WO2018056329A1 - Method for producing reinforced glass sheet, glass sheet for reinforcing, and reinforced glass sheet - Google Patents

Method for producing reinforced glass sheet, glass sheet for reinforcing, and reinforced glass sheet Download PDF

Info

Publication number
WO2018056329A1
WO2018056329A1 PCT/JP2017/033971 JP2017033971W WO2018056329A1 WO 2018056329 A1 WO2018056329 A1 WO 2018056329A1 JP 2017033971 W JP2017033971 W JP 2017033971W WO 2018056329 A1 WO2018056329 A1 WO 2018056329A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
ion exchange
glass plate
tempered glass
glass sheet
Prior art date
Application number
PCT/JP2017/033971
Other languages
French (fr)
Japanese (ja)
Inventor
利之 梶岡
睦 深田
清貴 木下
佐々木 博
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2018540274A priority Critical patent/JPWO2018056329A1/en
Publication of WO2018056329A1 publication Critical patent/WO2018056329A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a method for producing a tempered glass plate, a tempered glass plate, and a tempered glass plate, and more specifically to a method for producing a tempered glass plate that chemically strengthens a glass plate by an ion exchange method.
  • a tempered glass plate that has been chemically strengthened is used as a cover glass plate for touch panel displays mounted on electronic devices such as smartphones and tablet PCs.
  • Such a tempered glass plate is generally produced by chemically treating a glass plate containing an alkali metal as a composition with a tempering solution to form a compressive stress layer on the surface. Since such a tempered glass plate has a compressive stress layer on the surface, impact resistance and the like are improved. However, even such a tempered glass plate has a lower impact resistance at the edge portion and the peripheral portion than the impact resistance on the main surface, which causes damage to the tempered glass plate. When the compressive stress layer on the surface of the tempered glass sheet is deepened to prevent such damage, the tensile stress formed inside the glass sheet becomes excessive, and the damage caused by the tensile stress (so-called self-destruction) There is a problem that tends to occur.
  • Patent Document 1 exemplifies materials such as metal foil and polyimide as a mask material (ion exchange prevention film) constituting the shield.
  • ion exchange prevention membranes made of these materials are easily eroded, decomposed or peeled off by chemical reaction with the molten salt during the ion exchange treatment, and ion exchange cannot be sufficiently suppressed, and strengthening having desired strengthening characteristics. In some cases, glass could not be obtained stably. In addition, such wear and tear of the ion exchange preventing film may become more prominent as the ion exchange treatment temperature is higher.
  • the present invention has been made in view of such circumstances, and a method for producing a tempered glass plate capable of stably producing a tempered glass plate having high strength with high productivity, and a tempered glass plate.
  • An object is to provide a tempered glass sheet.
  • the method for producing a tempered glass plate of the present invention is a method for producing a tempered glass plate for strengthening a glass plate by using an ion exchange method, and an ion permeation preventive film for preventing ion exchange on a part of the surface of the glass plate. And a selective ion exchange step of selectively ion-exchanging a region other than the film formation region by bringing the formed glass plate into contact with the molten salt, It is an inorganic film containing ZrO 2 .
  • the ion permeation preventive film contains ZrO 2 , the film is not easily worn even when contacted with a molten salt such as high-temperature potassium nitrate, and a relatively thin film. Even if it is thick, ion transmission can be sufficiently blocked. Therefore, a tempered glass sheet having high strength can be manufactured stably with high productivity.
  • the ion permeation preventive film is preferably an inorganic film containing 50 to 100% by mass of ZrO 2 .
  • a molten salt bath having a temperature of more than 400 ° C. and less than 500 ° C. in the selective ion exchange step.
  • ZrO 2 is 70 to 99% by mass and at least of Y 2 O 3 , CaO, Al 2 O 3 , CeO, and HfO 2 . It is preferable to form an inorganic film containing any one of 1 to 30%.
  • the method for producing a tempered glass sheet of the present invention it is preferable to form an ion permeation preventive film so that the thickness is 400 nm or less in the film forming step.
  • a removal step of removing the ion permeation prevention film from the glass plate after the selective ion exchange step, and an overall ion exchange step of performing ion exchange treatment on the entire surface of the glass plate after the removal step is preferable to further provide.
  • the surface roughness Ra of the surface of the glass plate in the film formation region is preferably 0.4 nm or less.
  • the glass sheet for strengthening of the present invention is a glass sheet for strengthening that is subjected to a strengthening treatment using an ion exchange method, and has a surface coated with an inorganic film containing 50 to 100% by mass of ZrO 2. It has a film part and the exposed part which is not coat
  • the tempered glass plate of the present invention is a tempered glass plate that is partially tempered using an ion exchange method, and has a film-forming part coated on the surface with an inorganic film containing 50 to 100% by mass of ZrO 2 And an exposed portion that is not coated with an inorganic film on at least a part of the end face, and the depth of the compressive stress layer on the glass surface in the film forming portion is smaller than the compressive stress depth in the exposed portion, To do.
  • 1A to 1E are diagrams showing an example of a method for producing a tempered glass sheet of the present invention.
  • the preparation step is a step of preparing the original glass plate G1.
  • the original glass plate G1 is a plate-like glass plate that can be strengthened using an ion exchange method.
  • the original glass plate G1 contains, as a glass plate, mass% and contains SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20%. preferable. If the glass plate composition range is regulated as described above, it is easy to achieve both ion exchange performance and devitrification resistance at a high level.
  • the original glass plate G1 has a thickness of, for example, 1.5 mm or less, preferably 1.3 mm or less, 1.1 mm or less, 1.0 mm or less, 0.8 mm or less, 0.7 mm or less, 0.6 mm or less. 0.5 mm or less, 0.4 mm or less, 0.3 mm or less, 0.2 mm or less, especially 0 mm. 1 mm or less.
  • the thickness of the original glass plate G1 is preferably 0.01 mm or more.
  • the size of the main surface of the original glass plate G1 can be arbitrarily set, and is, for example, 480 ⁇ 320 mm to 3350 ⁇ 3950 mm.
  • the original glass plate G1 is formed by using, for example, an overflow down draw method. In addition, you may select arbitrarily the shaping
  • the original glass plate G1 may be formed using a float process, and the main surface S and the end surface E may be polished.
  • the selective ion exchange step is a step of partially chemically strengthening the surface of the original glass plate G1. Specifically, in the selected ion exchange step, the selected region (peripheral portion S2 and end surface E) set on a part of the surface of the original glass plate G1 is more than the non-selected region (center portion S1) other than the selected region. This is a step of performing a process of forming a deep compressive stress layer.
  • the selective ion exchange process includes a film forming process, a selective ion exchange process, and a removal process.
  • the film forming step is a step of obtaining the glass plate with film G2 by forming the ion permeation preventive film M in the non-selection region set on at least a part of the surface of the original glass plate G1.
  • the film forming step corresponds to a cross-sectional view taken along arrow AA in FIG.
  • the region other than the central portion S1, that is, the peripheral edge S2 and the end surface E are selected regions and are exposed.
  • the peripheral edge S2 is an area surrounding the central portion S1 of the main surface S.
  • the ion permeation preventive membrane M is a membrane layer that suppresses or blocks the permeation of ions when performing ion exchange on the surface layer of the original glass plate G1 in the selective ion exchange step described later.
  • the ion permeation preventive film M is an inorganic film containing ZrO 2 .
  • the ion permeation preventive film M contains 50 to 100% by mass of ZrO 2 .
  • the surface roughness Ra in at least a non-selection region (film formation region) on the surface of the original glass plate G1 is preferably 0.4 nm or less. This is because when Ra is large (for example, in the case of a general polishing surface), the film quality of the ion permeation preventive film M mainly composed of ZrO 2 is adversely affected, and the function as the ion permeation preventive film is remarkably deteriorated. Because there is. Therefore, the surface of the original glass plate G1 is preferably an overflow surface (unpolished fired surface) formed by the overflow downdraw method, but may be a polished surface if it is very flat. In addition, it is preferable that surface roughness Ra of the original glass plate G1 is 0.05 nm or more from viewpoints of manufacturing cost.
  • the ion permeation preventive film M mainly composed of ZrO 2 when exposed to a high-temperature molten salt, the crystallinity of the film changes. Specifically, it changes from amorphous to crystalline. Crystallization does not change the function of the ion permeation prevention film, but the volume of the film decreases with crystallization. As a result, a crack is generated on the surface of the ion permeation preventive film M, and ion exchange may be performed from the crack. Since such crystallization was confirmed when the ion exchange temperature was 500 ° C, the ion exchange temperature is preferably less than 500 ° C and 490 ° C or less.
  • the ion permeation preventive film M contains 70 to 99% of ZrO 2 as a composition by mass and 1 to 30% in total of at least one of Y 2 O 3 , CaO, Al 2 O 3 , CeO, and HfO 2. It is more preferable. In particular, it is preferable to include 0.5% by mass or more of Y 2 O 3 because the phase transition of the ion permeation preventive film M at high temperatures can be suppressed.
  • the thickness of the ion permeation preventive film M may be any thickness as long as ion permeation can be blocked and suppressed. However, if the ion permeation preventive film M is excessively thick, the film formation time, material cost, and the like increase, and therefore it is preferable to form the ion permeation preventive film M as thin as possible so that ion permeation can be blocked and suppressed.
  • the film thickness of the ion permeation prevention film M is preferably 5000 nm or less, 400 nm or less, 350 nm or less, 100 nm or less, 50 nm or less, or 25 nm or less.
  • the film thickness of the ion permeation preventive film M is preferably 1 nm or more, 5 nm or more, and 10 nm or more. Specifically, the film thickness of the ion permeation prevention film M is preferably, for example, 1 to 5000 nm, more preferably 5 to 350 nm, and still more preferably 10 to 100 nm.
  • the film formation method of the ion permeation preventive film M is a PVD method (physical vapor deposition method) such as a sputtering method or a vacuum vapor deposition method, a CVD method (chemical vapor deposition method) such as a thermal CVD method or a plasma CVD method, or dip coating.
  • a wet coating method such as a method or a slit coating method can be used.
  • a sputtering method and a dip coating method are preferable.
  • the ion permeation preventive film M can be easily and uniformly formed.
  • the region where the ion permeation preventive film M is formed may be set by any method.
  • film formation can be performed in a state where the selected region (peripheral portion S2, end surface E) is masked.
  • the ion permeation preventive film M previously formed into a sheet shape may be bonded to the main surface of the original glass plate G1 to form a film.
  • the selective ion exchange step is a step of obtaining the film-reinforced glass plate G3 by chemically strengthening the film-coated glass plate G2 by an ion exchange method. Specifically, ion exchange is performed by immersing the film-coated glass plate G2 in a molten salt T1 containing alkali metal ions.
  • the molten salt T1 in the present embodiment is, for example, a potassium nitrate molten salt.
  • the temperature of the molten salt T1 in the selective ion exchange step may be arbitrarily determined.
  • the temperature of the molten salt T1 is preferably 350 ° C. or higher, 370 ° C. or higher, more than 400 ° C., or 420 ° C. or higher.
  • the temperature of molten salt T1 is 500 degrees C or less, less than 500 degrees C, and 480 degrees C or less.
  • it is preferably 350 to 500 ° C., more than 400 ° C. and less than 500 ° C., and 370 to 480 ° C.
  • the time for immersing the film-coated glass plate G2 in the molten salt T1 may be arbitrarily determined. For example, it is 0.1 to 150 hours, preferably 0.3 to 100 hours, more preferably 0.5 to 50. It's time.
  • the removal step is a step of removing the ion permeation preventive film M from the tempered glass plate G3 with film.
  • a method for removing the ion permeation preventive film M for example, a method such as polishing or etching can be used.
  • a polishing apparatus used for polishing a well-known double-side polishing machine or single-side polishing machine can be used.
  • the ion permeation preventive film M is removed by polishing, only the ion permeation preventive film M may be polished, or the glass plate portion may be polished together with the ion permeation preventive film M.
  • Etching methods such as dry etching and wet etching can be used.
  • a solution containing fluorine, TMAH, EDP, KOH, NaOH, or the like can be used as the etchant, and a hydrofluoric acid solution is particularly preferably used as the etchant.
  • the concentration of HF in the hydrofluoric acid solution is preferably 10% or less.
  • the tempered glass sheet G4 obtained as described above has a deep compressive stress layer C at the peripheral edge S2 and the end face E. That is, the tempered glass sheet G4 is a glass that has high impact resistance at the edge and can reduce internal tensile stress and is less likely to break due to the tensile stress.
  • the compressive stress layer C is not formed in the central portion S1 of the tempered glass plate G4. Therefore, in order to improve the strength of the central portion S1, it is preferable to perform the following overall ion exchange step after the removal step and form the compressive stress layer C also in the central portion S1.
  • the whole ion exchange step is a step of exchanging ions on the surface layer by bringing the molten salt into contact with the entire surface of the tempered glass sheet G4 as shown in FIG. 1E.
  • the tempered glass plate G4 is immersed in a molten salt T2 containing alkali metal ions and ion exchange is performed to obtain a tempered glass plate G5 having a compressive stress layer C shallower than the peripheral edge S2 and the end face E in the central part S1.
  • the molten salt T2 is, for example, a potassium nitrate molten salt.
  • region end surface E and peripheral part S2 is 1/4 or less of plate
  • the DOL in the film formation region (central portion S1) is preferably 1/8 or less of the thickness of the tempered glass plate G5.
  • the temperature of the molten salt T2 in the entire ion exchange step may be arbitrarily determined, and is, for example, 350 to 500 ° C, preferably 370 to 480 ° C.
  • the time for immersing the tempered glass plate G4 in the molten salt T2 may be arbitrarily determined. For example, it is 0.1 to 72 hours, preferably 0.3 to 50 hours, more preferably 0.5 to 24 hours. It is.
  • the molten salt T2 may be the same as the molten salt T1 described above. That is, the tempered glass plate G4 may be immersed again in the salt bath used in the selective ion exchange step. In this case, since it is possible to perform a plurality of processes in a single salt bath, the manufacturing cost can be suppressed.
  • the molten salt T2 may be different from the molten salt T1
  • the processing temperature and processing time in the entire ion exchange step may be different from the processing temperature and processing time in the selective ion exchange step.
  • the ion exchange treatment time in the entire ion exchange step is preferably shorter than the treatment time in the selective ion exchange step. According to such a process, the depth of the compressive stress layer C in the central portion S2 is not excessive, and an increase in tensile stress can be suppressed.
  • the process of a finishing process (not shown).
  • the surface of the tempered glass sheet G5 for example, at least one of the main surface S and the end surface E is polished.
  • the dimensions and surface state of the tempered glass sheet G5 are not in a desired state such as a product standard due to the processing in the entire ion exchange step, it can be brought into a desired state by performing the processing in such a finishing step.
  • the tempered glass sheets G4 and G5 with little breakage from the end face can be stably and efficiently manufactured.
  • a machining process for performing any one of cutting, end face machining, and drilling may be provided.
  • the glass plate may be appropriately washed and dried.
  • molten salt T1 was potassium nitrate molten salt
  • T2 is potassium nitrate molten salt
  • the molten salts T1 and T2 may be a mixed salt of a potassium nitrate molten salt and a sodium nitrate molten salt.
  • chemical strengthening may be performed by exchanging arbitrary ions.
  • chemical strengthening may be performed by exchanging Li ions and Na ions, or exchanging Li ions and K ions.
  • the original glass plate preferably contains 0.5 to 7.5% by weight of Li 2 O as a glass composition, for example, 3.0% or 4.5%.
  • a deep compressive stress layer C is partially formed by immersing only a selected region in a molten salt for ion exchange or applying a molten salt. You may do it.
  • the stress characteristics of the tempered glass can be measured using, for example, FSM-6000 manufactured by Orihara Seisakusho.
  • FSM-6000 manufactured by Orihara Seisakusho.
  • the stress characteristics of the tempered glass can be measured using, for example, SLP-1000 manufactured by Orihara Seisakusho. it can.
  • SLP-1000 manufactured by Orihara Seisakusho. it can.
  • WPA-micro manufactured by Photonic Lattice or Abrio manufactured by Tokyo Instruments. .
  • the glass composition contains, in mass%, SiO 2 61.6%, Al 2 O 3 19.6%, B 2 O 3 0.8%, Na 2 O 16%, K 2 O 2%.
  • Glass raw materials were prepared and melted, and formed into a plate shape using an overflow downdraw method to obtain a tempered glass having a thickness of 0.7 mm.
  • ion-exchange suppression films having the respective compositions and film thicknesses shown in Table 1 were formed on both main surfaces of the tempering glass using a sputtering method, and then cut and the end surfaces were not formed (glass (Exposed) was obtained.
  • the obtained glass with film was immersed in a molten potassium nitrate salt having a molten salt temperature shown in Table 1 for the immersion time shown in Table 1, washed with pure water and naturally dried, and then the ion exchange suppression film was removed by polishing. No. in Table 1 1-7 tempered glass plate samples were obtained.
  • the stress depth DOL of each of the film formation region (main surface) and the non-film formation region (end surface) was measured with a stress meter (FSM-6000LE and FsmXP manufactured by Orihara Seisakusho).
  • FSM-6000LE and FsmXP manufactured by Orihara Seisakusho a stress meter
  • the sample Nos. 1 to 3 as the examples contained an appropriate amount of ZrO 2 in the ion exchange suppressing membrane, so that no wear occurred and ion exchange could be suitably blocked. In particular, excessive wear did not occur even at a relatively high molten salt temperature and a relatively thin film thickness, and ion exchange could be suitably interrupted.
  • sample Nos. 4, 5, and 7 use ion exchange suppression membranes made of SiO 2 and Nb 2 O 5 , so that the membranes are worn out at a molten salt temperature of 430 ° C. or higher, and ion exchange is performed.
  • Sample No. No. 6 was able to block ion exchange because the temperature of the molten salt was relatively low, but the film thickness of the ion exchange suppression film had to be thicker than in the examples. That is, as compared with the examples, a long film formation time was required and the productivity was low.
  • the tempered glass plate and the method for producing the same of the present invention are useful as a tempered glass plate used for a touch panel display and the like, and a method for producing the same.

Abstract

This method for producing a reinforced glass sheet includes reinforcing a glass sheet by means of an ion exchange method. The method for producing a reinforced glass sheet is characterized by the following: including a film formation step of forming an ion permeation prevention film that prevents ion exchange on a part of a surface of a glass sheet, and a selective ion exchange step of bringing the film-bearing glass sheet into contact with a molten salt bath so as to selectively subject regions other than the film-bearing region to ion exchange; and in that the ion permeation prevention film is an inorganic film containing 50-100 mass% of ZrO2.

Description

強化ガラス板の製造方法、強化用ガラス板、および強化ガラス板Method for producing tempered glass plate, tempered glass plate, and tempered glass plate
 本発明は、強化ガラス板の製造方法、強化用ガラス板、および強化ガラス板に関し、より具体的には、イオン交換法によってガラス板の化学強化を行う強化ガラス板の製造方法等に関する。 The present invention relates to a method for producing a tempered glass plate, a tempered glass plate, and a tempered glass plate, and more specifically to a method for producing a tempered glass plate that chemically strengthens a glass plate by an ion exchange method.
 従来、スマートフォンやタブレットPCなどの電子機器に搭載されるタッチパネルディスプレイには、カバーガラス板として化学強化された強化ガラス板が用いられている。 Conventionally, a tempered glass plate that has been chemically strengthened is used as a cover glass plate for touch panel displays mounted on electronic devices such as smartphones and tablet PCs.
 このような強化ガラス板は、一般的に、アルカリ金属を組成として含むガラス板を強化液で化学的に処理し、表面に圧縮応力層を形成することによって製造される。このような強化ガラス板は、表面に圧縮応力層を有するために衝撃耐性等が向上している。しかしながら、このような強化ガラス板であっても、主表面における衝撃耐性に比べ、エッジ部や周縁部における衝撃耐性が低く、強化ガラス板の破損の原因となっていた。このような破損を防止するべく強化ガラス板表面の圧縮応力層を全体的に深くした場合、ガラス板内部に形成される引張応力が過大となり、当該引張応力に起因した破損(所謂、自己破壊)が生じやすくなる問題がある。 Such a tempered glass plate is generally produced by chemically treating a glass plate containing an alkali metal as a composition with a tempering solution to form a compressive stress layer on the surface. Since such a tempered glass plate has a compressive stress layer on the surface, impact resistance and the like are improved. However, even such a tempered glass plate has a lower impact resistance at the edge portion and the peripheral portion than the impact resistance on the main surface, which causes damage to the tempered glass plate. When the compressive stress layer on the surface of the tempered glass sheet is deepened to prevent such damage, the tensile stress formed inside the glass sheet becomes excessive, and the damage caused by the tensile stress (so-called self-destruction) There is a problem that tends to occur.
 上記のような問題を解決すべく、強化ガラス板表面の一部分においてのみ選択的に深く圧縮応力層を形成する技術が開発されている。例えば、特許文献1に開示される方法では、主表面の中央部分のみをマスク材料でシールディングすることによって、シールドされていない周縁部のみをイオン交換して強化処理できる。その後シールディングを除去し、再度、強化処理を行うことで、予め強化処理されたエッジ部では深い圧縮応力層を形成し、シールドされていた主表面では浅い圧縮応力層を形成できる。 In order to solve the above problems, a technique for selectively forming a deep compressive stress layer only on a part of the tempered glass plate surface has been developed. For example, in the method disclosed in Patent Document 1, only the central portion of the main surface is shielded with a mask material, whereby only the peripheral portion that is not shielded can be ion-exchanged for strengthening treatment. After that, the shielding is removed, and the strengthening process is performed again, so that a deep compressive stress layer can be formed on the edge portion that has been strengthened in advance, and a shallow compressive stress layer can be formed on the shielded main surface.
米国特許出願公開第2012/0236477号明細書US Patent Application Publication No. 2012/0236477
 特許文献1では上記シールドを構成するマスク材料(イオン交換防止膜)として金属箔やポリイミド等の材料が例示されている。しかしながら、これらの材料から成るイオン交換防止膜ではイオン交換処理中に溶融塩との化学的反応によって損耗、分解、あるいは剥離し易く、イオン交換を十分に抑止できず、所望の強化特性を有する強化ガラスを安定して得られない場合があった。また、このようなイオン交換防止膜の損耗等は、イオン交換処理の処理温度が高温であるほど顕著となる場合があった。 Patent Document 1 exemplifies materials such as metal foil and polyimide as a mask material (ion exchange prevention film) constituting the shield. However, ion exchange prevention membranes made of these materials are easily eroded, decomposed or peeled off by chemical reaction with the molten salt during the ion exchange treatment, and ion exchange cannot be sufficiently suppressed, and strengthening having desired strengthening characteristics. In some cases, glass could not be obtained stably. In addition, such wear and tear of the ion exchange preventing film may become more prominent as the ion exchange treatment temperature is higher.
 したがって、従来の材料のイオン交換防止膜では、損耗に耐え得る程度に膜厚を厚くしたり、処理温度を低く且つ処理時間を長くする必要があり、生産性が低下するおそれがあった。 Therefore, in the conventional ion exchange prevention film of the material, it is necessary to increase the film thickness to such an extent that it can withstand wear, or to lower the processing temperature and increase the processing time, which may reduce the productivity.
 本発明は、このような事情を考慮して成されたものであり、高い強度を有する強化ガラス板を安定して高い生産性で製造可能とする強化ガラス板の製造方法、および強化用ガラス板、ならびに強化ガラス板を提供することを課題とする。 The present invention has been made in view of such circumstances, and a method for producing a tempered glass plate capable of stably producing a tempered glass plate having high strength with high productivity, and a tempered glass plate. An object is to provide a tempered glass sheet.
 本発明の強化ガラス板の製造方法は、ガラス板をイオン交換法を用いて強化する強化ガラス板の製造方法であって、ガラス板の表面の一部に、イオン交換を防止するイオン透過防止膜を成膜する成膜工程と、成膜されたガラス板を溶融塩に接触させて成膜領域以外の領域を選択的にイオン交換処理する選択イオン交換工程とを備え、イオン透過防止膜は、ZrO2を含有する無機膜であることを特徴とする。 The method for producing a tempered glass plate of the present invention is a method for producing a tempered glass plate for strengthening a glass plate by using an ion exchange method, and an ion permeation preventive film for preventing ion exchange on a part of the surface of the glass plate. And a selective ion exchange step of selectively ion-exchanging a region other than the film formation region by bringing the formed glass plate into contact with the molten salt, It is an inorganic film containing ZrO 2 .
 本発明の強化ガラス板の製造方法によれば、イオン透過防止膜がZrO2を含むため、例えば高温の硝酸カリウム等の溶融塩と接触しても当該膜が損耗し難く、また、比較的薄い膜厚であってもイオンの透過を十分に遮断できる。したがって高い強度を有する強化ガラス板を安定して高い生産性で製造可能である。 According to the method for producing a tempered glass plate of the present invention, since the ion permeation preventive film contains ZrO 2 , the film is not easily worn even when contacted with a molten salt such as high-temperature potassium nitrate, and a relatively thin film. Even if it is thick, ion transmission can be sufficiently blocked. Therefore, a tempered glass sheet having high strength can be manufactured stably with high productivity.
 本発明の強化ガラス板の製造方法において、イオン透過防止膜は、ZrO2を50~100質量%含有する無機膜であることが好ましい。 In the method for producing a tempered glass sheet of the present invention, the ion permeation preventive film is preferably an inorganic film containing 50 to 100% by mass of ZrO 2 .
 本発明の強化ガラス板の製造方法では、選択イオン交換工程において、ガラス板を400℃超500℃未満の温度の溶融塩浴に浸漬することが好ましい。 In the method for producing a tempered glass sheet of the present invention, it is preferable to immerse the glass sheet in a molten salt bath having a temperature of more than 400 ° C. and less than 500 ° C. in the selective ion exchange step.
 本発明の強化ガラス板の製造方法では、成膜工程において、イオン透過防止膜として質量%でZrO2を70~99%、Y23、CaO、Al23、CeO、HfO2の少なくとも何れかを合量で1~30%含有する無機膜を形成することが好ましい。 In the method for producing a tempered glass plate of the present invention, in the film forming step, as an ion permeation preventive film, ZrO 2 is 70 to 99% by mass and at least of Y 2 O 3 , CaO, Al 2 O 3 , CeO, and HfO 2 . It is preferable to form an inorganic film containing any one of 1 to 30%.
 本発明の強化ガラス板の製造方法では、成膜工程において、厚さが400nm以下となるようイオン透過防止膜を形成することが好ましい。 In the method for producing a tempered glass sheet of the present invention, it is preferable to form an ion permeation preventive film so that the thickness is 400 nm or less in the film forming step.
 本発明の強化ガラス板の製造方法では、選択イオン交換工程の後にイオン透過防止膜をガラス板から除去する除去工程と、除去工程後に、ガラス板の表面全体をイオン交換処理する全体イオン交換工程をさらに備えることが好ましい。 In the method for producing a tempered glass plate of the present invention, a removal step of removing the ion permeation prevention film from the glass plate after the selective ion exchange step, and an overall ion exchange step of performing ion exchange treatment on the entire surface of the glass plate after the removal step. It is preferable to further provide.
 本発明の強化ガラス板の製造方法では、成膜領域におけるガラス板の表面の表面粗さRaが、0.4nm以下であることが好ましい。 In the method for producing a tempered glass plate of the present invention, the surface roughness Ra of the surface of the glass plate in the film formation region is preferably 0.4 nm or less.
 本発明の強化用ガラス板は、イオン交換法を用いた強化処理に供される強化用ガラス板であって、表面において、ZrO2を50~100質量%を含有する無機膜に被覆された成膜部と、端面の少なくとも一部に無機膜に被覆されていない露出部と、を有することを特徴とする。 The glass sheet for strengthening of the present invention is a glass sheet for strengthening that is subjected to a strengthening treatment using an ion exchange method, and has a surface coated with an inorganic film containing 50 to 100% by mass of ZrO 2. It has a film part and the exposed part which is not coat | covered with the inorganic film in at least one part of an end surface, It is characterized by the above-mentioned.
 本発明の強化ガラス板は、イオン交換法を用いて部分的に強化された強化ガラス板であって、表面において、ZrO2を50~100質量%を含有する無機膜に被覆された成膜部と、端面の少なくとも一部に無機膜に被覆されていない露出部と、を有し、成膜部におけるガラス表面の圧縮応力層の深さが、露出部における圧縮応力深さより小さいことを特徴とする。 The tempered glass plate of the present invention is a tempered glass plate that is partially tempered using an ion exchange method, and has a film-forming part coated on the surface with an inorganic film containing 50 to 100% by mass of ZrO 2 And an exposed portion that is not coated with an inorganic film on at least a part of the end face, and the depth of the compressive stress layer on the glass surface in the film forming portion is smaller than the compressive stress depth in the exposed portion, To do.
本発明の第一の実施形態に係る強化ガラス板の製造方法を示す図である。It is a figure which shows the manufacturing method of the tempered glass board which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る強化ガラス板の製造方法を示す図である。It is a figure which shows the manufacturing method of the tempered glass board which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る強化ガラス板の製造方法を示す図である。It is a figure which shows the manufacturing method of the tempered glass board which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る強化ガラス板の製造方法を示す図である。It is a figure which shows the manufacturing method of the tempered glass board which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る強化ガラス板の製造方法を示す図である。It is a figure which shows the manufacturing method of the tempered glass board which concerns on 1st embodiment of this invention. 本発明の強化ガラス板の製造方法における成膜領域の一例を示す図である。It is a figure which shows an example of the film-forming area | region in the manufacturing method of the tempered glass board of this invention.
 以下、本発明の実施形態の強化ガラス板の製造方法について説明する。図1A~図1Eは、本発明の強化ガラス板の製造方法の一例を示す図である。 Hereinafter, the manufacturing method of the tempered glass board of the embodiment of the present invention is explained. 1A to 1E are diagrams showing an example of a method for producing a tempered glass sheet of the present invention.
 先ず、図1Aに示す準備工程の処理を実施する。準備工程は、元ガラス板G1を準備する工程である。元ガラス板G1は、イオン交換法を用いて強化可能な板状のガラス板である。 First, the preparatory process shown in FIG. 1A is performed. The preparation step is a step of preparing the original glass plate G1. The original glass plate G1 is a plate-like glass plate that can be strengthened using an ion exchange method.
 元ガラス板G1は、ガラス板組成として質量%で、SiO2 45~75%、Al23 1~30%、Na2O 0~20%、K2O 0~20%を含有することが好ましい。上記のようにガラス板組成範囲を規制すれば、イオン交換性能と耐失透性を高いレベルで両立し易くなる。 The original glass plate G1 contains, as a glass plate, mass% and contains SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20%. preferable. If the glass plate composition range is regulated as described above, it is easy to achieve both ion exchange performance and devitrification resistance at a high level.
 元ガラス板G1の板厚は、例えば、1.5mm以下であり、好ましくは1.3mm以下、1.1mm以下、1.0mm以下、0.8mm以下、0.7mm以下、0.6 mm以下、0.5mm以下、0.4mm以下、0.3mm以下、0.2mm以下、特に0 .1mm以下である。強化ガラス板基板の板厚が小さい程、強化ガラス板基板を軽量化することでき、結果として、デバイスの薄型化、軽量化を図ることができる。なお、生産性等を考慮すれば元ガラス板G1の板厚は0.01mm以上であることが好ましい。 The original glass plate G1 has a thickness of, for example, 1.5 mm or less, preferably 1.3 mm or less, 1.1 mm or less, 1.0 mm or less, 0.8 mm or less, 0.7 mm or less, 0.6 mm or less. 0.5 mm or less, 0.4 mm or less, 0.3 mm or less, 0.2 mm or less, especially 0 mm. 1 mm or less. As the plate thickness of the tempered glass plate substrate is smaller, the tempered glass plate substrate can be reduced in weight, and as a result, the device can be reduced in thickness and weight. In consideration of productivity and the like, the thickness of the original glass plate G1 is preferably 0.01 mm or more.
 元ガラス板G1の主表面の寸法は任意に設定可能であるが、例えば、480×320mm~3350×3950mmである。 The size of the main surface of the original glass plate G1 can be arbitrarily set, and is, for example, 480 × 320 mm to 3350 × 3950 mm.
 元ガラス板G1は、例えば、オーバーフローダウンドロー法を用いて成形されたものである。なお、元ガラス板G1の成形方法や加工状態は任意に選択しても良い。例えば、元ガラス板G1はフロート法を用いて成形され、主表面Sおよび端面Eは研磨加工されたものであっても良い。 The original glass plate G1 is formed by using, for example, an overflow down draw method. In addition, you may select arbitrarily the shaping | molding method and processed state of the original glass plate G1. For example, the original glass plate G1 may be formed using a float process, and the main surface S and the end surface E may be polished.
 次いで、上記準備工程の後、図1B、図1Cの選択イオン交換工程の処理を実施する。選択イオン交換工程は、元ガラス板G1の表面を部分的に化学強化する工程である。具体的には、選択イオン交換工程は、元ガラス板G1の表面の一部に設定した選択領域(周縁部S2および端面E)において、当該選択領域以外の非選択領域(中央部S1)よりも深い圧縮応力層を形成する処理を行う工程である。選択イオン交換工程は、成膜工程、選択イオン交換工程、および除去工程を含む。 Next, after the preparation step, the selective ion exchange step shown in FIGS. 1B and 1C is performed. The selective ion exchange step is a step of partially chemically strengthening the surface of the original glass plate G1. Specifically, in the selected ion exchange step, the selected region (peripheral portion S2 and end surface E) set on a part of the surface of the original glass plate G1 is more than the non-selected region (center portion S1) other than the selected region. This is a step of performing a process of forming a deep compressive stress layer. The selective ion exchange process includes a film forming process, a selective ion exchange process, and a removal process.
 選択イオン交換工程では、先ず、図1Bに示す成膜工程の処理を実施する。成膜工程は、元ガラス板G1の表面の少なくとも一部に設定された非選択領域にイオン透過防止膜Mを形成して膜付ガラス板G2を得る工程である。本実施形態では、図2に示すように元ガラス板G1の表裏主表面Sの中央部S1を非選択領域とした場合を一例として説明する。なお、図1Bは図2におけるAA矢視断面図に相当する。元ガラス板G1の表面のうち中央部S1以外の領域、すなわち周縁部S2および端面Eは選択領域であり、露出した状態とされている。なお、周縁部S2は主表面Sのうち中央部S1を取り囲む領域である。イオン透過防止膜Mは、後述の選択イオン交換工程において、元ガラス板G1表層のイオン交換を行う際にイオンの透過を抑制または遮断する膜層である。 In the selective ion exchange process, first, the film forming process shown in FIG. 1B is performed. The film forming step is a step of obtaining the glass plate with film G2 by forming the ion permeation preventive film M in the non-selection region set on at least a part of the surface of the original glass plate G1. In the present embodiment, as shown in FIG. 2, a case where the central portion S1 of the front and back main surfaces S of the original glass plate G1 is set as a non-selection region will be described as an example. 1B corresponds to a cross-sectional view taken along arrow AA in FIG. Of the surface of the original glass plate G1, the region other than the central portion S1, that is, the peripheral edge S2 and the end surface E are selected regions and are exposed. The peripheral edge S2 is an area surrounding the central portion S1 of the main surface S. The ion permeation preventive membrane M is a membrane layer that suppresses or blocks the permeation of ions when performing ion exchange on the surface layer of the original glass plate G1 in the selective ion exchange step described later.
 イオン透過防止膜Mは、ZrO2を含有する無機膜である。好ましくは、イオン透過防止膜Mは、ZrO2を50~100質量%含有する。イオン透過防止膜Mとしてこのような材質を用いることにより、後述の選択イオン交換工程における損耗等を抑制できる。具体的には、450℃より高温の溶融塩(強化液)に浸漬した場合であっても、膜付ガラス板G2からのイオン透過防止膜Mの剥離等を極めて生じ難い。 The ion permeation preventive film M is an inorganic film containing ZrO 2 . Preferably, the ion permeation preventive film M contains 50 to 100% by mass of ZrO 2 . By using such a material as the ion permeation preventive film M, it is possible to suppress wear and the like in the selective ion exchange process described later. Specifically, even when immersed in a molten salt (strengthening liquid) at a temperature higher than 450 ° C., peeling of the ion permeation preventive film M from the film-attached glass plate G2 is extremely unlikely to occur.
 ZrO2を主とするイオン透過防止膜Mを成膜する場合、元ガラス板G1の表面の少なくとも非選択領域(成膜領域)における表面粗さRaは、0.4nm以下であることが好ましい。これは、Raが大きい場合(例えば、一般的な研磨面の場合)に、ZrO2を主とするイオン透過防止膜Mの膜質に悪影響を与え、イオン透過防止膜としての機能が著しく低下する場合があるためである。従って、元ガラス板G1の表面は、オーバーフローダウンドロー法で成形されたオーバーフロー面(未研磨の火造り面)であることが好ましいが、非常に平坦である場合は研磨面であっても良い。なお、元ガラス板G1の表面粗さRaは、製造コスト等の観点から、0.05nm以上であることが好ましい。 When the ion permeation preventive film M mainly composed of ZrO 2 is formed, the surface roughness Ra in at least a non-selection region (film formation region) on the surface of the original glass plate G1 is preferably 0.4 nm or less. This is because when Ra is large (for example, in the case of a general polishing surface), the film quality of the ion permeation preventive film M mainly composed of ZrO 2 is adversely affected, and the function as the ion permeation preventive film is remarkably deteriorated. Because there is. Therefore, the surface of the original glass plate G1 is preferably an overflow surface (unpolished fired surface) formed by the overflow downdraw method, but may be a polished surface if it is very flat. In addition, it is preferable that surface roughness Ra of the original glass plate G1 is 0.05 nm or more from viewpoints of manufacturing cost.
 また、ZrO2を主とするイオン透過防止膜Mは高温の溶融塩に曝されることによって、膜の結晶性が変化していく。具体的には、アモルファスから結晶へと変化する。結晶化してもイオン透過防止膜としての機能は変わらないが、結晶化に伴い膜の体積が低下する。その結果、イオン透過防止膜Mの表面に割れ目が発生し、その割れ目からイオン交換が行われてしまうおそれがある。このような結晶化はイオン交換温度が500℃の場合に確認されたため、イオン交換温度は500℃未満、490℃以下が好ましい。 Further, when the ion permeation preventive film M mainly composed of ZrO 2 is exposed to a high-temperature molten salt, the crystallinity of the film changes. Specifically, it changes from amorphous to crystalline. Crystallization does not change the function of the ion permeation prevention film, but the volume of the film decreases with crystallization. As a result, a crack is generated on the surface of the ion permeation preventive film M, and ion exchange may be performed from the crack. Since such crystallization was confirmed when the ion exchange temperature was 500 ° C, the ion exchange temperature is preferably less than 500 ° C and 490 ° C or less.
 イオン透過防止膜Mは、組成として質量%でZrO2を70~99%、Y23、CaO、Al23、CeO、HfO2の少なくとも何れかを合量で1~30%含有することがより好ましい。特にY230.5質量%以上含む場合、高温化におけるイオン透過防止膜Mの相転移を抑制できるため好ましい。 The ion permeation preventive film M contains 70 to 99% of ZrO 2 as a composition by mass and 1 to 30% in total of at least one of Y 2 O 3 , CaO, Al 2 O 3 , CeO, and HfO 2. It is more preferable. In particular, it is preferable to include 0.5% by mass or more of Y 2 O 3 because the phase transition of the ion permeation preventive film M at high temperatures can be suppressed.
 イオン透過防止膜Mの厚さは、イオン透過の遮断および抑制が可能であれば任意の厚さであって良い。ただし、イオン透過防止膜Mの厚さが過大であると、成膜時間や材料コスト等が増大するため、イオン透過の遮断および抑制が可能な範囲で薄く形成することが好ましい。イオン透過防止膜Mの膜厚は、5000nm以下、400nm以下、350nm以下、100nm以下、50nm以下、25nm以下が好ましい。また、イオン透過防止膜Mの膜厚は、1nm以上、5nm以上、10nm以上が好ましい。具体的には、イオン透過防止膜Mの膜厚は、例えば1~5000nmが好ましく、より好ましくは5~350nm、更に好ましくは10~100nmである。 The thickness of the ion permeation preventive film M may be any thickness as long as ion permeation can be blocked and suppressed. However, if the ion permeation preventive film M is excessively thick, the film formation time, material cost, and the like increase, and therefore it is preferable to form the ion permeation preventive film M as thin as possible so that ion permeation can be blocked and suppressed. The film thickness of the ion permeation prevention film M is preferably 5000 nm or less, 400 nm or less, 350 nm or less, 100 nm or less, 50 nm or less, or 25 nm or less. The film thickness of the ion permeation preventive film M is preferably 1 nm or more, 5 nm or more, and 10 nm or more. Specifically, the film thickness of the ion permeation prevention film M is preferably, for example, 1 to 5000 nm, more preferably 5 to 350 nm, and still more preferably 10 to 100 nm.
 イオン透過防止膜Mの成膜方法は、スパッタ法や真空蒸着法などのPVD法(物理気相成長法)、熱CVD法やプラズマCVD法などのCVD法(化学気相成長法)、ディップコート法やスリットコート法などのウェットコート法を用いることができる。特にスパッタ法、ディップコート法が好ましい。スパッタ法を用いた場合、イオン透過防止膜Mを容易に均一に形成できる。イオン透過防止膜Mを成膜する領域は任意の手法で設定して良い。例えば、選択領域(周縁部S2、端面E)をマスクした状態で成膜を行うことができる。また、予めシート状に成形したイオン透過防止膜Mを元ガラス板G1の主表面に接合して成膜しても良い。 The film formation method of the ion permeation preventive film M is a PVD method (physical vapor deposition method) such as a sputtering method or a vacuum vapor deposition method, a CVD method (chemical vapor deposition method) such as a thermal CVD method or a plasma CVD method, or dip coating. A wet coating method such as a method or a slit coating method can be used. In particular, a sputtering method and a dip coating method are preferable. When the sputtering method is used, the ion permeation preventive film M can be easily and uniformly formed. The region where the ion permeation preventive film M is formed may be set by any method. For example, film formation can be performed in a state where the selected region (peripheral portion S2, end surface E) is masked. Alternatively, the ion permeation preventive film M previously formed into a sheet shape may be bonded to the main surface of the original glass plate G1 to form a film.
 次いで、上記成膜工程の後、図1Cに示す選択イオン交換工程の処理を実施する。選択イオン交換工程は、膜付ガラス板G2をイオン交換法により化学強化して膜付強化ガラス板G3を得る工程である。具体的には、アルカリ金属イオンを含む溶融塩T1に膜付ガラス板G2を浸漬してイオン交換する。本実施形態における溶融塩T1は、例えば、硝酸カリウム溶融塩である。 Next, after the film formation step, the selective ion exchange step shown in FIG. 1C is performed. The selective ion exchange step is a step of obtaining the film-reinforced glass plate G3 by chemically strengthening the film-coated glass plate G2 by an ion exchange method. Specifically, ion exchange is performed by immersing the film-coated glass plate G2 in a molten salt T1 containing alkali metal ions. The molten salt T1 in the present embodiment is, for example, a potassium nitrate molten salt.
 選択イオン交換工程における溶融塩T1の温度は任意に定めて良い。溶融塩T1の温度は、350℃以上、370℃以上、400℃超、420℃以上であることが好ましい。また、溶融塩T1の温度は、500℃以下、500℃未満、480℃以下であることが好ましい。具体的には、例えば、350~500℃、400℃超500℃未満、370~480℃であることが好ましい。また、膜付ガラス板G2を溶融塩T1中に浸漬する時間は任意に定めて良いが、例えば、0.1~150時間、好ましくは0.3~100時間、より好ましくは0.5~50時間である。 The temperature of the molten salt T1 in the selective ion exchange step may be arbitrarily determined. The temperature of the molten salt T1 is preferably 350 ° C. or higher, 370 ° C. or higher, more than 400 ° C., or 420 ° C. or higher. Moreover, it is preferable that the temperature of molten salt T1 is 500 degrees C or less, less than 500 degrees C, and 480 degrees C or less. Specifically, for example, it is preferably 350 to 500 ° C., more than 400 ° C. and less than 500 ° C., and 370 to 480 ° C. The time for immersing the film-coated glass plate G2 in the molten salt T1 may be arbitrarily determined. For example, it is 0.1 to 150 hours, preferably 0.3 to 100 hours, more preferably 0.5 to 50. It's time.
 次いで、上記選択イオン交換工程の後、図1Dに示す除去工程の処理を実施する。 Next, after the selective ion exchange step, the removal step shown in FIG. 1D is performed.
 除去工程は、膜付強化ガラス板G3からイオン透過防止膜Mを除去する工程である。イオン透過防止膜Mの除去方法としては、例えば、研磨やエッチング等の方法を用いることができる。 The removal step is a step of removing the ion permeation preventive film M from the tempered glass plate G3 with film. As a method for removing the ion permeation preventive film M, for example, a method such as polishing or etching can be used.
 研磨に用いる研磨装置としては、周知の両面研磨機や片面研磨機を用いることができる。なお、研磨によりイオン透過防止膜Mを除去する場合、イオン透過防止膜Mのみを研磨しても良いし、イオン透過防止膜Mとともにガラス板部分を研磨しても良い。 As a polishing apparatus used for polishing, a well-known double-side polishing machine or single-side polishing machine can be used. When the ion permeation preventive film M is removed by polishing, only the ion permeation preventive film M may be polished, or the glass plate portion may be polished together with the ion permeation preventive film M.
 エッチング方法としては、ドライエッチングやウェットエッチングなどの方法を用いることができる。 Etching methods such as dry etching and wet etching can be used.
 ドライエッチングを用いる場合、特に、Ar、O2、CH4、BC13、C12、SF6などのプラズマを用いることが好ましい。 When dry etching is used, it is particularly preferable to use plasma of Ar, O 2 , CH 4 , BC 13 , C 12 , SF 6 or the like.
 ウェットエッチングに用いるエッチング液としては、例えば、フッ素、TMAH、EDP、KOH、NaOH等を含む溶液をエッチング液として用いることができ、特にフッ酸溶液をエッチング液として用いることが好ましい。なお、フッ酸溶液を用い、ガラスの寸法を変更することなくイオン透過防止膜Mのみを除去する場合には、当該フッ酸溶液におけるHFの濃度を10%以下とすることが好ましい。 As an etchant used for wet etching, for example, a solution containing fluorine, TMAH, EDP, KOH, NaOH, or the like can be used as the etchant, and a hydrofluoric acid solution is particularly preferably used as the etchant. In the case where only the ion permeation preventive film M is removed using a hydrofluoric acid solution without changing the dimensions of the glass, the concentration of HF in the hydrofluoric acid solution is preferably 10% or less.
 上記のようにして得られた強化ガラス板G4は、周縁部S2および端面Eにおいて深い圧縮応力層Cを有する。すなわち、強化ガラス板G4は、端縁部において高い耐衝撃性を有しつつ、内部の引張応力を低減でき、当該引張応力に起因する破壊が発生し難いガラスとなっている。 The tempered glass sheet G4 obtained as described above has a deep compressive stress layer C at the peripheral edge S2 and the end face E. That is, the tempered glass sheet G4 is a glass that has high impact resistance at the edge and can reduce internal tensile stress and is less likely to break due to the tensile stress.
 上記の選択イオン交換工程においてイオン透過防止膜Mによりイオンの透過が遮断されているため、強化ガラス板G4の中央部S1には圧縮応力層Cが形成されていない。したがって、中央部S1の強度を向上するためには、以下の全体イオン交換工程を上記除去工程の処理に次いで行い、中央部S1においても圧縮応力層Cを形成することが好ましい。 Since the ion permeation preventive film M blocks the permeation of ions in the selective ion exchange step, the compressive stress layer C is not formed in the central portion S1 of the tempered glass plate G4. Therefore, in order to improve the strength of the central portion S1, it is preferable to perform the following overall ion exchange step after the removal step and form the compressive stress layer C also in the central portion S1.
 全体イオン交換工程は、図1Eに示すように、強化ガラス板G4の表面全体に溶融塩を接触させて表層のイオンを交換する工程である。具体的には、アルカリ金属イオンを含む溶融塩T2に強化ガラス板G4を浸漬してイオン交換し、中央部S1において周縁部S2および端面Eより浅い圧縮応力層Cを有する強化ガラス板G5を得る。溶融塩T2は、例えば、硝酸カリウム溶融塩である。非成膜領域(端面E及び周縁部S2)のDOLは、強化ガラス板G5の板厚の1/4以下であることが好ましい。成膜領域(中央部S1)のDOLは、強化ガラス板G5の板厚の1/8以下であることが好ましい。 The whole ion exchange step is a step of exchanging ions on the surface layer by bringing the molten salt into contact with the entire surface of the tempered glass sheet G4 as shown in FIG. 1E. Specifically, the tempered glass plate G4 is immersed in a molten salt T2 containing alkali metal ions and ion exchange is performed to obtain a tempered glass plate G5 having a compressive stress layer C shallower than the peripheral edge S2 and the end face E in the central part S1. . The molten salt T2 is, for example, a potassium nitrate molten salt. It is preferable that DOL of a non-film-forming area | region (end surface E and peripheral part S2) is 1/4 or less of plate | board thickness of the tempered glass board G5. The DOL in the film formation region (central portion S1) is preferably 1/8 or less of the thickness of the tempered glass plate G5.
 全体イオン交換工程における溶融塩T2の温度は任意に定めて良いが、例えば、350~500℃、好ましくは370~480℃である。また、強化ガラス板G4を溶融塩T2中に浸漬する時間は任意に定めて良いが、例えば、0.1~72時間、好ましくは0.3~50時間、より好ましくは0.5~24時間である。 The temperature of the molten salt T2 in the entire ion exchange step may be arbitrarily determined, and is, for example, 350 to 500 ° C, preferably 370 to 480 ° C. Further, the time for immersing the tempered glass plate G4 in the molten salt T2 may be arbitrarily determined. For example, it is 0.1 to 72 hours, preferably 0.3 to 50 hours, more preferably 0.5 to 24 hours. It is.
 溶融塩T2は、上述の溶融塩T1と同様のものであっても良い。すなわち、選択イオン交換工程において用いた塩浴に強化ガラス板G4を再度浸漬して良い。この場合、単一の塩浴で複数工程の処理を行うことができるため、製造コストを抑制できる。 The molten salt T2 may be the same as the molten salt T1 described above. That is, the tempered glass plate G4 may be immersed again in the salt bath used in the selective ion exchange step. In this case, since it is possible to perform a plurality of processes in a single salt bath, the manufacturing cost can be suppressed.
 また、溶融塩T2は、溶融塩T1とは異なるものであって良いし、全体イオン交換工程における処理温度および処理時間は、選択イオン交換工程の処理温度および処理時間と異なっていて良い。例えば、全体イオン交換工程におけるイオン交換の処理時間は、選択イオン交換工程における処理時間より短いことが好ましい。このような処理によれば、中央部S2における圧縮応力層Cの深さが過剰になることがなく、引張応力の増加を抑制できる。 Further, the molten salt T2 may be different from the molten salt T1, and the processing temperature and processing time in the entire ion exchange step may be different from the processing temperature and processing time in the selective ion exchange step. For example, the ion exchange treatment time in the entire ion exchange step is preferably shorter than the treatment time in the selective ion exchange step. According to such a process, the depth of the compressive stress layer C in the central portion S2 is not excessive, and an increase in tensile stress can be suppressed.
 なお、全体イオン交換工程の後、さらに仕上げ加工工程の処理を実施しても良い(図示せず)。仕上げ加工工程では、強化ガラス板G5の表面、例えば主表面Sおよび端面Eの少なくとも何れかを研磨加工する。全体イオン交換工程の処理によって強化ガラス板G5の寸法や表面の状態が製品規格等の所望の状態でない場合、このような仕上げ加工工程の処理を実施することによって所望の状態にすることができる。 In addition, after the whole ion exchange process, you may implement the process of a finishing process (not shown). In the finishing process, the surface of the tempered glass sheet G5, for example, at least one of the main surface S and the end surface E is polished. When the dimensions and surface state of the tempered glass sheet G5 are not in a desired state such as a product standard due to the processing in the entire ion exchange step, it can be brought into a desired state by performing the processing in such a finishing step.
 以上に説明した通り、本発明の実施形態に係る強化ガラス板の製造方法によれば、端面からの破損の少ない強化ガラス板G4、G5を安定して効率良く製造できる。 As described above, according to the method for manufacturing a tempered glass sheet according to the embodiment of the present invention, the tempered glass sheets G4 and G5 with little breakage from the end face can be stably and efficiently manufactured.
 なお、上記に示した任意の工程の前後において、切断加工、端面加工、および孔あけ加工の何れかの加工を実施する加工工程を設けても良い。また、上記に示した任意の工程の前後において、ガラス板に洗浄および乾燥処理を適宜行なって良い。 In addition, before and after the arbitrary process shown above, a machining process for performing any one of cutting, end face machining, and drilling may be provided. In addition, before and after the arbitrary steps described above, the glass plate may be appropriately washed and dried.
 また、上記実施形態では溶融塩T1、T2が、硝酸カリウム溶融塩である場合を一例として説明したが、これに限らずガラス板のイオン交換に用いられる周知の溶融塩を代替して、或いは組み合わせて用いて良い。例えば、溶融塩T1、T2は、硝酸カリウム溶融塩と硝酸ナトリウム溶融塩の混合塩であっても良い。 Moreover, in the said embodiment, although the case where molten salt T1, T2 was potassium nitrate molten salt was demonstrated as an example, it is not restricted to this, It replaces with well-known molten salt used for the ion exchange of a glass plate, or combines. May be used. For example, the molten salts T1 and T2 may be a mixed salt of a potassium nitrate molten salt and a sodium nitrate molten salt.
 また、上記実施形態ではNaイオンとKイオンとを交換して化学強化する場合を例示したが、任意のイオンの交換により化学強化しても良い。例えば、LiイオンとNaイオンとを交換したり、LiイオンとKイオンとを交換したりして化学強化しても良い。この場合、元ガラス板は、ガラス組成として、質量%でLi2Oを0.5~7.5%含有することが好ましく、例えば3.0%或いは4.5%含有する。 Moreover, although the case where chemical strengthening was performed by exchanging Na ions and K ions in the above embodiment, chemical strengthening may be performed by exchanging arbitrary ions. For example, chemical strengthening may be performed by exchanging Li ions and Na ions, or exchanging Li ions and K ions. In this case, the original glass plate preferably contains 0.5 to 7.5% by weight of Li 2 O as a glass composition, for example, 3.0% or 4.5%.
 また、選択イオン交換工程の処理は上記手法に限らず、例えば、選択領域のみイオン交換用の溶融塩に浸漬したり、溶融塩を塗布する等して、部分的に深い圧縮応力層Cを形成しても良い。 In addition, the process of the selective ion exchange step is not limited to the above-described method. For example, a deep compressive stress layer C is partially formed by immersing only a selected region in a molten salt for ion exchange or applying a molten salt. You may do it.
 ここで、強化ガラスの応力特性は、例えば折原製作所製FSM-6000を用いて測定することができる。アルミノシリケート系ガラスの圧縮応力層の深さが100μmを超える場合や、Liイオンのイオン交換を行った場合は、強化ガラスの応力特性は、例えば折原製作所製SLP-1000を用いて測定することができる。強化ガラスを切断する等して断面試料を作製できる場合は、例えばフォトニックラティス社製WPA-microや東京インスツルメンツ社製Abrioを用いて内部応力分布を観測し、応力深さを確認することが望ましい。 Here, the stress characteristics of the tempered glass can be measured using, for example, FSM-6000 manufactured by Orihara Seisakusho. When the depth of the compressive stress layer of the aluminosilicate glass exceeds 100 μm, or when ion exchange of Li ions is performed, the stress characteristics of the tempered glass can be measured using, for example, SLP-1000 manufactured by Orihara Seisakusho. it can. When a cross-sectional sample can be prepared by cutting tempered glass, it is desirable to observe the internal stress distribution and confirm the stress depth using, for example, WPA-micro manufactured by Photonic Lattice or Abrio manufactured by Tokyo Instruments. .
 以下、実施例に基づいて、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.
  表1において、No.1~3は本発明の実施例を示し、No.4~7は比較例を示している。 In Table 1, Nos. 1 to 3 show examples of the present invention, and Nos. 4 to 7 show comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の各試料は以下のようにして作製した。先ず、質量%で、SiO2 61.6%、Al23 19.6%、B23 0.8%、Na2O 16%、K2O 2%を含有するガラス組成となるようガラス原料を調合および溶融し、オーバーフローダウンドロー法を用いて板状に成形して厚さ0.7mmの強化用ガラスを得た。次いで、表1に記載の各組成および膜厚を有するイオン交換抑制膜を上記強化用ガラスの両主表面にスパッタ法を用いて成膜した後、切断し、端面が成膜されていない(ガラスが露出した)膜付ガラスを得た。次いで、得られた膜付ガラスを表1に記載の溶融塩温度の硝酸カリウム溶融塩に、表1記載の浸漬時間で浸漬し、純水洗浄および自然乾燥した後、イオン交換抑制膜を研磨により除去して表1記載のNo.1~7の強化ガラス板試料を得た。 Each sample of Table 1 was produced as follows. First, the glass composition contains, in mass%, SiO 2 61.6%, Al 2 O 3 19.6%, B 2 O 3 0.8%, Na 2 O 16%, K 2 O 2%. Glass raw materials were prepared and melted, and formed into a plate shape using an overflow downdraw method to obtain a tempered glass having a thickness of 0.7 mm. Next, ion-exchange suppression films having the respective compositions and film thicknesses shown in Table 1 were formed on both main surfaces of the tempering glass using a sputtering method, and then cut and the end surfaces were not formed (glass (Exposed) was obtained. Subsequently, the obtained glass with film was immersed in a molten potassium nitrate salt having a molten salt temperature shown in Table 1 for the immersion time shown in Table 1, washed with pure water and naturally dried, and then the ion exchange suppression film was removed by polishing. No. in Table 1 1-7 tempered glass plate samples were obtained.
 上記のようにして得た各ガラス試料について、成膜領域(主表面)および非成膜領域(端面)各々の応力深さDOLを応力計(折原製作所製のFSM-6000LEおよびFsmXP)で測定した。成膜領域(主表面)のDOLの値がゼロである場合、成膜領域下に圧縮応力層が形成されておらず、イオン交換抑制膜によってイオン交換が十分に遮断されたことが示される。 For each glass sample obtained as described above, the stress depth DOL of each of the film formation region (main surface) and the non-film formation region (end surface) was measured with a stress meter (FSM-6000LE and FsmXP manufactured by Orihara Seisakusho). . When the DOL value of the film formation region (main surface) is zero, it is indicated that the compressive stress layer is not formed under the film formation region, and the ion exchange is sufficiently blocked by the ion exchange suppression film.
 表1に示すように、実施例である試料No.1~3は、イオン交換抑制膜にZrO2を適量含むため、損耗が生じず、イオン交換を好適に遮断可能であった。特に、比較的高い溶融塩温度および比較的薄い膜厚であっても過度の損耗が生じず、イオン交換を好適に遮断可能であった。 As shown in Table 1, the sample Nos. 1 to 3 as the examples contained an appropriate amount of ZrO 2 in the ion exchange suppressing membrane, so that no wear occurred and ion exchange could be suitably blocked. In particular, excessive wear did not occur even at a relatively high molten salt temperature and a relatively thin film thickness, and ion exchange could be suitably interrupted.
 一方、試料No.4、5、7は、SiO2やNb25から成るイオン交換抑制膜を用いているために、430℃以上の溶融塩温度において当該膜が損耗してしまい、イオン交換を遮断できなかった。また、試料No.6は、溶融塩の温度が比較的低温であったために、イオン交換を遮断できたが、イオン交換抑制膜の膜厚は実施例に比べて厚くする必要があった。すなわち、実施例に比べ、長い成膜時間を要し生産性が低いものであった。 On the other hand, sample Nos. 4, 5, and 7 use ion exchange suppression membranes made of SiO 2 and Nb 2 O 5 , so that the membranes are worn out at a molten salt temperature of 430 ° C. or higher, and ion exchange is performed. Could not be blocked. Sample No. No. 6 was able to block ion exchange because the temperature of the molten salt was relatively low, but the film thickness of the ion exchange suppression film had to be thicker than in the examples. That is, as compared with the examples, a long film formation time was required and the productivity was low.
 本発明の強化ガラス板およびその製造方法は、タッチパネルディスプレイ等に用いられる強化ガラス板およびその製造方法等として有用である。 The tempered glass plate and the method for producing the same of the present invention are useful as a tempered glass plate used for a touch panel display and the like, and a method for producing the same.
G1 元ガラス板
G2 膜付ガラス板
G3、膜付強化ガラス板
G4、G5 強化ガラス板
M イオン透過防止膜
T1 第一溶融塩
T2 第二溶融塩
G1 Original glass plate G2 Glass plate with film G3, Tempered glass plate with film G4, G5 Tempered glass plate M Ion permeation prevention film T1 First molten salt T2 Second molten salt

Claims (9)

  1.  ガラス板をイオン交換法を用いて強化する強化ガラス板の製造方法であって、
     前記ガラス板の表面の一部に、前記イオン交換を防止するイオン透過防止膜を成膜する成膜工程と、
     前記成膜された前記ガラス板を溶融塩に接触させて前記成膜領域以外の領域を選択的にイオン交換処理する選択イオン交換工程とを備え、
     前記イオン透過防止膜は、ZrO2を含有する無機膜であることを特徴とする、強化ガラス板の製造方法。
    A method for producing a tempered glass plate for strengthening a glass plate using an ion exchange method,
    A film forming step of forming an ion permeation preventive film for preventing the ion exchange on a part of the surface of the glass plate;
    A selective ion exchange step of selectively ion-exchanging a region other than the film-forming region by bringing the formed glass plate into contact with a molten salt,
    The method for producing a tempered glass sheet, wherein the ion permeation preventive film is an inorganic film containing ZrO 2 .
  2.  前記イオン透過防止膜は、ZrO2を50~100質量%含有する無機膜であることを特徴とする、請求項1に記載の強化ガラス板の製造方法。 The method for producing a tempered glass sheet according to claim 1, wherein the ion permeation preventive film is an inorganic film containing 50 to 100% by mass of ZrO 2 .
  3.  前記選択イオン交換工程において、前記ガラス板を400℃超500℃未満の温度の溶融塩浴に浸漬することを特徴とする、請求項1または2に記載の強化ガラス板の製造方法。 The method for producing a tempered glass sheet according to claim 1 or 2, wherein, in the selective ion exchange step, the glass sheet is immersed in a molten salt bath having a temperature of more than 400 ° C and less than 500 ° C.
  4.  前記成膜工程において、前記イオン透過防止膜として質量%でZrO2を70~99%、Y23、CaO、Al23、CeO、HfO2の少なくとも何れかを合量で1~30%含有する無機膜を形成することを特徴とする、請求項1~3の何れか1項に記載の強化ガラス板の製造方法。 In the film formation step, the ion permeation preventive film is composed of 70 to 99% by mass of ZrO 2 and at least one of Y 2 O 3 , CaO, Al 2 O 3 , CeO, and HfO 2 in a total amount of 1 to 30. The method for producing a tempered glass sheet according to any one of claims 1 to 3, wherein an inorganic film containing 1% is formed.
  5.  前記成膜工程において、厚さが400nm以下となるよう前記イオン透過防止膜を形成することを特徴とする、請求項1~4の何れか1項に記載の強化ガラス板の製造方法。 The method for producing a tempered glass sheet according to any one of claims 1 to 4, wherein in the film forming step, the ion permeation preventive film is formed to have a thickness of 400 nm or less.
  6.  前記選択イオン交換工程の後に前記イオン透過防止膜を前記ガラス板から除去する除去工程と、
     前記除去工程後に、前記ガラス板の表面全体をイオン交換処理する全体イオン交換工程をさらに備えることを特徴とする、請求項1~5の何れか1項に記載の強化ガラス板の製造方法。
    A removal step of removing the ion permeation prevention film from the glass plate after the selective ion exchange step;
    The method for producing a tempered glass sheet according to any one of claims 1 to 5, further comprising a whole ion exchange step of performing ion exchange treatment on the entire surface of the glass plate after the removing step.
  7.  前記成膜領域における前記ガラス板の前記表面の表面粗さRaが、0.4nm以下であることを特徴とする、請求項1~6の何れか1項に記載の強化ガラス板の製造方法。 The method for producing a tempered glass sheet according to any one of claims 1 to 6, wherein the surface roughness Ra of the surface of the glass sheet in the film formation region is 0.4 nm or less.
  8.  イオン交換法を用いた強化処理に供される強化用ガラス板であって、
     表面において、
      ZrO2を50~100質量%を含有する無機膜に被覆された成膜部と、
      端面の少なくとも一部に前記無機膜に被覆されていない露出部と、を有することを特徴とする強化用ガラス板。
    A tempered glass plate subjected to a tempering treatment using an ion exchange method,
    On the surface,
    A film forming portion coated with an inorganic film containing 50 to 100% by mass of ZrO 2 ;
    An tempered glass plate comprising: an exposed portion not covered with the inorganic film on at least a part of an end surface.
  9.  イオン交換法を用いて部分的に強化された強化ガラス板であって、
     表面において、
      ZrO2を50~100質量%を含有する無機膜に被覆された成膜部と、
      端面の少なくとも一部に前記無機膜に被覆されていない露出部と、を有し、
     前記成膜部におけるガラス表面の圧縮応力層の深さが、前記露出部における圧縮応力深さより小さいことを特徴とする強化ガラス板。
    A tempered glass plate partially tempered using an ion exchange method,
    On the surface,
    A film forming portion coated with an inorganic film containing 50 to 100% by mass of ZrO 2 ;
    An exposed portion that is not covered with the inorganic film on at least a part of the end surface;
    A tempered glass sheet, wherein the compressive stress layer on the glass surface in the film forming portion has a depth smaller than the compressive stress depth in the exposed portion.
PCT/JP2017/033971 2016-09-23 2017-09-20 Method for producing reinforced glass sheet, glass sheet for reinforcing, and reinforced glass sheet WO2018056329A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018540274A JPWO2018056329A1 (en) 2016-09-23 2017-09-20 Method of manufacturing tempered glass plate, tempered glass plate, and tempered glass plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016185313 2016-09-23
JP2016-185313 2016-09-23

Publications (1)

Publication Number Publication Date
WO2018056329A1 true WO2018056329A1 (en) 2018-03-29

Family

ID=61689593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033971 WO2018056329A1 (en) 2016-09-23 2017-09-20 Method for producing reinforced glass sheet, glass sheet for reinforcing, and reinforced glass sheet

Country Status (3)

Country Link
JP (1) JPWO2018056329A1 (en)
TW (1) TW201817688A (en)
WO (1) WO2018056329A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115171538A (en) * 2022-07-29 2022-10-11 合肥维信诺科技有限公司 Cover plate preparation method, cover plate and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414417A (en) * 1977-07-05 1979-02-02 American Optical Corp Antiireflective coated glass spectacles and method of making same
JPS6141770A (en) * 1984-08-06 1986-02-28 Agency Of Ind Science & Technol Manufacture of zirconia film
JP2002234754A (en) * 2001-02-02 2002-08-23 Nippon Sheet Glass Co Ltd Method for producing toughened functional film-coated glass article
JP2014510012A (en) * 2011-03-16 2014-04-24 アップル インコーポレイテッド Controlled chemical strengthening of thin glass
WO2015002283A1 (en) * 2013-07-05 2015-01-08 日本電気硝子株式会社 Reinforced glass substrate production method and reinforced glass substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414417A (en) * 1977-07-05 1979-02-02 American Optical Corp Antiireflective coated glass spectacles and method of making same
JPS6141770A (en) * 1984-08-06 1986-02-28 Agency Of Ind Science & Technol Manufacture of zirconia film
JP2002234754A (en) * 2001-02-02 2002-08-23 Nippon Sheet Glass Co Ltd Method for producing toughened functional film-coated glass article
JP2014510012A (en) * 2011-03-16 2014-04-24 アップル インコーポレイテッド Controlled chemical strengthening of thin glass
WO2015002283A1 (en) * 2013-07-05 2015-01-08 日本電気硝子株式会社 Reinforced glass substrate production method and reinforced glass substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115171538A (en) * 2022-07-29 2022-10-11 合肥维信诺科技有限公司 Cover plate preparation method, cover plate and display device
CN115171538B (en) * 2022-07-29 2023-10-13 合肥维信诺科技有限公司 Cover plate manufacturing method, cover plate and display device

Also Published As

Publication number Publication date
TW201817688A (en) 2018-05-16
JPWO2018056329A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
CN107108347B (en) Method for producing tempered glass sheet, and method for producing tempered glass sheet
JP6452743B2 (en) Cover glass for portable devices, glass substrate for portable devices
JP2008007360A (en) Mother glass substrate, glass substrate and method for manufacturing the glass substrate
JP6870348B2 (en) Cover glass and glass laminate
WO2018066314A1 (en) Method for manufacturing reinforced glass plate, film-coated glass plate, and reinforced glass plate
JP6827652B2 (en) Tempered glass manufacturing method and tempered glass manufacturing equipment
JP2018002552A (en) Manufacturing method of reinforced glass and reinforced glass manufacturing method
JP6886127B2 (en) Manufacturing method of tempered glass plate and tempered glass plate
WO2018056329A1 (en) Method for producing reinforced glass sheet, glass sheet for reinforcing, and reinforced glass sheet
WO2017221805A1 (en) Reinforced glass production method and reinforced glass production apparatus
WO2017026190A1 (en) Method for manufacturing tempered glass substrate, and tempered glass substrate
WO2018008359A1 (en) Method for manufacturing reinforced glass plate
KR20210016529A (en) Reverse ion exchange process for lithium-containing glass
JP2019001691A (en) Method for manufacturing reinforced glass plate, glass plate for reinforcement and reinforced glass plate
WO2013137332A1 (en) Electronic device cover glass glass-substrate fabrication method
CN111741936B (en) Laminate and method for producing laminate
JP2017160111A (en) Method of manufacturing tempered glass substrate, and tempered glass substrate
WO2018097096A1 (en) Reinforced glass plate and method for producing reinforced glass plate
JP2018052803A (en) Strengthened glass plate, and production method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018540274

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17853099

Country of ref document: EP

Kind code of ref document: A1