WO2017221805A1 - Reinforced glass production method and reinforced glass production apparatus - Google Patents

Reinforced glass production method and reinforced glass production apparatus Download PDF

Info

Publication number
WO2017221805A1
WO2017221805A1 PCT/JP2017/022089 JP2017022089W WO2017221805A1 WO 2017221805 A1 WO2017221805 A1 WO 2017221805A1 JP 2017022089 W JP2017022089 W JP 2017022089W WO 2017221805 A1 WO2017221805 A1 WO 2017221805A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
ion
molten salt
film
ion exchange
Prior art date
Application number
PCT/JP2017/022089
Other languages
French (fr)
Japanese (ja)
Inventor
利之 梶岡
睦 深田
清貴 木下
浩佑 川本
田中 敦
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2018523991A priority Critical patent/JP6860829B2/en
Publication of WO2017221805A1 publication Critical patent/WO2017221805A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a method for producing tempered glass and an apparatus for producing tempered glass, and more specifically, relates to a method for producing tempered glass for chemically strengthening a glass plate by an ion exchange method and an apparatus for tempered glass.
  • a tempered glass plate that has been chemically strengthened as a cover glass has been used for touch panel displays mounted on electronic devices such as smartphones and tablet PCs.
  • Such a tempered glass plate is generally produced by chemically treating a glass plate containing an alkali metal as a composition with a tempering solution to form a compressive stress layer on the surface. Since such a tempered glass sheet has a compressive stress layer on the main surface, the impact resistance to the main surface is improved. On the other hand, a tensile stress layer corresponding to the compressive stress layer of the main surface is formed inside such a tempered glass plate, but if this tensile stress becomes excessively large, cracks on the end face are caused due to this. Damage due to progress (so-called self-destruction) is likely to occur. Further, when the compressive stress layer on the surface of the glass plate is formed to be shallow as a whole in order to reduce such tensile stress, there is a problem that sufficient impact resistance cannot be obtained at the end face.
  • Patent Document 1 a film that suppresses ion exchange is formed in advance on the main surface, and the progress of chemical strengthening is suppressed as compared to the end surface, so that the compressive stress layer at the end surface is relatively deeper than the main surface.
  • a technique for forming and improving the strength at the end face is disclosed.
  • molten salt used for ion exchange of tempered glass gradually changes in liquid quality due to repeated use. Therefore, when a membrane that suppresses ion exchange is formed as in the technique of Cited Document 1, depending on the quality of the reinforcing liquid used for ion exchange, chemical strengthening is excessive at the location where the membrane that suppresses ion exchange is formed. In some cases, a sufficient compressive stress layer could not be obtained at that location.
  • the membrane that suppresses ion exchange may be eroded early, and the effect of suppressing ion exchange may not be obtained.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a tempered glass manufacturing method and a tempered glass manufacturing apparatus capable of stably manufacturing a tempered glass plate having high strength.
  • the method for producing tempered glass of the present invention is a method for producing tempered glass for exchanging ions on a glass surface layer, and a step of forming an ion permeation suppression film for suppressing ion permeation on at least a part of the surface of the glass;
  • the ion permeation suppression membrane was formed after the first ion exchange step and the first ion exchange step of exchanging ions by bringing the first molten salt into contact with the glass surface on which the ion permeation suppression membrane was formed.
  • concentration index is ⁇
  • hydrogen ion concentration index is ⁇ when the second molten salt is mixed with water to form an aqueous solution having a concentration of 20% by mass
  • ⁇ ⁇ 10.5 is preferable.
  • the glass is immersed in the first molten salt at 350 to 500 ° C. for 0.1 to 150 hours in the first ion exchange step, and then the second ion exchange step at 350 to 500 ° C. It is preferably immersed in the dimolten salt for 0.1 to 72 hours, and the immersion time in the first ion exchange step is longer than the immersion time in the second ion exchange step.
  • the ions on the glass surface layer are sodium ions
  • the first molten salt and the second molten salt both contain potassium ions
  • an ion permeation suppression film is formed only on the main surface of the glass.
  • the ion permeation suppression film preferably has a composition containing 70% or more of SiO 2 by mass, and the film thickness of the ion permeation suppression film is preferably 10 to 1000 nm.
  • the method for producing tempered glass of the present invention it is preferable to further include a step of removing the ion permeation suppression membrane after the second ion exchange step.
  • the glass has a glass composition of mass%, SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20%. It is preferable that it is a glass plate containing%.
  • the tempered glass manufacturing apparatus of the present invention includes a first salt bath containing a first molten salt for exchanging ions on the glass surface layer, and a second salt containing a second molten salt for exchanging ions on the glass surface layer.
  • the hydrogen ion concentration index in the case of an aqueous solution of% is ⁇ , ⁇ ⁇ .
  • a high compressive stress can be obtained by sufficiently performing ion exchange even at a film-formed location.
  • a high compressive stress can be obtained by sufficiently performing ion exchange even at a film-formed location.
  • rapid erosion of the ion permeation suppression membrane can be prevented, and ion exchange can be appropriately suppressed. Therefore, it is possible to stably manufacture a tempered glass plate having high strength.
  • FIG. 1 is a diagram showing an example of a method for producing tempered glass of the present invention.
  • the preparation process is a process of preparing the original glass G1.
  • the original glass G1 is a plate-like glass that can be strengthened by using an ion exchange method.
  • the original glass G1 preferably contains, by mass%, SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20% as a glass composition. If the glass composition range is regulated as described above, it becomes easy to achieve both ion exchange performance and devitrification resistance at a high level.
  • the thickness of the original glass G1 is, for example, 1.5 mm or less, preferably 1.3 mm or less, 1.1 mm or less, 1.0 mm or less, 0.8 mm or less, 0.7 mm or less, 0.6 mm or less, 0.5 mm or less, 0.4 mm or less, 0.3 mm or less, 0.2 mm or less, especially 0 mm. 1 mm or less.
  • the thickness of the original glass G1 is preferably 0.01 mm or more.
  • the dimensions of the main surface of the original glass G1 are, for example, 480 ⁇ 320 mm to 3350 ⁇ 3950 mm.
  • the main surface means a surface facing the plate thickness direction.
  • the original glass G1 is preferably formed using an overflow downdraw method, and the main surface S is not polished. With the original glass G1 thus formed, a tempered glass plate having high surface quality can be obtained at low cost. In addition, you may select arbitrarily the shaping
  • the original glass G1 may be formed using a float process, and the main surface S and the end surface E may be polished.
  • the film forming step is a step of forming the glass with film G2 by forming the ion permeation suppressing film M on at least a part of the surface of the original glass G1.
  • the ion permeation suppression film M is a film layer that suppresses permeation of ions when ion exchange is performed on the surface layer of the original glass G1 in the strengthening process described later.
  • the glass with film G2 is formed such that the ion permeation suppression film M is formed only on the front and back main surfaces S, and the end surface E is exposed.
  • the ion permeation suppression film M As a material of the ion permeation suppression film M, any material may be used as long as permeation of ions to be ion-exchanged can be suppressed.
  • the exchanged ions are alkali metal ions
  • the ion permeation suppression film M is, for example, a film of metal oxide, metal nitride, metal carbide, metal oxynitride, metal oxycarbide, metal carbonitride, or the like. It is preferable.
  • the material of the ion permeation suppressive film M for example, SiO 2, Al 2 O 3 , SiN, SiC, Al 2 O 3, AlN, ZrO 2, TiO 2, Ta 2 O 5, Nb 2 O 5 , a film containing one or more of HfO 2 and SnO 2 .
  • the ion permeation suppression film M it is preferable to use SiO 2 as the main component of the ion permeation suppression film M because the ion permeation suppression film M can be easily formed at low cost and can function as an antireflection film.
  • Ion permeation suppressive film M is good as a film made of only SiO 2.
  • the ion permeation suppression film M may have a composition containing 99% or more of SiO 2 by mass%.
  • the thickness of the ion permeation suppression film M is preferably 5 to 300 nm, more preferably 20 to 200 nm, still more preferably 20 to 150 nm, 40 to 120 nm, and most preferably 80 to 100 nm.
  • the film formation method of the ion permeation suppression film M is a PVD method (physical vapor deposition method) such as a sputtering method or a vacuum evaporation method, a CVD method (chemical vapor deposition method) such as a thermal CVD method or a plasma CVD method, dip coating, etc.
  • a wet coating method such as a method or a slit coating method can be used.
  • a sputtering method and a dip coating method are preferable.
  • the deposition location of the ion permeation suppression film M may be set by any method.
  • the film formation may be performed in a state where a mask is previously applied to a non-film formation portion (end surface E in the present embodiment).
  • a 1st ion exchange process is a process of chemically strengthening the glass G2 with a film
  • ion exchange is performed by immersing the film-coated glass G2 in a molten salt T1 containing alkali metal ions.
  • the molten salt T1 in the present embodiment is, for example, a potassium nitrate molten salt.
  • the molten salt T1 satisfies ⁇ ⁇ 10.5 when the hydrogen ion concentration index of the aqueous solution when the molten salt T1 is mixed with water to obtain an aqueous solution having a concentration of the molten salt of 20% by mass is ⁇ .
  • a salt is preferred.
  • the hydrogen ion concentration index is a value measured when the temperature of the aqueous solution is 25 ° C.
  • the ⁇ is preferably 5 to 10, more preferably 5.5 to 9.5, and further preferably 6 to 9. ⁇ can be measured, for example, by once cooling and solidifying the molten salt, pulverizing and weighing the molten salt to prepare the aqueous solution.
  • the temperature of the molten salt T1 in the first ion exchange step may be arbitrarily determined, and is, for example, 350 to 500 ° C., preferably 370 to 480 ° C., more preferably 380 to 450 ° C., and further preferably 380 to 400 ° C. .
  • the temperature of the molten salt T1 is 400 ° C. or less, it becomes easy to suppress fluctuations in the value of ⁇ due to the temperature.
  • the time for immersing the film-coated glass G2 in the molten salt T1 may be arbitrarily determined. For example, it is 0.1 to 150 hours, preferably 0.3 to 100 hours, more preferably 0.5 to 50 hours. It is.
  • the first ion exchange step sodium ions on the surface of the film-coated glass G2 and potassium ions in the molten salt T1 are exchanged to obtain a film-reinforced glass G3 having a compressive stress layer C on the surface.
  • the portion (main surface S) where the ion permeation suppression film M is provided is suppressed in ion exchange compared to the exposed portion E where the surface of the original glass G1 is exposed.
  • the depth of the compressive stress layer is reduced. In other words, in the exposed portion E, the ion exchange can proceed more easily than the portion where the ion permeation suppression film M is provided, and the depth of the compressive stress layer is increased.
  • the tempered glass with film G3 has a smaller compressive stress layer at the end surface than the main surface, and therefore has a lower internal tensile stress than the tempered glass reinforced entirely and at the end portion. High impact resistance. Therefore, the damage resulting from the progress of the crack from the end can be suitably suppressed.
  • the second ion exchange step described below is performed to increase the compressive stress at the location where the ion permeation suppression film M is formed.
  • the second ion exchange step is a step of chemically strengthening the film-coated glass G2 again by an ion exchange method, as shown in FIG. 1D.
  • the tempered glass with film G3 is immersed in a molten salt T2 containing alkali metal ions to perform ion exchange to obtain the tempered glass with film G4.
  • the molten salt T2 in the present embodiment is, for example, a potassium nitrate molten salt.
  • the molten salt T2 is a salt in which ⁇ ⁇ , where ⁇ is the hydrogen ion concentration index of the aqueous solution when the molten salt T2 is mixed with water to form an aqueous solution having a concentration of the molten salt of 20% by mass. is there.
  • is the hydrogen ion concentration index of the aqueous solution when the molten salt T2 is mixed with water to form an aqueous solution having a concentration of the molten salt of 20% by mass. is there.
  • is preferably 9 to 12, more preferably 9.5 to 11.5, and still more preferably 10 to 11.
  • the value of ⁇ can be measured by the same method as ⁇ described above. If the value of ⁇ is within the above range, undesirable alteration such as cloudiness on the glass surface can be prevented in the second ion exchange step.
  • the temperature of the molten salt T2 in the second ion exchange step may be arbitrarily determined, and is, for example, 350 to 500 ° C, preferably 370 to 480 ° C, more preferably 380 to 450 ° C. If the temperature of molten salt T2 is 450 degrees C or less, it will become easy to suppress the fluctuation
  • the time for immersing the tempered glass with film G3 in the molten salt T2 may be arbitrarily determined. For example, it is 0.1 to 72 hours, preferably 0.3 to 50 hours, more preferably 0.5 to 24. It's time.
  • the tempered glass with film G4 that has undergone the process of the second ion exchange step has a greater compressive stress at the location where the ion permeation suppression film M is formed than the tempered glass with film G3 before the process. Further, the tempered glass with film G4 has a deeper compressive stress layer at the position where the ion permeation suppression film M is formed than the tempered glass with film G3.
  • the adjustment step of adjusting ⁇ and ⁇ within the above ranges is performed in the pre-process and post-process of each of the first ion exchange process and the second ion exchange process.
  • ⁇ and ⁇ can be adjusted by adding an additive to the molten salt T1 or T2.
  • the additive is, for example, a basic substance.
  • the basic substance is a substance having a hydrogen ion index (pH) of more than 7 when mixed with water.
  • KOH, NaOH or the like can be used alone or in combination.
  • the tempered glass with film G4 can be directly mounted on an electronic component or the like and used as a product.
  • the ion permeation suppression film M may be removed. That is, after the second ion exchange step, a removal step of removing the ion permeation suppression membrane M from the tempered glass with film G4 may be performed.
  • the ion permeation suppression film M is removed from the tempered glass G4 with film to obtain a tempered glass G5.
  • the ion permeation suppression film M is removed by attaching an etching solution to the film-reinforced glass G4.
  • an etching solution to the film-reinforced glass G4.
  • the ion permeation suppression film M is a film containing SiO 2
  • a solution containing fluorine, TMAH, EDP, KOH, NAOH, or the like can be used as an etchant, and in particular, a hydrofluoric acid solution is used as an etchant. Is preferred.
  • the peeling method of the ion permeation suppression film M is not limited to the above, and a known method may be used as a method for removing the film provided on the glass plate.
  • the ion permeation suppression film M may be formed by machining such as polishing. It may be removed.
  • the peeling step only the ion permeation suppression film M on one main surface side may be removed, or the ion permeation suppression film M on both main surfaces may be removed. Further, the ion permeation suppression film M may be partially removed from each main surface, or the ion permeation suppression film M may be entirely removed.
  • the etching liquid is partially adhered using a spray, roll, brush, or the like, or the masked tempered glass G4 is partially masked to etch the liquid. It is possible to remove the film by immersing the film in the film.
  • the entire tempered glass with film G4 may be immersed in an etching solution. If the entire tempered glass with film G4 is immersed in the etching solution in this way, tempered glass G5 with further improved strength may be obtained by reducing microcracks that cause damage.
  • the tempered glass G4 and the tempered glass G5 with less damage from the end face can be produced stably and efficiently.
  • the material of the ion permeation suppression membrane M described above is an example, and any material may be used as long as it can suppress permeation of ions exchanged in the first ion exchange step.
  • the film formation location of the ion permeation suppression film M in the glass with film G2 may be arbitrarily determined.
  • the ion permeation suppression film M may be formed on the main surface excluding the chamfered surface.
  • a processing step for performing any one of cutting, end surface processing, and drilling processing may be provided.
  • the glass plate may be appropriately washed and dried.
  • molten salt T1 was potassium nitrate molten salt as an example, it is not restricted to this, It replaces with the well-known molten salt used for ion exchange of glass, or uses it in combination Good.
  • the molten salts T1 and T2 may be a mixed salt of a potassium nitrate molten salt and a sodium nitrate molten salt.
  • the original glass G1 preferably contains 0.5 to 7.5% by mass of LiO 2 as a glass composition, for example, 3.0% or 4.5%.
  • the processing conditions such as the processing temperature and the immersion time in the first ion exchange step and the second ion exchange step may be appropriately determined according to the characteristics required for the tempered glass with film G4 and the tempered glass G5.
  • a plurality of additional strengthening steps may be provided between the first ion exchange step and the second ion exchange step or after the second ion exchange step.
  • the molten salt used in the strengthening step added between the first ion exchange step and the second ion exchange step has a hydrogen ion concentration index when the molten salt is mixed with water to make an aqueous solution having a concentration of 20% by mass.
  • a molten salt satisfying ⁇ ⁇ is preferable.
  • the manufacturing method of the tempered glass mentioned above can be implemented using the tempered glass manufacturing apparatus provided with the salt bath X1 which accommodated the said molten salt T1, and the salt bath X2 which accommodated the said molten salt T2.
  • the salt baths X ⁇ b> 1 and X ⁇ b> 2 are, for example, tanks made of a metal casing having an upper opening, and have an internal space filled with the molten salt T.
  • the tempered glass manufacturing apparatus is configured to have a shape and size capable of accommodating the film-coated glass G2 in the salt tub X1 and the film-reinforced glass G3 in the salt tub X2, and can support the film-coated glass G2.
  • An apparatus (not shown) may further be provided.
  • the support device is a jig constituted by a metal frame such as stainless steel, for example.
  • the processing of the first ion exchange step can be performed by immersing the molten glass T2 in the salt bath X1 in a state where the glass G2 with film is supported by the support device.
  • the process of said 2nd ion exchange process can be implemented by making it immerse in the molten salt T2 in the salt bath X2 in the state which supported the tempered glass G3 with a support apparatus.
  • the tempered glass manufacturing apparatus may further include a film forming apparatus (not shown) that performs the film forming process.
  • a known sputter film forming apparatus or the like can be used.
  • the stress characteristics of the tempered glass can be measured using, for example, FSM-6000 manufactured by Orihara Seisakusho.
  • FSM-6000 manufactured by Orihara Seisakusho.
  • SLP-1000 manufactured by Orihara Seisakusho.
  • WPA-micro manufactured by Photonic Lattice or Abrio manufactured by Tokyo Instruments. .
  • the glass composition is glass so that it contains 61.6% of SiO 2 , 19.6% of Al 2 O 3 , 0.8% of B 2 O 3 , 16% of Na 2 O, and 2 % of K 2 O in mass%.
  • the raw materials are mixed and melted, formed into a 0.8mm-thick plate using the overflow downdraw method, cut into a 50x50mm rectangular shape by scribing, end-face grinding and polishing, and multiple original glasses G1 was obtained.
  • an ion permeation suppression film M having a composition of 100% by mass and SiO 2 having a thickness of 200 nm is formed on the entire main surfaces of the front and back surfaces of the original glass G1 by sputtering.
  • Attached glass G2 was obtained (film formation step).
  • the obtained film-coated glass G2 was immersed in a potassium nitrate solution under the conditions shown in Table 1 and chemically strengthened to obtain a film-coated tempered glass G3 (first ion exchange step).
  • the obtained tempered glass with film G3 was immersed in a potassium nitrate solution under the conditions shown in Table 1 and chemically strengthened to obtain tempered glass with film G4 (second ion exchange step).
  • the surface of the obtained tempered glass with film G4 was washed and then polished to remove the ion permeation suppression film to obtain tempered glass G5 (removal step).
  • the compressive stress CS of the compressive stress layer formed on the main surface of the tempered glass G5, the depth DOL1 of the compressive stress layer on the main surface, and the depth DOL2 of the compressive stress layer on the end surface are stress meters (FSM manufactured by Orihara Seisakusho). -6000LE and FsmXP). Further, a value obtained by subtracting DOL1 from DOL2 was obtained as ⁇ DOL. It can be said that the larger the value of ⁇ DOL, the smaller the internal tensile stress, the more difficult it is to self-destruct, and the higher the strength at the end face.
  • the tempered glass plate of the present invention and the manufacturing method thereof are useful as a glass substrate used for a touch panel display and the like, a manufacturing method thereof, and the like.

Abstract

Provided is a reinforced glass production method that exchanges ions in a glass surface layer, the method comprising: a step for forming, on at least a part of the surface of glass, an ion permeation-inhibiting film that inhibits ion permeation; a first ion-exchange step for exchanging ions by bringing a first molten salt into contact with the surface of the glass on which the ion permeation-inhibiting film has been formed; and a second ion-exchange step for, after the first ion-exchange step, exchanging ions by bringing a second molten salt into contact with the surface of the glass on which the ion permeation-inhibiting film has been formed, the method being characterized in that α < β is satisfied where α is the hydrogen ion concentration index for an aqueous solution that is prepared by mixing the first molten salt with water and has a concentration of 20 mass%, and β is the hydrogen ion concentration index for an aqueous solution that is prepared by mixing the second molten salt with water and has a concentration of 20 mass%.

Description

強化ガラスの製造方法および強化ガラス製造装置Tempered glass manufacturing method and tempered glass manufacturing apparatus
 本発明は、強化ガラスの製造方法および強化ガラス製造装置に関し、より具体的には、イオン交換法によってガラス板の化学強化を行う強化ガラスの製造方法および強化ガラスの装置に関する。 The present invention relates to a method for producing tempered glass and an apparatus for producing tempered glass, and more specifically, relates to a method for producing tempered glass for chemically strengthening a glass plate by an ion exchange method and an apparatus for tempered glass.
 従来、スマートフォンやタブレットPCなどの電子機器に搭載されるタッチパネルディスプレイには、カバーガラスとして化学強化された強化ガラス板が用いられている。 Conventionally, a tempered glass plate that has been chemically strengthened as a cover glass has been used for touch panel displays mounted on electronic devices such as smartphones and tablet PCs.
 このような強化ガラス板は、一般的に、アルカリ金属を組成として含むガラス板を強化液で化学的に処理し、表面に圧縮応力層を形成することによって製造される。このような強化ガラス板は、主面に圧縮応力層を有するために主面への衝撃耐性が向上している。一方、このような強化ガラス板の内部には、主面の圧縮応力層に対応して引張応力層が形成されるが、この引張応力が大きくなりすぎると、これに起因して端面のクラックが進展することによる破損(所謂、自己破壊)が生じやすくなる。また、このような引張応力を小さくするためにガラス板表面の圧縮応力層を全体的に浅く形成した場合、端面において十分な耐衝撃性を得られないという問題があった。 Such a tempered glass plate is generally produced by chemically treating a glass plate containing an alkali metal as a composition with a tempering solution to form a compressive stress layer on the surface. Since such a tempered glass sheet has a compressive stress layer on the main surface, the impact resistance to the main surface is improved. On the other hand, a tensile stress layer corresponding to the compressive stress layer of the main surface is formed inside such a tempered glass plate, but if this tensile stress becomes excessively large, cracks on the end face are caused due to this. Damage due to progress (so-called self-destruction) is likely to occur. Further, when the compressive stress layer on the surface of the glass plate is formed to be shallow as a whole in order to reduce such tensile stress, there is a problem that sufficient impact resistance cannot be obtained at the end face.
 上記のような問題を解決すべく、強化ガラス板の主面と端面の圧縮応力のバランスを適切に設定して内部引張応力を適切な範囲で低減する技術が開発されている。例えば、特許文献1には、主面に予めイオン交換を抑制する膜を形成して、化学強化の進度を端面に比べて抑制することによって、相対的に主面より端面の圧縮応力層を深く形成し、端面における強度を向上する技術が開示されている。 In order to solve the above problems, a technology has been developed to appropriately set the balance between the compressive stresses of the main surface and the end surface of the tempered glass sheet and reduce the internal tensile stress within an appropriate range. For example, in Patent Document 1, a film that suppresses ion exchange is formed in advance on the main surface, and the progress of chemical strengthening is suppressed as compared to the end surface, so that the compressive stress layer at the end surface is relatively deeper than the main surface. A technique for forming and improving the strength at the end face is disclosed.
特開2014-208570号公報JP 2014-208570 A
 強化ガラスのイオン交換に使用される溶融塩は、繰り返し使用される事によって液質が徐々に変化する。そのため、引用文献1の技術のように、イオン交換を抑制する膜を形成した場合、イオン交換に用いられる強化液の液質によっては、イオン交換を抑制する膜を形成した箇所において化学強化が過度に抑制され、当該箇所において十分な圧縮応力層が得られない場合があった。 ¡The molten salt used for ion exchange of tempered glass gradually changes in liquid quality due to repeated use. Therefore, when a membrane that suppresses ion exchange is formed as in the technique of Cited Document 1, depending on the quality of the reinforcing liquid used for ion exchange, chemical strengthening is excessive at the location where the membrane that suppresses ion exchange is formed. In some cases, a sufficient compressive stress layer could not be obtained at that location.
 一方で、イオン交換に用いられる強化液の液質によっては、イオン交換を抑制する膜が早期に侵食され、イオン交換を抑制する効果を得られない場合があった。 On the other hand, depending on the quality of the strengthening liquid used for ion exchange, the membrane that suppresses ion exchange may be eroded early, and the effect of suppressing ion exchange may not be obtained.
 すなわち、高い強度を有する強化ガラスを安定して生産する方法については未だ改良の余地があった。 That is, there is still room for improvement in the method for stably producing tempered glass having high strength.
 本発明は、このような事情を考慮して成されたものであり、高い強度を有する強化ガラス板を安定して製造可能とする強化ガラスの製造方法および強化ガラス製造装置を提供することを課題とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a tempered glass manufacturing method and a tempered glass manufacturing apparatus capable of stably manufacturing a tempered glass plate having high strength. And
 本発明の強化ガラスの製造方法は、ガラス表層のイオンを交換する強化ガラスの製造方法であって、ガラスの表面の少なくとも一部にイオンの透過を抑制するイオン透過抑制膜を成膜する工程と、イオン透過抑制膜が成膜されたガラスの表面に第一の溶融塩を接触させてイオンを交換する第一イオン交換工程と第一イオン交換工程の後に、イオン透過抑制膜が成膜されたガラスの表面に第二の溶融塩を接触させてイオンを交換する第二イオン交換工程とを備え、第一の溶融塩を水と混合して濃度を20質量%の水溶液とした場合の水素イオン濃度指数をαとし、第二の溶融塩を水と混合して濃度を20質量%の水溶液とした場合の水素イオン濃度指数をβとした場合、α<βであることを特徴とする。 The method for producing tempered glass of the present invention is a method for producing tempered glass for exchanging ions on a glass surface layer, and a step of forming an ion permeation suppression film for suppressing ion permeation on at least a part of the surface of the glass; The ion permeation suppression membrane was formed after the first ion exchange step and the first ion exchange step of exchanging ions by bringing the first molten salt into contact with the glass surface on which the ion permeation suppression membrane was formed. And a second ion exchange step of exchanging ions by bringing the second molten salt into contact with the surface of the glass, and hydrogen ions when the first molten salt is mixed with water to make an aqueous solution having a concentration of 20% by mass. When the concentration index is α and the hydrogen ion concentration index is β when the second molten salt is mixed with water to form an aqueous solution having a concentration of 20% by mass, α <β.
 本発明の強化ガラスの製造方法において、α≦10.5であることが好ましい。 In the method for producing tempered glass of the present invention, α ≦ 10.5 is preferable.
 本発明の強化ガラスの製造方法において、9≦β≦12であることが好ましい。 In the method for producing tempered glass of the present invention, it is preferable that 9 ≦ β ≦ 12.
 本発明の強化ガラスの製造方法において、ガラスを第一イオン交換工程において350~500℃の第一溶融塩に0.1~150時間浸漬した後、第二イオン交換工程において350~500℃の第二溶融塩に0.1~72時間浸漬し、第一イオン交換工程における浸漬時間は第二イオン交換工程における浸漬時間より長いことが好ましい。 In the method for producing tempered glass of the present invention, the glass is immersed in the first molten salt at 350 to 500 ° C. for 0.1 to 150 hours in the first ion exchange step, and then the second ion exchange step at 350 to 500 ° C. It is preferably immersed in the dimolten salt for 0.1 to 72 hours, and the immersion time in the first ion exchange step is longer than the immersion time in the second ion exchange step.
 本発明の強化ガラスの製造方法において、ガラス表層のイオンはナトリウムイオンであり、第一溶融塩および第二溶融塩は何れもカリウムイオンを含み、ガラスの主面にのみイオン透過抑制膜を成膜し、イオン透過抑制膜は質量%でSiO2を70%以上含む組成を有し、イオン透過抑制膜の膜厚は10~1000nmであることが好ましい。 In the method for producing tempered glass of the present invention, the ions on the glass surface layer are sodium ions, the first molten salt and the second molten salt both contain potassium ions, and an ion permeation suppression film is formed only on the main surface of the glass. The ion permeation suppression film preferably has a composition containing 70% or more of SiO 2 by mass, and the film thickness of the ion permeation suppression film is preferably 10 to 1000 nm.
 本発明の強化ガラスの製造方法において、第二イオン交換工程の後にイオン透過抑制膜を除去する工程をさらに備えることが好ましい。 In the method for producing tempered glass of the present invention, it is preferable to further include a step of removing the ion permeation suppression membrane after the second ion exchange step.
 本発明の強化ガラスの製造方法において、ガラスは、ガラス組成として質量%で、SiO2 45~75%、Al23 1~30%、Na2O 0~20%、K2O 0~20%を含有するガラス板であることが好ましい。 In the method for producing tempered glass of the present invention, the glass has a glass composition of mass%, SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20%. It is preferable that it is a glass plate containing%.
 本発明の強化ガラス製造装置は、ガラス表層のイオンを交換するための第一溶融塩を収容した第一塩浴槽と、ガラス表層のイオンを交換するための第二溶融塩を収容した第二塩浴槽とを備え、第一の溶融塩を水と混合して濃度を20質量%の水溶液とした場合の水素イオン濃度指数をαとし、第二の溶融塩を水と混合して濃度を20質量%の水溶液とした場合の水素イオン濃度指数をβとした場合、α<βであることを特徴とする。 The tempered glass manufacturing apparatus of the present invention includes a first salt bath containing a first molten salt for exchanging ions on the glass surface layer, and a second salt containing a second molten salt for exchanging ions on the glass surface layer. A hydrogen ion concentration index when the first molten salt is mixed with water to make an aqueous solution having a concentration of 20% by mass, and the second molten salt is mixed with water to give a concentration of 20%. When the hydrogen ion concentration index in the case of an aqueous solution of% is β, α <β.
 本発明によれば、液質の異なる複数種の溶融塩を用いて複数回のイオン交換を行うことで、成膜された箇所においても十分にイオン交換を行い高い圧縮応力を得られる。また、各工程で用いる溶融塩の液質を適切に調整することによって、イオン透過抑制膜の急激な侵食を防止し、イオン交換を適切に抑制できる。したがって、高い強度を有する強化ガラス板を安定して製造することが可能である。 According to the present invention, by performing ion exchange a plurality of times using a plurality of types of molten salts having different liquid qualities, a high compressive stress can be obtained by sufficiently performing ion exchange even at a film-formed location. In addition, by appropriately adjusting the liquid quality of the molten salt used in each step, rapid erosion of the ion permeation suppression membrane can be prevented, and ion exchange can be appropriately suppressed. Therefore, it is possible to stably manufacture a tempered glass plate having high strength.
本発明の強化ガラスの製造方法の一例に含まれる工程を示す図である。It is a figure which shows the process included in an example of the manufacturing method of the tempered glass of this invention. 本発明の強化ガラスの製造方法の一例に含まれる工程を示す図である。It is a figure which shows the process included in an example of the manufacturing method of the tempered glass of this invention. 本発明の強化ガラスの製造方法の一例に含まれる工程を示す図である。It is a figure which shows the process included in an example of the manufacturing method of the tempered glass of this invention. 本発明の強化ガラスの製造方法の一例に含まれる工程を示す図である。It is a figure which shows the process included in an example of the manufacturing method of the tempered glass of this invention. 本発明の強化ガラスの製造方法の一例に含まれる工程を示す図である。It is a figure which shows the process included in an example of the manufacturing method of the tempered glass of this invention.
 以下、本発明の実施形態の強化ガラスの製造方法について説明する。図1は、本発明の強化ガラスの製造方法の一例を示す図である。 Hereinafter, the manufacturing method of the tempered glass of embodiment of this invention is demonstrated. FIG. 1 is a diagram showing an example of a method for producing tempered glass of the present invention.
 先ず、図1Aに示す準備工程の処理を実施する。準備工程は、元ガラスG1を準備する工程である。元ガラスG1は、イオン交換法を用いて強化可能な板状のガラスである。 First, the preparatory process shown in FIG. 1A is performed. The preparation process is a process of preparing the original glass G1. The original glass G1 is a plate-like glass that can be strengthened by using an ion exchange method.
 元ガラスG1は、ガラス組成として質量%で、SiO2 45~75%、Al23 1~30%、Na2O 0~20%、K2O 0~20%を含有することが好ましい。上記のようにガラス組成範囲を規制すれば、イオン交換性能と耐失透性を高いレベルで両立し易くなる。 The original glass G1 preferably contains, by mass%, SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20% as a glass composition. If the glass composition range is regulated as described above, it becomes easy to achieve both ion exchange performance and devitrification resistance at a high level.
 元ガラスG1の板厚は、例えば、1.5mm以下であり、好ましくは1.3mm以下、1.1mm以下、1.0mm以下、0.8mm以下、0.7mm以下、0.6 mm以下、0.5mm以下、0.4mm以下、0.3mm以下、0.2mm以下、特に0 .1mm以下である。強化ガラス基板の板厚が小さい程、強化ガラス基板を軽量化することでき、結果として、デバイスの薄型化、軽量化を図ることができる。なお、生産性等を考慮すれば元ガラスG1の板厚は0.01mm以上であることが好ましい。 The thickness of the original glass G1 is, for example, 1.5 mm or less, preferably 1.3 mm or less, 1.1 mm or less, 1.0 mm or less, 0.8 mm or less, 0.7 mm or less, 0.6 mm or less, 0.5 mm or less, 0.4 mm or less, 0.3 mm or less, 0.2 mm or less, especially 0 mm. 1 mm or less. As the plate thickness of the tempered glass substrate is smaller, the tempered glass substrate can be made lighter, and as a result, the device can be made thinner and lighter. In consideration of productivity and the like, the thickness of the original glass G1 is preferably 0.01 mm or more.
 元ガラスG1の主面の寸法は、例えば、480×320mm~3350×3950mmである。ここで、主面とは、板厚方向に対向する表面を意味する。 The dimensions of the main surface of the original glass G1 are, for example, 480 × 320 mm to 3350 × 3950 mm. Here, the main surface means a surface facing the plate thickness direction.
 元ガラスG1は、オーバーフローダウンドロー法を用いて成形され、その主面Sが研磨されていないものであることが好ましい。このように成形された元ガラスG1であれば低コストで高い表面品位を有する強化ガラス板を得られる。なお、元ガラスG1の成形方法や加工状態は任意に選択しても良い。例えば、元ガラスG1はフロート法を用いて成形され、主面Sおよび端面Eは研磨加工されたものであっても良い。 The original glass G1 is preferably formed using an overflow downdraw method, and the main surface S is not polished. With the original glass G1 thus formed, a tempered glass plate having high surface quality can be obtained at low cost. In addition, you may select arbitrarily the shaping | molding method and processing state of the original glass G1. For example, the original glass G1 may be formed using a float process, and the main surface S and the end surface E may be polished.
 次いで、上記準備工程の後、図1Bに示す成膜工程の処理を実施する。成膜工程は、元ガラスG1の表面の少なくとも一部にイオン透過抑制膜Mを形成して膜付ガラスG2を得る工程である。イオン透過抑制膜Mは、後述の強化工程において、元ガラスG1表層のイオン交換を行う際にイオンの透過を抑制する膜層である。本実施形態では、膜付ガラスG2は、表裏の主面Sにのみイオン透過抑制膜Mが形成され、端面Eは露出した状態とされている。 Next, after the above preparation process, the film forming process shown in FIG. 1B is performed. The film forming step is a step of forming the glass with film G2 by forming the ion permeation suppressing film M on at least a part of the surface of the original glass G1. The ion permeation suppression film M is a film layer that suppresses permeation of ions when ion exchange is performed on the surface layer of the original glass G1 in the strengthening process described later. In the present embodiment, the glass with film G2 is formed such that the ion permeation suppression film M is formed only on the front and back main surfaces S, and the end surface E is exposed.
 イオン透過抑制膜Mの材質としては、イオン交換されるイオンの透過を抑制可能であれば任意の材質を用いて良い。交換されるイオンがアルカリ金属イオンである場合、イオン透過抑制膜Mは、例えば、金属酸化物、金属窒化物、金属炭化物、金属酸窒化物、金属酸炭化物、金属炭窒化物などの膜であることが好ましい。より詳細には、イオン透過抑制膜Mの材質としては、例えば、SiO2、Al23、SiN、SiC、Al23、AlN、ZrO2、TiO2、Ta25、Nb25、HfO2、SnO2の中から1種類以上を含む膜とすることができる。 As a material of the ion permeation suppression film M, any material may be used as long as permeation of ions to be ion-exchanged can be suppressed. When the exchanged ions are alkali metal ions, the ion permeation suppression film M is, for example, a film of metal oxide, metal nitride, metal carbide, metal oxynitride, metal oxycarbide, metal carbonitride, or the like. It is preferable. More specifically, as the material of the ion permeation suppressive film M, for example, SiO 2, Al 2 O 3 , SiN, SiC, Al 2 O 3, AlN, ZrO 2, TiO 2, Ta 2 O 5, Nb 2 O 5 , a film containing one or more of HfO 2 and SnO 2 .
 特にSiO2をイオン透過抑制膜Mの主成分とすれば、安価且つ容易にイオン透過抑制膜Mを形成可能であり、反射防止膜としても機能し得るため、好ましい。イオン透過抑制膜Mは、SiO2のみから成る膜として良い。具体的には、イオン透過抑制膜Mは質量%でSiO2を99%以上含有する組成を有するものとして良い。 In particular, it is preferable to use SiO 2 as the main component of the ion permeation suppression film M because the ion permeation suppression film M can be easily formed at low cost and can function as an antireflection film. Ion permeation suppressive film M is good as a film made of only SiO 2. Specifically, the ion permeation suppression film M may have a composition containing 99% or more of SiO 2 by mass%.
 イオン透過抑制膜Mの厚さは、好ましくは5~300nm、より好ましくは20~200nm、さらに好ましくは20~150nm、40~120nm、最も好ましくは80~100nmである。イオン透過抑制膜Mの厚さを上記範囲とすることにより、イオンを透過してしまったり、イオンを遮断し過ぎたりすることなく、好適にイオン交換を行うことができる。 The thickness of the ion permeation suppression film M is preferably 5 to 300 nm, more preferably 20 to 200 nm, still more preferably 20 to 150 nm, 40 to 120 nm, and most preferably 80 to 100 nm. By setting the thickness of the ion permeation suppression film M in the above range, ion exchange can be suitably performed without permeating ions or blocking ions too much.
 イオン透過抑制膜Mの成膜方法は、スパッタ法や真空蒸着法などのPVD法(物理気相成長法)、熱CVD法やプラズマCVD法などのCVD法(化学気相成長法)、ディップコート法やスリットコート法などのウェットコート法を用いることができる。特にスパッタ法、ディップコート法が好ましい。スパッタ法を用いた場合、イオン透過抑制膜Mを容易に均一に形成できる。イオン透過抑制膜Mの成膜箇所は任意の手法で設定して良い。例えば、非成膜箇所(本実施形態では端面E)に予めマスクを施した状態で成膜を行う等して良い。 The film formation method of the ion permeation suppression film M is a PVD method (physical vapor deposition method) such as a sputtering method or a vacuum evaporation method, a CVD method (chemical vapor deposition method) such as a thermal CVD method or a plasma CVD method, dip coating, etc. A wet coating method such as a method or a slit coating method can be used. In particular, a sputtering method and a dip coating method are preferable. When the sputtering method is used, the ion permeation suppression film M can be easily and uniformly formed. The deposition location of the ion permeation suppression film M may be set by any method. For example, the film formation may be performed in a state where a mask is previously applied to a non-film formation portion (end surface E in the present embodiment).
 次いで、上記成膜工程の後、図1Cに示す第一イオン交換工程の処理を実施する。第一イオン交換工程は、膜付ガラスG2をイオン交換法により化学強化して膜付強化ガラスG3を得る工程である。具体的には、アルカリ金属イオンを含む溶融塩T1に膜付ガラスG2を浸漬してイオン交換する。本実施形態における溶融塩T1は、例えば、硝酸カリウム溶融塩である。 Next, after the film formation step, the first ion exchange step shown in FIG. 1C is performed. A 1st ion exchange process is a process of chemically strengthening the glass G2 with a film | membrane by the ion exchange method, and obtaining the glass G3 with a film | membrane. Specifically, ion exchange is performed by immersing the film-coated glass G2 in a molten salt T1 containing alkali metal ions. The molten salt T1 in the present embodiment is, for example, a potassium nitrate molten salt.
 溶融塩T1は、当該溶融塩T1を水と混合して当該溶融塩の濃度が20質量%の水溶液とした際の当該水溶液の水素イオン濃度指数をαとした場合、α≦10.5となる塩であることが好ましい。なお、本発明において水素イオン濃度指数は、水溶液の温度が25℃の状態で測定された値である。αを上記のように調整することで、イオン透過抑制膜Mの損耗を抑制し、イオン透過抑制膜Mが成膜された箇所における膜付ガラスG2のイオン交換を抑制できる。また、膜付ガラスG2のイオン透過抑制膜Mが成膜されていない箇所においては、当該膜が成膜された箇所に比べてガラス表面から内部の深い領域までイオン交換を行うことができる。 The molten salt T1 satisfies α ≦ 10.5 when the hydrogen ion concentration index of the aqueous solution when the molten salt T1 is mixed with water to obtain an aqueous solution having a concentration of the molten salt of 20% by mass is α. A salt is preferred. In the present invention, the hydrogen ion concentration index is a value measured when the temperature of the aqueous solution is 25 ° C. By adjusting α as described above, the wear of the ion permeation suppression film M can be suppressed, and the ion exchange of the film-attached glass G2 at the portion where the ion permeation suppression film M is formed can be suppressed. Moreover, in the location where the ion permeation suppression film M of the film-attached glass G2 is not formed, ion exchange can be performed from the glass surface to a deeper area inside than the location where the film is formed.
 上記αは、好ましくは5~10、より好ましくは5.5~9.5、さらに好ましくは6~9である。αは、例えば、溶融塩を一旦冷却固化し、粉砕し、計量して、上記水溶液を作成することにより測定できる。 The α is preferably 5 to 10, more preferably 5.5 to 9.5, and further preferably 6 to 9. α can be measured, for example, by once cooling and solidifying the molten salt, pulverizing and weighing the molten salt to prepare the aqueous solution.
 第一イオン交換工程における溶融塩T1の温度は任意に定めて良いが、例えば、350~500℃、好ましくは370~480℃、より好ましくは380~450℃、さらに好ましくは380~400℃である。特に溶融塩T1の温度が400℃以下であれば、温度に起因するαの値の変動を抑制し易くなる。また、膜付ガラスG2を溶融塩T1中に浸漬する時間は任意に定めて良いが、例えば、0.1~150時間、好ましくは0.3~100時間、より好ましくは0.5~50時間である。 The temperature of the molten salt T1 in the first ion exchange step may be arbitrarily determined, and is, for example, 350 to 500 ° C., preferably 370 to 480 ° C., more preferably 380 to 450 ° C., and further preferably 380 to 400 ° C. . In particular, if the temperature of the molten salt T1 is 400 ° C. or less, it becomes easy to suppress fluctuations in the value of α due to the temperature. The time for immersing the film-coated glass G2 in the molten salt T1 may be arbitrarily determined. For example, it is 0.1 to 150 hours, preferably 0.3 to 100 hours, more preferably 0.5 to 50 hours. It is.
 上記第一イオン交換工程では、膜付ガラスG2の表面のナトリウムイオンと溶融塩T1中のカリウムイオンとが交換され、表面に圧縮応力層Cを有する膜付強化ガラスG3が得られる。ここで、膜付ガラスG2の表面のうち、イオン透過抑制膜Mが設けられた部位(主面S)は、元ガラスG1の表面が露出した露出部Eに比べてイオン交換が抑制されるため、圧縮応力層の深さが小さくなる。換言すれば、露出部Eは、イオン透過抑制膜Mが設けられた部位に比べてイオン交換が進み易く、圧縮応力層の深さが大きくなる。このように、膜付強化ガラスG3は、主面に比べ端面の圧縮応力層の深さが大きくなるため、全面的に強化された強化ガラスに比べて内部の引張応力が小さく且つ端部においては高い耐衝撃性を有する。したがって、端部からのクラックの進展に起因する破損を好適に抑制できる。 In the first ion exchange step, sodium ions on the surface of the film-coated glass G2 and potassium ions in the molten salt T1 are exchanged to obtain a film-reinforced glass G3 having a compressive stress layer C on the surface. Here, in the surface of the film-coated glass G2, the portion (main surface S) where the ion permeation suppression film M is provided is suppressed in ion exchange compared to the exposed portion E where the surface of the original glass G1 is exposed. The depth of the compressive stress layer is reduced. In other words, in the exposed portion E, the ion exchange can proceed more easily than the portion where the ion permeation suppression film M is provided, and the depth of the compressive stress layer is increased. In this way, the tempered glass with film G3 has a smaller compressive stress layer at the end surface than the main surface, and therefore has a lower internal tensile stress than the tempered glass reinforced entirely and at the end portion. High impact resistance. Therefore, the damage resulting from the progress of the crack from the end can be suitably suppressed.
 しかしながら、上記第一イオン交換工程の処理のみでは、イオン透過抑制膜Mによってイオン交換が抑制された箇所において十分な圧縮応力を得られない場合がある。そのため、次いで、上記第一イオン交換工程の後に、以下に説明する第二イオン交換工程の処理を実施し、イオン透過抑制膜Mの成膜箇所における圧縮応力を大きくする。 However, there may be a case where sufficient compressive stress cannot be obtained at a location where ion exchange is suppressed by the ion permeation suppression membrane M only by the processing of the first ion exchange step. Therefore, after the first ion exchange step, the second ion exchange step described below is performed to increase the compressive stress at the location where the ion permeation suppression film M is formed.
 第二イオン交換工程は、図1Dに示すように、膜付ガラスG2をイオン交換法により再度化学強化する工程である。具体的には、アルカリ金属イオンを含む溶融塩T2に膜付強化ガラスG3を浸漬してイオン交換し、膜付強化ガラスG4を得る。本実施形態における溶融塩T2は、例えば、硝酸カリウム溶融塩である。 The second ion exchange step is a step of chemically strengthening the film-coated glass G2 again by an ion exchange method, as shown in FIG. 1D. Specifically, the tempered glass with film G3 is immersed in a molten salt T2 containing alkali metal ions to perform ion exchange to obtain the tempered glass with film G4. The molten salt T2 in the present embodiment is, for example, a potassium nitrate molten salt.
 溶融塩T2は、当該溶融塩T2を水と混合して当該溶融塩の濃度が20質量%の水溶液とした際の当該水溶液の水素イオン濃度指数をβとした場合、α<βとなる塩である。βの値をこのような範囲とすることで、成膜箇所において適度にイオン交換を行うことができ、成膜箇所における圧縮応力を増加させることが可能である。 The molten salt T2 is a salt in which α <β, where β is the hydrogen ion concentration index of the aqueous solution when the molten salt T2 is mixed with water to form an aqueous solution having a concentration of the molten salt of 20% by mass. is there. By setting the value of β in such a range, it is possible to appropriately perform ion exchange at the film formation location, and to increase the compressive stress at the film formation location.
 なお、上記βは、9~12であることが好ましく、より好ましくは9.5~11.5、さらに好ましくは10~11である。βの値は上述αと同様の方法で測定できる。βの値が上記範囲内であれば、第二イオン交換工程においてガラス表面の白濁等の好ましくない変質を防止できる。 Note that β is preferably 9 to 12, more preferably 9.5 to 11.5, and still more preferably 10 to 11. The value of β can be measured by the same method as α described above. If the value of β is within the above range, undesirable alteration such as cloudiness on the glass surface can be prevented in the second ion exchange step.
 第二イオン交換工程における溶融塩T2の温度は任意に定めて良いが、例えば、350~500℃、好ましくは370~480℃、より好ましくは380~450℃である。溶融塩T2の温度が450℃以下であれば、温度に起因するαの値の変動を抑制し易くなる。また、膜付強化ガラスG3を溶融塩T2中に浸漬する時間は任意に定めて良いが、例えば、0.1~72時間、好ましくは0.3~50時間、より好ましくは0.5~24時間である。 The temperature of the molten salt T2 in the second ion exchange step may be arbitrarily determined, and is, for example, 350 to 500 ° C, preferably 370 to 480 ° C, more preferably 380 to 450 ° C. If the temperature of molten salt T2 is 450 degrees C or less, it will become easy to suppress the fluctuation | variation of the value of (alpha) resulting from temperature. The time for immersing the tempered glass with film G3 in the molten salt T2 may be arbitrarily determined. For example, it is 0.1 to 72 hours, preferably 0.3 to 50 hours, more preferably 0.5 to 24. It's time.
 上記第二イオン交換工程では、βの値がαより高く設定されていることによって、第一イオン交換工程に比べて、イオン透過抑制膜Mの成膜箇所におけるイオン交換が進行し易くなっている。そのため、第二イオン交換工程の処理を経た膜付強化ガラスG4は、処理前の膜付強化ガラスG3に比べてイオン透過抑制膜Mの成膜箇所における圧縮応力が大きくなる。また、膜付強化ガラスG4は、膜付強化ガラスG3に比べてイオン透過抑制膜Mの成膜箇所における圧縮応力層が深くなる。 In the second ion exchange step, since the value of β is set higher than α, the ion exchange at the film formation location of the ion permeation suppression membrane M is easier to proceed than in the first ion exchange step. . Therefore, the tempered glass with film G4 that has undergone the process of the second ion exchange step has a greater compressive stress at the location where the ion permeation suppression film M is formed than the tempered glass with film G3 before the process. Further, the tempered glass with film G4 has a deeper compressive stress layer at the position where the ion permeation suppression film M is formed than the tempered glass with film G3.
 本発明では、αおよびβを上記範囲に調整する調整工程を第一イオン交換工程および第二イオン交換工程各々の前工程や後工程において実施することが好ましい。調整工程では、例えば、溶融塩T1或いはT2に添加物を加えることによってαおよびβを調整できる。添加物は、例えば、塩基性物質である。本発明において塩基性物質は、水と混合した場合に水素イオン指数(pH)が7より大となる物質である。添加物としては、例えば、KOH、NaOH等を単体あるいは組み合わせて用いることができる。 In the present invention, it is preferable that the adjustment step of adjusting α and β within the above ranges is performed in the pre-process and post-process of each of the first ion exchange process and the second ion exchange process. In the adjustment step, for example, α and β can be adjusted by adding an additive to the molten salt T1 or T2. The additive is, for example, a basic substance. In the present invention, the basic substance is a substance having a hydrogen ion index (pH) of more than 7 when mixed with water. As the additive, for example, KOH, NaOH or the like can be used alone or in combination.
 イオン透過抑制膜Mが電子デバイスの保護コートや反射防止膜としても機能する場合には、膜付強化ガラスG4は、そのまま電子部品等に搭載して製品として使用することも可能であるが、用途に応じてイオン透過抑制膜Mを除去しても良い。すなわち、第二イオン交換工程の後に、膜付強化ガラスG4からイオン透過抑制膜Mを除去する除去工程を実施して良い。 When the ion permeation suppression film M also functions as a protective coating or an antireflection film for an electronic device, the tempered glass with film G4 can be directly mounted on an electronic component or the like and used as a product. Depending on the case, the ion permeation suppression film M may be removed. That is, after the second ion exchange step, a removal step of removing the ion permeation suppression membrane M from the tempered glass with film G4 may be performed.
 除去工程では、図1Eに示すように膜付強化ガラスG4からイオン透過抑制膜Mを除去して強化ガラスG5を得る。 In the removal step, as shown in FIG. 1E, the ion permeation suppression film M is removed from the tempered glass G4 with film to obtain a tempered glass G5.
 具体的には、膜付強化ガラスG4にエッチング液を付着させてイオン透過抑制膜Mを除去する。イオン透過抑制膜MがSiO2を含有する膜である場合、例えば、フッ素、TMAH、EDP、KOH、NAOH等を含む溶液をエッチング液として用いることができ、特にフッ酸溶液をエッチング液として用いることが好ましい。なお、イオン透過抑制膜Mの剥離方法は上記に限らず、ガラス板に設けられた膜を除去する方法として周知の方法を用いて良く、例えば、研磨等の機械加工によってイオン透過抑制膜Mを除去しても良い。 Specifically, the ion permeation suppression film M is removed by attaching an etching solution to the film-reinforced glass G4. When the ion permeation suppression film M is a film containing SiO 2 , for example, a solution containing fluorine, TMAH, EDP, KOH, NAOH, or the like can be used as an etchant, and in particular, a hydrofluoric acid solution is used as an etchant. Is preferred. In addition, the peeling method of the ion permeation suppression film M is not limited to the above, and a known method may be used as a method for removing the film provided on the glass plate. For example, the ion permeation suppression film M may be formed by machining such as polishing. It may be removed.
 剥離工程では、一方の主面側のイオン透過抑制膜Mのみを除去しても良いし、両方の主面のイオン透過抑制膜Mを除去しても良い。また各主面においてイオン透過抑制膜Mを部分的に除去しても良いし、イオン透過抑制膜Mを全て除去しても良い。 In the peeling step, only the ion permeation suppression film M on one main surface side may be removed, or the ion permeation suppression film M on both main surfaces may be removed. Further, the ion permeation suppression film M may be partially removed from each main surface, or the ion permeation suppression film M may be entirely removed.
 イオン透過抑制膜Mを片面側や部分的に除去する場合、スプレーやロール、刷毛等を用いてエッチング液を部分的に付着させたり、膜付強化ガラスG4に部分的にマスキングを施してエッチング液に浸漬させたりして該膜の除去が可能である。 When the ion permeation suppression film M is partially removed or partially removed, the etching liquid is partially adhered using a spray, roll, brush, or the like, or the masked tempered glass G4 is partially masked to etch the liquid. It is possible to remove the film by immersing the film in the film.
 イオン透過抑制膜Mを全て除去する場合は膜付強化ガラスG4全体をエッチング液に浸漬すると良い。このように膜付強化ガラスG4全体をエッチング液に浸漬すれば、破損の原因となるマイクロクラックを減少させてさらに強度を向上した強化ガラスG5を得られる場合がある。 When removing all of the ion permeation suppression film M, the entire tempered glass with film G4 may be immersed in an etching solution. If the entire tempered glass with film G4 is immersed in the etching solution in this way, tempered glass G5 with further improved strength may be obtained by reducing microcracks that cause damage.
 以上に説明した通り、本発明の実施形態に係る強化ガラスの製造方法によれば、端面からの破損の少ない膜付強化ガラスG4、強化ガラスG5を安定して効率良く製造できる。 As described above, according to the method for producing tempered glass according to the embodiment of the present invention, the tempered glass G4 and the tempered glass G5 with less damage from the end face can be produced stably and efficiently.
 なお、上述したイオン透過抑制膜Mの材質は一例であり、第一イオン交換工程において交換されるイオンの透過を抑制可能な膜であれば任意の材質を用いて良い。 In addition, the material of the ion permeation suppression membrane M described above is an example, and any material may be used as long as it can suppress permeation of ions exchanged in the first ion exchange step.
 また、膜付ガラスG2におけるイオン透過抑制膜Mの成膜箇所は任意に定めて良い。例えば、元ガラスG1が予め面取り加工されている場合には、面取り面を除く主面にイオン透過抑制膜Mを形成して良い。 Moreover, the film formation location of the ion permeation suppression film M in the glass with film G2 may be arbitrarily determined. For example, when the original glass G1 is chamfered in advance, the ion permeation suppression film M may be formed on the main surface excluding the chamfered surface.
 また、上記に示した任意の工程の前後において、切断加工、端面加工、および孔あけ加工の何れかの加工を実施する加工工程を設けても良い。また、上記に示した任意の工程の前後において、ガラス板に洗浄および乾燥処理を適宜行なって良い。 In addition, before and after the arbitrary steps shown above, a processing step for performing any one of cutting, end surface processing, and drilling processing may be provided. In addition, before and after the arbitrary steps described above, the glass plate may be appropriately washed and dried.
 また、上記実施形態では溶融塩T1、T2が、硝酸カリウム溶融塩である場合を一例として説明したが、これに限らずガラスのイオン交換に用いられる周知の溶融塩を代替して、或いは組み合わせて用いて良い。例えば、溶融塩T1、T2は、硝酸カリウム溶融塩と硝酸ナトリウム溶融塩の混合塩であっても良い。 Moreover, although the said embodiment demonstrated the case where molten salt T1, T2 was potassium nitrate molten salt as an example, it is not restricted to this, It replaces with the well-known molten salt used for ion exchange of glass, or uses it in combination Good. For example, the molten salts T1 and T2 may be a mixed salt of a potassium nitrate molten salt and a sodium nitrate molten salt.
 また、上記実施形態ではナトリウムイオンとカリウムイオンとを交換して化学強化する場合を例示したが、任意のイオンの交換により化学強化しても良い。例えば、リチウムイオンとナトリウムイオンとを交換したり、リチウムイオンとカリウムイオンとを交換したりして化学強化しても良い。この場合、元ガラスG1は、ガラス組成として、質量%でLiO2を0.5~7.5%含有することが好ましく、例えば3.0%或いは4.5%含有する。 Moreover, although the case where the sodium ion and the potassium ion were exchanged and chemically strengthened was illustrated in the said embodiment, you may chemically strengthen by replacement | exchange of arbitrary ions. For example, chemical strengthening may be performed by exchanging lithium ions and sodium ions, or exchanging lithium ions and potassium ions. In this case, the original glass G1 preferably contains 0.5 to 7.5% by mass of LiO 2 as a glass composition, for example, 3.0% or 4.5%.
 また、上記第一イオン交換工程および第二イオン交換工程における処理温度や浸漬時間等の処理条件は、膜付強化ガラスG4および強化ガラスG5に要求される特性に応じて適宜定めて良い。なお、上記処理条件は、膜付強化ガラスG4および強化ガラスG5の主面Sの圧縮応力層の深さが、露出部Eの圧縮応力層の深さより小さくなるよう調整することが好ましい。 In addition, the processing conditions such as the processing temperature and the immersion time in the first ion exchange step and the second ion exchange step may be appropriately determined according to the characteristics required for the tempered glass with film G4 and the tempered glass G5. In addition, it is preferable to adjust the said process conditions so that the depth of the compressive-stress layer of the main surface S of the tempered glass G4 with a film and the tempered glass G5 may become smaller than the depth of the compressive-stress layer of the exposed part E.
 また、上記第一イオン交換工程と第二イオン交換工程の間または第二イオン交換工程の後にさらに追加の強化工程を複数工程設けても良い。第一イオン交換工程と第二イオン交換工程の間に追加する強化工程において使用する溶融塩は、当該溶融塩を水と混合して濃度を20質量%の水溶液とした場合の水素イオン濃度指数をγとした場合、γ<βとなる溶融塩であることが好ましい。 Further, a plurality of additional strengthening steps may be provided between the first ion exchange step and the second ion exchange step or after the second ion exchange step. The molten salt used in the strengthening step added between the first ion exchange step and the second ion exchange step has a hydrogen ion concentration index when the molten salt is mixed with water to make an aqueous solution having a concentration of 20% by mass. When γ, a molten salt satisfying γ <β is preferable.
 上述した強化ガラスの製造方法は、上記溶融塩T1を収容した塩浴槽X1および上記溶融塩T2を収容した塩浴槽X2を備えた強化ガラス製造装置を用いて実施することができる。塩浴槽X1、X2は、例えば、上部を開口した金属製筐体からなる槽であり、溶融塩Tで満たされる内部空間を有する。当該強化ガラス製造装置は、塩浴槽X1内に膜付ガラスG2を、塩浴槽X2内に膜付強化ガラスG3を各々収容可能な形状および寸法で構成され、且つ膜付ガラスG2を支持可能な支持装置(図示せず)をさらに備えて良い。支持装置は、例えば、ステンレス鋼等の金属フレームによって構成された治具である。支持装置に膜付ガラスG2を支持させた状態で、塩浴槽X1内の溶融塩T1に浸漬させることによって、上記第一イオン交換工程の処理を実施できる。また、支持装置に膜付強化ガラスG3を支持させた状態で、塩浴槽X2内の溶融塩T2に浸漬させることによって、上記第二イオン交換工程の処理を実施できる。なお、強化ガラス製造装置は上記成膜工程の処理を実施する成膜装置(図示せず)をさらに備えた構成であって良い。成膜装置としては周知のスパッタ成膜装置等を用いることができる。 The manufacturing method of the tempered glass mentioned above can be implemented using the tempered glass manufacturing apparatus provided with the salt bath X1 which accommodated the said molten salt T1, and the salt bath X2 which accommodated the said molten salt T2. The salt baths X <b> 1 and X <b> 2 are, for example, tanks made of a metal casing having an upper opening, and have an internal space filled with the molten salt T. The tempered glass manufacturing apparatus is configured to have a shape and size capable of accommodating the film-coated glass G2 in the salt tub X1 and the film-reinforced glass G3 in the salt tub X2, and can support the film-coated glass G2. An apparatus (not shown) may further be provided. The support device is a jig constituted by a metal frame such as stainless steel, for example. The processing of the first ion exchange step can be performed by immersing the molten glass T2 in the salt bath X1 in a state where the glass G2 with film is supported by the support device. Moreover, the process of said 2nd ion exchange process can be implemented by making it immerse in the molten salt T2 in the salt bath X2 in the state which supported the tempered glass G3 with a support apparatus. Note that the tempered glass manufacturing apparatus may further include a film forming apparatus (not shown) that performs the film forming process. As the film forming apparatus, a known sputter film forming apparatus or the like can be used.
 ここで、強化ガラスの応力特性は、例えば折原製作所製FSM-6000を用いて測定することができる。アルミノシリケート系ガラスの圧縮応力層の深さが100μmを超える場合や、リチウムイオンとナトリウムイオンのイオン交換を行った場合は、強化ガラスの応力特性は、例えば折原製作所製SLP-1000を用いて測定することができる。強化ガラスを切断する等して断面試料を作製できる場合は、例えばフォトニックラティス社製WPA-microや東京インスツルメンツ社製Abrioを用いて内部応力分布を観測し、応力深さを確認することが望ましい。 Here, the stress characteristics of the tempered glass can be measured using, for example, FSM-6000 manufactured by Orihara Seisakusho. When the depth of the compressive stress layer of aluminosilicate glass exceeds 100 μm, or when ion exchange between lithium ions and sodium ions is performed, the stress characteristics of tempered glass are measured using, for example, SLP-1000 manufactured by Orihara Seisakusho. can do. When a cross-sectional sample can be prepared by cutting tempered glass, it is desirable to observe the internal stress distribution and confirm the stress depth using, for example, WPA-micro manufactured by Photonic Lattice or Abrio manufactured by Tokyo Instruments. .
 以下、実施例に基づいて、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.
 表1において、No.1~3は本発明の実施例を示し、No.4~7は比較例を示している。 In Table 1, Nos. 1 to 3 show examples of the present invention, and Nos. 4 to 7 show comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
  表1中の各試料は以下のようにして作製した。先ず、ガラス組成として質量%で、SiO2 61.6%、Al23 19.6%、B23 0.8%、Na2O 16%、K2O 2%を含有するようガラス原料を混合および溶融し、オーバーフローダウンドロー法を用いて厚さ0.8mmの板状に成形し、スクライブ割断によって50×50mm寸法の矩形状に切り出して端面研削および研磨を行い、複数の元ガラスG1を得た。次いで、質量%でSiO2100%の組成を有し、厚さ200nmのイオン透過抑制膜Mを上記得られた元ガラスG1の表裏の両主面全体にスパッタ法を用いて成膜して膜付ガラスG2を得た(成膜工程)。次いで、得られた膜付ガラスG2を、表1中の条件で硝酸カリウム溶液に浸漬して化学強化することにより膜付強化ガラスG3を得た(第一イオン交換工程)。次いで、得られた膜付強化ガラスG3を、表1中の条件で硝酸カリウム溶液に浸漬して化学強化することにより膜付強化ガラスG4を得た(第二イオン交換工程)。次いで、得られた膜付強化ガラスG4の表面を洗浄後、研磨してイオン透過抑制膜を除去し、強化ガラスG5を得た(除去工程)。 Each sample in Table 1 was produced as follows. First, the glass composition is glass so that it contains 61.6% of SiO 2 , 19.6% of Al 2 O 3 , 0.8% of B 2 O 3 , 16% of Na 2 O, and 2 % of K 2 O in mass%. The raw materials are mixed and melted, formed into a 0.8mm-thick plate using the overflow downdraw method, cut into a 50x50mm rectangular shape by scribing, end-face grinding and polishing, and multiple original glasses G1 was obtained. Subsequently, an ion permeation suppression film M having a composition of 100% by mass and SiO 2 having a thickness of 200 nm is formed on the entire main surfaces of the front and back surfaces of the original glass G1 by sputtering. Attached glass G2 was obtained (film formation step). Next, the obtained film-coated glass G2 was immersed in a potassium nitrate solution under the conditions shown in Table 1 and chemically strengthened to obtain a film-coated tempered glass G3 (first ion exchange step). Subsequently, the obtained tempered glass with film G3 was immersed in a potassium nitrate solution under the conditions shown in Table 1 and chemically strengthened to obtain tempered glass with film G4 (second ion exchange step). Next, the surface of the obtained tempered glass with film G4 was washed and then polished to remove the ion permeation suppression film to obtain tempered glass G5 (removal step).
 なお、No.6、7においては第二イオン交換工程を省略した。 No. In 6 and 7, the second ion exchange step was omitted.
 上記のようにして得た各ガラス試料について、下記測定試験を行った。 The following measurement test was performed on each glass sample obtained as described above.
 強化ガラスG5の主面に形成された圧縮応力層の圧縮応力CS、当該主面の圧縮応力層の深さDOL1、および端面の圧縮応力層の深さDOL2は、応力計(折原製作所製のFSM-6000LEおよびFsmXP)で測定した。また、DOL2からDOL1を減算した値をΔDOLとして求めた。ΔDOLの値が大きいほど、内部引張応力が小さく自己破壊し難く、且つ、端面において高い強度を有するガラスであるといえる。 The compressive stress CS of the compressive stress layer formed on the main surface of the tempered glass G5, the depth DOL1 of the compressive stress layer on the main surface, and the depth DOL2 of the compressive stress layer on the end surface are stress meters (FSM manufactured by Orihara Seisakusho). -6000LE and FsmXP). Further, a value obtained by subtracting DOL1 from DOL2 was obtained as ΔDOL. It can be said that the larger the value of ΔDOL, the smaller the internal tensile stress, the more difficult it is to self-destruct, and the higher the strength at the end face.
 表1に示すように、比較例である試料No.4、5は、αの値がβより大きいために第一イオン交換工程中でイオン交換抑制膜Mが激しく損耗してしまい、成膜箇所のDOLが大きくなった結果、実施例に比べΔDOLの値が小さくなっていた。また、比較例である試料No.6、7は、第二イオン交換工程を実施しておらず且つαの値が比較的大きいために第一イオン交換工程中にイオン交換抑制膜Mが激しく損耗し、成膜箇所においてイオン交換が十分に抑制されなかった結果、実施例に比べΔDOLの値が小さくなっていた。すなわち、比較例である試料No.4~7は、いずれも実施例に比べて自己破壊し易いガラスであった。 As shown in Table 1, in the sample Nos. 4 and 5 which are comparative examples, since the value of α is larger than β, the ion exchange suppressing film M is severely worn out during the first ion exchange process, and the film formation location As a result, the value of ΔDOL was smaller than that of the example. Samples Nos. 6 and 7, which are comparative examples, do not perform the second ion exchange process and have a relatively large value of α, so that the ion exchange suppression membrane M is worn out during the first ion exchange process. However, as a result of the fact that ion exchange was not sufficiently suppressed at the film formation location, the value of ΔDOL was smaller than that of the example. That is, Samples Nos. 4 to 7 that are comparative examples were all glass that was more easily self-breaking than the Examples.
 本発明の強化ガラス板およびその製造方法は、タッチパネルディスプレイ等に用いられるガラス基板およびその製造方法等として有用である。 The tempered glass plate of the present invention and the manufacturing method thereof are useful as a glass substrate used for a touch panel display and the like, a manufacturing method thereof, and the like.
G1 元ガラス
G2 膜付ガラス
G3、G4 膜付強化ガラス
G5 強化ガラス
M イオン透過抑制膜
T1 第一溶融塩
T2 第二溶融塩
X1 第一塩浴槽
X2 第二塩浴槽
G1 Original glass G2 Glass with glass G3, G4 Tempered glass with film G5 Tempered glass M Ion permeation suppression film T1 First molten salt T2 Second molten salt X1 First salt bath X2 Second salt bath

Claims (8)

  1.  ガラス表層のイオンを交換する強化ガラスの製造方法であって、
     前記ガラスの表面の少なくとも一部に前記イオンの透過を抑制するイオン透過抑制膜を成膜する工程と、
     前記イオン透過抑制膜が成膜された前記ガラスの表面に第一の溶融塩を接触させて前記イオンを交換する第一イオン交換工程と
     前記第一イオン交換工程の後に、前記イオン透過抑制膜が成膜された前記ガラスの表面に第二の溶融塩を接触させて前記イオンを交換する第二イオン交換工程とを備え、
     前記第一の溶融塩を水と混合して濃度を20質量%の水溶液とした場合の水素イオン濃度指数をαとし、前記第二の溶融塩を水と混合して濃度を20質量%の水溶液とした場合の水素イオン濃度指数をβとした場合、α<βであることを特徴とする、強化ガラスの製造方法。
    A method for producing tempered glass for exchanging ions on a glass surface,
    Forming an ion permeation suppressing film for suppressing permeation of the ions on at least a part of the surface of the glass;
    A first ion exchange step of exchanging the ions by bringing a first molten salt into contact with the surface of the glass on which the ion permeation suppression membrane has been formed; and after the first ion exchange step, the ion permeation suppression membrane A second ion exchange step of exchanging the ions by bringing a second molten salt into contact with the surface of the glass film formed,
    When the first molten salt is mixed with water to form an aqueous solution having a concentration of 20% by mass, the hydrogen ion concentration index is α, and the second molten salt is mixed with water to have a concentration of 20% by mass. A method for producing tempered glass, wherein α <β, where β is the hydrogen ion concentration index.
  2.  α≦10.5であることを特徴とする、請求項1に記載の強化ガラスの製造方法。 The method for producing tempered glass according to claim 1, wherein α ≦ 10.5.
  3.  9≦β≦12であることを特徴とする、請求項1または2に記載の強化ガラスの製造方法。 The method for producing tempered glass according to claim 1, wherein 9 ≦ β ≦ 12.
  4.  前記ガラスを前記第一イオン交換工程において350~500℃の前記第一溶融塩に0.1~150時間浸漬した後、前記第二イオン交換工程において350~500℃の前記第二溶融塩に0.1~72時間浸漬し、
     前記第一イオン交換工程における浸漬時間は前記第二イオン交換工程における浸漬時間より長いことを特徴とする、請求項1から3の何れか1項に記載の強化ガラスの製造方法。
    The glass is immersed in the first molten salt at 350 to 500 ° C. for 0.1 to 150 hours in the first ion exchange step, and then is added to the second molten salt at 350 to 500 ° C. in the second ion exchange step. Soak for 1 to 72 hours,
    The method for producing tempered glass according to any one of claims 1 to 3, wherein the immersion time in the first ion exchange step is longer than the immersion time in the second ion exchange step.
  5.  前記ガラス表層のイオンはナトリウムイオンであり、
     前記第一溶融塩および前記第二溶融塩は何れもカリウムイオンを含み、
     前記ガラスの主面にのみ前記イオン透過抑制膜を成膜し、
     前記イオン透過抑制膜は質量%でSiO2を70%以上含む組成を有し、
     前記イオン透過抑制膜の膜厚は5~400nmであることを特徴とする、請求項1から4の何れか1項に記載の強化ガラスの製造方法。
    The glass surface ions are sodium ions,
    The first molten salt and the second molten salt both contain potassium ions,
    Forming the ion permeation suppression film only on the main surface of the glass,
    The ion permeation suppression film has a composition containing 70% or more of SiO 2 by mass%,
    The method for producing tempered glass according to any one of claims 1 to 4, wherein the ion permeation suppression film has a thickness of 5 to 400 nm.
  6.  前記第二イオン交換工程の後に前記イオン透過抑制膜を除去する工程をさらに備えることを特徴とする、請求項1から5の何れか1項に記載の強化ガラスの製造方法。 The method for producing tempered glass according to any one of claims 1 to 5, further comprising a step of removing the ion permeation suppression film after the second ion exchange step.
  7.  前記ガラスは、ガラス組成として質量%で、SiO2 45~75%、Al23 1~30%、Na2O 0~20%、K2O 0~20%を含有するガラス板であることを特徴とする、請求項1から6の何れか1項に記載の強化ガラスの製造方法。 The glass is a glass plate containing, by mass%, SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20% as a glass composition. The manufacturing method of the tempered glass of any one of Claim 1 to 6 characterized by these.
  8.  ガラス表層のイオンを交換するための第一溶融塩を収容した第一塩浴槽と、
     ガラス表層のイオンを交換するための第二溶融塩を収容した第二塩浴槽とを備え、
     前記第一の溶融塩を水と混合して濃度を20質量%の水溶液とした場合の水素イオン濃度指数をαとし、前記第二の溶融塩を水と混合して濃度を20質量%の水溶液とした場合の水素イオン濃度指数をβとした場合、α<βであることを特徴とする、強化ガラス製造装置。
    A first salt bath containing a first molten salt for exchanging ions on the glass surface layer;
    A second salt bath containing a second molten salt for exchanging ions on the glass surface layer,
    When the first molten salt is mixed with water to form an aqueous solution having a concentration of 20% by mass, the hydrogen ion concentration index is α, and the second molten salt is mixed with water to have a concentration of 20% by mass. When the hydrogen ion concentration index in the case of β is β, α <β.
PCT/JP2017/022089 2016-06-22 2017-06-15 Reinforced glass production method and reinforced glass production apparatus WO2017221805A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018523991A JP6860829B2 (en) 2016-06-22 2017-06-15 Tempered glass manufacturing method and tempered glass manufacturing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016123480 2016-06-22
JP2016-123480 2016-06-22

Publications (1)

Publication Number Publication Date
WO2017221805A1 true WO2017221805A1 (en) 2017-12-28

Family

ID=60784723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022089 WO2017221805A1 (en) 2016-06-22 2017-06-15 Reinforced glass production method and reinforced glass production apparatus

Country Status (3)

Country Link
JP (1) JP6860829B2 (en)
TW (1) TW201811709A (en)
WO (1) WO2017221805A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124242A (en) * 2020-11-18 2022-09-30 李英南 Bendable light and thin toughened glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI742731B (en) * 2020-06-19 2021-10-11 恆顥科技股份有限公司 Strengthened glass structure and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005529056A (en) * 2002-06-13 2005-09-29 インターナショナル・ビジネス・マシーンズ・コーポレーション PH adjustment of melt for microetching of glass substrate
WO2013088856A1 (en) * 2011-12-16 2013-06-20 旭硝子株式会社 Display cover glass and display cover glass fabrication method
JP2014510012A (en) * 2011-03-16 2014-04-24 アップル インコーポレイテッド Controlled chemical strengthening of thin glass
JP2014208570A (en) * 2013-03-25 2014-11-06 日本電気硝子株式会社 Tempered glass substrate and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005529056A (en) * 2002-06-13 2005-09-29 インターナショナル・ビジネス・マシーンズ・コーポレーション PH adjustment of melt for microetching of glass substrate
JP2014510012A (en) * 2011-03-16 2014-04-24 アップル インコーポレイテッド Controlled chemical strengthening of thin glass
WO2013088856A1 (en) * 2011-12-16 2013-06-20 旭硝子株式会社 Display cover glass and display cover glass fabrication method
JP2014208570A (en) * 2013-03-25 2014-11-06 日本電気硝子株式会社 Tempered glass substrate and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124242A (en) * 2020-11-18 2022-09-30 李英南 Bendable light and thin toughened glass
CN115124242B (en) * 2020-11-18 2023-11-10 安徽颍佳利光电科技有限公司 Bendable light and thin toughened glass

Also Published As

Publication number Publication date
TW201811709A (en) 2018-04-01
JPWO2017221805A1 (en) 2019-04-11
JP6860829B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
JP7378297B2 (en) Asymmetric stress profiles for low deflection and high damage resistant glass articles
CN107108347B (en) Method for producing tempered glass sheet, and method for producing tempered glass sheet
WO2017179360A1 (en) Method for manufacturing tempered glass and device for manufacturing tempered glass
JP6870348B2 (en) Cover glass and glass laminate
JP2018002552A (en) Manufacturing method of reinforced glass and reinforced glass manufacturing method
WO2018066314A1 (en) Method for manufacturing reinforced glass plate, film-coated glass plate, and reinforced glass plate
US20170144923A1 (en) Removal of inorganic coatings from glass substrates
JP6886127B2 (en) Manufacturing method of tempered glass plate and tempered glass plate
WO2017221805A1 (en) Reinforced glass production method and reinforced glass production apparatus
KR20210016529A (en) Reverse ion exchange process for lithium-containing glass
WO2018008359A1 (en) Method for manufacturing reinforced glass plate
WO2018056329A1 (en) Method for producing reinforced glass sheet, glass sheet for reinforcing, and reinforced glass sheet
JP2019001691A (en) Method for manufacturing reinforced glass plate, glass plate for reinforcement and reinforced glass plate
JP2017160111A (en) Method of manufacturing tempered glass substrate, and tempered glass substrate
WO2018097096A1 (en) Reinforced glass plate and method for producing reinforced glass plate
JP2013087031A (en) Method for producing cover glass for portable device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018523991

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815273

Country of ref document: EP

Kind code of ref document: A1