WO2018008359A1 - Method for manufacturing reinforced glass plate - Google Patents

Method for manufacturing reinforced glass plate Download PDF

Info

Publication number
WO2018008359A1
WO2018008359A1 PCT/JP2017/022203 JP2017022203W WO2018008359A1 WO 2018008359 A1 WO2018008359 A1 WO 2018008359A1 JP 2017022203 W JP2017022203 W JP 2017022203W WO 2018008359 A1 WO2018008359 A1 WO 2018008359A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
tempered glass
selected region
film
producing
Prior art date
Application number
PCT/JP2017/022203
Other languages
French (fr)
Japanese (ja)
Inventor
利之 梶岡
睦 深田
清貴 木下
佐々木 博
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2018525997A priority Critical patent/JPWO2018008359A1/en
Publication of WO2018008359A1 publication Critical patent/WO2018008359A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface

Definitions

  • the present invention relates to a method for producing a tempered glass plate, and more specifically to a method for producing a tempered glass plate in which the glass plate is chemically strengthened by an ion exchange method.
  • a tempered glass plate that has been chemically strengthened is used as a cover glass plate for touch panel displays mounted on electronic devices such as smartphones and tablet PCs.
  • Such a tempered glass plate is generally produced by chemically treating a glass plate containing an alkali metal as a composition with a tempering solution to form a compressive stress layer on the surface. Since such a tempered glass plate has a compressive stress layer on the surface, impact resistance and the like are improved. However, even such a tempered glass plate has a lower impact resistance at the edge portion and the peripheral portion than the impact resistance on the main surface, which causes damage to the tempered glass plate. When the compressive stress layer on the surface of the tempered glass sheet is deepened to prevent such damage, the tensile stress formed inside the glass sheet becomes excessive, and the damage caused by the tensile stress (so-called self-destruction) There is a problem that tends to occur.
  • the present invention has been made in view of such circumstances, and a method for producing a tempered glass plate that can stably produce a tempered glass plate having high flatness and partially high strength. It is an issue to provide.
  • the method for producing a tempered glass plate of the present invention is a method for producing a tempered glass plate for exchanging ions on the surface of the glass plate, and by exchanging ions, the thickness of the selected region set on a part of the surface of the glass plate, A selective strengthening step of forming a compressive stress layer deeper than the non-selected region in the selected region, and removing at least a part of the selected region expanded in the selective strengthening step And a flattening step of flattening the main surface of the glass plate.
  • the method for producing a tempered glass sheet of the present invention it is possible to stably produce a tempered glass sheet having high flatness and partially high strength.
  • the dimensions and surface state of the tempered glass can be easily adjusted to a desired state.
  • planarization step it is preferable to remove at least a part of the expanded selected region by polishing or etching.
  • the flattening process can be easily performed.
  • an ion permeation preventive film that suppresses or blocks the permeation of ions in non-selected regions is formed, and ions are exchanged by bringing molten salt into contact with the glass plate on which the ion permeation preventive film is formed. It is preferable to include a selective ion exchange step to be performed and a membrane removal step to remove the ion permeation preventive membrane after the selective ion exchange step.
  • the degree of enhancement of the selected area can be easily managed and adjusted.
  • the ion permeation prevention film is preferably removed by polishing or etching.
  • the ion permeation preventive film can be easily and reliably removed.
  • planarization process and the film removal process are performed by the same polishing apparatus.
  • the planarization process and the film removal process can be efficiently performed almost simultaneously.
  • the non-selection region is the center of the front and back main surfaces of the glass plate.
  • a tempered glass plate having a particularly high strength at the edge portion it is possible to easily obtain a tempered glass plate having a particularly high strength at the edge portion. Moreover, the tensile stress of the tensile stress layer formed inside the tempered glass plate can be reduced, and self-destruction can be suppressed.
  • the glass plate is a glass plate containing, by mass%, SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20% as a glass plate composition. It is preferable.
  • ions on the surface of the glass plate can be easily exchanged, and a high-strength tempered glass plate can be easily obtained.
  • the method for producing a tempered glass plate of the present invention is a method for producing a tempered glass plate for exchanging ions on the surface layer of the glass plate, and suppresses or blocks the permeation of ions in a non-selected region set in a part of the main surface.
  • the selected area is larger than the non-selected area.
  • a selective strengthening step of forming a deep compressive stress layer and a flattening step of flattening the main surface of the glass plate by removing at least a part of the selected region expanded in the selective strengthening step.
  • FIGS. 1A to 1E are diagrams showing an example of a method for producing a tempered glass sheet of the present invention.
  • the preparation step is a step of preparing the original glass plate G1.
  • the original glass plate G1 is a plate-like glass plate that can be strengthened using an ion exchange method.
  • the original glass plate G1 contains, as a glass plate, mass% and contains SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20%. preferable. If the glass plate composition range is regulated as described above, it is easy to achieve both ion exchange performance and devitrification resistance at a high level.
  • the original glass plate G1 has a thickness of, for example, 1.5 mm or less, preferably 1.3 mm or less, 1.1 mm or less, 1.0 mm or less, 0.8 mm or less, 0.7 mm or less, 0.6 mm or less, It is 0.5 mm or less, 0.4 mm or less, 0.3 mm or less, 0.2 mm or less, especially 0.1 mm or less.
  • the thickness of the original glass plate G1 is preferably 0.01 mm or more.
  • the dimension of the main surface S of the original glass plate G1 can be arbitrarily set, and is, for example, 480 ⁇ 320 mm to 3350 ⁇ 3950 mm.
  • the main surface S means a surface facing the plate thickness direction.
  • the original glass plate G1 is formed by using, for example, an overflow down draw method. In addition, you may select arbitrarily the shaping
  • the original glass plate G1 may be formed using a float process, and the main surface S and the end surface E may be polished.
  • the selective strengthening step shown in FIGS. 1B and 1C is performed.
  • a compressive stress layer deeper than the non-selected region (central portion S1) other than the selected region is formed in the selected region (peripheral portion S2 and end surface E) set on a part of the surface of the original glass plate G1.
  • the selective strengthening process includes a film forming process, a selective ion exchange process, and a film removing process.
  • the film forming step is a step of obtaining the glass plate with film G2 by forming the ion permeation preventive film M in the non-selection region set on at least a part of the surface of the original glass plate G1.
  • the film forming step corresponds to a cross-sectional view taken along arrow AA in FIG.
  • the region other than the central portion S1, that is, the peripheral edge portion S2 and the end surface E are selected regions and are exposed.
  • the peripheral edge S2 is an area surrounding the central part S1 of the main surface S.
  • the ion permeation preventive membrane M is a membrane layer that suppresses or blocks the permeation of ions when performing ion exchange on the surface layer of the original glass plate G1 in the selective ion exchange step described later.
  • the ion permeation preventive film M As the material of the ion permeation preventive film M, any material may be used as long as permeation of ions exchanged with ions can be suppressed or blocked.
  • the exchanged ions are alkali metal ions
  • the ion permeation preventive film M is, for example, a film of metal oxide, metal nitride, metal carbide, metal oxynitride, metal oxycarbide, metal carbonitride, or the like. It is preferable. Carbon materials, metals, and alloys that are excellent in heat resistance and chemical durability can also be used as the ion permeation preventive film M.
  • examples of the material of the ion permeation preventive film M include SiO 2 , Al 2 O 3 , SiN, SiC, Al 2 O 3 , AlN, ZrO 2 , TiO 2 , Ta 2 O 5 , and Nb 2 O. 5 , HfO 2 , SnO 2 , carbon nanotube, graphene, diamond-like carbon, and a film containing one or more kinds of stainless steel.
  • the ion permeation preventive film M it is preferable to use SiO 2 as the main component of the ion permeation preventive film M because the ion permeation preventive film M can be easily formed at low cost and can function as an antireflective film.
  • the ion permeation preventive film M may be a film made of only SiO 2 .
  • an ion permeable barrier layer M good as having a composition containing SiO 2 99% by mass%.
  • the ion permeation preventive film M preferably has a composition containing 20 to 99% SiO 2 and 1 to 80% Al 2 O 3 by mass%.
  • the thickness of the ion permeation preventive film M may be any thickness as long as ion permeation can be blocked and suppressed. However, if the ion permeation preventive film M is excessively thick, the film formation time, material cost, and the like increase, and therefore it is preferable to form the ion permeation preventive film M as thin as possible so that ion permeation can be blocked and suppressed.
  • the film thickness of the ion permeation preventive film M is preferably, for example, 1 to 5000 nm, and more preferably 50 to 4000 nm.
  • the film formation method of the ion permeation preventive film M is a PVD method (physical vapor deposition method) such as a sputtering method or a vacuum vapor deposition method, a CVD method (chemical vapor deposition method) such as a thermal CVD method or a plasma CVD method, or dip coating.
  • a wet coating method such as a method or a slit coating method can be used.
  • a sputtering method and a dip coating method are preferable.
  • the ion permeation preventive film M can be easily and uniformly formed.
  • the deposition location of the ion permeation preventive film M may be set by an arbitrary method.
  • film formation can be performed in a state where the selected region (peripheral portion S2, end surface E) is masked.
  • the ion permeation preventive film M previously formed into a sheet shape may be bonded to the main surface of the original glass plate G1 to form a film.
  • an ion permeation preventive film M containing SiO 2 and Al 2 O 3 and having a film thickness of 100 nm or more and capable of blocking permeation of alkali metal ions is described as an example.
  • the selective ion exchange step is a step of obtaining the film-reinforced glass plate G3 by chemically strengthening the film-coated glass plate G2 by an ion exchange method. Specifically, ion exchange is performed by immersing the film-coated glass plate G2 in a molten salt T1 containing alkali metal ions.
  • the molten salt T1 in the present embodiment is, for example, a potassium nitrate molten salt.
  • the temperature of the molten salt T1 in the selective ion exchange step may be arbitrarily determined, and is, for example, 350 to 500 ° C., preferably 370 to 480 ° C., more preferably 380 to 450 ° C., and further preferably 380 to 400 ° C.
  • the time for immersing the film-coated glass plate G2 in the molten salt T1 may be arbitrarily determined. For example, it is 0.1 to 150 hours, preferably 0.3 to 100 hours, more preferably 0.5 to 50. It's time.
  • the tempered glass plate with film G3 obtained in the selective ion exchange step has the compressive stress layer C only at the end portion, and the shape in which the end portion is raised, more specifically, the central portion S1 and A shape having a step between the peripheral edge S2 is formed.
  • the film removal step is a step of removing the ion permeation preventive film M from the tempered glass plate with film G3. Specifically, the ion permeation preventive film M is removed by polishing.
  • the polishing apparatus a known polishing apparatus can be used, and a double-side polishing apparatus is preferably used.
  • the ion permeation preventive film M may be removed not only by polishing but also by other methods.
  • the ion permeation preventive film M may be removed by attaching an etching solution.
  • an ion permeable barrier layer M is a film containing SiO 2, for example, fluorine, TMAH, EDP, KOH
  • the solution can be used as an etching solution containing NAOH like, especially, a hydrofluoric acid solution as an etchant Is preferred.
  • the concentration of HF in the hydrofluoric acid solution is preferably 10% or less.
  • the flattening step is a step of flattening the main surface S of the glass plate by removing at least a part of the selected region expanded in the selective strengthening step. Specifically, the main surface S is flattened by removing the expansion part B of the peripheral edge part S2 protruding from the central part S1.
  • the expansion site B can be removed by polishing or etching. Although it is preferable to selectively remove only the expansion portion B, the central portion S1 may also be polished or etched together. In this way, higher flatness can be obtained, and the surface states of the central portion S1 and the peripheral edge portion S2 after the flattening process can be made uniform.
  • the treatment in the flattening step is preferably performed on both main surfaces of the tempered glass sheet with film G3, but may be performed on only one main surface depending on the application.
  • the film removal process and the planarization process may be performed individually, but may be performed substantially simultaneously with the same apparatus.
  • the film removal process and the planarization process can be performed using the same polishing apparatus or the same etching apparatus, and it is particularly preferable to use the same polishing apparatus. According to such a method, the film removal process and the planarization process can be easily and efficiently performed.
  • the tempered glass plate G4 having a flat main surface and having a compressive stress layer C deeper than the central portion S2 at the peripheral edge S2 and the end surface E can be obtained by the processing of the film removal step and the flattening step. That is, the tempered glass sheet G4 is a glass that has high impact resistance at the edge and can reduce internal tensile stress and is less likely to break due to the tensile stress.
  • the compressive stress layer C is not formed in the central portion S1 of the tempered glass plate G4.
  • S1 is an unstrengthened glass plate.
  • the whole strengthening step is a step of exchanging ions on the surface layer by bringing the molten salt into contact with the entire surface of the strengthened glass plate G4 as shown in FIG. 1E.
  • the tempered glass plate G4 is immersed in a molten salt T2 containing alkali metal ions and ion exchange is performed to obtain a tempered glass plate G5 having a compressive stress layer C shallower than the peripheral edge S2 and the end face E in the central part S1.
  • the molten salt T2 is, for example, a potassium nitrate molten salt.
  • the temperature of the molten salt T2 in the overall strengthening step may be arbitrarily determined, and is, for example, 350 to 500 ° C, preferably 370 to 480 ° C, more preferably 380 to 450 ° C. If the temperature of molten salt T2 is 450 degrees C or less, it will become easy to suppress the fluctuation
  • the molten salt T2 may be the same as the molten salt T1 described above. That is, the tempered glass plate G4 may be immersed again in the salt bath used in the selective strengthening step. In this case, since a process of a plurality of steps can be performed with a single salt bath, the cost of manufacturing equipment can be suppressed.
  • the molten salt T2 may be different from the molten salt T1
  • the processing temperature and processing time in the overall strengthening step may be different from the processing temperature and processing time in the selective ion exchange step.
  • the ion exchange treatment time in the overall strengthening step is preferably shorter than the treatment time in the selective ion exchange step. According to such a process, the depth of the compressive stress layer C in the central portion S2 is not excessive, and an increase in tensile stress can be suppressed.
  • strengthening process (not shown).
  • the surface of the tempered glass sheet G5 for example, at least one of the main surface S and the end surface E is polished.
  • the finishing state can be brought into a desired state by performing the processing in the finishing process.
  • the tempered glass sheets G4 and G5 having high flatness and less damage from the end face can be produced stably and efficiently.
  • ⁇ Second Embodiment> In the first embodiment, the case where ion permeation is completely blocked by the ion permeation preventive film M has been described. However, as the ion permeation preventive film M, a film that slightly allows ion permeation may be used.
  • 3A to 3D are diagrams showing an outline of a method for manufacturing a tempered glass sheet according to the second embodiment of the present invention. In the second embodiment, the process in each step may be the same as in the first embodiment except that the ion permeation preventive film M that allows a slight permeation of ions is used.
  • the obtained tempered glass plate with film G3 has a shape in which the end portion is raised and has a step between the central portion S1 and the peripheral portion S2. Therefore, in order to obtain the tempered glass sheet G4 having high flatness, a flattening process is required as shown in FIG. 3D.
  • the compressive stress layer C is formed in the central portion S1 by the process of the selective ion exchange step, when the depth and compressive stress of the compressive stress layer C in the central portion S1 are sufficient, The above-described overall strengthening step can be omitted. On the other hand, when the depth and compressive stress of the compressive stress layer C formed in the central portion S1 are not sufficient, it is preferable to further perform the overall strengthening step.
  • the peripheral edge S2 in the original glass plate G1 may be a chamfered surface (for example, FIG. 4A). Further, the chamfered surface may be, for example, a curved surface as shown in FIG. 4A or a plane inclined with respect to the main surface S. 4A to 4E are views showing an outline of a method for producing a tempered glass sheet according to the third embodiment of the present invention. In 3rd embodiment, the process of each process is the same as that of the above-mentioned 1st embodiment except the peripheral part S2 being a chamfering surface.
  • a machining process for performing any one of cutting, end face machining, and drilling may be provided.
  • the glass plate may be appropriately washed and dried.
  • the molten salts T1 and T2 are potassium nitrate molten salts. May be used.
  • the molten salts T1 and T2 may be a mixed salt of a potassium nitrate molten salt and a sodium nitrate molten salt.
  • the original glass plate G1 preferably contains 0.5 to 7.5% by mass of LiO 2 as a glass composition, for example, 3.0% or 4.5%.
  • the process of the selective strengthening step is not limited to the above-described method.
  • the deep compressive stress layer C is partially formed by immersing the selected region only in the molten salt for ion exchange or applying the molten salt. May be.
  • the stress characteristics (depth of compressive stress layer, etc.) of the tempered glass plate can be measured using, for example, FSM-6000 manufactured by Orihara Seisakusho.
  • the stress characteristics of the tempered glass plate are obtained using, for example, SLP-1000 manufactured by Orihara Seisakusho. Can be measured. If a cross-section sample can be prepared by cutting a tempered glass plate, etc., the stress depth can be confirmed by observing the internal stress distribution using, for example, a photonic lattice WPA-micro or a Tokyo Instruments Abrio. desirable.
  • the tempered glass plate and the production method thereof of the present invention are useful as a glass plate substrate used for a touch panel display and the like, and a production method thereof.

Abstract

This method for manufacturing a reinforced glass plate allows ions on a glass plate surface layer to be exchanged. The method for manufacturing a reinforced glass plate is characterized by including: a selective reinforcing step of making the thickness of a selected area set on a portion of the surface of the glass plate greater than the thickness of a non-selected area other than the selected area, and forming a deeper compressive stress layer in the selected area than in the non-selected area by the exchange of ions; and a flattening step of flattening the main surface of the glass plate by removing at least a portion of the selected area that expanded in the selective reinforcing step.

Description

強化ガラス板の製造方法Method for producing tempered glass sheet
 本発明は、強化ガラス板の製造方法に関し、より具体的には、イオン交換法によってガラス板の化学強化を行う強化ガラス板の製造方法に関する。 The present invention relates to a method for producing a tempered glass plate, and more specifically to a method for producing a tempered glass plate in which the glass plate is chemically strengthened by an ion exchange method.
 従来、スマートフォンやタブレットPCなどの電子機器に搭載されるタッチパネルディスプレイには、カバーガラス板として化学強化された強化ガラス板が用いられている。 Conventionally, a tempered glass plate that has been chemically strengthened is used as a cover glass plate for touch panel displays mounted on electronic devices such as smartphones and tablet PCs.
 このような強化ガラス板は、一般的に、アルカリ金属を組成として含むガラス板を強化液で化学的に処理し、表面に圧縮応力層を形成することによって製造される。このような強化ガラス板は、表面に圧縮応力層を有するために衝撃耐性等が向上している。しかしながら、このような強化ガラス板であっても、主面における衝撃耐性に比べ、エッジ部や周縁部における衝撃耐性が低く、強化ガラス板の破損の原因となっていた。このような破損を防止するべく強化ガラス板表面の圧縮応力層を全体的に深くした場合、ガラス板内部に形成される引張応力が過大となり、当該引張応力に起因した破損(所謂、自己破壊)が生じやすくなる問題がある。 Such a tempered glass plate is generally produced by chemically treating a glass plate containing an alkali metal as a composition with a tempering solution to form a compressive stress layer on the surface. Since such a tempered glass plate has a compressive stress layer on the surface, impact resistance and the like are improved. However, even such a tempered glass plate has a lower impact resistance at the edge portion and the peripheral portion than the impact resistance on the main surface, which causes damage to the tempered glass plate. When the compressive stress layer on the surface of the tempered glass sheet is deepened to prevent such damage, the tensile stress formed inside the glass sheet becomes excessive, and the damage caused by the tensile stress (so-called self-destruction) There is a problem that tends to occur.
 上記のような問題を解決すべく、強化ガラス板表面の一部分においてのみ選択的に深く圧縮応力層を形成する技術が開発されている。例えば、特許文献1に開示される方法では、主面の中央部分のみをマスク材料でシールディングすることによって、シールドされていない周縁部のみをイオン交換して強化処理(第一の強化処理)できる。その後シールディングを除去し、再度、強化処理(第二の強化処理)を行うことで、予め強化処理されたエッジ部において主面より深く圧縮応力層を形成できる。 In order to solve the above problems, a technique for selectively forming a deep compressive stress layer only on a part of the tempered glass plate surface has been developed. For example, in the method disclosed in Patent Document 1, only the central portion of the main surface is shielded with a mask material, whereby only the peripheral portion that is not shielded is ion-exchanged to perform the strengthening process (first strengthening process). . After that, the shielding is removed, and the strengthening process (second strengthening process) is performed again, whereby a compressive stress layer can be formed deeper than the main surface at the edge portion that has been strengthened in advance.
米国特許出願公開第2012/0236477号明細書US Patent Application Publication No. 2012/0236477
 しかしながら、特許文献1のような手法を用いた場合、ガラス板に予期せぬ変形が生じ、所望の形状および特性を得られないおそれがあった。特許文献1の手法では、第一の強化処理を終えた段階でシールドされていない部分のみがイオン交換されるが、イオン交換により化学強化処理されたガラス板は、当該処理が施された箇所において膨張する場合がある。すなわち、イオン交換されていない中央部に比べて、イオン交換された周縁部が膨張して盛り上がり、段差が生じてしまうおそれがあった。一般的なデザインのタッチパネルディスプレイのタッチ面は平坦面で構成されるため、このようなカバーガラス板の段差形状は好ましくないと考えられる。 However, when the technique as in Patent Document 1 is used, unexpected deformation occurs in the glass plate, and the desired shape and characteristics may not be obtained. In the method of Patent Document 1, only the unshielded part is ion-exchanged at the stage where the first strengthening process is completed, but the glass plate subjected to the chemical strengthening process by ion exchange is at the place where the process is performed. May swell. That is, there is a risk that the peripheral portion subjected to ion exchange expands and rises as compared with the central portion where ion exchange is not performed, and a step is generated. Since the touch surface of a general design touch panel display is configured as a flat surface, such a stepped shape of the cover glass plate is considered undesirable.
 本発明は、このような事情を考慮して成されたものであり、高い平坦性を有し且つ部分的に高い強度を有する強化ガラス板を安定して製造可能とする強化ガラス板の製造方法を提供することを課題とする。 The present invention has been made in view of such circumstances, and a method for producing a tempered glass plate that can stably produce a tempered glass plate having high flatness and partially high strength. It is an issue to provide.
 本発明の強化ガラス板の製造方法は、ガラス板表層のイオンを交換する強化ガラス板の製造方法であって、イオンの交換により、ガラス板の表面の一部に設定した選択領域の厚みを、当該選択領域以外の非選択領域よりも大きくするとともに、選択領域において非選択領域よりも深い圧縮応力層を形成する選択強化工程と、選択強化工程において膨張した選択領域の少なくとも一部を除去することにより、当該ガラス板の主面を平坦化する平坦化工程と、を備えることを特徴とする。 The method for producing a tempered glass plate of the present invention is a method for producing a tempered glass plate for exchanging ions on the surface of the glass plate, and by exchanging ions, the thickness of the selected region set on a part of the surface of the glass plate, A selective strengthening step of forming a compressive stress layer deeper than the non-selected region in the selected region, and removing at least a part of the selected region expanded in the selective strengthening step And a flattening step of flattening the main surface of the glass plate.
 本発明の強化ガラス板の製造方法よれば、高い平坦性を有し且つ部分的に高い強度を有する強化ガラス板を安定して製造できる。 According to the method for producing a tempered glass sheet of the present invention, it is possible to stably produce a tempered glass sheet having high flatness and partially high strength.
 平坦化工程の後に、ガラス板の表面全体に溶融塩を接触させてガラス板表層のイオンを交換する全体強化工程をさらに備えることが好ましい。 It is preferable to further include an overall strengthening step of exchanging ions on the surface of the glass plate by bringing the molten salt into contact with the entire surface of the glass plate after the flattening step.
 このような構成によれば、選択領域において特に高い強度を有しつつ、非選択領域においても圧縮応力を有する高強度の強化ガラス板を得られる。 According to such a configuration, it is possible to obtain a high-strength tempered glass plate having a particularly high strength in the selected region and also having a compressive stress in the non-selected region.
 全体強化工程の後、ガラス板の表面を研磨加工する仕上げ加工工程をさらに備えることが好ましい。 It is preferable to further include a finishing process for polishing the surface of the glass plate after the overall strengthening process.
 このような構成によれば、強化ガラスの寸法や表面状態を所望の状態に容易に調整できる。 According to such a configuration, the dimensions and surface state of the tempered glass can be easily adjusted to a desired state.
 平坦化工程において、膨張した選択領域の少なくとも一部を研磨またはエッチングによって除去することが好ましい。 In the planarization step, it is preferable to remove at least a part of the expanded selected region by polishing or etching.
 このような構成によれば、平坦化工程の処理を容易に行える。 According to such a configuration, the flattening process can be easily performed.
 選択強化工程は、非選択領域にイオンの透過を抑制または遮断するイオン透過防止膜を成膜する成膜工程と、イオン透過防止膜が形成されたガラス板に溶融塩を接触させてイオンを交換する選択イオン交換工程と、選択イオン交換工程の後に、イオン透過防止膜を除去する膜除去工程とを備えることが好ましい。 In the selective strengthening process, an ion permeation preventive film that suppresses or blocks the permeation of ions in non-selected regions is formed, and ions are exchanged by bringing molten salt into contact with the glass plate on which the ion permeation preventive film is formed. It is preferable to include a selective ion exchange step to be performed and a membrane removal step to remove the ion permeation preventive membrane after the selective ion exchange step.
 このような構成によれば、選択領域の強化の程度を容易に管理および調整できる。 According to such a configuration, the degree of enhancement of the selected area can be easily managed and adjusted.
 膜除去工程において、イオン透過防止膜を研磨またはエッチングによって除去することが好ましい。 In the film removal step, the ion permeation prevention film is preferably removed by polishing or etching.
 このような構成によれば、イオン透過防止膜を容易且つ確実に除去できる。 According to such a configuration, the ion permeation preventive film can be easily and reliably removed.
 平坦化工程および膜除去工程の処理を同一の研磨装置で行うことが好ましい。 It is preferable that the planarization process and the film removal process are performed by the same polishing apparatus.
 このような構成によれば、平坦化工程および膜除去工程の処理をほぼ同時に効率的に行うことができる。 According to such a configuration, the planarization process and the film removal process can be efficiently performed almost simultaneously.
 非選択領域がガラス板の表裏主面の中央部であることが好ましい。 It is preferable that the non-selection region is the center of the front and back main surfaces of the glass plate.
 このような構成によれば、端縁部において特に高い強度を有する強化ガラス板を容易に得られる。また、強化ガラス板の内部に形成される引張応力層の引張応力を低減して、自己破壊を抑制できる。 According to such a configuration, it is possible to easily obtain a tempered glass plate having a particularly high strength at the edge portion. Moreover, the tensile stress of the tensile stress layer formed inside the tempered glass plate can be reduced, and self-destruction can be suppressed.
 ガラス板は、ガラス板組成として質量%で、SiO2 45~75%、Al23 1~30%、Na2O 0~20%、K2O 0~20%を含有するガラス板であることが好ましい。 The glass plate is a glass plate containing, by mass%, SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20% as a glass plate composition. It is preferable.
 このような構成によれば、容易にガラス板表層のイオンの交換を行うことができ、高い強度の強化ガラス板を容易に得られる。 According to such a configuration, ions on the surface of the glass plate can be easily exchanged, and a high-strength tempered glass plate can be easily obtained.
 本発明の強化ガラス板の製造方法は、ガラス板表層のイオンを交換する強化ガラス板の製造方法であって、主面の一部に設定された非選択領域にイオンの透過を抑制または遮断するイオン透過防止膜を備えた膜付ガラス板に溶融塩を接触させてイオン交換することにより、非選択領域以外の選択領域の厚みを非選択領域よりも大きくするとともに、選択領域において非選択領域よりも深い圧縮応力層を形成する選択強化工程と、選択強化工程において膨張した選択領域の少なくとも一部を除去することにより、当該ガラス板の主面を平坦化する平坦化工程と、を備えることを特徴とする。 The method for producing a tempered glass plate of the present invention is a method for producing a tempered glass plate for exchanging ions on the surface layer of the glass plate, and suppresses or blocks the permeation of ions in a non-selected region set in a part of the main surface. By changing the thickness of the selected area other than the non-selected area to be larger than that of the non-selected area by bringing the molten salt into contact with the glass plate with a membrane having an ion permeation preventive membrane and exchanging the ions, the selected area is larger than the non-selected area. Further comprising a selective strengthening step of forming a deep compressive stress layer, and a flattening step of flattening the main surface of the glass plate by removing at least a part of the selected region expanded in the selective strengthening step. Features.
本発明の第一の実施形態に係る強化ガラス板の製造方法を示す図である。It is a figure which shows the manufacturing method of the tempered glass board which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る強化ガラス板の製造方法を示す図である。It is a figure which shows the manufacturing method of the tempered glass board which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る強化ガラス板の製造方法を示す図である。It is a figure which shows the manufacturing method of the tempered glass board which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る強化ガラス板の製造方法を示す図である。It is a figure which shows the manufacturing method of the tempered glass board which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る強化ガラス板の製造方法を示す図である。It is a figure which shows the manufacturing method of the tempered glass board which concerns on 1st embodiment of this invention. 本発明の強化ガラス板の製造方法における成膜領域の一例を示す図である。It is a figure which shows an example of the film-forming area | region in the manufacturing method of the tempered glass board of this invention. 本発明の第二の実施形態に係る強化ガラス板の製造方法を示す図である。It is a figure which shows the manufacturing method of the tempered glass board which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に係る強化ガラス板の製造方法を示す図である。It is a figure which shows the manufacturing method of the tempered glass board which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に係る強化ガラス板の製造方法を示す図である。It is a figure which shows the manufacturing method of the tempered glass board which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に係る強化ガラス板の製造方法を示す図である。It is a figure which shows the manufacturing method of the tempered glass board which concerns on 2nd embodiment of this invention. 本発明の第三の実施形態に係る強化ガラス板の製造方法を示す図である。It is a figure which shows the manufacturing method of the tempered glass board which concerns on 3rd embodiment of this invention. 本発明の第三の実施形態に係る強化ガラス板の製造方法を示す図である。It is a figure which shows the manufacturing method of the tempered glass board which concerns on 3rd embodiment of this invention. 本発明の第三の実施形態に係る強化ガラス板の製造方法を示す図である。It is a figure which shows the manufacturing method of the tempered glass board which concerns on 3rd embodiment of this invention. 本発明の第三の実施形態に係る強化ガラス板の製造方法を示す図である。It is a figure which shows the manufacturing method of the tempered glass board which concerns on 3rd embodiment of this invention. 本発明の第三の実施形態に係る強化ガラス板の製造方法を示す図である。It is a figure which shows the manufacturing method of the tempered glass board which concerns on 3rd embodiment of this invention.
<第一の実施形態>
 以下、本発明の実施形態の強化ガラス板の製造方法について説明する。図1A~Eは、本発明の強化ガラス板の製造方法の一例を示す図である。
<First embodiment>
Hereinafter, the manufacturing method of the tempered glass board of embodiment of this invention is demonstrated. 1A to 1E are diagrams showing an example of a method for producing a tempered glass sheet of the present invention.
 先ず、図1Aに示す準備工程の処理を実施する。準備工程は、元ガラス板G1を準備する工程である。元ガラス板G1は、イオン交換法を用いて強化可能な板状のガラス板である。 First, the preparatory process shown in FIG. 1A is performed. The preparation step is a step of preparing the original glass plate G1. The original glass plate G1 is a plate-like glass plate that can be strengthened using an ion exchange method.
 元ガラス板G1は、ガラス板組成として質量%で、SiO2 45~75%、Al23 1~30%、Na2O 0~20%、K2O 0~20%を含有することが好ましい。上記のようにガラス板組成範囲を規制すれば、イオン交換性能と耐失透性を高いレベルで両立し易くなる。 The original glass plate G1 contains, as a glass plate, mass% and contains SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20%. preferable. If the glass plate composition range is regulated as described above, it is easy to achieve both ion exchange performance and devitrification resistance at a high level.
 元ガラス板G1の板厚は、例えば、1.5mm以下であり、好ましくは1.3mm以下、1.1mm以下、1.0mm以下、0.8mm以下、0.7mm以下、0.6mm以下、0.5mm以下、0.4mm以下、0.3mm以下、0.2mm以下、特に0.1mm以下である。強化ガラス板基板の板厚が小さい程、強化ガラス板基板を軽量化することでき、結果として、デバイスの薄型化、軽量化を図ることができる。なお、生産性等を考慮すれば元ガラス板G1の板厚は0.01mm以上であることが好ましい。 The original glass plate G1 has a thickness of, for example, 1.5 mm or less, preferably 1.3 mm or less, 1.1 mm or less, 1.0 mm or less, 0.8 mm or less, 0.7 mm or less, 0.6 mm or less, It is 0.5 mm or less, 0.4 mm or less, 0.3 mm or less, 0.2 mm or less, especially 0.1 mm or less. As the plate thickness of the tempered glass plate substrate is smaller, the tempered glass plate substrate can be reduced in weight, and as a result, the device can be reduced in thickness and weight. In consideration of productivity and the like, the thickness of the original glass plate G1 is preferably 0.01 mm or more.
 元ガラス板G1の主面Sの寸法は任意に設定可能であるが、例えば、480×320mm~3350×3950mmである。ここで、主面Sとは、板厚方向に対向する表面を意味する。 The dimension of the main surface S of the original glass plate G1 can be arbitrarily set, and is, for example, 480 × 320 mm to 3350 × 3950 mm. Here, the main surface S means a surface facing the plate thickness direction.
 元ガラス板G1は、例えば、オーバーフローダウンドロー法を用いて成形されたものである。なお、元ガラス板G1の成形方法や加工状態は任意に選択しても良い。例えば、元ガラス板G1はフロート法を用いて成形され、主面Sおよび端面Eは研磨加工されたものであっても良い。 The original glass plate G1 is formed by using, for example, an overflow down draw method. In addition, you may select arbitrarily the shaping | molding method and processed state of the original glass plate G1. For example, the original glass plate G1 may be formed using a float process, and the main surface S and the end surface E may be polished.
 次いで、上記準備工程の後、図1B、Cの選択強化工程の処理を実施する。選択強化工程は、元ガラス板G1の表面の一部に設定した選択領域(周縁部S2および端面E)において、当該選択領域以外の非選択領域(中央部S1)よりも深い圧縮応力層を形成する処理を行う工程である。選択強化工程は、成膜工程、選択イオン交換工程、および膜除去工程を含む。 Next, after the above preparation step, the selective strengthening step shown in FIGS. 1B and 1C is performed. In the selective strengthening step, a compressive stress layer deeper than the non-selected region (central portion S1) other than the selected region is formed in the selected region (peripheral portion S2 and end surface E) set on a part of the surface of the original glass plate G1. This is a process for performing the processing. The selective strengthening process includes a film forming process, a selective ion exchange process, and a film removing process.
 選択強化工程では、先ず、図1Bに示す成膜工程の処理を実施する。成膜工程は、元ガラス板G1の表面の少なくとも一部に設定された非選択領域にイオン透過防止膜Mを形成して膜付ガラス板G2を得る工程である。本実施形態では、図2に示すように元ガラス板G1の表裏主面の中央部S1を非選択領域とした場合を一例として説明する。なお、図1Bは図2におけるAA矢視断面図に相当する。元ガラス板G1の表面のうち、中央部S1以外の領域、つまり周縁部S2および端面Eは選択領域であり、露出した状態とされている。なお、周縁部S2は主面Sのうち中央部S1を取り囲む領域である。イオン透過防止膜Mは、後述の選択イオン交換工程において、元ガラス板G1表層のイオン交換を行う際にイオンの透過を抑制または遮断する膜層である。 In the selective strengthening process, first, the film forming process shown in FIG. 1B is performed. The film forming step is a step of obtaining the glass plate with film G2 by forming the ion permeation preventive film M in the non-selection region set on at least a part of the surface of the original glass plate G1. In the present embodiment, as shown in FIG. 2, a case where the central portion S1 of the front and back main surfaces of the original glass plate G1 is set as a non-selection area will be described as an example. 1B corresponds to a cross-sectional view taken along arrow AA in FIG. Of the surface of the original glass plate G1, the region other than the central portion S1, that is, the peripheral edge portion S2 and the end surface E are selected regions and are exposed. The peripheral edge S2 is an area surrounding the central part S1 of the main surface S. The ion permeation preventive membrane M is a membrane layer that suppresses or blocks the permeation of ions when performing ion exchange on the surface layer of the original glass plate G1 in the selective ion exchange step described later.
 イオン透過防止膜Mの材質としては、イオン交換されるイオンの透過を抑制または遮断可能であれば任意の材質を用いて良い。交換されるイオンがアルカリ金属イオンである場合、イオン透過防止膜Mは、例えば、金属酸化物、金属窒化物、金属炭化物、金属酸窒化物、金属酸炭化物、金属炭窒化物などの膜であることが好ましい。また耐熱性や化学的耐久性に優れた炭素材料や金属、合金もイオン透過防止膜Mとして使用可能である。より詳細には、イオン透過防止膜Mの材質としては、例えば、SiO2、Al23、SiN、SiC、Al23、AlN、ZrO2、TiO2、Ta25、Nb25、HfO2、SnO2、カーボンナノチューブ、グラフィン、ダイヤモンドライクカーボン、ステンレスの中から1種類以上を含む膜とすることができる。 As the material of the ion permeation preventive film M, any material may be used as long as permeation of ions exchanged with ions can be suppressed or blocked. When the exchanged ions are alkali metal ions, the ion permeation preventive film M is, for example, a film of metal oxide, metal nitride, metal carbide, metal oxynitride, metal oxycarbide, metal carbonitride, or the like. It is preferable. Carbon materials, metals, and alloys that are excellent in heat resistance and chemical durability can also be used as the ion permeation preventive film M. More specifically, examples of the material of the ion permeation preventive film M include SiO 2 , Al 2 O 3 , SiN, SiC, Al 2 O 3 , AlN, ZrO 2 , TiO 2 , Ta 2 O 5 , and Nb 2 O. 5 , HfO 2 , SnO 2 , carbon nanotube, graphene, diamond-like carbon, and a film containing one or more kinds of stainless steel.
 特にSiO2をイオン透過防止膜Mの主成分とすれば、安価且つ容易にイオン透過防止膜Mを形成可能であり、反射防止膜としても機能し得るため、好ましい。イオン透過防止膜Mは、SiO2のみから成る膜として良い。具体的には、イオン透過防止膜Mは質量%でSiO2を99%以上含有する組成を有するものとして良い。 In particular, it is preferable to use SiO 2 as the main component of the ion permeation preventive film M because the ion permeation preventive film M can be easily formed at low cost and can function as an antireflective film. The ion permeation preventive film M may be a film made of only SiO 2 . Specifically, an ion permeable barrier layer M good as having a composition containing SiO 2 99% by mass%.
 また、イオンの透過を確実に遮断する場合には、SiO2を主成分とし、Al23を含む膜をイオン透過防止膜Mとして用いることが好適である。この場合、イオン透過防止膜Mは、質量%でSiO2 20~99%、Al23 1~80%を含有する組成を有することが好ましい。 In order to reliably block the permeation of ions, it is preferable to use a film containing SiO 2 as a main component and containing Al 2 O 3 as the ion permeation preventive film M. In this case, the ion permeation preventive film M preferably has a composition containing 20 to 99% SiO 2 and 1 to 80% Al 2 O 3 by mass%.
 イオン透過防止膜Mの厚さは、イオン透過の遮断および抑制が可能であれば任意の厚さであって良い。ただし、イオン透過防止膜Mの厚さが過大であると、成膜時間や材料コスト等が増大するため、イオン透過の遮断および抑制が可能な範囲で薄く形成することが好ましい。具体的には、イオン透過防止膜Mの膜厚は、例えば1~5000nmが好ましく、より好ましくは50~4000nmである。 The thickness of the ion permeation preventive film M may be any thickness as long as ion permeation can be blocked and suppressed. However, if the ion permeation preventive film M is excessively thick, the film formation time, material cost, and the like increase, and therefore it is preferable to form the ion permeation preventive film M as thin as possible so that ion permeation can be blocked and suppressed. Specifically, the film thickness of the ion permeation preventive film M is preferably, for example, 1 to 5000 nm, and more preferably 50 to 4000 nm.
 イオン透過防止膜Mの成膜方法は、スパッタ法や真空蒸着法などのPVD法(物理気相成長法)、熱CVD法やプラズマCVD法などのCVD法(化学気相成長法)、ディップコート法やスリットコート法などのウェットコート法を用いることができる。特にスパッタ法、ディップコート法が好ましい。スパッタ法を用いた場合、イオン透過防止膜Mを容易に均一に形成できる。イオン透過防止膜Mの成膜箇所は任意の手法で設定して良い。例えば、選択領域(周縁部S2、端面E)をマスクした状態で成膜を行うことができる。また、予めシート状に成形したイオン透過防止膜Mを元ガラス板G1の主面に接合して成膜しても良い。 The film formation method of the ion permeation preventive film M is a PVD method (physical vapor deposition method) such as a sputtering method or a vacuum vapor deposition method, a CVD method (chemical vapor deposition method) such as a thermal CVD method or a plasma CVD method, or dip coating. A wet coating method such as a method or a slit coating method can be used. In particular, a sputtering method and a dip coating method are preferable. When the sputtering method is used, the ion permeation preventive film M can be easily and uniformly formed. The deposition location of the ion permeation preventive film M may be set by an arbitrary method. For example, film formation can be performed in a state where the selected region (peripheral portion S2, end surface E) is masked. Alternatively, the ion permeation preventive film M previously formed into a sheet shape may be bonded to the main surface of the original glass plate G1 to form a film.
 なお、本実施形態では、SiO2およびAl23を含有し、膜厚が100nm以上であり、アルカリ金属イオンの透過を遮断可能なイオン透過防止膜Mを形成した場合を一例として説明する。 In the present embodiment, a case where an ion permeation preventive film M containing SiO 2 and Al 2 O 3 and having a film thickness of 100 nm or more and capable of blocking permeation of alkali metal ions is described as an example.
 次いで、上記成膜工程の後、図1Cに示す選択イオン交換工程の処理を実施する。選択イオン交換工程は、膜付ガラス板G2をイオン交換法により化学強化して膜付強化ガラス板G3を得る工程である。具体的には、アルカリ金属イオンを含む溶融塩T1に膜付ガラス板G2を浸漬してイオン交換する。本実施形態における溶融塩T1は、例えば、硝酸カリウム溶融塩である。 Next, after the film formation step, the selective ion exchange step shown in FIG. 1C is performed. The selective ion exchange step is a step of obtaining the film-reinforced glass plate G3 by chemically strengthening the film-coated glass plate G2 by an ion exchange method. Specifically, ion exchange is performed by immersing the film-coated glass plate G2 in a molten salt T1 containing alkali metal ions. The molten salt T1 in the present embodiment is, for example, a potassium nitrate molten salt.
 選択イオン交換工程における溶融塩T1の温度は任意に定めて良いが、例えば、350~500℃、好ましくは370~480℃、より好ましくは380~450℃、さらに好ましくは380~400℃である。また、膜付ガラス板G2を溶融塩T1中に浸漬する時間は任意に定めて良いが、例えば、0.1~150時間、好ましくは0.3~100時間、より好ましくは0.5~50時間である。 The temperature of the molten salt T1 in the selective ion exchange step may be arbitrarily determined, and is, for example, 350 to 500 ° C., preferably 370 to 480 ° C., more preferably 380 to 450 ° C., and further preferably 380 to 400 ° C. The time for immersing the film-coated glass plate G2 in the molten salt T1 may be arbitrarily determined. For example, it is 0.1 to 150 hours, preferably 0.3 to 100 hours, more preferably 0.5 to 50. It's time.
 上記選択イオン交換工程では、膜付ガラス板G2の表面のうち、イオン透過防止膜Mが設けられていない非成膜領域(周縁部S2および端面E)においてガラス板中のナトリウムイオンと溶融塩T1中のカリウムイオンとが交換され、圧縮応力層Cが形成されるとともに膨張変形が生じる。一方、膜付ガラス板G2の表面のうち、イオン透過防止膜Mが設けられた中央部S1では、イオンが遮断されるため、イオン交換が行われず、圧縮応力層の形成および膨張変形が生じない。このような結果、選択イオン交換工程において得られる膜付強化ガラス板G3は、端部においてのみ圧縮応力層Cを有し、且つ当該端部が盛り上がった形状、より具体的には中央部S1と周縁部S2との間に段差を有する形状を成す。 In the selective ion exchange step, sodium ions in the glass plate and molten salt T1 in the non-film formation region (peripheral portion S2 and end surface E) where the ion permeation preventive film M is not provided on the surface of the glass plate with film G2. The potassium ions therein are exchanged to form the compressive stress layer C, and expansion deformation occurs. On the other hand, in the center part S1 where the ion permeation preventive film M is provided on the surface of the film-coated glass plate G2, since ions are blocked, ion exchange is not performed, and formation of a compressive stress layer and expansion deformation do not occur. . As a result, the tempered glass plate with film G3 obtained in the selective ion exchange step has the compressive stress layer C only at the end portion, and the shape in which the end portion is raised, more specifically, the central portion S1 and A shape having a step between the peripheral edge S2 is formed.
 次いで、上記選択イオン交換工程の後、図1Dに示す膜除去工程および平坦化工程の処理を実施する。 Next, after the selective ion exchange process, the film removal process and the planarization process shown in FIG. 1D are performed.
 膜除去工程は、膜付強化ガラス板G3からイオン透過防止膜Mを除去する工程である。具体的には、イオン透過防止膜Mを研磨によって除去する。研磨装置としては、周知の研磨装置を用いることができ、両面研磨装置を用いることが好ましい。 The film removal step is a step of removing the ion permeation preventive film M from the tempered glass plate with film G3. Specifically, the ion permeation preventive film M is removed by polishing. As the polishing apparatus, a known polishing apparatus can be used, and a double-side polishing apparatus is preferably used.
 なお、研磨に限らず他の手法を用いてイオン透過防止膜Mを除去しても良い。例えば、エッチング液を付着させてイオン透過防止膜Mを除去しても良い。イオン透過防止膜MがSiO2を含有する膜である場合、例えば、フッ素、TMAH、EDP、KOH、NAOH等を含む溶液をエッチング液として用いることができ、特にフッ酸溶液をエッチング液として用いることが好ましい。なお、フッ酸溶液を用い、ガラスの寸法を変更することなくイオン透過防止膜Mのみを除去する場合には、当該フッ酸溶液におけるHFの濃度を10%以下とすることが好ましい。 Note that the ion permeation preventive film M may be removed not only by polishing but also by other methods. For example, the ion permeation preventive film M may be removed by attaching an etching solution. If an ion permeable barrier layer M is a film containing SiO 2, for example, fluorine, TMAH, EDP, KOH, the solution can be used as an etching solution containing NAOH like, especially, a hydrofluoric acid solution as an etchant Is preferred. In the case where only the ion permeation preventive film M is removed using a hydrofluoric acid solution without changing the dimensions of the glass, the concentration of HF in the hydrofluoric acid solution is preferably 10% or less.
 平坦化工程は、選択強化工程において膨張した選択領域の少なくとも一部を除去することにより、ガラス板の主面Sを平坦化する工程である。具体的には、中央部S1より突出している周縁部S2の膨張部位Bを除去することで主面Sを平坦化する。膨張部位Bは、研磨またはエッチングにより除去可能である。膨張部位Bのみを選択的に除去することが好ましいが、中央部S1も合わせて研磨またはエッチングしても良い。このようにすれば、より高い平坦性を得られるとともに、平坦化の処理後の中央部S1と周縁部S2との面の状態を均一化できる。平坦化工程の処理は、膜付強化ガラス板G3の両主面について行うことが好ましいが、用途に応じて一方の主面のみについて行っても良い。 The flattening step is a step of flattening the main surface S of the glass plate by removing at least a part of the selected region expanded in the selective strengthening step. Specifically, the main surface S is flattened by removing the expansion part B of the peripheral edge part S2 protruding from the central part S1. The expansion site B can be removed by polishing or etching. Although it is preferable to selectively remove only the expansion portion B, the central portion S1 may also be polished or etched together. In this way, higher flatness can be obtained, and the surface states of the central portion S1 and the peripheral edge portion S2 after the flattening process can be made uniform. The treatment in the flattening step is preferably performed on both main surfaces of the tempered glass sheet with film G3, but may be performed on only one main surface depending on the application.
 膜除去工程および平坦化工程の処理は、各々個別に実行して良いが、同一の装置で略同時に行うことも可能である。例えば、膜除去工程および平坦化工程の処理は、同一の研磨装置、或いは同一のエッチング装置を用いて行うことができ、特に同一の研磨装置を用いることが好ましい。このような方法によれば、膜除去工程および平坦化工程の処理を容易且つ効率的に実行可能である。 The film removal process and the planarization process may be performed individually, but may be performed substantially simultaneously with the same apparatus. For example, the film removal process and the planarization process can be performed using the same polishing apparatus or the same etching apparatus, and it is particularly preferable to use the same polishing apparatus. According to such a method, the film removal process and the planarization process can be easily and efficiently performed.
 上記膜除去工程および平坦化工程の処理により、平坦な主面を有し、且つ、周縁部S2および端面Eにおいて中央部S2より深い圧縮応力層Cを有する強化ガラス板G4を得られる。すなわち、強化ガラス板G4は、端縁部において高い耐衝撃性を有しつつ、内部の引張応力を低減でき、当該引張応力に起因する破壊が発生し難いガラスとなっている。 The tempered glass plate G4 having a flat main surface and having a compressive stress layer C deeper than the central portion S2 at the peripheral edge S2 and the end surface E can be obtained by the processing of the film removal step and the flattening step. That is, the tempered glass sheet G4 is a glass that has high impact resistance at the edge and can reduce internal tensile stress and is less likely to break due to the tensile stress.
 上述の選択イオン交換工程においてイオン透過防止膜Mによりイオンの透過が完全に遮断されていた場合には、強化ガラス板G4の中央部S1には圧縮応力層Cが形成されていないため、中央部S1が強化されていないガラス板となっている。この場合、以下の全体強化工程を上記膜除去工程および平坦化工程の処理に次いで行うことによって、中央部S1においても圧縮応力層Cを形成し、中央部S1における強度を向上することが好ましい。 When ion permeation is completely blocked by the ion permeation preventive film M in the selective ion exchange step described above, the compressive stress layer C is not formed in the central portion S1 of the tempered glass plate G4. S1 is an unstrengthened glass plate. In this case, it is preferable to form the compressive stress layer C also in the central portion S1 and improve the strength in the central portion S1 by performing the following overall strengthening step subsequent to the film removal step and the planarization step.
 全体強化工程は、図1Eに示すように、強化ガラス板G4の表面全体に溶融塩を接触させて表層のイオンを交換する工程である。具体的には、アルカリ金属イオンを含む溶融塩T2に強化ガラス板G4を浸漬してイオン交換し、中央部S1において周縁部S2および端面Eより浅い圧縮応力層Cを有する強化ガラス板G5を得る。溶融塩T2は、例えば、硝酸カリウム溶融塩である。 The whole strengthening step is a step of exchanging ions on the surface layer by bringing the molten salt into contact with the entire surface of the strengthened glass plate G4 as shown in FIG. 1E. Specifically, the tempered glass plate G4 is immersed in a molten salt T2 containing alkali metal ions and ion exchange is performed to obtain a tempered glass plate G5 having a compressive stress layer C shallower than the peripheral edge S2 and the end face E in the central part S1. . The molten salt T2 is, for example, a potassium nitrate molten salt.
 全体強化工程における溶融塩T2の温度は任意に定めて良いが、例えば、350~500℃、好ましくは370~480℃、より好ましくは380~450℃である。溶融塩T2の温度が450℃以下であれば、温度に起因する水素イオン濃度指数(pH)の値の変動を抑制し易くなる。また、強化ガラス板G4を溶融塩T2中に浸漬する時間は任意に定めて良いが、例えば、0.1~72時間、好ましくは0.3~50時間、より好ましくは0.5~24時間である。 The temperature of the molten salt T2 in the overall strengthening step may be arbitrarily determined, and is, for example, 350 to 500 ° C, preferably 370 to 480 ° C, more preferably 380 to 450 ° C. If the temperature of molten salt T2 is 450 degrees C or less, it will become easy to suppress the fluctuation | variation of the value of the hydrogen ion concentration index (pH) resulting from temperature. Further, the time for immersing the tempered glass plate G4 in the molten salt T2 may be arbitrarily determined. For example, it is 0.1 to 72 hours, preferably 0.3 to 50 hours, more preferably 0.5 to 24 hours. It is.
 溶融塩T2は、上述の溶融塩T1と同様のものであっても良い。すなわち、選択強化工程において用いた塩浴に強化ガラス板G4を再度浸漬して良い。この場合、単一の塩浴で複数工程の処理を行うことができるため、製造設備のコストを抑制できる。 The molten salt T2 may be the same as the molten salt T1 described above. That is, the tempered glass plate G4 may be immersed again in the salt bath used in the selective strengthening step. In this case, since a process of a plurality of steps can be performed with a single salt bath, the cost of manufacturing equipment can be suppressed.
 また、溶融塩T2は、溶融塩T1とは異なるものであって良いし、全体強化工程における処理温度および処理時間は、選択イオン交換工程の処理温度および処理時間と異なっていて良い。例えば、全体強化工程におけるイオン交換の処理時間は、選択イオン交換工程における処理時間より短いことが好ましい。このような処理によれば、中央部S2における圧縮応力層Cの深さが過剰になることがなく、引張応力の増加を抑制できる。 Further, the molten salt T2 may be different from the molten salt T1, and the processing temperature and processing time in the overall strengthening step may be different from the processing temperature and processing time in the selective ion exchange step. For example, the ion exchange treatment time in the overall strengthening step is preferably shorter than the treatment time in the selective ion exchange step. According to such a process, the depth of the compressive stress layer C in the central portion S2 is not excessive, and an increase in tensile stress can be suppressed.
 なお、全体強化工程の後、さらに仕上げ加工工程の処理を実施しても良い(図示せず)。仕上げ加工工程では、強化ガラス板G5の表面、例えば主面Sおよび端面Eの少なくとも何れかを研磨加工する。全体強化工程の処理によって強化ガラス板G5の寸法や表面状態が製品規格等の所望の状態でない場合、このような仕上げ加工工程の処理を実施することによって所望の状態にすることができる。 In addition, you may implement the process of a finishing process after the whole reinforcement | strengthening process (not shown). In the finishing process, the surface of the tempered glass sheet G5, for example, at least one of the main surface S and the end surface E is polished. When the dimensions and surface state of the tempered glass sheet G5 are not in a desired state such as product standards due to the processing in the entire strengthening step, the finishing state can be brought into a desired state by performing the processing in the finishing process.
 以上に説明した通り、本発明の実施形態に係る強化ガラス板の製造方法によれば、高い平坦性を有し且つ端面からの破損の少ない強化ガラス板G4、G5を安定して効率良く製造できる。 As explained above, according to the method for producing a tempered glass sheet according to the embodiment of the present invention, the tempered glass sheets G4 and G5 having high flatness and less damage from the end face can be produced stably and efficiently. .
<第二の実施形態>
 上記第一の実施形態ではイオン透過防止膜Mによりイオンの透過が完全に遮断される場合について説明したが、イオン透過防止膜Mとしてイオンの透過を若干許容する膜を使用しても良い。図3A~Dは本発明の第二の実施形態に係る強化ガラス板の製造方法の概略を示す図である。第二の実施形態ではイオンの透過が若干許容されるイオン透過防止膜Mを用いた点以外、各工程の処理は上述第一の実施形態と同様であって良い。
<Second Embodiment>
In the first embodiment, the case where ion permeation is completely blocked by the ion permeation preventive film M has been described. However, as the ion permeation preventive film M, a film that slightly allows ion permeation may be used. 3A to 3D are diagrams showing an outline of a method for manufacturing a tempered glass sheet according to the second embodiment of the present invention. In the second embodiment, the process in each step may be the same as in the first embodiment except that the ion permeation preventive film M that allows a slight permeation of ions is used.
 第二の実施形態の場合、図3Cに示すように、選択イオン交換工程において、中央部S1においてもイオン交換が行われるため、中央部S1に圧縮応力層Cが形成される。但し、中央部S1では、周縁部S2に比べてイオン交換が抑制されるため、中央部S1における圧縮応力層Cの深さは周縁部S2の圧縮応力層Cの深さに比べて小さく、厚さ方向の膨張量も周縁部S2の膨張量より小さい。したがって、得られる膜付強化ガラス板G3は、端部が盛り上がり中央部S1と周縁部S2との間に段差を有する形状となる。故に、高い平坦性を有する強化ガラス板G4を得るためには図3Dに示すように平坦化工程の処理が必要となる。 In the case of the second embodiment, as shown in FIG. 3C, in the selective ion exchange step, ion exchange is also performed in the central portion S1, and thus the compressive stress layer C is formed in the central portion S1. However, since the ion exchange is suppressed in the central portion S1 as compared with the peripheral portion S2, the depth of the compressive stress layer C in the central portion S1 is smaller than the depth of the compressive stress layer C in the peripheral portion S2. The amount of expansion in the vertical direction is also smaller than the amount of expansion of the peripheral edge S2. Therefore, the obtained tempered glass plate with film G3 has a shape in which the end portion is raised and has a step between the central portion S1 and the peripheral portion S2. Therefore, in order to obtain the tempered glass sheet G4 having high flatness, a flattening process is required as shown in FIG. 3D.
 また、第二の実施形態では選択イオン交換工程の処理で中央部S1に圧縮応力層Cが形成されるため、中央部S1における圧縮応力層Cの深さや圧縮応力が充分である場合には、上述の全体強化工程を省略可能である。一方、中央部S1に形成される圧縮応力層Cの深さや圧縮応力が充分でない場合には、さらに全体強化工程を実施することが好ましい。 In the second embodiment, since the compressive stress layer C is formed in the central portion S1 by the process of the selective ion exchange step, when the depth and compressive stress of the compressive stress layer C in the central portion S1 are sufficient, The above-described overall strengthening step can be omitted. On the other hand, when the depth and compressive stress of the compressive stress layer C formed in the central portion S1 are not sufficient, it is preferable to further perform the overall strengthening step.
<第三の実施形態>
 元ガラス板G1における周縁部S2は面取り面であっても良い(例えば図4A)。また、面取り面は、例えば、図4Aに示すような湾曲面であって良いし、主面Sに対して傾斜した平面であっても良い。図4A~Eは本発明の第三の実施形態に係る強化ガラス板の製造方法の概略を示す図である。第三の実施形態では周縁部S2が面取り面である点以外、各工程の処理は上述第一の実施形態と同様である。
<Third embodiment>
The peripheral edge S2 in the original glass plate G1 may be a chamfered surface (for example, FIG. 4A). Further, the chamfered surface may be, for example, a curved surface as shown in FIG. 4A or a plane inclined with respect to the main surface S. 4A to 4E are views showing an outline of a method for producing a tempered glass sheet according to the third embodiment of the present invention. In 3rd embodiment, the process of each process is the same as that of the above-mentioned 1st embodiment except the peripheral part S2 being a chamfering surface.
 なお、上記に示した任意の工程の前後において、切断加工、端面加工、および孔あけ加工の何れかの加工を実施する加工工程を設けても良い。また、上記に示した任意の工程の前後において、ガラス板に洗浄および乾燥処理を適宜行なって良い。 In addition, before and after the arbitrary process shown above, a machining process for performing any one of cutting, end face machining, and drilling may be provided. In addition, before and after the arbitrary steps described above, the glass plate may be appropriately washed and dried.
 また、上記実施形態では溶融塩T1、T2が、硝酸カリウム溶融塩である場合を一例として説明したが、これに限らずガラス板のイオン交換に用いられる周知の溶融塩を代替して、或いは組み合わせて用いて良い。例えば、溶融塩T1、T2は、硝酸カリウム溶融塩と硝酸ナトリウム溶融塩の混合塩であっても良い。 In the above embodiment, the case where the molten salts T1 and T2 are potassium nitrate molten salts has been described as an example. May be used. For example, the molten salts T1 and T2 may be a mixed salt of a potassium nitrate molten salt and a sodium nitrate molten salt.
 また、上記実施形態では、ナトリウムイオンとカリウムイオンとを交換して化学強化する場合を例示したが、任意のイオンの交換により化学強化しても良い。例えば、リチウムイオンとナトリウムイオンとを交換したり、リチウムイオンとカリウムイオンとを交換したりして化学強化しても良い。この場合、元ガラス板G1は、ガラス組成として、質量%でLiO2を0.5~7.5%含有することが好ましく、例えば3.0%或いは4.5%含有する。 Moreover, although the case where the sodium ion and the potassium ion were exchanged and chemically strengthened was illustrated in the said embodiment, you may chemically strengthen by replacement | exchange of arbitrary ions. For example, chemical strengthening may be performed by exchanging lithium ions and sodium ions, or exchanging lithium ions and potassium ions. In this case, the original glass plate G1 preferably contains 0.5 to 7.5% by mass of LiO 2 as a glass composition, for example, 3.0% or 4.5%.
 また、選択強化工程の処理は上記手法に限らず、例えば、選択領域のみイオン交換用の溶融塩に浸漬したり、溶融塩を塗布する等して、部分的に深い圧縮応力層Cを形成しても良い。 In addition, the process of the selective strengthening step is not limited to the above-described method. For example, the deep compressive stress layer C is partially formed by immersing the selected region only in the molten salt for ion exchange or applying the molten salt. May be.
 ここで、強化ガラス板の応力特性(圧縮応力層の深さ等)は、例えば折原製作所製FSM-6000を用いて測定することができる。アルミノシリケート系ガラスの圧縮応力層の深さが100μmを超える場合や、リチウムイオンとナトリウムイオンのイオン交換を行った場合は、強化ガラス板の応力特性は、例えば折原製作所製SLP-1000を用いて測定することができる。強化ガラス板を切断する等して断面試料を作製できる場合は、例えばフォトニックラティス社製WPA-microや東京インスツルメンツ社製Abrioを用いて内部応力分布を観測し、応力深さを確認することが望ましい。 Here, the stress characteristics (depth of compressive stress layer, etc.) of the tempered glass plate can be measured using, for example, FSM-6000 manufactured by Orihara Seisakusho. When the depth of the compressive stress layer of the aluminosilicate glass exceeds 100 μm, or when ion exchange between lithium ions and sodium ions is performed, the stress characteristics of the tempered glass plate are obtained using, for example, SLP-1000 manufactured by Orihara Seisakusho. Can be measured. If a cross-section sample can be prepared by cutting a tempered glass plate, etc., the stress depth can be confirmed by observing the internal stress distribution using, for example, a photonic lattice WPA-micro or a Tokyo Instruments Abrio. desirable.
 本発明の強化ガラス板およびその製造方法は、タッチパネルディスプレイ等に用いられるガラス板基板およびその製造方法等として有用である。 The tempered glass plate and the production method thereof of the present invention are useful as a glass plate substrate used for a touch panel display and the like, and a production method thereof.
G1 元ガラス板
G2 膜付ガラス板
G3、膜付強化ガラス板
G4、G5 強化ガラス板
M イオン透過防止膜
T1 第一溶融塩
T2 第二溶融塩
G1 Original glass plate G2 Glass plate with film G3, Tempered glass plate with film G4, G5 Tempered glass plate M Ion permeation prevention film T1 First molten salt T2 Second molten salt

Claims (10)

  1.  ガラス板表層のイオンを交換する強化ガラス板の製造方法であって、
     前記イオンの交換により、前記ガラス板の表面の一部に設定した選択領域の厚みを、当該選択領域以外の非選択領域の厚みよりも大きくするとともに、前記選択領域において前記非選択領域よりも深い圧縮応力層を形成する選択強化工程と、
     前記選択強化工程において膨張した前記選択領域の少なくとも一部を除去することにより、当該ガラス板の主面を平坦化する平坦化工程と、を備えることを特徴とする、強化ガラス板の製造方法。
    A method for producing a tempered glass plate for exchanging ions on the surface of a glass plate,
    By the ion exchange, the thickness of the selected region set on a part of the surface of the glass plate is made larger than the thickness of the non-selected region other than the selected region, and deeper than the non-selected region in the selected region. A selective strengthening step of forming a compressive stress layer;
    A method for producing a tempered glass plate, comprising: a step of flattening a main surface of the glass plate by removing at least a part of the selected region expanded in the selective strengthening step.
  2.  前記平坦化工程の後に、前記ガラス板の表面全体に溶融塩を接触させて前記ガラス板表層のイオンを交換する全体強化工程をさらに備えることを特徴とする、請求項1に記載の強化ガラス板の製造方法。 2. The tempered glass sheet according to claim 1, further comprising an overall strengthening step of bringing the molten salt into contact with the entire surface of the glass plate and exchanging ions on the surface layer of the glass plate after the flattening step. Manufacturing method.
  3.  全体強化工程の後、前記ガラス板の表面を研磨加工する仕上げ加工工程をさらに備えることを特徴とする、請求項2に記載の強化ガラス板の製造方法。 3. The method for producing a tempered glass sheet according to claim 2, further comprising a finishing process for polishing the surface of the glass sheet after the entire tempering process.
  4.  前記平坦化工程において、前記膨張した前記選択領域の少なくとも一部を研磨またはエッチングによって除去することを特徴とする、請求項1から3の何れか1項に記載の強化ガラス板の製造方法。 The method for producing a tempered glass sheet according to any one of claims 1 to 3, wherein in the planarization step, at least a part of the expanded selected region is removed by polishing or etching.
  5.  前記選択強化工程は、
      前記非選択領域に前記イオンの透過を抑制または遮断するイオン透過防止膜を成膜する成膜工程と、
      前記イオン透過防止膜が形成された前記ガラス板に溶融塩を接触させて前記イオンを交換する選択イオン交換工程と、
      前記選択イオン交換工程の後に、前記イオン透過防止膜を除去する膜除去工程とを備えることを特徴とする、請求項1から4の何れか1項に記載の強化ガラス板の製造方法。
    The selective enhancement step includes:
    A film forming step of forming an ion permeation preventive film for suppressing or blocking permeation of the ions in the non-selected region;
    A selective ion exchange step of exchanging the ions by bringing a molten salt into contact with the glass plate on which the ion permeation prevention film is formed;
    The method for producing a tempered glass sheet according to any one of claims 1 to 4, further comprising a membrane removal step of removing the ion permeation prevention membrane after the selective ion exchange step.
  6.  前記膜除去工程において、前記イオン透過防止膜を研磨またはエッチングによって除去することを特徴とする、請求項5に記載の強化ガラス板の製造方法。 The method for producing a tempered glass sheet according to claim 5, wherein, in the film removal step, the ion permeation preventive film is removed by polishing or etching.
  7.  前記平坦化工程および前記膜除去工程の処理を同一の研磨装置で行うことを特徴とする、請求項6に記載の強化ガラス板の製造方法。 The method for producing a tempered glass sheet according to claim 6, wherein the flattening step and the film removing step are performed by the same polishing apparatus.
  8.  前記非選択領域が前記ガラス板の表裏主面の中央部であることを特徴とする、請求項5から7の何れか1項に記載の強化ガラス板の製造方法。 The method for producing a tempered glass sheet according to any one of claims 5 to 7, wherein the non-selection region is a central portion of the front and back main surfaces of the glass sheet.
  9.  前記ガラス板は、ガラス板組成として質量%で、SiO2 45~75%、Al23 1~30%、Na2O 0~20%、K2O 0~20%を含有するガラス板であることを特徴とする、請求項1から8の何れか1項に記載の強化ガラス板の製造方法。 The glass plate is a glass plate containing, by mass%, SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20% as a glass plate composition. It exists, The manufacturing method of the tempered glass board of any one of Claim 1 to 8 characterized by the above-mentioned.
  10.  ガラス板表層のイオンを交換する強化ガラス板の製造方法であって、
     主面の一部に設定された非選択領域に前記イオンの透過を抑制または遮断するイオン透過防止膜を備えた膜付ガラス板に溶融塩を接触させてイオン交換することにより、前記非選択領域以外の選択領域の厚みを前記非選択領域よりも大きくするとともに、前記選択領域において前記非選択領域よりも深い圧縮応力層を形成する選択強化工程と、
     前記選択強化工程において膨張した前記選択領域の少なくとも一部を除去することにより、当該ガラス板の主面を平坦化する平坦化工程と、を備えることを特徴とする、強化ガラス板の製造方法。
    A method for producing a tempered glass plate for exchanging ions on the surface of a glass plate,
    The non-selection region is obtained by bringing the molten salt into contact with a glass plate with a membrane provided with an ion permeation prevention film that suppresses or blocks the permeation of ions in a non-selection region set on a part of the main surface, thereby performing ion exchange. A selective strengthening step of forming a compressive stress layer deeper than the non-selected region in the selected region, with the thickness of the selected region other than the non-selected region larger
    A method for producing a tempered glass plate, comprising: a step of flattening a main surface of the glass plate by removing at least a part of the selected region expanded in the selective strengthening step.
PCT/JP2017/022203 2016-07-08 2017-06-15 Method for manufacturing reinforced glass plate WO2018008359A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018525997A JPWO2018008359A1 (en) 2016-07-08 2017-06-15 Method of manufacturing tempered glass sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016135681 2016-07-08
JP2016-135681 2016-07-08

Publications (1)

Publication Number Publication Date
WO2018008359A1 true WO2018008359A1 (en) 2018-01-11

Family

ID=60901360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022203 WO2018008359A1 (en) 2016-07-08 2017-06-15 Method for manufacturing reinforced glass plate

Country Status (3)

Country Link
JP (1) JPWO2018008359A1 (en)
TW (1) TW201811691A (en)
WO (1) WO2018008359A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3524581A3 (en) * 2018-02-12 2019-11-20 Samsung Display Co., Ltd Glass article and method for producing the same
US11655178B2 (en) 2019-06-28 2023-05-23 Corning Incorporated Methods and apparatus for manufacturing a glass-based article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088765A (en) * 2009-10-20 2011-05-06 Fukuvi Chemical Industry Co Ltd Method of producing reflection preventive tempered glass
US20120064306A1 (en) * 2010-09-15 2012-03-15 Hen-Ta Kang Method for cutting tempered glass, preparatory structure used in cutting tempered glass, and glass block cut from tempered glass substrate
WO2014156577A1 (en) * 2013-03-25 2014-10-02 日本電気硝子株式会社 Reinforced glass substrate and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088765A (en) * 2009-10-20 2011-05-06 Fukuvi Chemical Industry Co Ltd Method of producing reflection preventive tempered glass
US20120064306A1 (en) * 2010-09-15 2012-03-15 Hen-Ta Kang Method for cutting tempered glass, preparatory structure used in cutting tempered glass, and glass block cut from tempered glass substrate
WO2014156577A1 (en) * 2013-03-25 2014-10-02 日本電気硝子株式会社 Reinforced glass substrate and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3524581A3 (en) * 2018-02-12 2019-11-20 Samsung Display Co., Ltd Glass article and method for producing the same
US11708301B2 (en) 2018-02-12 2023-07-25 Samsung Display Co., Ltd. Glass article and method for producing the same
US11655178B2 (en) 2019-06-28 2023-05-23 Corning Incorporated Methods and apparatus for manufacturing a glass-based article

Also Published As

Publication number Publication date
JPWO2018008359A1 (en) 2019-04-25
TW201811691A (en) 2018-04-01

Similar Documents

Publication Publication Date Title
JP5649592B2 (en) Manufacturing method of glass substrate of cover glass for portable electronic device, glass substrate of cover glass for portable electronic device, and portable electronic device
CN107108347B (en) Method for producing tempered glass sheet, and method for producing tempered glass sheet
JP6313391B2 (en) Glass substrate, cover glass for electronic device, and method for manufacturing glass substrate
EP3589598A2 (en) Asymmetric stress profiles for low warp and high damage resistance glass articles
WO2018066314A1 (en) Method for manufacturing reinforced glass plate, film-coated glass plate, and reinforced glass plate
WO2018008359A1 (en) Method for manufacturing reinforced glass plate
CN108463443B (en) Method for producing tempered glass and device for producing tempered glass
JP6111240B2 (en) Manufacturing method of glass substrate of cover glass for electronic device
JP2018002552A (en) Manufacturing method of reinforced glass and reinforced glass manufacturing method
CN109071332B (en) Tempered glass plate and method for producing tempered glass plate
WO2017026190A1 (en) Method for manufacturing tempered glass substrate, and tempered glass substrate
WO2017221805A1 (en) Reinforced glass production method and reinforced glass production apparatus
WO2018056329A1 (en) Method for producing reinforced glass sheet, glass sheet for reinforcing, and reinforced glass sheet
JP2019001691A (en) Method for manufacturing reinforced glass plate, glass plate for reinforcement and reinforced glass plate
KR102565702B1 (en) Strengthened glass substrate manufacturing method and strengthened glass substrate
JP2018052803A (en) Strengthened glass plate, and production method thereof
JP7004222B2 (en) Manufacturing method of tempered glass plate and tempered glass plate
WO2016185880A1 (en) Chemically strengthened glass, glass article to be chemically strengthened, and chemically strengthened glass production method and cleaving method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018525997

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823966

Country of ref document: EP

Kind code of ref document: A1