが2〜3μmの粗面となっていることから、この粗面の微細な凹凸が絶縁層1に食い込んで絶縁層1と極薄銅箔6とが強固に密着される。   Next, as shown in FIG. 2 (b), the copper foil with carrier 7 is stacked on the upper and lower surfaces of the prepreg 1P so that the carrier copper foil 5 is on the outer side, and these are pressed and heated from above and below to prepreg. The copper foil 7 with a carrier is laminated and integrated on the upper and lower surfaces of the insulating layer 1 formed by thermosetting 1P. At this time, since the main surface of the ultrathin copper foil 6 in contact with the insulating layer 1 is a rough surface having a maximum height Rz of 2 to 3 μm, fine unevenness of the rough surface bites into the insulating layer 1. The insulating layer 1 and the ultrathin copper foil 6 are firmly adhered.

次に、図2(c)に示すように、絶縁層1およびキャリア付銅箔7の積層体の上面から下面にかけてスルーホール4を例えばドリル加工により穿孔する。スルーホール4の直径は、30〜300μm程度である。なお、スルーホール4はレーザ加工により穿孔されてもよい。   Next, as shown in FIG.2 (c), the through-hole 4 is drilled by the drilling process from the upper surface to the lower surface of the laminated body of the insulating layer 1 and the copper foil 7 with a carrier, for example. The diameter of the through hole 4 is about 30 to 300 μm. The through hole 4 may be drilled by laser processing.

次に、図2(d)に示すように、スルーホール4の内壁およびキャリア銅箔5の表面に無電解銅めっき層8を被着させる。無電解銅めっき層8の厚みは、0.5〜3.0μm程度である。このとき、極薄銅箔6の表面はキャリア銅箔5で覆われているので、極薄銅箔6のキャリア銅箔5と密着する側の主面には無電解銅めっき層8が被着されることはない。なお、無電解銅めっき層8が被着されるまでは極薄銅箔6の表面がキャリア銅箔5により保護されているので、その分、極薄銅箔6に傷や異物が付く危険性を減らすことができる。   Next, as shown in FIG. 2D, an electroless copper plating layer 8 is deposited on the inner wall of the through hole 4 and the surface of the carrier copper foil 5. The thickness of the electroless copper plating layer 8 is about 0.5 to 3.0 μm. At this time, since the surface of the ultrathin copper foil 6 is covered with the carrier copper foil 5, the electroless copper plating layer 8 is deposited on the main surface of the ultrathin copper foil 6 on the side in close contact with the carrier copper foil 5. It will never be done. In addition, since the surface of the ultrathin copper foil 6 is protected by the carrier copper foil 5 until the electroless copper plating layer 8 is deposited, there is a risk that the ultrathin copper foil 6 may be damaged or foreign matter. Can be reduced.

次に、図2(e)に示すように、絶縁層1とキャリア付銅箔7との積層体からキャリア銅箔5を引き剥がして除去する。これにより上下面に極薄銅箔6が積層されているとともにスルーホール4内に無電解銅めっき層8が被着された絶縁層1を得る。   Next, as shown in FIG.2 (e), the carrier copper foil 5 is peeled off and removed from the laminated body of the insulating layer 1 and the copper foil 7 with a carrier. Thus, the insulating layer 1 is obtained in which the ultrathin copper foil 6 is laminated on the upper and lower surfaces and the electroless copper plating layer 8 is deposited in the through hole 4.

次に、図3(f)に示すように、上下面の極薄銅箔6の露出する主面に、配線導体2に対応する形状に極薄銅箔6を露出させるめっきレジスト層Rを被着形成する。めっきレジスト層Rの厚みは、15〜50μm程度である。このとき、めっきレジスト層Rが被着される側の極薄銅箔6の主面は最大高さRzが1.5〜2μmであることから、極薄銅箔6主面の微細な凹凸がめっきレジスト層Rに食い込んで極薄銅箔6とめっきレジスト層Rとが強固に密着される。なお、極薄銅箔6のめっきレジスト層Rと接する主面の最大高さRzが1.5μm未満であると、極薄銅箔6とめっきレジスト層Rとの密着が弱くなり、両者間に剥がれが発生する危険性が高くなる。また、極薄銅箔6のめっきレジスト層Rと接する主面の最大高さRzが2μmを超えると、極薄銅箔6からキャリア銅箔5を引き剥がす際に、良好に引き剥がすことが困難となる。したがって、めっきレジスト層が被着される側の極薄銅箔6の主面の最大高さRzは1.5〜2μmの範囲が好ましい。   Next, as shown in FIG. 3 (f), a plating resist layer R that exposes the ultrathin copper foil 6 in a shape corresponding to the wiring conductor 2 is coated on the exposed main surface of the ultrathin copper foil 6 on the upper and lower surfaces. It forms. The thickness of the plating resist layer R is about 15 to 50 μm. At this time, since the maximum height Rz of the main surface of the ultrathin copper foil 6 on the side on which the plating resist layer R is deposited is 1.5 to 2 μm, the micro unevenness of the main surface of the ultrathin copper foil 6 is The ultrathin copper foil 6 and the plating resist layer R are firmly adhered to the plating resist layer R. If the maximum height Rz of the main surface of the ultrathin copper foil 6 in contact with the plating resist layer R is less than 1.5 μm, the adhesion between the ultrathin copper foil 6 and the plating resist layer R becomes weak, There is an increased risk of peeling. In addition, when the maximum height Rz of the main surface of the ultrathin copper foil 6 in contact with the plating resist layer R exceeds 2 μm, it is difficult to peel off the carrier copper foil 5 well from the ultrathin copper foil 6. It becomes. Therefore, the maximum height Rz of the main surface of the ultrathin copper foil 6 on the side where the plating resist layer is deposited is preferably in the range of 1.5 to 2 μm.

次に、図3(g)に示すように、めっきレジスト層Rから露出する極薄銅箔6の表面および無電解銅めっき層8の表面に電解銅めっき層9を被着させる。電解銅めっき層9の厚みは10〜30μm程度である。このとき、上述したように極薄銅箔6とめっきレジスト層Rとが強固に密着しているため、たとえ幅が20μm以下の細いレジストパターンであっても極薄銅箔6とめっきレジスト層Rとの間に剥離が発生することが有効に防止される。その結果、電解銅めっき用のめっき液が極薄銅箔6とめっきレジスト層Rとの間に浸入することはなく、めっきレジスト層Rから露出する極薄銅箔6の表面のみに配線導体2に対応する形状の電解銅めっき層9を被着することができる。   Next, as shown in FIG. 3G, an electrolytic copper plating layer 9 is deposited on the surface of the ultrathin copper foil 6 and the surface of the electroless copper plating layer 8 exposed from the plating resist layer R. The thickness of the electrolytic copper plating layer 9 is about 10 to 30 μm. At this time, since the ultrathin copper foil 6 and the plating resist layer R are firmly adhered as described above, the ultrathin copper foil 6 and the plating resist layer R even if the resist pattern is a thin resist pattern having a width of 20 μm or less. It is effectively prevented that peeling occurs between the two. As a result, the plating solution for electrolytic copper plating does not enter between the ultrathin copper foil 6 and the plating resist layer R, and the wiring conductor 2 is formed only on the surface of the ultrathin copper foil 6 exposed from the plating resist layer R. The electrolytic copper plating layer 9 having a shape corresponding to the above can be applied.

次に、図3(h)に示すように、めっきレジスト層Rを剥離して除去する。めっきレジスト層Rの剥離には、アルカリ系のレジスト剥離液を用いる。   Next, as shown in FIG. 3H, the plating resist layer R is peeled and removed. An alkaline resist stripping solution is used for stripping the plating resist layer R.

次に、図3(i)に示すように、めっきレジスト層Rで覆われていた部分の極薄銅箔6をエッチング除去することにより、スルーホール4内が無電解銅めっき層8および電解銅めっき層9から成るとともに、絶縁層1の上下面が極薄銅箔6および電解銅めっき層9から成る配線導体2を形成する。このとき、めっきレジスト層Rで覆われていた部分には電解銅めっき層9が被着されていないので、その部分の極薄銅箔6を良好に除去することができる。したがって、たとえば幅が20μm以下の細い線幅および間隔の微細高密度の配線パターンを含む配線導体2であったとしても、配線パターン間に極薄銅箔6のエッチング残りのない、電気的な絶縁性に優れる配線基板を提供することができる。   Next, as shown in FIG. 3 (i), the portion of the ultrathin copper foil 6 covered with the plating resist layer R is removed by etching, so that the inside of the through hole 4 is electroless copper plating layer 8 and electrolytic copper. In addition to the plating layer 9, the upper and lower surfaces of the insulating layer 1 form the wiring conductor 2 including the ultrathin copper foil 6 and the electrolytic copper plating layer 9. At this time, since the electrolytic copper plating layer 9 is not deposited on the portion covered with the plating resist layer R, the ultrathin copper foil 6 in that portion can be removed well. Therefore, for example, even in the case of the wiring conductor 2 including a wiring pattern 2 having a narrow line width of 20 μm or less and a fine high-density wiring pattern having an interval, electrical insulation without etching residue of the ultrathin copper foil 6 between the wiring patterns. A wiring board having excellent properties can be provided.

そして最後に、図3(j)に示すように、スルーホール4の内部および絶縁層1の上下面にソルダーレジスト層3を形成することにより本例による配線基板が完成する。   Finally, as shown in FIG. 3J, the solder resist layer 3 is formed inside the through hole 4 and on the upper and lower surfaces of the insulating layer 1, thereby completing the wiring board according to this example.

1・・・絶縁層
2・・・配線導体
5・・・キャリア銅箔
6・・・極薄銅箔
7・・・キャリア付銅箔
9・・・電解銅めっき層
DESCRIPTION OF SYMBOLS 1 ... Insulating layer 2 ... Wiring conductor 5 ... Carrier copper foil 6 ... Ultra-thin copper foil 7 ... Copper foil with a carrier 9 ... Electrolytic copper plating layer

Claims (1)

絶縁層の表面に、露出する主面の最大高さRzが1.5〜2μmである極薄銅箔を積層する工程と、前記主面に、前記極薄銅箔を配線導体に対応する形状に露出させるめっきレジスト層を被着する工程と、前記めっきレジスト層から露出する前記極薄銅箔上に配線導体を形成するための電解銅めっき層を被着する工程と、前記主面上から前記めっきレジスト層を剥離除去する工程と、前記めっきレジスト層で覆われていた部分の前記極薄銅箔をエッチング除去し、残った前記極薄銅箔およびその上の前記電解銅めっき層から成る配線導体を形成する工程と、を行うことを特徴とする配線基板の製造方法。   A step of laminating an ultrathin copper foil whose maximum height Rz of the exposed main surface is 1.5 to 2 μm on the surface of the insulating layer, and a shape corresponding to the wiring conductor on the main surface A step of depositing a plating resist layer to be exposed to, a step of depositing an electrolytic copper plating layer for forming a wiring conductor on the ultrathin copper foil exposed from the plating resist layer, and from the main surface The step of stripping and removing the plating resist layer, the portion of the ultrathin copper foil covered with the plating resist layer is removed by etching, and the remaining ultrathin copper foil and the electrolytic copper plating layer thereon are formed. And a step of forming a wiring conductor.
JP2013202927A 2013-09-30 2013-09-30 Method for manufacturing wiring board Pending JP2015070105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013202927A JP2015070105A (en) 2013-09-30 2013-09-30 Method for manufacturing wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013202927A JP2015070105A (en) 2013-09-30 2013-09-30 Method for manufacturing wiring board

Publications (1)

Publication Number Publication Date
JP2015070105A true JP2015070105A (en) 2015-04-13

Family

ID=52836515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013202927A Pending JP2015070105A (en) 2013-09-30 2013-09-30 Method for manufacturing wiring board

Country Status (1)

Country Link
JP (1) JP2015070105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114928945A (en) * 2022-05-27 2022-08-19 珠海达汉电子科技有限公司 Manufacturing process of superfine circuit printed circuit board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259940A (en) * 2003-02-26 2004-09-16 Hitachi Chem Co Ltd Method for manufacturing printed wiring board and copper foil for laser punching
JP2005161840A (en) * 2003-11-11 2005-06-23 Furukawa Circuit Foil Kk Ultra-thin copper foil with carrier and printed circuit
JP2012099586A (en) * 2010-10-30 2012-05-24 Kyocer Slc Technologies Corp Wiring board and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259940A (en) * 2003-02-26 2004-09-16 Hitachi Chem Co Ltd Method for manufacturing printed wiring board and copper foil for laser punching
JP2005161840A (en) * 2003-11-11 2005-06-23 Furukawa Circuit Foil Kk Ultra-thin copper foil with carrier and printed circuit
JP2012099586A (en) * 2010-10-30 2012-05-24 Kyocer Slc Technologies Corp Wiring board and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114928945A (en) * 2022-05-27 2022-08-19 珠海达汉电子科技有限公司 Manufacturing process of superfine circuit printed circuit board
CN114928945B (en) * 2022-05-27 2024-02-06 珠海达汉电子科技有限公司 Manufacturing process of superfine circuit printed circuit board

Similar Documents

Publication Publication Date Title
KR101067031B1 (en) A printed circuit board and a fabricating method the same
JP2018504776A (en) High speed interconnects for printed circuit boards
CN107393899B (en) Chip packaging substrate
TWI478642B (en) Printed circuit board with embedded component and method for manufacturing same
KR20110012771A (en) A printed circuit board and a fabricating method the same
KR20150102504A (en) Embedded board and method of manufacturing the same
JP2009253294A (en) Wiring substrate and method for manufacturing the wiring substrate
JP2015050309A (en) Method for manufacturing wiring board
JP2014150091A (en) Wiring board, and method of manufacturing the same
KR100772432B1 (en) Method of manufacturing printed circuit board
JP2016127148A (en) Wiring board manufacturing method
JP2012160559A (en) Method for manufacturing wiring board
TWI511628B (en) Package circuit board, method for manufactuing same and package structure
JP2011216519A (en) Method of manufacturing wiring board
JP2015070105A (en) Method for manufacturing wiring board
JP6258810B2 (en) Wiring board manufacturing method
KR20170000795A (en) Wiring board and manufacturing method thereof
JP2016100352A (en) Printed wiring board and manufacturing method of the same
KR20070007406A (en) Printed circuit board with embedded coaxial cable and manufacturing method thereof
JP2015026774A (en) Method of manufacturing wiring board
JP6219787B2 (en) Wiring board manufacturing method
JP5409480B2 (en) Wiring board manufacturing method
JP2012099586A (en) Wiring board and method for manufacturing the same
JP2010087222A (en) Method of manufacturing printed wiring board, and the printed wiring board
CN113993293A (en) Preparation method of fine circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228