JP6870348B2 - Cover glass and glass laminate - Google Patents

Cover glass and glass laminate Download PDF

Info

Publication number
JP6870348B2
JP6870348B2 JP2017015705A JP2017015705A JP6870348B2 JP 6870348 B2 JP6870348 B2 JP 6870348B2 JP 2017015705 A JP2017015705 A JP 2017015705A JP 2017015705 A JP2017015705 A JP 2017015705A JP 6870348 B2 JP6870348 B2 JP 6870348B2
Authority
JP
Japan
Prior art keywords
film
refractive index
glass
index material
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017015705A
Other languages
Japanese (ja)
Other versions
JP2017137235A (en
Inventor
和伸 前重
和伸 前重
信孝 青峰
信孝 青峰
博之 大川
博之 大川
小野田 仁
仁 小野田
佐野 真
真 佐野
裕介 小林
裕介 小林
玉井 喜芳
喜芳 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JP2017137235A publication Critical patent/JP2017137235A/en
Application granted granted Critical
Publication of JP6870348B2 publication Critical patent/JP6870348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class

Description

本発明は、反りを低減し、かつ耐擦傷性に優れたカバーガラス及びガラス積層体に関する。 The present invention relates to a cover glass and a glass laminate having reduced warpage and excellent scratch resistance.

デジタルカメラ、携帯電話または携帯情報端末PDA(Personal Digital Assistants)等に用いられるフラットパネルディスプレイ装置やタッチパネルディスプレイ装置において、ディスプレイの保護および美観を高めるために、画像表示部分よりも広い領域となるように薄い板状のカバーガラスをディスプレイの前面に配置することが行われている。ガラスは理論強度が高いものの、傷が付くことで強度が大幅に低下するため、強度が求められるカバーガラスには、イオン交換等によりガラス表裏面に圧縮応力層を形成した化学強化ガラスが用いられている。 In flat panel display devices and touch panel display devices used for digital cameras, mobile phones, personal digital assistants (PDAs), etc., the area should be wider than the image display area in order to protect the display and enhance the aesthetic appearance. A thin plate-shaped cover glass is placed in front of the display. Although glass has a high theoretical strength, its strength drops significantly when it is scratched. Therefore, for cover glass that requires strength, chemically strengthened glass in which a compressive stress layer is formed on the front and back surfaces of the glass by ion exchange or the like is used. ing.

カバーガラスの表面に高い硬度や耐擦傷性が求められる場合、耐衝撃性を有する層がその最表層に成膜されることがある。例えば、強化ガラスの表面に非対称耐衝撃性を有するコーティングを備えた強化ガラス積層体が知られている(特許文献1)。 When the surface of the cover glass is required to have high hardness and scratch resistance, a layer having impact resistance may be formed on the outermost layer thereof. For example, a tempered glass laminate having a coating having asymmetric impact resistance on the surface of tempered glass is known (Patent Document 1).

特表2015−507588号公報Special Table 2015-507588

特許文献1に記載の強化ガラス積層体は自動車又は航空機の窓への応用を想定しており、厚いガラス板が用いられる。一方で、該強化ガラス積層体を、例えばデジタルカメラ、携帯電話または携帯情報端末PDAといった電子端末用カバーガラスに適用しようとすると、ガラスの厚みを薄くする必要があり、得られる強化ガラス積層体には反りが生じてしまう。 The tempered glass laminate described in Patent Document 1 is intended for application to windows of automobiles or aircraft, and a thick glass plate is used. On the other hand, if the tempered glass laminate is to be applied to a cover glass for an electronic terminal such as a digital camera, a mobile phone or a personal digital assistant, the thickness of the glass needs to be reduced, and the resulting tempered glass laminate needs to be thinned. Will warp.

そこで本発明では、耐擦傷性に優れるだけでなく、反りも低減されたカバーガラス及びガラス積層体を提供することを目的とする。 Therefore, an object of the present invention is to provide a cover glass and a glass laminate having not only excellent scratch resistance but also reduced warpage.

本発明者らは鋭意研鑽を積んだ結果、薄いガラス板であっても、該ガラス板の少なくとも一方の表面に、高屈折率材料からなる膜と低屈折率材料からなる膜を交互に複数層積層することにより、反りが低減され、かつ耐擦傷性に優れたカバーガラス及びガラス積層体が得られることを見出し、本発明を完成するに至った。 As a result of diligent study, the present inventors have alternately layered a plurality of films made of a high refractive index material and a film made of a low refractive index material on at least one surface of the thin glass plate. It has been found that by laminating, a cover glass and a glass laminate having reduced warpage and excellent scratch resistance can be obtained, and the present invention has been completed.

すなわち、本発明は下記<1>〜<19>に関するものである。
<1>ガラス板と、前記ガラス板の少なくとも一方の表面に積層された無機膜とを含むカバーガラスであって、前記ガラス板は厚みが1mm以下であり、前記無機膜は波長632nmにおける屈折率が1.80以上の高屈折率材料からなる膜と、前記屈折率が1.80未満の低屈折率材料からなる膜とが交互に6層以上積層され、前記高屈折率材料からなる膜及び前記低屈折率材料からなる膜は、それぞれ単膜の厚みが5〜250nmであり、前記6層以上積層された合計の厚みが850〜6000nmの積層膜であり、かつ前記ガラス板単独の反り量と、前記無機膜が積層されたカバーガラスの反り量との反り変化量が30%以下であるカバーガラス。
<2>ガラス板と、前記ガラス板の少なくとも一方の表面に積層された無機膜とを含むカバーガラスであって、前記ガラス板は厚みが1mm以下であり、前記無機膜は波長632nmにおける屈折率が1.80以上の高屈折率材料からなる膜と、前記屈折率が1.80未満の低屈折率材料からなる膜とが交互に6層以上積層され、前記高屈折率材料からなる膜及び前記低屈折率材料からなる膜は、それぞれ単膜の厚みが5〜250nmであり、前記無機膜の合計厚みが850〜6000nmであり、かつ水平な定盤上に、前記カバーガラスの一方の主平面が接するように載置して、前記カバーガラスの浮き上がりである前記カバーガラスの四隅における定盤からの反り量を、隙間ゲージを用いて、20℃で測定した際、反り量の平均値が400μm以下であるカバーガラス。
<3>前記高屈折率材料が窒化ケイ素である、<1>又は<2>に記載のカバーガラス。<4>前記低屈折率材料が酸化ケイ素である、<1>〜<3>のいずれか1に記載のカバーガラス。
<5>前記低屈折率材料からなる膜の単膜の厚みが、前記高屈折率材料からなる膜の単膜の厚みよりも薄い、<1>〜<4>のいずれか1に記載のカバーガラス。
<6>前記ガラス板の最表面に前記低屈折率材料からなる膜を介して前記高屈折率材料からなる膜が積層された、<1>〜<5>のいずれか1に記載のカバーガラス。
<7>前記無機膜の合計厚みが850〜3000nmである、<1>〜<6>のいずれか1に記載のカバーガラス。
<8>前記ガラス板が、表層に圧縮応力層を有する化学強化ガラス板である、<1>〜<7>のいずれか1に記載のカバーガラス。
<9>前記無機膜の表面にさらに防汚膜を備える、<1>〜<8>のいずれか1に記載のカバーガラス。
<10>電子端末用である、<1>〜<9>のいずれか1に記載のカバーガラス。
<11>ガラス板と、前記ガラス板の少なくとも一方の表面に積層された無機膜とを含むガラス積層体であって、前記無機膜は波長632nmにおける屈折率が1.80以上の高屈折率材料からなる膜と、前記屈折率が1.80未満の低屈折率材料からなる膜とが交互に6層以上積層され、前記高屈折率材料からなる膜及び前記低屈折率材料からなる膜は、それぞれ単膜の厚みが5〜250nmであり、前記無機膜の合計厚みが850〜6000nmであり、かつ前記無機膜の合計厚みと前記無機膜の合計応力値とを掛け合わせた値の絶対値が220×10nm・MPa以下であるガラス積層体。
<12>ガラス板と、前記ガラス板の少なくとも一方の表面に積層された無機膜とを含むガラス積層体であって、前記無機膜は波長632nmにおける屈折率が1.80以上の高屈折率材料からなる膜と、前記屈折率が1.80未満の低屈折率材料からなる膜とが交互に6層以上積層され、前記高屈折率材料からなる膜及び前記低屈折率材料からなる膜は、それぞれ単膜の厚みが5〜250nmであり、前記無機膜の合計厚みが850〜6000nmであり、かつ前記無機膜の合計応力値の絶対値が80MPa以下であるガラス積層体。
<13>前記高屈折率材料からなる膜の応力値の絶対値は、前記低屈折率材料からなる膜の応力値の絶対値よりも小さい<11>又は<12>に記載のガラス積層体。
<14>前記高屈折率材料からなる膜の応力値は、前記低屈折率材料からなる膜の応力値よりも大きい<11>〜<13>のいずれか1に記載のガラス積層体。
<15>前記無機膜の合計厚みと前記無機膜の合計応力値とを掛け合わせた値の絶対値が100×10nm・MPa以下である<11>〜<14>のいずれか1に記載のガラス積層体。
<16>前記高屈折率材料からなる膜はそれぞれ単膜の応力値の絶対値が30〜250MPaである、<11>〜<15>のいずれか1に記載のガラス積層体。
<17>前記低屈折率材料からなる膜はそれぞれ単膜の応力値の絶対値が100〜300MPaである、<11>〜<16>のいずれか1に記載のガラス積層体。
<18>前記無機膜の合計応力値の絶対値が35MPa以下である、<11>〜<17>のいずれか1に記載のガラス積層体。
<19>前記無機膜の合計応力値の絶対値が25MPa以下である、<11>〜<18>のいずれか1に記載のガラス積層体。
That is, the present invention relates to the following <1> to <19>.
<1> A cover glass including a glass plate and an inorganic film laminated on at least one surface of the glass plate, the glass plate having a thickness of 1 mm or less, and the inorganic film having a refractive index at a wavelength of 632 nm. 6 or more layers of a film made of a high refractive index material having a refractive index of 1.80 or more and a film made of a low refractive index material having a refractive index of less than 1.80 are alternately laminated, and the film made of the high refractive index material and the film. Each of the films made of the low refractive index material has a single film thickness of 5 to 250 nm, the total thickness of the six or more layers laminated is 850 to 6000 nm, and the amount of warpage of the glass plate alone. And the cover glass in which the amount of change in warpage with the amount of warpage of the cover glass on which the inorganic film is laminated is 30% or less.
<2> A cover glass including a glass plate and an inorganic film laminated on at least one surface of the glass plate, the glass plate having a thickness of 1 mm or less, and the inorganic film having a refractive index at a wavelength of 632 nm. A film made of a high refractive index material having a refractive index of 1.80 or more and a film made of a low refractive index material having a refractive index of less than 1.80 are alternately laminated in 6 or more layers, and the film made of the high refractive index material and the film made of the high refractive index material and Each of the films made of the low refractive index material has a single film thickness of 5 to 250 nm, a total thickness of the inorganic film of 850 to 6000 nm, and one main part of the cover glass on a horizontal platen. When placed so that the flat surfaces are in contact with each other and the amount of warpage from the platen at the four corners of the cover glass, which is the lift of the cover glass, is measured at 20 ° C. using a gap gauge, the average value of the amount of warpage is Cover glass of 400 μm or less.
<3> The cover glass according to <1> or <2>, wherein the high refractive index material is silicon nitride. <4> The cover glass according to any one of <1> to <3>, wherein the low refractive index material is silicon oxide.
<5> The cover according to any one of <1> to <4>, wherein the thickness of the single film of the film made of the low refractive index material is thinner than the thickness of the single film of the film made of the high refractive index material. Glass.
<6> The cover glass according to any one of <1> to <5>, wherein the film made of the high refractive index material is laminated on the outermost surface of the glass plate via the film made of the low refractive index material. ..
<7> The cover glass according to any one of <1> to <6>, wherein the total thickness of the inorganic film is 850 to 3000 nm.
<8> The cover glass according to any one of <1> to <7>, wherein the glass plate is a chemically strengthened glass plate having a compressive stress layer on the surface layer.
<9> The cover glass according to any one of <1> to <8>, further comprising an antifouling film on the surface of the inorganic film.
<10> The cover glass according to any one of <1> to <9>, which is for an electronic terminal.
<11> A glass laminate containing a glass plate and an inorganic film laminated on at least one surface of the glass plate, wherein the inorganic film is a high refractive index material having a refractive index of 1.80 or more at a wavelength of 632 nm. A film made of the above-mentioned high-refractive-index material and a film made of the low-refractive-index material having a refractive index of less than 1.80 are alternately laminated in 6 or more layers, and the film made of the high-refractive-index material and the film made of the low-refractive-index material are formed. The thickness of each single film is 5 to 250 nm, the total thickness of the inorganic film is 850 to 6000 nm, and the absolute value of the product of the total thickness of the inorganic film and the total stress value of the inorganic film is the absolute value. 220 × 10 3 nm · MPa or less glass laminate.
<12> A glass laminate containing a glass plate and an inorganic film laminated on at least one surface of the glass plate, wherein the inorganic film is a high refractive index material having a refractive index of 1.80 or more at a wavelength of 632 nm. The film made of the high refractive index material and the film made of the low refractive index material having a refractive index of less than 1.80 are alternately laminated in 6 or more layers, and the film made of the high refractive index material and the film made of the low refractive index material are formed. A glass laminate having a single film thickness of 5 to 250 nm, a total thickness of the inorganic film of 850 to 6000 nm, and an absolute value of the total stress value of the inorganic film of 80 MPa or less.
<13> The glass laminate according to <11> or <12>, wherein the absolute value of the stress value of the film made of the high refractive index material is smaller than the absolute value of the stress value of the film made of the low refractive index material.
<14> The glass laminate according to any one of <11> to <13>, wherein the stress value of the film made of the high refractive index material is larger than the stress value of the film made of the low refractive index material.
<15> The description in any one of <11> to <14>, wherein the absolute value of the value obtained by multiplying the total thickness of the inorganic film and the total stress value of the inorganic film is 100 × 10 3 nm · MPa or less. Glass laminate.
<16> The glass laminate according to any one of <11> to <15>, wherein each of the films made of the high refractive index material has an absolute value of the stress value of a single film of 30 to 250 MPa.
<17> The glass laminate according to any one of <11> to <16>, wherein each of the films made of the low refractive index material has an absolute value of the stress value of a single film of 100 to 300 MPa.
<18> The glass laminate according to any one of <11> to <17>, wherein the absolute value of the total stress value of the inorganic film is 35 MPa or less.
<19> The glass laminate according to any one of <11> to <18>, wherein the absolute value of the total stress value of the inorganic film is 25 MPa or less.

本発明によれば、高屈折率材料からなる膜と低屈折率材料からなる膜を交互に所定量積層することにより、ガラスの反りを低減し、該耐擦傷性の効果を維持し、かつ低反射性で光学特性にも優れたカバーガラス及びガラス積層体を提供することができる。 According to the present invention, by alternately laminating a predetermined amount of a film made of a high refractive index material and a film made of a low refractive index material, the warp of the glass is reduced, the effect of the scratch resistance is maintained, and the effect is low. It is possible to provide a cover glass and a glass laminate having excellent reflectivity and optical characteristics.

図1は、従来のガラス積層体の構造を示す断面図である。FIG. 1 is a cross-sectional view showing the structure of a conventional glass laminate. 図2は、本発明に係るカバーガラスの一態様として、高屈折率材料からなる膜と低屈折率材料からなる膜とが交互に9層積層された構造を示す断面図である。FIG. 2 is a cross-sectional view showing a structure in which nine layers of a film made of a high-refractive index material and a film made of a low-refractive index material are alternately laminated as one aspect of the cover glass according to the present invention.

以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。
また本明細書において数値範囲を示す「〜」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。
Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be arbitrarily modified and carried out without departing from the gist of the present invention.
Further, in the present specification, "~" indicating a numerical range is used to mean that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value.

<カバーガラス・ガラス積層体>
本発明のカバーガラス及びガラス積層体は、ガラス板と、前記ガラス板の少なくとも一方の表面に積層された無機膜とを含む。
前記ガラス板は厚みが1mm以下である。
前記無機膜は高屈折率材料からなる膜と低屈折材料からなる膜とが交互に6層以上積層されており、高屈折率材料とは波長632nmにおける屈折率が1.80以上であり、低屈折率材料とは前記屈折率が1.80未満の材料である。
前記高屈折率材料からなる膜及び前記低屈折率材料からなる膜は、それぞれ単膜の厚みが5〜250nmであり、前記6層以上積層された合計の厚みが850〜6000nmの積層膜である。
本発明のカバーガラスは、前記無機膜が積層される前の前記ガラス板単独の反り量と、前記無機膜が積層されたカバーガラスの反り量との反り変化量は30%以下である。
また、本発明のカバーガラスは、水平な定盤上に、カバーガラスの一方の主平面が接するように載置して、カバーガラスの浮き上がりであるカバーガラスの四隅における定盤からの反り量を、隙間ゲージを用いて、20℃で測定した際、反り量の平均値が400μm以下である。
さらに、本発明のガラス積層体は、前記無機膜の合計厚みと前記無機膜の合計応力値とを掛け合わせた値の絶対値が220×10nm・MPa以下であり、前記無機膜の合計応力値の絶対値が80MPa以下である。
<Cover glass / glass laminate>
The cover glass and the glass laminate of the present invention include a glass plate and an inorganic film laminated on at least one surface of the glass plate.
The glass plate has a thickness of 1 mm or less.
In the inorganic film, a film made of a high refractive index material and a film made of a low refractive index material are alternately laminated in 6 or more layers, and the high refractive index material has a refractive index of 1.80 or more at a wavelength of 632 nm, which is low. The refractive index material is a material having a refractive index of less than 1.80.
The film made of the high refractive index material and the film made of the low refractive index material each have a single film thickness of 5 to 250 nm, and the total thickness of the six or more layers laminated is 850 to 6000 nm. ..
In the cover glass of the present invention, the amount of change in warpage between the amount of warpage of the glass plate alone before the inorganic film is laminated and the amount of warpage of the cover glass on which the inorganic film is laminated is 30% or less.
Further, the cover glass of the present invention is placed on a horizontal surface plate so that one main plane of the cover glass is in contact with the surface plate, and the amount of warpage from the surface plate at the four corners of the cover glass, which is the lift of the cover glass, is measured. When measured at 20 ° C. using a feeler gauge, the average value of the amount of warpage is 400 μm or less.
Further, in the glass laminate of the present invention, the absolute value of the value obtained by multiplying the total thickness of the inorganic film and the total stress value of the inorganic film is 220 × 10 3 nm · MPa or less, and the total of the inorganic films. The absolute value of the stress value is 80 MPa or less.

(ガラス板)
本発明に係るカバーガラス及びガラス積層体を構成するガラス板は、ガラス板の厚みが1mm以下である。厚みが1mm超となると、ガラス板そのものの剛性が高く、そもそも反りが生じにくい。ガラス板の厚みは、カバーガラスの重量を低減できるだけでなく、無機膜のコーティング等による反り変化量の低減効果を得やすい点から0.8mm以下が好ましい。
また下限は0.2mm以上が好ましく、0.3mm以上がより好ましい。
(Glass plate)
The thickness of the glass plate constituting the cover glass and the glass laminate according to the present invention is 1 mm or less. When the thickness exceeds 1 mm, the rigidity of the glass plate itself is high, and warpage is unlikely to occur in the first place. The thickness of the glass plate is preferably 0.8 mm or less because not only the weight of the cover glass can be reduced but also the effect of reducing the amount of change in warpage due to the coating of the inorganic film or the like can be easily obtained.
The lower limit is preferably 0.2 mm or more, more preferably 0.3 mm or more.

ガラス板の種類は特に限定されないが、化学強化(イオン交換)処理を行い、表面に圧縮応力層を有する化学強化ガラス板とすることが好ましい。イオン交換を行う場合、ガラス板はリチウム及びナトリウムの少なくともいずれか一方を含むことが好ましく、ナトリウムを含むことがより好ましい。これは、化学強化処理におけるイオン交換する工程において、ガラスの表面をイオン交換し、圧縮応力が残留する表面層を形成させるためである。
具体的には、ガラス転移点以下の温度でイオン交換によりガラス板表面のイオン半径が小さなアルカリ金属イオン(Liイオン、Naイオン)をイオン半径のより大きいアルカリイオン(Naイオン、Kイオン)に置換する。これにより、ガラスの表面に圧縮応力が残留し、ガラス板の面強度が向上する。
The type of the glass plate is not particularly limited, but it is preferable to perform a chemical strengthening (ion exchange) treatment to obtain a chemically strengthened glass plate having a compressive stress layer on the surface. When performing ion exchange, the glass plate preferably contains at least one of lithium and sodium, and more preferably sodium. This is because in the process of ion exchange in the chemical strengthening treatment, the surface of the glass is ion-exchanged to form a surface layer in which compressive stress remains.
Specifically, alkali metal ions (Li ions, Na ions) having a small ionic radius on the surface of the glass plate are replaced with alkaline ions (Na ions, K ions) having a larger ionic radius by ion exchange at a temperature below the glass transition point. To do. As a result, compressive stress remains on the surface of the glass, and the surface strength of the glass plate is improved.

ガラス板のガラス組成は特に限定されないが、例えばアルミシリケートガラス、アルミノボロシリケートガラス又はソーダライムガラス等を好ましく用いることができる。
具体的なガラス組成を以下に示す。
The glass composition of the glass plate is not particularly limited, but for example, aluminum silicate glass, aluminum noborosilicate glass, soda lime glass, or the like can be preferably used.
The specific glass composition is shown below.

(i)酸化物基準のモル%で表示した組成で、SiOを50〜80%、Alを2〜25%、LiOを0〜10%、NaOを0〜18%、KOを0〜10%、MgOを0〜15%、CaOを0〜5%およびZrOを0〜5%を含むガラス、
(ii)酸化物基準のモル%で表示した組成が、SiOを50〜74%、Alを1〜10%、NaOを6〜14%、KOを3〜11%、MgOを2〜15%、CaOを0〜6%およびZrOを0〜5%含有し、SiOおよびAlの含有量の合計が75%以下、NaOおよびKOの含有量の合計が12〜25%、MgOおよびCaOの含有量の合計が7〜15%であるガラス、
(iii)酸化物基準のモル%で表示した組成が、SiOを68〜80%、Alを4〜10%、NaOを5〜15%、KOを0〜1%、MgOを4〜15%およびZrOを0〜1%含有するガラス、
(iv)酸化物基準のモル%で表示した組成が、SiOを67〜75%、Alを0〜4%、NaOを7〜15%、KOを1〜9%、MgOを6〜14%およびZrOを0〜1.5%含有し、SiOおよびAlの含有量の合計が71〜75%、NaOおよびKOの含有量の合計が12〜20%であり、CaOを含有する場合その含有量が1%未満であるガラス、
(v)酸化物基準の質量%で表示した組成が、SiOを65〜75%、Alを0.1〜5%、MgOを1〜6%、CaOを1〜15%含有し、NaO+KOが10〜18%であるガラス、
(vi)酸化物基準の質量%で表示した組成が、SiOを65〜72%、Alを3.4〜8.6%、MgOを3.3〜6%、CaOを6.5〜9%、NaOを13〜16%、KOを0〜1%、TiOを0〜0.2%、Feを0.01〜0.15%、SOを0.02〜0.4%含有し、(NaO+KO)/Alが1.8〜5.0であるガラス、
(vii)酸化物基準の質量%で表示した組成が、SiOを60〜72%、Alを1〜10%、MgOを5〜12%、CaOを0.1〜5%、NaOを13〜19%、KOを0〜5%含有し、RO/(RO+RO)が0.20以上、0.42以下(式中、ROとはアルカリ土類金属酸化物、ROはアルカリ金属酸化物を示す。)であるガラス。
(I) Composition expressed in mol% based on oxide, SiO 2 is 50 to 80%, Al 2 O 3 is 2 to 25%, Li 2 O is 0 to 10%, and Na 2 O is 0 to 18%. , K 2 O 0-10%, MgO 0-15%, CaO 0-5% and ZrO 2 0-5% glass,
(Ii) The composition expressed in mol% based on oxide is 50 to 74% for SiO 2 , 1 to 10% for Al 2 O 3 , 6 to 14% for Na 2 O, and 3 to 11% for K 2 O. , MgO 2-15%, CaO 0-6% and ZrO 2 0-5% , total SiO 2 and Al 2 O 3 content 75% or less, Na 2 O and K 2 O Glasses with a total content of 12-25% and a total content of MgO and CaO of 7-15%,
(Iii) The composition expressed in mol% based on oxide is 68 to 80% for SiO 2 , 4 to 10% for Al 2 O 3 , 5 to 15% for Na 2 O, and 0 to 1% for K 2 O. , Glass containing 4-15% MgO and 0-1% ZrO 2,
(Iv) The composition expressed in mol% based on oxide is 67 to 75% for SiO 2 , 0 to 4% for Al 2 O 3 , 7 to 15% for Na 2 O, and 1 to 9% for K 2 O. , MgO 6-14% and ZrO 2 0-1.5%, SiO 2 and Al 2 O 3 total content 71-75%, Na 2 O and K 2 O content total Is 12 to 20%, and when CaO is contained, the content of the glass is less than 1%.
(V) The composition expressed in mass% based on oxide contains 65 to 75% of SiO 2 , 0.1 to 5% of Al 2 O 3 , 1 to 6% of MgO, and 1 to 15% of CaO. , Glass with 10-18% Na 2 O + K 2 O,
(Vi) The composition expressed in terms of mass% based on oxides is 65 to 72% for SiO 2 , 3.4 to 8.6% for Al 2 O 3 , 3.3 to 6% for MgO, and 6. 5-9%, Na 2 O 13-16%, K 2 O 0-1%, TiO 2 0-0.2%, Fe 2 O 3 0.01-0.15%, SO 3 A glass containing 0.02 to 0.4% and having (Na 2 O + K 2 O) / Al 2 O 3 of 1.8 to 5.0.
The composition expressed in mass% based on (vii) oxide is 60 to 72% for SiO 2 , 1 to 10% for Al 2 O 3 , 5 to 12% for MgO, 0.1 to 5% for CaO, and Na. It contains 13 to 19% of 2 O and 0 to 5% of K 2 O, and RO / (RO + R 2 O) is 0.20 or more and 0.42 or less (RO is an alkaline earth metal oxide in the formula. R 2 O is an alkali metal oxides.) glass is.

ガラス板の製造方法は特に限定されず、所望のガラス原料を連続溶融炉に投入し、ガラス原料を好ましくは1500〜1600℃で加熱溶融し、清澄した後、成形装置に供給した上で溶融ガラスを板状に成形し、徐冷することにより製造することができる。 The method for producing the glass plate is not particularly limited, and a desired glass raw material is put into a continuous melting furnace, the glass raw material is preferably heated and melted at 1500 to 1600 ° C., clarified, and then supplied to a molding apparatus and then molten glass. Can be manufactured by molding the glass into a plate shape and slowly cooling the glass.

なお、ガラスの成形には種々の方法を採用することができる。例えば、ダウンドロー法(例えば、オーバーフローダウンドロー法、スロットダウン法およびリドロー法等)、フロート法、ロールアウト法およびプレス法等の様々な成形方法を採用することができる。 In addition, various methods can be adopted for forming the glass. For example, various molding methods such as a down draw method (for example, an overflow down draw method, a slot down method, a redraw method, etc.), a float method, a rollout method, a press method, and the like can be adopted.

(高屈折率材料)
本発明に係るカバーガラス及びガラス積層体は、前記ガラス板の少なくとも一方の表面に無機膜が積層されている。
無機膜は高屈折率材料からなる膜と低屈折率材料からなる膜が交互に6層以上積層された膜であるが、高屈折率材料とは、波長632nmにおける屈折率が1.80以上であればよく、1.85以上が好ましく、1.90以上がより好ましく、1.92以上がさらに好ましく、1.95以上がことさらに好ましく、1.97以上が光学調整の点から特に好ましい。
(High refractive index material)
In the cover glass and the glass laminate according to the present invention, an inorganic film is laminated on at least one surface of the glass plate.
The inorganic film is a film in which 6 or more layers of a film made of a high refractive index material and a film made of a low refractive index material are alternately laminated. The high refractive index material has a refractive index of 1.80 or more at a wavelength of 632 nm. It may be preferable, 1.85 or more is preferable, 1.90 or more is more preferable, 1.92 or more is further preferable, 1.95 or more is further preferable, and 1.97 or more is particularly preferable from the viewpoint of optical adjustment.

高屈折率材料としては、Si、Al、Ti、Ta、Hf及びZrからなる群より選ばれる1以上の窒化物、酸窒化物および酸化物が挙げられる。これらは単独で用いても、2種以上を用いてもよい。
中でも、硬度が高く、得られるカバーガラスの耐擦傷性が向上することから窒化ケイ素(SiN)がより好ましい。なお、窒化ケイ素の波長632nmにおける屈折率は1.95である。なお、本発明における屈折率はエリプソメトリー法により測定することができる。
Examples of the high refractive index material include one or more nitrides, acid nitrides and oxides selected from the group consisting of Si, Al, Ti, Ta, Hf and Zr. These may be used alone or in combination of two or more.
Among them, high hardness, silicon nitride since the scratch resistance of the cover glass to be obtained is improved (SiN X) is more preferable. The refractive index of silicon nitride at a wavelength of 632 nm is 1.95. The refractive index in the present invention can be measured by an ellipsometry method.

高屈折率材料からなる膜(高屈膜)は、単膜で厚み5〜250nmの膜であり、3層以上積層される。高屈膜の単膜の厚みは、断面SEM観察により測定することができる。 The film (high-refractive-index film) made of a high-refractive index material is a single film having a thickness of 5 to 250 nm, and three or more layers are laminated. The thickness of the single film of the hyperflexible film can be measured by cross-sectional SEM observation.

高屈膜の成膜方法は特に制限されず、例えばスパッタ法や後反応スパッタ法等を用いることができる。後反応スパッタ法としては、例えば、ラジカルアシストスパッタ法(米国特許第6103320号明細書参照)やメタモード法(特許第5783613号公報参照)等が挙げられる。後反応スパッタ法だと、単膜ごとに応力の種類(圧縮応力、引張応力)や該応力の大きさを調整できることからより好ましい。 The method for forming the high bending film is not particularly limited, and for example, a sputtering method, a post-reaction sputtering method, or the like can be used. Examples of the post-reaction sputtering method include a radical assist sputtering method (see US Pat. No. 6,103,320) and a metamode method (see US Pat. No. 5,7836313). The post-reaction sputtering method is more preferable because the type of stress (compressive stress, tensile stress) and the magnitude of the stress can be adjusted for each single film.

例えば窒化ケイ素膜を成膜する場合には、シリコンターゲットとしてp−Siを用い、窒素雰囲気下でスパッタリングを行う。スパッタリングの成膜時間やスパッタ電力、ガス流量、基板温度等を変えることにより、得られる膜の膜厚や結晶構造、特性等が変化するので、適宜調整して最適な条件にて行う。 For example, when forming a silicon nitride film, p—Si is used as a silicon target and sputtering is performed in a nitrogen atmosphere. The film thickness, crystal structure, characteristics, etc. of the obtained film change by changing the sputtering film formation time, sputtering power, gas flow rate, substrate temperature, etc., so adjust appropriately and perform under the optimum conditions.

(低屈折率材料)
低屈折率材料からなる膜(低屈膜)は低反射特性に寄与する。また、高屈膜と低屈膜の界面で傷の進行を止めることも可能であることから、カバーガラスの耐擦傷性の一層の向上の点からも好ましい。
低屈折率材料は波長632nmにおける屈折率が、前記高屈折率材料よりも小さければよいことから1.80未満となるが、該屈折率は1.50以下が光学特性調整の点から好ましく、1.48以下がより好ましく、1.45以下がさらに好ましく、1.40以下がことさらに好ましく、1.35以下が特に好ましい。
(Low refractive index material)
A film made of a low refractive index material (low bending film) contributes to low reflection characteristics. Further, since it is possible to stop the progress of scratches at the interface between the high flexure film and the low flexure film, it is also preferable from the viewpoint of further improving the scratch resistance of the cover glass.
The low refractive index material has a refractive index at a wavelength of 632 nm, which is less than 1.80 because it may be smaller than that of the high refractive index material. However, the refractive index of 1.50 or less is preferable from the viewpoint of adjusting optical characteristics. It is more preferably .48 or less, further preferably 1.45 or less, further preferably 1.40 or less, and particularly preferably 1.35 or less.

低屈折率材料としては、Si、Al及びZrからなる群より選ばれる1以上の酸化物が挙げられる。これらは単独で用いても、2種以上を用いてもよい。
中でも、得られるカバーガラスの反射率をより低下できることから酸化ケイ素(SiO)、酸化アルミニウム(Al)がより好ましい。なお、酸化ケイ素の波長632nmにおける屈折率は1.47であり、酸化アルミニウムの波長632nmにおける屈折率は1.67である。
Examples of the low refractive index material include one or more oxides selected from the group consisting of Si, Al and Zr. These may be used alone or in combination of two or more.
Of these, silicon oxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) are more preferable because the reflectance of the obtained cover glass can be further reduced. The refractive index of silicon oxide at a wavelength of 632 nm is 1.47, and the refractive index of aluminum oxide at a wavelength of 632 nm is 1.67.

低屈膜は、単膜での厚みが5〜250nmの膜が3層以上積層される。低屈膜の単膜の厚みは高屈膜の単膜の厚みよりも薄いことが、反りをより低減できることから好ましい。低屈膜の単膜の厚みは、単膜だけであれば、接触式膜厚計や断面SEM観察、積層の場合は、エリプソメトリー法による測定等により測定することができる。 As the low bending film, three or more single films having a thickness of 5 to 250 nm are laminated. It is preferable that the thickness of the single film of the low bending film is thinner than the thickness of the single film of the high bending film because the warpage can be further reduced. The thickness of the single film of the low bending film can be measured by a contact type film thickness meter or cross-sectional SEM observation if it is only a single film, or by measurement by an ellipsometry method in the case of lamination.

低屈膜の成膜方法は特に制限されず、例えばスパッタ法や後反応スパッタ法等を用いることができる。後反応スパッタ法だと、単膜ごとに応力の種類(圧縮応力、引張応力)や該応力の大きさを調整できることからより好ましい。 The method for forming the low bending film is not particularly limited, and for example, a sputtering method, a post-reaction sputtering method, or the like can be used. The post-reaction sputtering method is more preferable because the type of stress (compressive stress, tensile stress) and the magnitude of the stress can be adjusted for each single film.

例えば酸化ケイ素膜を成膜する場合には、シリコンターゲットとしてp−Siを用い、酸素雰囲気下でスパッタリングを行う。スパッタリングの成膜時間やスパッタ電力、ガス流量、基板温度等を変えることにより、得られる膜の膜厚や結晶構造、特性等が変化するので、適宜調整して最適な条件にて行う。 For example, when forming a silicon oxide film, p—Si is used as a silicon target and sputtering is performed in an oxygen atmosphere. The film thickness, crystal structure, characteristics, etc. of the obtained film change by changing the sputtering film formation time, sputtering power, gas flow rate, substrate temperature, etc., so adjust appropriately and perform under the optimum conditions.

また、後反応スパッタ法を用いて、例えば高屈膜を引張応力層とし、低屈膜を圧縮応力層として成膜することにより、該高屈膜の引張応力と該低屈膜の圧縮応力とが互いに相殺され、反りを顕著に抑えたカバーガラス及びガラス積層体を得ることができ、反りが一切ないカバーガラス及びガラス積層体を得ることも可能であると考えられる。 Further, by using the post-reaction sputtering method, for example, by forming a film with a high flexure film as a tensile stress layer and a low flexure film as a compressive stress layer, the tensile stress of the high flexure film and the compressive stress of the low flexure film can be obtained. It is considered that it is possible to obtain a cover glass and a glass laminate in which the warpage is remarkably suppressed by canceling each other out, and it is also possible to obtain a cover glass and a glass laminate without any warpage.

(無機膜)
高屈膜と低屈膜は交互に積層される(図2参照)。これにより、積層された界面で傷の進行が止まりやすく耐擦傷性が向上する。さらに、ガラス板の最表面に低屈膜を積層し、これを介して高屈膜が積層されることが、膜の密着性が良好となることから好ましい。
(Inorganic film)
The high flexor membrane and the low flexor membrane are laminated alternately (see FIG. 2). As a result, the progress of scratches tends to stop at the laminated interface, and scratch resistance is improved. Further, it is preferable that a low bending film is laminated on the outermost surface of the glass plate and a high bending film is laminated through the low bending film because the adhesion of the film is improved.

高屈膜及び低屈膜の単膜の膜厚(単膜の厚み)が250nm超であると、単膜当たりの圧縮応力又は引張応力が大きくなり、ガラス板に反りが生じやすくなる。一方、単膜の膜厚を250nm以下とすると、単膜当たりの圧縮応力又は引張応力は小さくなり、それら単膜が複数層積層されても、ガラス板に反りが生じにくい。すなわち、厚み250nm以下の単膜を複数積層して総厚みを所定の厚みにした場合の積層膜全体の圧縮応力又は引張応力の値と、単膜(1層)で同じ所定の厚みにした場合(図1参照)の高屈膜又は低屈膜の圧縮応力又は引張応力の値とでは、複数層積層した本発明における無機膜の方が格段に小さな値となり、ガラス板の反りを減少する、または反りをなくすことができる。
また、例えば低屈膜が圧縮応力層である場合には、高屈膜を引張応力層とすることによって、互いの応力を打ち消すような力が働き、カバーガラスの反りをさらに低減できることからより好ましい。
When the film thickness (thickness of the single film) of the high bending film and the low bending film is more than 250 nm, the compressive stress or the tensile stress per single film becomes large, and the glass plate tends to warp. On the other hand, when the film thickness of the single film is 250 nm or less, the compressive stress or tensile stress per single film becomes small, and even if a plurality of these single films are laminated, the glass plate is less likely to warp. That is, when a plurality of single films having a thickness of 250 nm or less are laminated and the total thickness is set to a predetermined thickness, the value of the compressive stress or tensile stress of the entire laminated film is set to the same predetermined thickness as the single film (one layer). Regarding the values of compressive stress or tensile stress of the high-flexure film or low-flexure film (see FIG. 1), the inorganic film in the present invention in which a plurality of layers are laminated has a significantly smaller value and reduces the warp of the glass plate. Or the warp can be eliminated.
Further, for example, when the low bending film is a compressive stress layer, it is more preferable to use the high bending film as a tensile stress layer because a force for canceling each other's stress acts and the warp of the cover glass can be further reduced. ..

無機膜は、単膜を6層以上積層し、合計の膜厚(無機膜の合計厚み)が850〜6000nmの積層膜である。かかる膜数と膜厚にすることにより、優れた耐擦傷性を得ることができる。
高屈膜と低屈膜の合計の積層数は、界面による傷進展抑制効果の点から20層以上(高屈膜と低屈膜がそれぞれ10層以上)が好ましく、40層以上(高屈膜と低屈膜がそれぞれ20層以上)がより好ましい。また上限は通常100層以下(高屈膜と低屈膜がそれぞれ50層以下)である。
The inorganic film is a laminated film in which 6 or more single films are laminated and the total film thickness (total thickness of the inorganic films) is 850 to 6000 nm. By setting the number and film thickness to such a value, excellent scratch resistance can be obtained.
The total number of layers of the high flexor film and the low flexor film is preferably 20 layers or more (10 layers or more for each of the high flexor film and the low flexor film), and 40 layers or more (the high flexor film) from the viewpoint of the effect of suppressing scratch growth due to the interface. And 20 or more layers of low flexure membrane, respectively) are more preferable. The upper limit is usually 100 layers or less (50 layers or less for each of the high flexor film and the low flexor film).

また、本発明に係るカバーガラスの最表面又は無機膜の最表面は高屈膜でも低屈膜でもよいが、より透過率の高いカバーガラスを得る観点から低屈膜が好ましい。また、積層膜の表面、すなわちカバーガラスの最表面に撥油性や親油性の少なくとも一つの特性を持つ防汚膜がさらに形成される場合には、前記防汚膜との密着性の観点からも、無機膜の最表面は低屈膜が好ましい。すなわち、ガラス板の最表面に低屈膜を積層し、これを介して高屈膜を積層し、かつ、カバーガラスの最表面又は無機膜の最表面を低屈膜とすることがより好ましく、その場合、無機膜における高屈膜と低屈膜の合計の積層数は奇数となる。 Further, the outermost surface of the cover glass or the outermost surface of the inorganic film according to the present invention may be a high bending film or a low bending film, but a low bending film is preferable from the viewpoint of obtaining a cover glass having higher transmittance. Further, when an antifouling film having at least one property of oil repellency and lipophilicity is further formed on the surface of the laminated film, that is, the outermost surface of the cover glass, from the viewpoint of adhesion to the antifouling film. The outermost surface of the inorganic film is preferably a low bending film. That is, it is more preferable that the low bending film is laminated on the outermost surface of the glass plate, the high bending film is laminated via the low bending film, and the outermost surface of the cover glass or the outermost surface of the inorganic film is the low bending film. In that case, the total number of laminated high-flexible and low-flexure films in the inorganic film is an odd number.

合計の膜厚は850nm以上であればよいが、1000nm以上が強度確保の点から好ましく、1500nm以上がより好ましい。また上限は光学特性の点から6000nm以下であり、3000nm以下が好ましく、2500nm以下がより好ましい。例えば、合計の膜厚の組み合わせとして、850〜3000nmがより好ましい。なお、積層された無機膜の厚みとは、高屈膜と低屈膜の単膜の厚みの総和である。 The total film thickness may be 850 nm or more, but 1000 nm or more is preferable from the viewpoint of ensuring strength, and 1500 nm or more is more preferable. The upper limit is 6000 nm or less from the viewpoint of optical characteristics, preferably 3000 nm or less, and more preferably 2500 nm or less. For example, as a combination of total film thicknesses, 850 to 3000 nm is more preferable. The thickness of the laminated inorganic film is the sum of the thicknesses of the single film of the high bending film and the low bending film.

高屈膜と低屈膜の単膜の膜厚はそれぞれ5〜250nmであればよいが、高屈膜の単膜の合計の厚みは低屈膜の単膜の合計の厚みよりも厚いことが好ましい。
例えば、無機膜としての合計の膜厚が2000nmである場合、高屈膜の合計の厚みは1200nm以上が好ましく、1500nm以上がより好ましい。また、無機膜としての合計の膜厚が3000nmである場合、高屈膜の合計の厚みは1800nm以上が好ましく、2000nm以上がより好ましい。
The film thicknesses of the high-flexure membrane and the low-flexure membrane single membrane may be 5 to 250 nm, respectively, but the total thickness of the high-flexure membrane single membrane may be thicker than the total thickness of the low-flexure membrane single membrane. preferable.
For example, when the total film thickness of the inorganic film is 2000 nm, the total thickness of the high-flexibility film is preferably 1200 nm or more, more preferably 1500 nm or more. When the total film thickness of the inorganic film is 3000 nm, the total thickness of the high-flexibility film is preferably 1800 nm or more, more preferably 2000 nm or more.

高屈膜及び低屈膜において、各単膜の厚みはそれぞれ同じ厚みでも異なる厚みであってもよい。また、各単膜を構成する高屈折率材料や低屈折率材料は、それぞれ同じでも異なっていてもよい。 In the high bending film and the low bending film, the thickness of each single film may be the same or different. Further, the high refractive index material and the low refractive index material constituting each single film may be the same or different.

ガラス板に積層した無機膜の表面、すなわち、カバーガラスの最表面には、さらに防汚膜を備えることがより好ましい。防汚膜は防汚性、撥水性、撥油性及び親油性からなる群より選ばれる少なくともいずれか一の特性を持つ膜であればよく、例えば、フッ素含有有機化合物が挙げられる。より具体的には、含フッ素有機ケイ素化合物や、加水分解性を有する含フッ素有機化合物等が挙げられる。
防汚膜をカバーガラスの最表面に形成することによって、例えば指紋跡や汗、埃など様々な汚れの付着を抑える、汚れを拭き取りやすくする、汚れを目立ちにくくする等の機能を有し、表示面をきれいに保つことができる。また、タッチパネル操作の際にひっかかりのないスムーズな指滑り性を得ることも可能となる。
It is more preferable that an antifouling film is further provided on the surface of the inorganic film laminated on the glass plate, that is, the outermost surface of the cover glass. The antifouling film may be a film having at least one of the properties selected from the group consisting of antifouling property, water repellency, oil repellency and lipophilicity, and examples thereof include fluorine-containing organic compounds. More specifically, a fluorine-containing organosilicon compound, a hydrolyzable fluorine-containing organic compound, and the like can be mentioned.
By forming an antifouling film on the outermost surface of the cover glass, it has functions such as suppressing the adhesion of various stains such as fingerprint marks, sweat, and dust, making it easier to wipe off stains, and making stains less noticeable. You can keep the surface clean. In addition, it is possible to obtain smooth finger slipperiness without getting caught when operating the touch panel.

<カバーガラス及びガラス積層体の製造方法>
本発明に係るカバーガラス及びガラス積層体は、ガラス板の少なくとも一方の表面に、無機膜を設けることにより製造することができる。
ガラス板は表層に圧縮応力層を有する化学強化ガラス板であることが好ましく、化学強化処理は従来公知の方法により行うことができる。化学強化ガラスは、例えば下記(a)〜(c)の工程を行うことにより製造される。
<Manufacturing method of cover glass and glass laminate>
The cover glass and the glass laminate according to the present invention can be produced by providing an inorganic film on at least one surface of the glass plate.
The glass plate is preferably a chemically strengthened glass plate having a compressive stress layer on the surface layer, and the chemical strengthening treatment can be performed by a conventionally known method. The chemically strengthened glass is produced, for example, by performing the following steps (a) to (c).

(a)ナトリウムを含むガラス板を、KCO、NaCO、KHCO及びNaHCOからなる群より選ばれる少なくとも一種の塩と硝酸カリウムとを含む無機塩に接触させ、前記ガラス板中のナトリウムと前記無機塩中のカリウムとをイオン交換する工程、(b)イオン交換された前記ガラス板を酸に接触させる工程、(c)酸に接触された前記ガラス板をアルカリに接触させる工程。
上記工程(a)〜(c)の間に適宜、洗浄や乾燥を行う工程を含んでいてもよい。
The glass plate comprising (a) a sodium, K 2 CO 3, Na 2 CO 3, is brought into contact with an inorganic salt containing at least one salt and potassium nitrate selected from the group consisting of KHCO 3 and NaHCO 3, the glass plate in A step of ion-exchange of sodium and potassium in the inorganic salt, (b) a step of bringing the ion-exchanged glass plate into contact with an acid, and (c) a step of bringing the glass plate in contact with an acid into contact with an alkali. ..
The steps (a) to (c) may include a step of appropriately washing or drying.

(溶融塩の調製)
硝酸カリウムの融点は330℃であり、化学強化を行うガラスの歪点(通常500〜600℃)以下に融点を有している。また、KCO、NaCO、KHCO、NaHCOといった塩(以下、「融剤」と称することもある。)は、Si−O−Si結合に代表されるガラスのネットワークを切断する性質を有する。化学強化処理を行う温度は数百℃と高いので、その温度下でガラスのSi−O間の共有結合は適度に切断され、後述する低密度化処理が進行しやすくなる。
(Preparation of molten salt)
Potassium nitrate has a melting point of 330 ° C., and has a melting point below the strain point (usually 500 to 600 ° C.) of the glass to be chemically strengthened. In addition, salts such as K 2 CO 3 , Na 2 CO 3 , KHCO 3 , and NaHCO 3 (hereinafter, also referred to as “flux”) cut the glass network represented by Si—O—Si bond. Has the property of Since the temperature at which the chemical strengthening treatment is performed is as high as several hundred ° C., the covalent bond between Si and O of the glass is appropriately broken under that temperature, and the low density treatment described later can easily proceed.

なお、共有結合を切断する度合いはガラス組成や用いる塩(融剤)の種類、化学強化処理を行う温度、時間等の化学強化処理条件によっても異なるが、Siから伸びている4本の共有結合のうち、1〜2本の結合が切れる程度の条件を選択することが好ましいものと考えられる。 The degree of breaking the covalent bond varies depending on the glass composition, the type of salt (melting agent) used, the temperature at which the chemical strengthening treatment is performed, the time and other chemical strengthening treatment conditions, but the four covalent bonds extending from Si Of these, it is considered preferable to select a condition that breaks one or two bonds.

ガラス表面のNaイオン(又はLiイオン)と無機塩中のKイオン(又はNaイオン)とがイオン交換されることで高密度な圧縮応力層が形成される。無機塩にガラスを接触させる方法としては、ペースト状の無機塩を塗布する方法、無機塩の水溶液をガラスに噴射する方法、融点以上に加熱した溶融塩の塩浴にガラスを浸漬させる方法などが可能であるが、これらの中では、溶融塩に浸漬させる方法が望ましい。 A high-density compressive stress layer is formed by ion exchange between Na ions (or Li ions) on the glass surface and K ions (or Na ions) in the inorganic salt. Examples of the method of bringing the glass into contact with the inorganic salt include a method of applying a paste-like inorganic salt, a method of spraying an aqueous solution of the inorganic salt onto the glass, and a method of immersing the glass in a salt bath of a molten salt heated to a temperature higher than the melting point. Although possible, among these, the method of immersing in molten salt is preferable.

融剤の添加量は表面水素濃度制御の点から0.1mol%以上が好ましく、0.5mol%以上がさらに好ましく、1mol%以上がより好ましく、2mol%以上が特に好ましい。また生産性の観点から各塩の飽和溶解度以下が好ましい。過剰に添加するとガラスの腐食につながるおそれがある。例えば、融剤としてKCOを用いる場合には、24mol%以下が好ましく、12mol%以下がより好ましく、8mol%以下が特に好ましい。 The amount of the flux added is preferably 0.1 mol% or more, more preferably 0.5 mol% or more, still more preferably 1 mol% or more, and particularly preferably 2 mol% or more from the viewpoint of controlling the surface hydrogen concentration. Further, from the viewpoint of productivity, the saturation solubility or less of each salt is preferable. Excessive addition may lead to glass corrosion. For example, when K 2 CO 3 is used as the flux, 24 mol% or less is preferable, 12 mol% or less is more preferable, and 8 mol% or less is particularly preferable.

無機塩は、硝酸カリウム及び融剤の他に、本発明の効果を阻害しない範囲で他の化学種を含んでいてもよく、例えば、塩化ナトリウム、塩化カリウム、ホウ酸ナトリウム、ホウ酸カリウム等のアルカリ塩化塩やアルカリホウ酸塩などが挙げられる。これらは単独で添加しても、複数種を組み合わせて添加してもよい。 Inorganic salts may contain other chemical species in addition to potassium nitrate and a melt, as long as the effects of the present invention are not impaired, and for example, alkalis such as sodium chloride, potassium chloride, sodium borate, and potassium borate. Examples include chloride salts and alkaline borates. These may be added alone or in combination of two or more.

溶融塩は公知の工程により製造することができる。すなわち、硝酸カリウム溶融塩を調製し、次いで該硝酸カリウム溶融塩へ融剤を添加することで得ることができる。また、別の方法として、硝酸カリウムと融剤を混合し、次いで該硝酸カリウムと融剤との混合塩を溶融することで得ることができる。 The molten salt can be produced by a known process. That is, it can be obtained by preparing a molten potassium nitrate salt and then adding a flux to the molten potassium nitrate salt. Alternatively, it can be obtained by mixing potassium nitrate and a flux, and then melting the mixed salt of potassium nitrate and the flux.

(工程(a):イオン交換する工程)
次に、調製した溶融塩を用いて化学強化処理を行う。化学強化処理は、ガラス板を溶融塩に浸漬し、ガラス中のNaイオン(又はLiイオン)を、溶融塩中のKイオン(又はNaイオン)とイオン交換(置換)することで行われる。このイオン交換によってガラス板表面の組成を変化させ、ガラス板の表面が高密度化した圧縮応力層を形成することができる。このガラス板表面の高密度化によって圧縮応力が発生することから、ガラス板を強化することができる。
(Step (a): Ion exchange step)
Next, a chemical strengthening treatment is performed using the prepared molten salt. The chemical strengthening treatment is performed by immersing the glass plate in the molten salt and exchanging (substituting) Na ions (or Li ions) in the glass with K ions (or Na ions) in the molten salt. By this ion exchange, the composition of the glass plate surface can be changed, and a compressive stress layer having a high density on the glass plate surface can be formed. Since compressive stress is generated by increasing the density of the glass plate surface, the glass plate can be strengthened.

なお実際には、化学強化ガラス板の密度は、ガラス板の中心に存在する中間層(バルク)の外縁から圧縮応力層表面に向かって徐々に高密度化してくるため、中間層と圧縮応力層との間には、密度が急激に変化する明確な境界はない。ここで中間層とは、ガラス板中心部に存在し、圧縮応力層に挟まれる層を表す。この中間層は圧縮応力層とは異なり、イオン交換がされていない層である。 In reality, the density of the chemically strengthened glass plate gradually increases from the outer edge of the intermediate layer (bulk) existing in the center of the glass plate toward the surface of the compressive stress layer, so that the intermediate layer and the compressive stress layer gradually increase in density. There is no clear boundary between and the density changes rapidly. Here, the intermediate layer represents a layer existing in the central portion of the glass plate and sandwiched between the compressive stress layers. Unlike the compressive stress layer, this intermediate layer is a layer that has not undergone ion exchange.

本発明における化学強化処理(イオン交換する工程)は、具体的には以下の手順で行うことができる。
まずガラス板を予熱し、先述した溶融塩を、化学強化を行う温度に調整する。次いで予熱したガラス板を溶融塩中に所定の時間浸漬したのち、ガラス板を溶融塩中から引き上げ、放冷する。なお、ガラス板には、化学強化処理の前に、用途に応じた形状加工、例えば、切断、端面加工および穴あけ加工などの機械的加工を行うことが好ましい。
Specifically, the chemical strengthening treatment (step of ion exchange) in the present invention can be carried out by the following procedure.
First, the glass plate is preheated, and the above-mentioned molten salt is adjusted to a temperature at which chemical strengthening is performed. Next, the preheated glass plate is immersed in the molten salt for a predetermined time, and then the glass plate is pulled out of the molten salt and allowed to cool. It is preferable that the glass plate is subjected to mechanical processing such as cutting, end face processing, and drilling processing according to the intended use before the chemical strengthening treatment.

ガラス板の予熱温度は、溶融塩に浸漬する温度に依存するが、一般に100℃以上であることが好ましい。
化学強化温度は、被強化ガラスの歪点(通常500〜600℃)以下が好ましく、より高い圧縮応力層深さ(DOL)を得るためには特に350℃以上が好ましく、処理時間の短縮及び圧縮応力層の深さ(DOL)を深くしすぎないために450℃以上がより好ましく、470℃以上がさらに好ましい。
The preheating temperature of the glass plate depends on the temperature of immersion in the molten salt, but is generally preferably 100 ° C. or higher.
The chemical tempering temperature is preferably less than or equal to the strain point (usually 500 to 600 ° C.) of the glass to be tempered, and particularly preferably 350 ° C. or higher in order to obtain a higher compressive stress layer depth (DOL), shortening the treatment time and compressing. 450 ° C. or higher is more preferable, and 470 ° C. or higher is even more preferable so that the depth (DOL) of the stress layer is not made too deep.

ガラス板の溶融塩への浸漬時間は1分〜10時間が好ましく、5分〜8時間がより好ましく、10分〜4時間がさらに好ましい。かかる範囲において、強度と圧縮応力層の深さのバランスに優れた化学強化ガラス板を得ることができ、好ましい。 The immersion time of the glass plate in the molten salt is preferably 1 minute to 10 hours, more preferably 5 minutes to 8 hours, and even more preferably 10 minutes to 4 hours. In such a range, it is possible to obtain a chemically strengthened glass plate having an excellent balance between the strength and the depth of the compressive stress layer, which is preferable.

本発明に係る製造方法では、イオン交換する工程の後にガラス板を洗浄することが好ましい。洗浄する工程では工水、イオン交換水等を用いてガラスの洗浄を行う。工水は必要に応じて処理したものを用いる。中でもイオン交換水が好ましい。
洗浄の条件は用いる洗浄液によっても異なるが、イオン交換水を用いる場合には0〜100℃で洗浄することが付着した塩を完全に除去させる点から好ましい。
洗浄する工程では、イオン交換水等が入っている水槽に化学強化ガラス板を浸漬する方法や、ガラス板表面を流水にさらす方法、シャワーにより洗浄液をガラス板表面に向けて噴射する方法等、様々な方法を用いることができる。
In the production method according to the present invention, it is preferable to wash the glass plate after the step of ion exchange. In the cleaning process, the glass is cleaned using industrial water, ion-exchanged water, or the like. Use treated water as needed. Of these, ion-exchanged water is preferable.
The cleaning conditions differ depending on the cleaning liquid used, but when ion-exchanged water is used, cleaning at 0 to 100 ° C. is preferable from the viewpoint of completely removing the attached salt.
In the cleaning process, there are various methods such as immersing a chemically strengthened glass plate in a water tank containing ion-exchanged water, exposing the surface of the glass plate to running water, and spraying the cleaning liquid toward the surface of the glass plate by a shower. Method can be used.

(工程(b):酸に接触させる工程)
本発明に係る製造方法では、前記洗浄する工程の後にガラス板を酸に接触させる工程(酸処理工程)を行う。
ガラス板の酸処理とは、酸性の溶液中に、化学強化処理後のガラス板を浸漬させることによって行い、これにより化学強化処理後のガラス板表面のNa及び/又はKをHに置換することができる。すなわち、ガラス板表面には圧縮応力層の表層が変質した、具体的には低密度化された、低密度層をさらに有することとなる。
溶液は酸性であれば特に制限されずpH7未満であればよく、用いられる酸が弱酸であっても強酸であってもよい。具体的には塩酸、硝酸、硫酸、リン酸、酢酸、シュウ酸、炭酸及びクエン酸等の酸が好ましい。これらの酸は単独で用いても、複数を組み合わせて用いてもよい。
(Step (b): Step of contacting with acid)
In the manufacturing method according to the present invention, a step of bringing the glass plate into contact with an acid (acid treatment step) is performed after the washing step.
The acid treatment of the glass plate is performed by immersing the glass plate after the chemical strengthening treatment in an acidic solution, thereby replacing Na and / or K on the surface of the glass plate after the chemical strengthening treatment with H. Can be done. That is, the surface of the glass plate further has a low-density layer in which the surface layer of the compressive stress layer has been altered, specifically, the density has been reduced.
The solution is not particularly limited as long as it is acidic, as long as it has a pH of less than 7, and the acid used may be a weak acid or a strong acid. Specifically, acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, oxalic acid, carbonic acid and citric acid are preferable. These acids may be used alone or in combination of two or more.

酸処理を行う温度は、用いる酸の種類や濃度、時間によっても異なるが、100℃以下で行うことが好ましい。
酸処理を行う時間は、用いる酸の種類や濃度、温度によっても異なるものの、10秒〜5時間が生産性の点から好ましく、1分〜2時間がより好ましい。
酸処理を行う溶液の濃度は、用いる酸の種類や時間、温度によって異なるものの、容器腐食の懸念が少ない濃度が好ましく、具体的には0.1重量%〜20重量%が好ましい。
The temperature at which the acid treatment is performed varies depending on the type, concentration, and time of the acid used, but is preferably 100 ° C. or lower.
The time for performing the acid treatment varies depending on the type, concentration and temperature of the acid used, but is preferably 10 seconds to 5 hours from the viewpoint of productivity, and more preferably 1 minute to 2 hours.
The concentration of the solution to be subjected to the acid treatment varies depending on the type, time and temperature of the acid used, but is preferably a concentration at which there is little concern about container corrosion, specifically 0.1% by weight to 20% by weight.

低密度層は、後述するアルカリ処理により除去されるため、低密度層が厚いほどガラス板表面が除去されやすい。低密度層の厚みは先述したとおりであるが、ガラス板表面除去量の観点から300nm以上が好ましく、500nm以上がより好ましく、600nm以上がさらに好ましい。 Since the low-density layer is removed by an alkali treatment described later, the thicker the low-density layer, the easier it is for the glass plate surface to be removed. The thickness of the low-density layer is as described above, but from the viewpoint of the amount of glass plate surface removed, it is preferably 300 nm or more, more preferably 500 nm or more, and even more preferably 600 nm or more.

低密度層の密度はガラス板表面除去性の観点から、イオン交換された圧縮応力層よりも深い領域(バルク)の密度に比べて低いことが好ましい。 From the viewpoint of glass plate surface removability, the density of the low-density layer is preferably lower than the density of the deeper region (bulk) than the ion-exchanged compressive stress layer.

低密度層の厚みはX線反射率法(X−ray−Reflectometry:XRR)によって測定した周期(Δθ)から求めることができる。
低密度層の密度はXRRによって測定した臨界角(θc)により求めることができる。
なお、簡易的には走査型電子顕微鏡(SEM)でガラスの断面を観察することによって、低密度層の形成と層の厚みを確認することも可能である。
The thickness of the low-density layer can be determined from the period (Δθ) measured by the X-ray Reflectivity (XRR) method.
The density of the low density layer can be determined by the critical angle (θc) measured by XRR.
It is also possible to simply observe the cross section of the glass with a scanning electron microscope (SEM) to confirm the formation of the low-density layer and the thickness of the layer.

(工程(c):アルカリに接触させる工程)
本発明の製造方法では、酸に接触させる工程を経た後、アルカリに接触させる工程(アルカリ処理工程)を行う。酸処理の後、アルカリ処理の前に、工程(a)における洗浄と同様のガラス板を洗浄する工程を経てもよい。
アルカリ処理とは、塩基性の溶液中に、酸処理後の化学強化ガラス板を浸漬させることによって行い、これにより低密度層の一部又は全部を除去することができる。
溶液は塩基性であれば特に制限されずpH7超であればよく、弱塩基を用いても強塩基を用いてもよい。具体的には水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム等の塩基が好ましい。これらの塩基は単独で用いても、複数を組み合わせて用いてもよい。
(Step (c): Step of contacting with alkali)
In the production method of the present invention, after the step of contacting with acid, the step of contacting with alkali (alkali treatment step) is performed. After the acid treatment and before the alkali treatment, a step of cleaning the glass plate similar to the cleaning in the step (a) may be performed.
Alkaline treatment is carried out by immersing a chemically strengthened glass plate after acid treatment in a basic solution, whereby part or all of the low-density layer can be removed.
The solution is not particularly limited as long as it is basic, and may have a pH of more than 7 and may use a weak base or a strong base. Specifically, bases such as sodium hydroxide, potassium hydroxide, potassium carbonate, and sodium carbonate are preferable. These bases may be used alone or in combination of two or more.

アルカリ処理を行う温度は、用いる塩基の種類や濃度、時間によっても異なるが、0〜100℃が好ましく、10〜80℃がより好ましく、20〜60℃が特に好ましい。かかる温度範囲であればガラス板が腐食するおそれがなく好ましい。
アルカリ処理を行う時間は、用いる塩基の種類や濃度、温度によっても異なるものの、10秒間〜5時間が生産性の点から好ましく、1分間〜2時間がより好ましい。
アルカリ処理を行う溶液の濃度は、用いる塩基の種類や時間、温度によって異なるものの、ガラス板表面除去性の観点から0.1重量%〜20重量%が好ましい。
The temperature at which the alkali treatment is performed varies depending on the type, concentration, and time of the base used, but is preferably 0 to 100 ° C, more preferably 10 to 80 ° C, and particularly preferably 20 to 60 ° C. Within such a temperature range, the glass plate is not likely to be corroded, which is preferable.
The time for performing the alkali treatment varies depending on the type, concentration and temperature of the base used, but is preferably 10 seconds to 5 hours from the viewpoint of productivity, and more preferably 1 minute to 2 hours.
The concentration of the solution to be subjected to the alkali treatment varies depending on the type of base used, time and temperature, but is preferably 0.1% by weight to 20% by weight from the viewpoint of glass plate surface removability.

上記アルカリ処理により、Hが侵入した低密度層の一部又は全部が除去され、これにより面強度が向上した化学強化ガラス板を得ることができる。なお、アルカリ処理の後にも、先と同様の方法で洗浄する工程を経ることが好ましい。 By the above-mentioned alkali treatment, a part or all of the low-density layer in which H has penetrated is removed, whereby a chemically strengthened glass plate having improved surface strength can be obtained. After the alkali treatment, it is preferable to go through the step of cleaning by the same method as described above.

(無機膜の形成)
上記で得られたガラス板、又は化学強化ガラス板の少なくとも一方の表面に無機膜を設ける。無機膜の詳細については先述したとおりであるが、高屈膜としては、Si、Al、Ti、Ta、Hf及びZrからなる群より選ばれる1以上の窒化物、酸窒化物、もしくは酸化物がより好ましく、SiNがさらに好ましい。また、低屈膜としては、Si、Al、及びZrからなる群より選ばれる1以上の酸化物がより好ましく、SiOがさらに好ましい。
(Formation of inorganic film)
An inorganic film is provided on at least one surface of the glass plate obtained above or the chemically strengthened glass plate. The details of the inorganic film are as described above, but the high bending film includes one or more nitrides, acid nitrides, or oxides selected from the group consisting of Si, Al, Ti, Ta, Hf, and Zr. more preferably, SiN X is more preferred. Further, as the low bending film, one or more oxides selected from the group consisting of Si, Al, and Zr are more preferable, and SiO 2 is further preferable.

ガラス板又は化学強化ガラス板の少なくとも一方の表面に低屈膜を設け、該低屈膜を介して高屈膜を設けることが、積層膜のガラス板又は化学強化ガラス板への密着性向上の点からより好ましい。また、無機膜の最表面には低屈膜を設けることが、光学的特性の点や積層膜の表面、すなわちカバーガラスの最表面に形成される防汚膜との密着性の点からより好ましい。 By providing a low bending film on at least one surface of the glass plate or the chemically strengthened glass plate and providing the high bending film via the low bending film, the adhesion of the laminated film to the glass plate or the chemically strengthened glass plate can be improved. More preferable from the point of view. Further, it is more preferable to provide a low bending film on the outermost surface of the inorganic film from the viewpoint of optical characteristics and adhesion to the surface of the laminated film, that is, the antifouling film formed on the outermost surface of the cover glass. ..

高屈膜と低屈膜の合計の厚みは850〜6000nmであるが、該厚みの膜を1層で設けるのではなく、厚み5〜250nmの高屈膜又は低屈膜からなる単膜を交互に6層以上積層していき、合計の厚みを上記範囲の厚みにする。これにより、高屈膜による耐擦傷性を維持しつつ、得られるカバーガラスの反りを低減することができると共に低屈膜による低反射特性が付与でき、かつ高屈膜と低屈膜との界面で傷の進行を食い止めることができる。 The total thickness of the high flexor membrane and the low flexor membrane is 850 to 6000 nm, but instead of providing the membrane of the thickness in one layer, a single membrane composed of a high flexor membrane or a low flexor membrane having a thickness of 5 to 250 nm is alternately provided. 6 or more layers are laminated to make the total thickness within the above range. As a result, it is possible to reduce the warp of the obtained cover glass while maintaining the scratch resistance due to the high bending film, and to impart low reflection characteristics due to the low bending film, and the interface between the high bending film and the low bending film. Can stop the progression of the wound.

高屈膜はスパッタ法や後反応スパッタ法により形成することができ、後反応スパッタ法がより好ましい。
低屈膜はスパッタ法や後反応スパッタ法により形成することができ、後反応スパッタ法がより好ましい。
The high bending film can be formed by a sputtering method or a post-reaction sputtering method, and the post-reaction sputtering method is more preferable.
The low bending film can be formed by a sputtering method or a post-reaction sputtering method, and the post-reaction sputtering method is more preferable.

積層した高屈膜と低屈膜との合計の積層数は20層以上(高屈膜と低屈膜がそれぞれ10層以上)が好ましく、100層以下(高屈膜と低屈膜がそれぞれ50層以下)が好ましい。また、高屈膜と低屈膜とを積層した積層膜の合計の膜厚は1500nm以上が好ましく、3000nm以下が好ましい。
高屈膜の合計の膜厚と低屈膜の合計の膜厚は、高屈膜の合計の膜厚の方が厚いことが好ましい。
The total number of laminated high-flexure film and low-flexure film is preferably 20 layers or more (10 layers or more for each of the high-flexure film and low-flexure film), and 100 layers or less (50 for each of the high-flexure film and low-flexure film). Layer or less) is preferred. Further, the total film thickness of the laminated film obtained by laminating the high bending film and the low bending film is preferably 1500 nm or more, and preferably 3000 nm or less.
It is preferable that the total film thickness of the high flexure film and the total film thickness of the low flexure film are thicker than the total film thickness of the high flexure film.

(防汚膜の形成)
防汚膜の形成方法としては、フッ素含有有機化合物等を真空槽内で蒸発させて、無機膜表面に付着させる真空蒸着法(乾式法)や、フッ素含有有機化合物等を有機溶剤に溶解させ、所定の濃度になるように調整し、無機膜の表面に塗布する方法(湿式法)等を利用できる。
(Formation of antifouling film)
As a method for forming the antifouling film, a vacuum vapor deposition method (dry method) in which a fluorine-containing organic compound or the like is evaporated in a vacuum chamber and adhered to the surface of the inorganic film, or a fluorine-containing organic compound or the like is dissolved in an organic solvent. A method (wet method) or the like of adjusting the concentration to a predetermined value and applying it to the surface of the inorganic film can be used.

乾式法としては、イオンビームアシスト蒸着法、イオンプレート法、スパッタ法、プラズマCVD法等が挙げられる。また、湿式法としては、スピンコート法、ディップコート法、キャスト法、スリットコート法、スプレー法等から適宜選択できる。 Examples of the dry method include an ion beam assisted vapor deposition method, an ion plate method, a sputtering method, and a plasma CVD method. The wet method can be appropriately selected from a spin coating method, a dip coating method, a casting method, a slit coating method, a spray method and the like.

乾式法、湿式法のどちらも使用できるが、耐擦傷性の観点からは、乾式の成膜方法を用いることが好ましい。 Both the dry method and the wet method can be used, but from the viewpoint of scratch resistance, it is preferable to use the dry film forming method.

防汚膜の構成材料は、防汚性、撥水性、撥油性及び親油性からなる群より選ばれる少なくとも1の特性を付与できるフッ素含有有機化合物等から適宜選択できる。具体的には、含フッ素有機ケイ素化合物や、加水分解性の含フッ素有機化合物が挙げられるが、防汚性、撥水性、撥油性及び親油性の前記特性を付与するものであれば、特に制限されず使用できる。 The constituent material of the antifouling film can be appropriately selected from a fluorine-containing organic compound or the like that can impart at least one property selected from the group consisting of antifouling property, water repellency, oil repellency and lipophilicity. Specific examples thereof include a fluorine-containing organosilicon compound and a hydrolyzable fluorine-containing organic compound, but the compound is particularly limited as long as it imparts the above-mentioned properties of antifouling property, water repellency, oil repellency and lipophilicity. Can be used without.

カバーガラスの最表面として、通常、無機膜の表面にさらに形成される防汚膜の膜厚は、特に制限されないが、2〜20nmであることが好ましく、2〜15nmであることがより好ましく、3〜10nmであることがさらに好ましい。
膜厚を2nm以上とすることにより、防汚膜によってカバーガラスの最表面が密着性よく均一に覆われた状態となり、耐擦傷性の高い実用により耐えるものとなることから好ましい。また、膜厚が20nm以下とすることにより、防汚膜が積層された状態での光学特性が非常に良好となることから好ましい。
The film thickness of the antifouling film further formed on the surface of the inorganic film as the outermost surface of the cover glass is not particularly limited, but is preferably 2 to 20 nm, more preferably 2 to 15 nm. It is more preferably 3 to 10 nm.
When the film thickness is 2 nm or more, the outermost surface of the cover glass is uniformly covered with the antifouling film with good adhesion, and it is preferable because it has high scratch resistance and can withstand practical use. Further, when the film thickness is 20 nm or less, the optical characteristics in the state where the antifouling film is laminated are very good, which is preferable.

<カバーガラスの評価方法>
本発明に係るカバーガラスは、デジタルカメラや携帯電話、携帯情報端末PDA等のフラットパネルディスプレイ装置やタッチパネルディスプレイ装置におけるカバーガラスに好適に用いることができる。特に携帯電話や携帯情報端末PDAといった電子端末用のカバーガラス等、薄いカバーガラスにより好適に用いることができる。
<Evaluation method of cover glass>
The cover glass according to the present invention can be suitably used as a cover glass in flat panel display devices and touch panel display devices such as digital cameras, mobile phones, and personal digital assistants. In particular, a thin cover glass such as a cover glass for an electronic terminal such as a mobile phone or a personal digital assistant can be preferably used.

(単膜の応力値)
ガラス板又は化学強化ガラス板の少なくとも一方の表面に低屈膜と高屈膜が設けられる。カバーガラスの反り量を抑える観点から、高屈折率材料からなる膜の応力値の絶対値は、低屈折率材料からなる膜の応力値の絶対値よりも小さいことが好ましい。また、高屈折率材料からなる膜の応力値は、低屈折率材料からなる膜の応力値よりも大きいことが好ましい。また、高屈膜の単膜の応力値の絶対値が30〜250MPaであることが好ましく、50〜250MPaであることがより好ましい。低屈膜の単膜の応力値の絶対値が100〜300MPaであることが好ましい。
高屈膜と低屈膜それぞれの単膜の応力値は、以下に示す測定方法により測定することができる。
洗浄された直径100mm、厚さ0.525mmのシリコンウエハの鏡面となっている面を、薄膜応力成膜装置(KLA Tencor社 FLX−2320)を使いシリコンウエハの中心を通る直径部を90mmにわたってシリコンウエハの表面形状測定し記録する。次に、測定したシリコンウエハの表面形状の測定部でない箇所の幅5mm長さ10mmにカプトンテープでマスクを行い、表面形状の測定面に薄膜が成膜されるようにシリコンウエハを成膜装置に設置し、単膜を3μmの厚さ目標にし成膜を実施する。成膜後、マスクしたカプトンテープをはがし、カプトンテープの粘着物質をエタノールで除去し、触診式膜厚測定装置(BRUKER社製 DEKTAK 6M)を使いマスク部と非マスク部の段差を測定することで成膜した膜の厚さを測定する。次に成膜されたシリコンウエハを、再度、薄膜応力成膜装置で成膜前の測定と同じ個所の表面形状と曲率半径を測定する。薄膜応力成膜装置に、シリコンウエハの厚み、ヤング率、薄膜の膜厚を入力し、成膜前後の曲率半径から膜の内部応力を算出する。
(Stress value of single film)
A low bending film and a high bending film are provided on at least one surface of the glass plate or the chemically strengthened glass plate. From the viewpoint of suppressing the amount of warpage of the cover glass, the absolute value of the stress value of the film made of a high refractive index material is preferably smaller than the absolute value of the stress value of the film made of a low refractive index material. Further, the stress value of the film made of a high refractive index material is preferably larger than the stress value of the film made of a low refractive index material. Further, the absolute value of the stress value of the single film of the high bending film is preferably 30 to 250 MPa, more preferably 50 to 250 MPa. The absolute value of the stress value of the single film of the low bending film is preferably 100 to 300 MPa.
The stress value of each single film of the high flexor film and the low flexor film can be measured by the measurement method shown below.
The mirror surface of the washed silicon wafer with a diameter of 100 mm and a thickness of 0.525 mm is siliconized over 90 mm through the center of the silicon wafer using a thin film stress film forming apparatus (KLA Tencor FLX-2320). Measure and record the surface shape of the wafer. Next, a mask is applied with Capton tape to a width of 5 mm and a length of 10 mm at a portion of the measured surface shape of the silicon wafer that is not the measurement portion, and the silicon wafer is placed in a film forming apparatus so that a thin film is formed on the measurement surface of the surface shape. It is installed and a single film is formed with a thickness target of 3 μm. After film formation, the masked Capton tape is peeled off, the adhesive substance of the Capton tape is removed with ethanol, and the step between the masked part and the non-masked part is measured using a tactile film thickness measuring device (DEKTAK 6M manufactured by BRUKER). Measure the thickness of the film. Next, the formed silicon wafer is again measured with the thin film stress film forming apparatus for the surface shape and the radius of curvature at the same points as the measurement before the film formation. The thickness of the silicon wafer, Young's modulus, and the thickness of the thin film are input to the thin film stress film forming apparatus, and the internal stress of the film is calculated from the radius of curvature before and after the film formation.

(無機膜の合計応力値)
厚み5〜250nmの高屈膜又は低屈膜からなる単膜を交互に6層以上積層していき、合計の厚みが850〜6000nmである無機膜を成膜する。
カバーガラスの反り量を抑える観点から、無機膜の合計応力値は、80MPa以下であり、35MPa以下が好ましく、25MPa以下がより好ましい。
無機膜の合計応力値は、以下の測定方法により測定することができる。
(測定条件)
洗浄された直径100mm、厚さ0.525mmのシリコンウエハの鏡面となっている面を、薄膜応力成膜装置(KLA Tencor社 FLX−2320)を使いシリコンウエハの中心を通る直径部を90mmにわたってシリコンウエハの表面形状測定し記録する。次に、測定したシリコンウエハの表面形状の測定部でない箇所の幅5mm長さ10mmにカプトンテープでマスクを行い、表面形状の測定面に薄膜が成膜されるようにシリコンウエハを成膜装置に設置し、成膜を実施する。成膜後、マスクしたカプトンテープをはがし、カプトンテープの粘着物質をエタノールで除去し、触診式膜厚測定装置(BRUKER社製 DEKTAK 6M)を使いマスク部と非マスク部の段差を測定することで成膜した膜の厚さを測定する。次に成膜されたシリコンウエハを、再度、薄膜応力成膜装置で成膜前の測定と同じ個所の表面形状と曲率半径を測定する。薄膜応力成膜装置に、シリコンウエハの厚み、ヤング率、薄膜の膜厚を入力し、成膜前後の曲率半径から膜の内部応力を算出する。
(Total stress value of inorganic membrane)
Six or more layers of a single film made of a high bending film or a low bending film having a thickness of 5 to 250 nm are alternately laminated to form an inorganic film having a total thickness of 850 to 6000 nm.
From the viewpoint of suppressing the amount of warpage of the cover glass, the total stress value of the inorganic film is 80 MPa or less, preferably 35 MPa or less, and more preferably 25 MPa or less.
The total stress value of the inorganic film can be measured by the following measuring method.
(Measurement condition)
The mirror surface of the washed silicon wafer with a diameter of 100 mm and a thickness of 0.525 mm is siliconized over 90 mm through the center of the silicon wafer using a thin film stress film forming apparatus (KLA Tencor FLX-2320). Measure and record the surface shape of the wafer. Next, a mask is applied with Capton tape to a portion of the measured silicon wafer that is not a measuring portion of the surface shape and has a width of 5 mm and a length of 10 mm, and the silicon wafer is placed in a film forming apparatus so that a thin film is formed on the measured surface of the surface shape. Install and perform film formation. After film formation, the masked Capton tape is peeled off, the adhesive substance of the Capton tape is removed with ethanol, and the step between the masked part and the non-masked part is measured using a tactile film thickness measuring device (DEKTAK 6M manufactured by BRUKER). Measure the thickness of the film. Next, the formed silicon wafer is again measured with the thin film stress film forming apparatus for the surface shape and the radius of curvature at the same points as the measurement before the film formation. The thickness of the silicon wafer, Young's modulus, and the thickness of the thin film are input to the thin film stress film forming apparatus, and the internal stress of the film is calculated from the radius of curvature before and after the film formation.

(耐擦傷性)
カバーガラスの耐擦傷性はトラバース式摩耗試験機を用いて、以下に示す試験条件にて成膜したサンプルの成膜面を擦り、目視で傷を観察することで評価することができる。観察の結果、傷は3本以下が好ましく、傷がないことがより好ましい。
(試験条件)研磨布:G#320(JIS R6251:2006規格適合品)、荷重:100g、ストローク幅:40mm、ストローク数:50往復、摩耗面積:1cm
(Scratch resistance)
The scratch resistance of the cover glass can be evaluated by rubbing the film-forming surface of the sample formed under the following test conditions using a traverse-type wear tester and visually observing the scratches. As a result of observation, the number of scratches is preferably 3 or less, and more preferably no scratches.
(Test conditions) Abrasive cloth: G # 320 (JIS R6251: 2006 standard compliant product), load: 100 g, stroke width: 40 mm, number of strokes: 50 reciprocations, wear area: 1 cm 2 .

(反り量 評価1)
カバーガラスの反り量は、三次元形状測定機(例えば、三鷹光器株式会社製)、または、表面粗さ・輪郭形状測定機(例えば、株式会社東京精密製)で測定することができる。
無機膜が積層されていないガラス板単独の反り量と、無機膜が積層された本発明に係るカバーガラスの反り量との反り変化量は30%以下であり、20%以下がより好ましい。
ここで、ガラス板単独の反り量、無機膜が積層されたカバーガラスの反り量は共に、{(ガラスの反り量)/(ガラスの厚み)}(%)で表され、その差が、本発明における「反り変化量(%)」に相当する。
(反り量 評価2)
本発明のカバーガラスは、水平な定盤上に、カバーガラスの一方の主平面が接するように載置して、カバーガラスの浮き上がりであるカバーガラスの四隅における定盤からの反り量を、隙間ゲージを用いて、20℃で測定した際、反り量の平均値が400μm以下であり、300μm以下であることが好ましく、200μm以下であることがより好ましい。
(Warp amount evaluation 1)
The amount of warpage of the cover glass can be measured with a three-dimensional shape measuring machine (for example, manufactured by Mitaka Kohki Co., Ltd.) or a surface roughness / contour shape measuring machine (for example, manufactured by Tokyo Seimitsu Co., Ltd.).
The amount of change in warpage between the amount of warpage of the glass plate alone on which the inorganic film is not laminated and the amount of warpage of the cover glass according to the present invention in which the inorganic film is laminated is 30% or less, more preferably 20% or less.
Here, the amount of warpage of the glass plate alone and the amount of warpage of the cover glass on which the inorganic film is laminated are both expressed as {(glass warpage amount) / (glass thickness)} (%), and the difference is the present. It corresponds to the "warp change amount (%)" in the invention.
(Warp amount evaluation 2)
The cover glass of the present invention is placed on a horizontal surface plate so that one of the main planes of the cover glass is in contact with each other, and the amount of warpage from the surface plate at the four corners of the cover glass, which is the floating of the cover glass, is set as a gap. When measured at 20 ° C. using a gauge, the average value of the amount of warpage is 400 μm or less, preferably 300 μm or less, and more preferably 200 μm or less.

以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

<評価方法>
本実施例における各種評価は以下に示す分析方法により行った。
(耐擦傷性)
カバーガラスの表面の硬度の評価として、耐擦傷性の評価をトラバース式摩耗試験機を用いて行った。具体的には、先述した(試験条件)に則って評価した。すなわち、研磨布(G#320(JIS R6251:2006規格適合品))を貼り付けた試験子と試料との間に接触荷重を与えて往復運動摩擦を行い、膜表面への傷の有無を確認した。往復の幅は40mmで往復させる速度は20mm/min.、往復回数は50回、荷重は100g、摩耗面積は1cmとして実施した。
耐擦傷性評価において、評価後の膜表面に傷が生じないことが好ましい。評価後の膜表面に傷が生じないことにより、十分な耐擦傷性の効果を維持することができる。
<Evaluation method>
Various evaluations in this example were performed by the analysis method shown below.
(Scratch resistance)
As an evaluation of the hardness of the surface of the cover glass, the scratch resistance was evaluated using a traverse type wear tester. Specifically, the evaluation was made according to the above-mentioned (test conditions). That is, a contact load is applied between the tester to which the polishing pad (G # 320 (JIS R6251: 2006 standard compliant product)) is attached and the sample is subjected to reciprocating friction, and the presence or absence of scratches on the film surface is confirmed. did. The reciprocating width is 40 mm and the reciprocating speed is 20 mm / min. The number of reciprocations was 50, the load was 100 g, and the wear area was 1 cm 2 .
In the scratch resistance evaluation, it is preferable that the film surface after the evaluation is not scratched. Since the film surface after evaluation is not scratched, a sufficient scratch resistance effect can be maintained.

(反り量 評価1)
無機膜を成膜する前のガラス板(100mm×100mm、0.56mmt)のガラスを3枚準備し、反り量をサーフコム表面粗さ・輪郭形状測定機(株式会社東京精密製)で測定した。次いで、無機膜を積層した。それら基板の100mm角ガラスの中心と同じ中心をもち、かつ、各辺が100mm角のガラスと平行である90mm角ガラスの2本の対角線の反りをそれぞれ、成膜前のガラス板と同様にサーフコム表面粗さ・輪郭形状測定機(株式会社東京精密製)で測定した。3枚の基板の反りの平均を、無機膜が積層されたカバーガラスの反り量とした。反り量の評価(評価1)において、無機膜積層前後におけるガラスの反り変化量が30%以下であることが好ましく、反り変化量が20%以下であることがより好ましい。該ガラスの反り変化量を30%以下であることにより、十分に反りを低減できたカバーガラスとして用いることができる。
(反り量 評価2)
無機膜を積層したカバーガラス(100mm×100mm、0.56mmt)を3枚準備し、水平な定盤上に、カバーガラスの一方の主平面が接するように載置して、カバーガラスの浮き上がりである反り量を、隙間ゲージを用いて、20℃で測定し、3枚のカバーガラスの四隅における反り量の平均値をカバーガラスの反り量とした。
該隙間ゲージ法による隙間の測定は、次のようにして行われた。まず、測定対象である略多角形状の表面を有するカバーガラスを、反りの存在しない平坦かつ水平な定盤上に載置した。次に、ガラスの略多角形状の頂点にあたる部分(以下、コーナー部という)と該定盤との隙間の距離を隙間ゲージにより測定した。ガラス隙間ゲージはJIS B7524:2008の規格に適合したものであれば任意のものを利用可能であり、0.01mmを最小単位として隙間を測定した。反り量の評価(評価2)において、該反り量の平均値が400μm以下であることが好ましく、該反り量の平均値が300μm以下であることがさらに好ましい。該反り量の平均値が400μm以下であることにより、十分に反りを低減できたカバーガラスとして用いることができる。
(Warp amount evaluation 1)
Three pieces of glass of a glass plate (100 mm × 100 mm, 0.56 mmt) before forming an inorganic film were prepared, and the amount of warpage was measured with a Surfcom surface roughness / contour shape measuring machine (manufactured by Tokyo Seimitsu Co., Ltd.). Then, the inorganic film was laminated. The two diagonal warps of 90 mm square glass, which has the same center as the center of the 100 mm square glass of those substrates and whose sides are parallel to the 100 mm square glass, are respectively surfcoms like the glass plate before film formation. It was measured with a surface roughness / contour shape measuring machine (manufactured by Tokyo Precision Co., Ltd.). The average of the warpages of the three substrates was taken as the amount of warpage of the cover glass on which the inorganic film was laminated. In the evaluation of the amount of warpage (evaluation 1), the amount of change in warpage of the glass before and after laminating the inorganic film is preferably 30% or less, and more preferably 20% or less. By setting the amount of change in warpage of the glass to 30% or less, it can be used as a cover glass in which warpage can be sufficiently reduced.
(Warp amount evaluation 2)
Prepare three cover glasses (100 mm x 100 mm, 0.56 mmt) on which an inorganic film is laminated, place them on a horizontal surface plate so that one main plane of the cover glass is in contact, and lift the cover glass. A certain amount of warpage was measured at 20 ° C. using a feeler gauge, and the average value of the amount of warpage at the four corners of the three cover glasses was taken as the amount of warpage of the cover glass.
The gap was measured by the feeler gauge method as follows. First, a cover glass having a substantially polygonal surface to be measured was placed on a flat and horizontal surface plate without warpage. Next, the distance between the apex of the substantially polygonal shape of the glass (hereinafter referred to as the corner portion) and the surface plate was measured with a feeler gauge. Any glass feeler gauge can be used as long as it conforms to the JIS B7524: 2008 standard, and the gap was measured with 0.01 mm as the minimum unit. In the evaluation of the amount of warpage (evaluation 2), the average value of the amount of warpage is preferably 400 μm or less, and the average value of the amount of warpage is more preferably 300 μm or less. When the average value of the warp amount is 400 μm or less, it can be used as a cover glass in which the warp can be sufficiently reduced.

(高屈折率材料からなる膜及び低屈折率材料からなる膜の特性評価)
カバーガラスに積層された高屈折率材料からなる膜及び/又は低屈折率材料からなる膜の単膜の厚み及び積層数は走査型電子顕微鏡(日立ハイテクノロジー社製、S−3400NX)による断面観察により測定した。また、該膜の合計の厚みは、各単膜の厚みの総和とした。
(Characteristic evaluation of film made of high refractive index material and film made of low refractive index material)
The thickness and number of single films of the film made of high-refractive index material and / or the film made of low-refractive index material laminated on the cover glass are cross-sectionally observed with a scanning electron microscope (Hitachi High Technology Co., Ltd., S-3400NX). Measured by. The total thickness of the films was the sum of the thicknesses of each single film.

<実施例1>
(化学強化ガラスの準備)
ステンレススチール(SUS)製のカップに硝酸カリウム9700g、炭酸カリウム890g、硝酸ナトリウム400gを加え、マントルヒーターで450℃まで加熱して、炭酸カリウム濃度が6mol%、ナトリウム濃度が10000重量ppmの溶融塩を調製した。
100mm×100mm×0.56mmのアルミノシリケートガラスA(比重2.48)を用意し、200〜400℃に予熱した後、450℃の溶融塩に2時間浸漬し、イオン交換処理した後、室温付近まで冷却することにより化学強化処理を行った。得られた化学強化ガラスは水洗いし、次の工程に供した。
ガラス組成(酸化物基準のモル%表示):SiO 64.4%、Al 8.0%、NaO 12.5%、KO 4.0%、MgO 10.5%、CaO 0.1%、SrO 0.1%、BaO 0.1%、ZrO 0.5%
<Example 1>
(Preparation of chemically strengthened glass)
9700 g of potassium nitrate, 890 g of potassium carbonate, and 400 g of sodium nitrate are added to a stainless steel (SUS) cup and heated to 450 ° C. with a mantle heater to prepare a molten salt having a potassium carbonate concentration of 6 mol% and a sodium concentration of 10,000 wt ppm. did.
A 100 mm × 100 mm × 0.56 mm aluminosilicate glass A (specific gravity 2.48) is prepared, preheated to 200 to 400 ° C., immersed in a molten salt at 450 ° C. for 2 hours, ion-exchanged, and then near room temperature. The chemical strengthening treatment was performed by cooling to. The obtained chemically strengthened glass was washed with water and subjected to the next step.
Glass composition (mol% display based on oxide): SiO 2 64.4%, Al 2 O 3 8.0%, Na 2 O 12.5%, K 2 O 4.0%, MgO 10.5%, CaO 0.1%, SrO 0.1%, BaO 0.1%, ZrO 2 0.5%

次いで6.0重量%の硝酸をビーカーに用意し、ウォーターバスを用いて40℃に温度調整を行った。前記化学強化工程で得られたガラスを、調製した硝酸中に120秒間浸漬させ、酸処理を行った。その後、該ガラスは水洗いした。 Next, 6.0% by weight of nitric acid was prepared in a beaker, and the temperature was adjusted to 40 ° C. using a water bath. The glass obtained in the chemical strengthening step was immersed in the prepared nitric acid for 120 seconds and subjected to acid treatment. Then, the glass was washed with water.

次に、4.0重量%の水酸化ナトリウム水溶液をビーカーに用意し、ウォーターバスを用いて40℃に温度調整を行った。酸に接触させる工程の後に洗浄したガラスを、調製した水酸化ナトリウム水溶液中に120秒間浸漬させ、アルカリ処理を行った。その後、該ガラスは水洗した。その後、エアブローにより乾燥した。
以上により、化学強化ガラス板を得た。
Next, a 4.0% by weight aqueous sodium hydroxide solution was prepared in a beaker, and the temperature was adjusted to 40 ° C. using a water bath. The glass washed after the step of contacting with an acid was immersed in the prepared aqueous sodium hydroxide solution for 120 seconds for alkali treatment. Then, the glass was washed with water. Then, it was dried by air blow.
From the above, a chemically strengthened glass plate was obtained.

(無機膜の形成)
次いで、得られた化学強化ガラス板の一方の表面上に後反応スパッタ法により窒化ケイ素膜と酸化ケイ素膜の積層成膜を実施した。なお、ガラス板の最表面には酸化ケイ素膜を成膜した。得られた各単膜の窒化ケイ素膜、及び、酸化ケイ素膜の波長632nmにおける屈折率は、それぞれ1.95、及び1.47であった。
窒化ケイ素膜の各単膜の厚みは6〜162nmとし、酸化ケイ素膜の各単膜の厚みは5〜42nmとした。酸化ケイ素膜と窒化ケイ素膜の成膜を複数回交互に行い、これらが交互に成膜された、酸化ケイ素膜45層、窒化ケイ素膜45層からなる合計の膜厚が3000nmの無機膜が積層されたカバーガラスを得た。
(Formation of inorganic film)
Next, a silicon nitride film and a silicon oxide film were laminated and formed on one surface of the obtained chemically strengthened glass plate by a post-reaction sputtering method. A silicon oxide film was formed on the outermost surface of the glass plate. The refractive indexes of the obtained silicon nitride film and the silicon oxide film at a wavelength of 632 nm were 1.95 and 1.47, respectively.
The thickness of each single film of the silicon nitride film was 6 to 162 nm, and the thickness of each single film of the silicon oxide film was 5 to 42 nm. The silicon oxide film and the silicon nitride film were alternately formed multiple times, and an inorganic film having a total thickness of 3000 nm consisting of 45 layers of the silicon oxide film and 45 layers of the silicon nitride film, which were alternately formed, was laminated. Obtained a covered glass.

高屈折率材料からなる膜(窒化ケイ素膜)成膜時の後反応スパッタ条件は下記のとおりであり、得られた高屈膜は圧縮応力層となった。
後反応スパッタ装置:アルバック社製、商品名 ULDis・ターゲット:p−Siターゲット・成膜ガス:Ar(流量50sccm)・スパッタ電力:6kW・窒化源ガス:N(流量100sccm)・窒化源電力:1kW・基板温度:常温・成膜レート:0.2nm/min.
The post-reaction sputtering conditions at the time of film formation of a film (silicon nitride film) made of a high refractive index material were as follows, and the obtained high bending film became a compressive stress layer.
Post-reaction sputtering equipment: manufactured by ULVAC, trade name ULDIS ・ Target: p-Si target ・ Film formation gas: Ar (flow rate 50 sccm) ・ Spatter power: 6 kW ・ Nitride source gas: N 2 (flow rate 100 sccm) ・ Nitride source power: 1 kW, substrate temperature: room temperature, film formation rate: 0.2 nm / min.

低屈折率材料からなる膜(酸化ケイ素膜)成膜時の後反応スパッタ条件を下記に示す。
ターゲット:p−Siターゲット・成膜ガス:Ar(流量40sccm)・スパッタ電力:6kW・酸化源ガス:O(流量100sccm)・酸化源電力:1kW・基板温度:常温・成膜レート:0.3nm/min.
得られた高屈膜の応力は低い圧縮応力で、全膜厚に対して高屈折率膜の膜厚が厚く、基板の反りは抑えられていた。このとき、耐擦傷性は良好であった。
The post-reaction sputtering conditions at the time of film formation of a film (silicon oxide film) made of a low refractive index material are shown below.
Target: p-Si target ・ Film formation gas: Ar (flow rate 40 sccm) ・ Spatter power: 6 kW ・ Oxidation source gas: O 2 (flow rate 100 sccm) ・ Oxidation source power: 1 kW ・ Substrate temperature: Room temperature ・ Film formation rate: 0. 3 nm / min.
The stress of the obtained high-refractive-index film was low compressive stress, the film thickness of the high-refractive index film was thicker than the total film thickness, and the warp of the substrate was suppressed. At this time, the scratch resistance was good.

<実施例2>
実施例1と同様にして化学強化ガラス板を作製し、総膜厚2000nmの無機膜が積層されたカバーガラスを作製した。無機膜における単膜の膜厚及び積層数は表1に示すとおりである。
得られた高屈膜の応力は低い圧縮応力で、全膜厚に対して高屈折率膜の膜厚が厚く、基板の反りは抑えられていた。このとき、耐擦傷性は良好であった。
<Example 2>
A chemically strengthened glass plate was produced in the same manner as in Example 1, and a cover glass having an inorganic film having a total film thickness of 2000 nm laminated was produced. Table 1 shows the film thickness and the number of layers of the single film in the inorganic film.
The stress of the obtained high-refractive-index film was low compressive stress, the film thickness of the high-refractive index film was thicker than the total film thickness, and the warp of the substrate was suppressed. At this time, the scratch resistance was good.

<実施例3>
窒化ケイ素膜の成膜を以下の条件で行った以外は実施例1と同様にして、総膜厚3000nmの無機膜が積層されたカバーガラスを作製した。無機膜における単膜の膜厚及び積層数は表1に示すとおりである。
高屈折材料からなる膜(窒化ケイ素膜)成膜時の後反応スパッタ条件は下記のとおりであり、得られた高屈膜は引張応力層となった。
後反応スパッタ装置:アルバック社製、商品名 ULDis・ターゲット:p−Siターゲット・成膜ガス:Ar(流量100sccm)・スパッタ電力:6kW・窒化源ガス:N(流量100sccm)・窒化源電力:1kW・基板温度:常温・成膜レート:0.2nm/min.
得られた高屈膜の応力は引張応力で、酸化ケイ素膜(低屈膜)の圧縮応力を打ち消すように応力が働き基板の反りはさらに低減した。このとき、耐擦傷性は良好であった。
<Example 3>
A cover glass having an inorganic film having a total film thickness of 3000 nm laminated was produced in the same manner as in Example 1 except that the silicon nitride film was formed under the following conditions. Table 1 shows the film thickness and the number of layers of the single film in the inorganic film.
The post-reaction sputtering conditions at the time of forming a film (silicon nitride film) made of a highly refracting material were as follows, and the obtained high bending film became a tensile stress layer.
Post-reaction sputtering equipment: manufactured by ULVAC, trade name ULDIS ・ Target: p-Si target ・ Film formation gas: Ar (flow rate 100 sccm) ・ Sputter power: 6 kW ・ Nitride source gas: N 2 (flow rate 100 sccm) ・ Nitride source power: 1 kW, substrate temperature: room temperature, film formation rate: 0.2 nm / min.
The stress of the obtained high bending film is tensile stress, and the stress acts so as to cancel the compressive stress of the silicon oxide film (low bending film), and the warp of the substrate is further reduced. At this time, the scratch resistance was good.

<比較例1>
実施例1における高屈折率材料からなる膜の成膜条件を変えて、化学強化ガラス板上に、単膜の厚みが3000nmの窒化ケイ素膜1層のみからなる無機膜を成膜したカバーガラスを得た。このとき、耐擦傷性は良好であったが、基板の反りが大きかった。
<Comparative example 1>
By changing the film forming conditions of the film made of the high refractive index material in Example 1, a cover glass in which an inorganic film consisting of only one silicon nitride film having a thickness of 3000 nm was formed was formed on a chemically strengthened glass plate. Obtained. At this time, the scratch resistance was good, but the warpage of the substrate was large.

<比較例2>
実施例1と同様な方法で準備した化学強化ガラス板上に、低屈膜であるSiOと高屈膜であるNbを交互に2層ずつ、合計4層積層した構成{ガラス板/Nb(10nm)/SiO(10nm)/Nb(100nm)/SiO(80nm)}の無機膜をガラス板上に成膜した。SiO膜の成膜条件は実施例1におけるSiO膜と同様にした。なお、Nbの波長632nmにおける屈折率は2.25である。
高屈折材料からなる膜(Nb)の成膜時の後反応スパッタ条件は下記のとおりである。
後反応スパッタ装置:アルバック社製、商品名 ULDis・ターゲット:Nbターゲット・成膜ガス:Ar(流量100sccm)・スパッタ電力:4kW・酸化源ガス:O(流量100sccm)・酸化源電力:1kW・基板温度:常温・成膜レート:0.3nm/min.
膜厚が薄いため得られた基板の反りは抑えられていたが、耐擦傷性は低かった。
<Comparative example 2>
On a chemically strengthened glass plate prepared in the same manner as in Example 1, a low bending film SiO 2 and a high bending film Nb 2 O 5 are alternately laminated in two layers, for a total of four layers {glass plate. An inorganic film of / Nb 2 O 5 (10 nm) / SiO 2 (10 nm) / Nb 2 O 5 (100 nm) / SiO 2 (80 nm)} was formed on a glass plate. Conditions for forming the SiO 2 film is as in the SiO 2 film in the first embodiment. The refractive index of Nb 2 O 5 at a wavelength of 632 nm is 2.25.
The post-reaction sputtering conditions at the time of film formation of the film (Nb 2 O 5) made of a highly refracting material are as follows.
Post-reaction sputtering equipment: manufactured by ULVAC, trade name ULDIS ・ Target: Nb target ・ Film formation gas: Ar (flow rate 100 sccm) ・ Sputter power: 4 kW ・ Oxidation source gas: O 2 (flow rate 100 sccm) ・ Oxidation source power: 1 kW ・Substrate temperature: Room temperature, film formation rate: 0.3 nm / min.
Since the film thickness was thin, the warp of the obtained substrate was suppressed, but the scratch resistance was low.

<比較例3>
実施例1と同様にして化学強化ガラス板を作製し、総膜厚415nmの無機膜が積層されたカバーガラスを作製した。無機膜における単膜の膜厚及び積層数は表1に示すとおりである。なお、ガラス板表面には低屈膜である酸化ケイ素膜を成膜し、無機膜の最表面も低屈膜である酸化ケイ素膜を成膜した。
膜厚が薄いため得られた基板の反りは抑えられていたが、耐擦傷性は低かった。
<Comparative example 3>
A chemically strengthened glass plate was produced in the same manner as in Example 1, and a cover glass having an inorganic film having a total film thickness of 415 nm laminated was produced. Table 1 shows the film thickness and the number of layers of the single film in the inorganic film. A silicon oxide film, which is a low bending film, was formed on the surface of the glass plate, and a silicon oxide film, which is a low bending film, was also formed on the outermost surface of the inorganic film.
Since the film thickness was thin, the warp of the obtained substrate was suppressed, but the scratch resistance was low.

<実施例4>
実施例1と同様な方法で準備した化学強化ガラス板上に、低屈膜であるSiOと高屈膜であるSiNを交互に45層ずつ、合計90層積層した構成の無機膜をガラス板上に成膜した。SiO膜の成膜条件は実施例1におけるSiO膜と同様にした。高屈折材料からなる膜の引張応力が強くなるよう成膜をし、総膜厚3000nmの無機膜が積層されたカバーガラスを作製した。無機膜における単膜の膜厚及び積層数は表1に示すとおりである。高屈折材料からなる膜(SiN)の成膜時の後反応スパッタ条件は下記のとおりである。
後反応スパッタ装置:アルバック社製、商品名 ULDis・ターゲット:p−Siターゲット・成膜ガス:Ar(流量150sccm)・スパッタ電力:6kW・窒化源ガス:N(流量100sccm)・窒化源電力:1kW・基板温度:常温・成膜レート:0.18nm/min.
得られた高屈膜の応力は引張応力で、酸化ケイ素膜(低屈膜)の圧縮応力を打ち消すように応力が働き基板の反りはさらに低減した。このとき、耐擦傷性は良好であった。
<Example 4>
On a chemically strengthened glass plate prepared in the same manner as in Example 1, an inorganic film having a structure in which a total of 90 layers of SiO 2 which is a low bending film and SiN which is a high bending film are alternately laminated for 45 layers is formed on the glass plate. A film was formed on top. Conditions for forming the SiO 2 film is as in the SiO 2 film in the first embodiment. A film was formed so that the tensile stress of the film made of a highly refracting material became strong, and a cover glass in which an inorganic film having a total film thickness of 3000 nm was laminated was produced. Table 1 shows the film thickness and the number of layers of the single film in the inorganic film. The post-reaction sputtering conditions at the time of forming a film (SiN) made of a highly refracting material are as follows.
Post-reaction sputtering equipment: manufactured by ULVAC, trade name ULDIS ・ Target: p-Si target ・ Film formation gas: Ar (flow rate 150 sccm) ・ Spatter power: 6 kW ・ Nitride source gas: N 2 (flow rate 100 sccm) ・ Nitride source power: 1 kW, substrate temperature: room temperature, film formation rate: 0.18 nm / min.
The stress of the obtained high bending film is tensile stress, and the stress acts so as to cancel the compressive stress of the silicon oxide film (low bending film), and the warp of the substrate is further reduced. At this time, the scratch resistance was good.

<実施例5>
実施例1と同様な方法で準備した化学強化ガラス板上に、低屈膜であるAlと高屈膜であるSiNを交互に45層ずつ、合計90層積層した構成の無機膜をガラス板上に成膜した。SiN膜の成膜条件は実施例4におけるSiN膜と同様にした。高屈膜の引張応力が強くなるよう成膜をし、総膜厚3000nmの無機膜が積層されたカバーガラスを作製した。なお、Alの波長632nmにおける屈折率は1.67である。無機膜における単膜の膜厚及び積層数は表1に示すとおりである。
低屈折材料からなる膜(Al)の成膜時の後反応スパッタ条件は下記のとおりである。
後反応スパッタ装置:アルバック社製、商品名 ULDis・ターゲット:Alターゲット・成膜ガス:Ar(流量50sccm)・スパッタ電力:6kW・酸化源ガス:O(流量100sccm)・酸化源電力:1kW・基板温度:常温・成膜レート:0.18nm/min.
得られた高屈膜の応力は引張応力で、低屈膜の圧縮応力を打ち消すように応力が働き基板の反りはさらに低減した。このとき、耐擦傷性は良好であった。
<Example 5>
On a chemically strengthened glass plate prepared in the same manner as in Example 1, an inorganic film having a structure in which 45 layers of Al 2 O 3 which is a low bending film and SiN which is a high bending film are alternately laminated for a total of 90 layers is formed. A film was formed on a glass plate. The film forming conditions of the SiN film were the same as those of the SiN film in Example 4. A film was formed so that the tensile stress of the high-flexibility film became strong, and a cover glass in which an inorganic film having a total film thickness of 3000 nm was laminated was produced. The refractive index of Al 2 O 3 at a wavelength of 632 nm is 1.67. Table 1 shows the film thickness and the number of layers of the single film in the inorganic film.
The post-reaction sputtering conditions at the time of film formation of the film (Al 2 O 3) made of a low refraction material are as follows.
Post-reaction sputtering equipment: manufactured by ULVAC, trade name ULDIS ・ Target: Al target ・ Film formation gas: Ar (flow rate 50 sccm) ・ Spatter power: 6 kW ・ Oxidation source gas: O 2 (flow rate 100 sccm) ・ Oxidation source power: 1 kW ・Substrate temperature: Room temperature, film formation rate: 0.18 nm / min.
The stress of the obtained high-flexibility film was tensile stress, and the stress acted so as to cancel the compressive stress of the low-flexibility film, further reducing the warp of the substrate. At this time, the scratch resistance was good.

<比較例4>
実施例1と同様な方法で準備した化学強化ガラス板上に、後反応スパッタ法を用いず、反応性スパッタ法を用い、ターゲット近傍に酸素、窒素などの反応性ガスとアルゴン、ネオンなどの希ガスを混合したガスを導入して、低屈膜であるSiOと高屈膜であるSiNを交互に45層ずつ、合計90層積層した構成の無機膜をガラス板上に成膜し、総膜厚3000nmの無機膜が積層されたカバーガラスを作製した。具体的にはアルバック社製、商品名 ULDis・ターゲット:Siターゲットを配置し、ターゲット近傍に、成膜ガス:Ar 流量50sccmとOガス100sccmの混合ガスを導入し、スパッタ電力:6kW,常温・成膜レート:0.05nm/minで酸化ケイ素を成膜し、同様にSiターゲット近傍に成膜ガス:Ar 流量50sccmとNガス100sccmの混合ガスを導入し、スパッタ電力:6kW,常温・成膜レート:0.06nm/minで窒化ケイ素を成膜した。
得られた高屈膜の応力は圧縮応力であり、得られた基板の耐擦傷性は良好であったが、基板の反りが大きかった。
<Comparative example 4>
On a chemically strengthened glass plate prepared by the same method as in Example 1, a reactive sputtering method was used instead of the post-reactive sputtering method, and a reactive gas such as oxygen or nitrogen and a rare gas such as argon or neon were used in the vicinity of the target. By introducing a gas mixed with gas, an inorganic film having a structure in which a total of 90 layers of SiO 2 which is a low bending film and SiN which is a high bending film are alternately laminated for a total of 90 layers is formed on a glass plate. A cover glass having an inorganic film having a thickness of 3000 nm laminated was produced. Specifically, manufactured by ULVAC, trade name ULDIS ・ Target: Si target is placed, and a mixed gas of film formation gas: Ar flow rate 50 sccm and O 2 gas 100 sccm is introduced near the target, spatter power: 6 kW, normal temperature ・A silicon oxide film is formed at a film formation rate of 0.05 nm / min, and a mixed gas of a film formation gas: Ar flow rate of 50 sccm and N 2 gas of 100 sccm is introduced in the vicinity of the Si target, and sputter power: 6 kW, normal temperature and formation. A silicon nitride film was formed at a film rate of 0.06 nm / min.
The stress of the obtained high-flexibility film was compressive stress, and the scratch resistance of the obtained substrate was good, but the warpage of the substrate was large.

<比較例5>
実施例1と同様な方法で準備した化学強化ガラス板上に、後反応スパッタ法を用いず、反応性スパッタ法を用いて、低屈膜であるAlと高屈膜であるSiNを交互に45層ずつ、合計90層積層した構成の無機膜をガラス板上に成膜し、総膜厚3000nmの無機膜が積層されたカバーガラスを作製した。反応性スパッタ条件は下記のとおりであり、得られた高屈膜は引張応力層となった。具体的には、アルバック社製、商品名 ULDis・ターゲット:Alターゲットを配置し、ターゲット近傍に、成膜ガス:Ar 流量50sccmとOガス100sccmの混合ガスを導入し、スパッタ電力:6kW,常温・成膜レート:0.05nm/minで酸化アルミニウムを成膜し、同様にSiターゲット近傍に成膜ガス:Ar 流量50sccmとNガス100sccmの混合ガスを導入し、スパッタ電力:6kW,常温・成膜レート:0.06nm/minで窒化ケイ素を成膜した。
得られた高屈膜の応力は引張応力であり、得られた基板の耐擦傷性は良好であったが、基板の反りが大きかった。
<Comparative example 5>
Al 2 O 3 which is a low bending film and SiN which is a high bending film are formed on a chemically strengthened glass plate prepared by the same method as in Example 1 by using a reactive sputtering method without using a post-reaction sputtering method. An inorganic film having a structure in which a total of 90 layers were laminated alternately with 45 layers was formed on a glass plate to prepare a cover glass in which an inorganic film having a total thickness of 3000 nm was laminated. The reactive sputtering conditions were as follows, and the obtained high-flexibility film became a tensile stress layer. Specifically, a mixed gas of film-forming gas: Ar flow rate of 50 sccm and O 2 gas of 100 sccm is introduced in the vicinity of the target by arranging the product name ULDis target: Al target manufactured by ULVAC, and the sputter power: 6 kW, normal temperature. -Aluminum oxide is deposited at a film formation rate: 0.05 nm / min, and a mixed gas of film formation gas: Ar flow rate of 50 sccm and N 2 gas of 100 sccm is introduced in the vicinity of the Si target, and sputter power: 6 kW, room temperature. Film formation rate: Silicon nitride was deposited at 0.06 nm / min.
The stress of the obtained high-flexibility film was tensile stress, and the scratch resistance of the obtained substrate was good, but the warpage of the substrate was large.

上記で得られたカバーガラスについて各種評価を行なった。カバーガラスにおける高屈折率材料からなる膜及び/又は低屈折率材料からなる膜の構成及び評価結果を表1に示す。
表1中、耐擦傷性において「○」とは評価後の膜表面に傷が生じなかったことを表し、「×」とは傷が生じたことを表す。また、表1中、反り量(評価1)が「◎」とは無機膜積層前後におけるガラスの反り変化量が20%以下であったことを表し、「○」とは該反り変化量が20%超30%以下であったことを表し、「×」とは該反り変化量が30%超であったことを表す。また、表1中、反り量(評価2)が「◎」とは反り量の平均値が300μm以下であったことを表し、「○」とは該反り量の平均値が300μm超400μm以下であったことを表し、「×」とは該反り量の平均値が400μm超であったことを表す。
Various evaluations were performed on the cover glass obtained above. Table 1 shows the composition and evaluation results of the film made of a high refractive index material and / or the film made of a low refractive index material in the cover glass.
In Table 1, in terms of scratch resistance, "○" indicates that the film surface after evaluation was not scratched, and "x" indicates that scratches were generated. Further, in Table 1, when the amount of warpage (evaluation 1) is "◎", it means that the amount of change in warpage of the glass before and after laminating the inorganic film was 20% or less, and "○" means that the amount of change in warpage is 20. It means that it was more than% and 30% or less, and “x” means that the amount of change in warpage was more than 30%. Further, in Table 1, when the warp amount (evaluation 2) is "◎", it means that the average value of the warp amount is 300 μm or less, and "○" means that the average value of the warp amount is more than 300 μm and 400 μm or less. “X” means that the average value of the amount of warpage was more than 400 μm.

無機膜の合計厚みと前記無機膜の合計応力値とを掛け合わせた値の絶対値を表1に示す。無機膜の合計膜厚と無機膜の合計応力値とを掛け合わせた値の絶対値が所定の範囲にあることによってガラス板の反り量を抑えることができる。該掛け合わせた値の絶対値が、220×10nm・MPa以下であることが好ましく、100×10nm・MPa以下であることがより好ましく、70×10nm・MPa以下がさらに好ましく、50×10nm・MPa以下が特に好ましい。 Table 1 shows the absolute value of the product of the total thickness of the inorganic film and the total stress value of the inorganic film. When the absolute value of the product of the total film thickness of the inorganic film and the total stress value of the inorganic film is within a predetermined range, the amount of warpage of the glass plate can be suppressed. The absolute value of the multiplied value is preferably 220 × 10 3 nm · MPa or less, more preferably 100 × 10 3 nm · MPa or less, and even more preferably 70 × 10 3 nm · MPa or less. , 50 × 10 3 nm · MPa or less is particularly preferable.

上記で得られたカバーガラス及びガラス積層体によれば、ガラス板に対する反り量を顕著に低減し、耐擦傷性に優れ、かつ低反射性で光学特性に優れたカバーガラス及びガラス積層体を得ることができた。 According to the cover glass and glass laminate obtained above, the amount of warpage with respect to the glass plate is remarkably reduced, and a cover glass and glass laminate having excellent scratch resistance, low reflectivity and excellent optical characteristics can be obtained. I was able to.

Figure 0006870348
Figure 0006870348

本発明によれば、電子端末用等の薄いカバーガラスであっても、積層膜による優れた耐擦傷性を維持したまま、基板の反りが低減されたカバーガラスを得ることができる。 According to the present invention, even with a thin cover glass for an electronic terminal or the like, it is possible to obtain a cover glass in which the warp of the substrate is reduced while maintaining the excellent scratch resistance of the laminated film.

1 ガラス板
2 高屈折率材料からなる膜
3 低屈折率材料からなる膜
1 Glass plate 2 Film made of high refractive index material 3 Film made of low refractive index material

Claims (17)

ガラス板と、前記ガラス板の少なくとも一方の表面に積層された無機膜とを含むカバーガラスであって、
前記ガラス板は厚みが0.2mm以上1mm以下であり、かつ表層に圧縮応力層を有する化学強化ガラス板であり、
前記無機膜は波長632nmにおける屈折率が1.80以上の高屈折率材料からなる膜と、前記屈折率が1.80未満の低屈折率材料からなる膜とがスパッタリングによって交互に6層以上積層され、
前記高屈折率材料からなる膜及び前記低屈折率材料からなる膜は、それぞれ単膜の厚みが5〜250nmであり、前記無機膜の合計厚みが850〜6000nmであり、かつ
水平な定盤上に、前記カバーガラスの一方の主平面が接するように載置して、前記カバーガラスの浮き上がりである前記カバーガラスの四隅における定盤からの反り量を、隙間ゲージを用いて、20℃で測定した際、反り量の平均値が400μm以下であるカバーガラス。
A cover glass including a glass plate and an inorganic film laminated on at least one surface of the glass plate.
The glass plate is a chemically strengthened glass plate having a thickness of 0.2 mm or more and 1 mm or less and having a compressive stress layer on the surface layer.
The inorganic film is formed by alternately laminating 6 or more layers of a film made of a high refractive index material having a refractive index of 1.80 or more at a wavelength of 632 nm and a film made of a low refractive index material having a refractive index of less than 1.80 by sputtering. Being done
The film made of the high refractive index material and the film made of the low refractive index material each have a single film thickness of 5 to 250 nm, a total thickness of the inorganic film of 850 to 6000 nm, and on a horizontal surface plate. The cover glass is placed so as to be in contact with one of the main planes, and the amount of warpage from the surface plate at the four corners of the cover glass, which is the lift of the cover glass, is measured at 20 ° C. using a gap gauge. A cover glass in which the average value of the amount of warpage is 400 μm or less.
前記高屈折率材料が窒化ケイ素である、請求項1に記載のカバーガラス。 The cover glass according to claim 1, wherein the high refractive index material is silicon nitride. 前記低屈折率材料が酸化ケイ素である、請求項1または2に記載のカバーガラス。 The cover glass according to claim 1 or 2 , wherein the low refractive index material is silicon oxide. 前記低屈折率材料からなる膜の単膜の厚みが、前記高屈折率材料からなる膜の単膜の厚みよりも薄い、請求項1〜のいずれか1項に記載のカバーガラス。 The cover glass according to any one of claims 1 to 3 , wherein the thickness of the single film of the film made of the low refractive index material is thinner than the thickness of the single film of the film made of the high refractive index material. 前記ガラス板の最表面に前記低屈折率材料からなる膜を介して前記高屈折率材料からなる膜が積層された、請求項1〜のいずれか1項に記載のカバーガラス。 The cover glass according to any one of claims 1 to 4 , wherein a film made of the high refractive index material is laminated on the outermost surface of the glass plate via a film made of the low refractive index material. 前記無機膜の合計厚みが850〜3000nmである、請求項1〜のいずれか1項に記載のカバーガラス。 The cover glass according to any one of claims 1 to 5 , wherein the total thickness of the inorganic film is 850 to 3000 nm. 前記無機膜の表面にさらに防汚膜を備える、請求項1〜のいずれか1項に記載のカバーガラス。 The cover glass according to any one of claims 1 to 6 , further comprising an antifouling film on the surface of the inorganic film. 電子端末用である、請求項1〜のいずれか1項に記載のカバーガラス。 The cover glass according to any one of claims 1 to 7 , which is for an electronic terminal. ガラス板と、前記ガラス板の少なくとも一方の表面に積層された無機膜とを含むガラス積層体であって、
前記ガラス板は厚みが0.2mm以上1mm以下であり、かつ表層に圧縮応力層を有する化学強化ガラス板であり、
前記無機膜は波長632nmにおける屈折率が1.80以上の高屈折率材料からなる膜と、前記屈折率が1.80未満の低屈折率材料からなる膜とがスパッタリングによって交互に6層以上積層され、
前記高屈折率材料からなる膜及び前記低屈折率材料からなる膜は、それぞれ単膜の厚みが5〜250nmであり、前記無機膜の合計厚みが850〜6000nmであり、かつ
前記無機膜の合計厚みと前記無機膜の合計応力値とを掛け合わせた値の絶対値が220×10nm・MPa以下であるガラス積層体。
A glass laminate containing a glass plate and an inorganic film laminated on at least one surface of the glass plate.
The glass plate is a chemically strengthened glass plate having a thickness of 0.2 mm or more and 1 mm or less and having a compressive stress layer on the surface layer.
The inorganic film is formed by alternately laminating 6 or more layers of a film made of a high refractive index material having a refractive index of 1.80 or more at a wavelength of 632 nm and a film made of a low refractive index material having a refractive index of less than 1.80 by sputtering. Being done
The film made of the high refractive index material and the film made of the low refractive index material each have a single film thickness of 5 to 250 nm, a total thickness of the inorganic film of 850 to 6000 nm, and a total of the inorganic films. A glass laminate having an absolute value of 220 × 10 3 nm · MPa or less, which is the product of the thickness and the total stress value of the inorganic film.
ガラス板と、前記ガラス板の少なくとも一方の表面に積層された無機膜とを含むガラス積層体であって、
前記ガラス板は厚みが0.2mm以上1mm以下であり、かつ表層に圧縮応力層を有する化学強化ガラス板であり、
前記無機膜は波長632nmにおける屈折率が1.80以上の高屈折率材料からなる膜と、前記屈折率が1.80未満の低屈折率材料からなる膜とがスパッタリングによって交互に6層以上積層され、
前記高屈折率材料からなる膜及び前記低屈折率材料からなる膜は、それぞれ単膜の厚みが5〜250nmであり、前記無機膜の合計厚みが850〜6000nmであり、かつ
前記無機膜の合計応力値の絶対値が80MPa以下であるガラス積層体。
A glass laminate containing a glass plate and an inorganic film laminated on at least one surface of the glass plate.
The glass plate is a chemically strengthened glass plate having a thickness of 0.2 mm or more and 1 mm or less and having a compressive stress layer on the surface layer.
The inorganic film is formed by alternately laminating 6 or more layers of a film made of a high refractive index material having a refractive index of 1.80 or more at a wavelength of 632 nm and a film made of a low refractive index material having a refractive index of less than 1.80 by sputtering. Being done
The film made of the high refractive index material and the film made of the low refractive index material each have a single film thickness of 5 to 250 nm, a total thickness of the inorganic film of 850 to 6000 nm, and a total of the inorganic films. A glass laminate having an absolute stress value of 80 MPa or less.
前記高屈折率材料からなる膜の応力値の絶対値は、前記低屈折率材料からなる膜の応力値の絶対値よりも小さい請求項又は10に記載のガラス積層体。 The glass laminate according to claim 9 or 10 , wherein the absolute value of the stress value of the film made of the high refractive index material is smaller than the absolute value of the stress value of the film made of the low refractive index material. 前記高屈折率材料からなる膜の応力値は、前記低屈折率材料からなる膜の応力値よりも大きい請求項11のいずれか1項に記載のガラス積層体。 The glass laminate according to any one of claims 9 to 11 , wherein the stress value of the film made of the high refractive index material is larger than the stress value of the film made of the low refractive index material. 前記無機膜の合計厚みと前記無機膜の合計応力値とを掛け合わせた値の絶対値が100×10nm・MPa以下である請求項12のいずれか1項に記載のガラス積層体。 The glass laminate according to any one of claims 9 to 12 , wherein the absolute value of the product of the total thickness of the inorganic film and the total stress value of the inorganic film is 100 × 10 3 nm · MPa or less. .. 前記高屈折率材料からなる膜はそれぞれ単膜の応力値の絶対値が30〜250MPaである、請求項13のいずれか1項に記載のガラス積層体。 The glass laminate according to any one of claims 9 to 13 , wherein each of the films made of the high refractive index material has an absolute value of the stress value of a single film of 30 to 250 MPa. 前記低屈折率材料からなる膜はそれぞれ単膜の応力値の絶対値が100〜300MPaである、請求項14のいずれか1項に記載のガラス積層体。 The glass laminate according to any one of claims 9 to 14 , wherein each of the films made of the low refractive index material has an absolute value of the stress value of a single film of 100 to 300 MPa. 前記無機膜の合計応力値の絶対値が35MPa以下である、請求項15のいずれか1項に記載のガラス積層体。 The glass laminate according to any one of claims 9 to 15 , wherein the absolute value of the total stress value of the inorganic film is 35 MPa or less. 前記無機膜の合計応力値の絶対値が25MPa以下である、請求項16のいずれか1項に記載のガラス積層体。 The glass laminate according to any one of claims 9 to 16 , wherein the absolute value of the total stress value of the inorganic film is 25 MPa or less.
JP2017015705A 2016-02-04 2017-01-31 Cover glass and glass laminate Active JP6870348B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016020184 2016-02-04
JP2016020184 2016-02-04

Publications (2)

Publication Number Publication Date
JP2017137235A JP2017137235A (en) 2017-08-10
JP6870348B2 true JP6870348B2 (en) 2021-05-12

Family

ID=59534132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017015705A Active JP6870348B2 (en) 2016-02-04 2017-01-31 Cover glass and glass laminate

Country Status (2)

Country Link
JP (1) JP6870348B2 (en)
CN (2) CN206605867U (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6870348B2 (en) * 2016-02-04 2021-05-12 Agc株式会社 Cover glass and glass laminate
US11286201B2 (en) 2017-01-31 2022-03-29 AGC Inc. Cover glass and glass laminate
CN107601920A (en) * 2017-09-27 2018-01-19 信义光伏产业(安徽)控股有限公司 It is divided silvery white looking glass and preparation method thereof
KR102490522B1 (en) 2017-11-14 2023-01-19 삼성전자주식회사 Cover glass and electronic device with the same, and manufacturing method of cover glass
JP6863343B2 (en) * 2018-07-12 2021-04-21 Agc株式会社 Manufacturing method of glass laminate, front plate for display, display device and glass laminate
JP2020060657A (en) * 2018-10-09 2020-04-16 日東電工株式会社 Antireflection glass

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3867393B2 (en) * 1998-03-20 2007-01-10 株式会社デンソー Micro heater, method for manufacturing the same, and air flow sensor
JP2000211053A (en) * 1999-01-22 2000-08-02 Sony Corp Optical thin film device
JP2004271480A (en) * 2003-03-12 2004-09-30 Citizen Watch Co Ltd Cover glass for timepiece
JP5023556B2 (en) * 2006-05-31 2012-09-12 旭硝子株式会社 Conductive laminate, electromagnetic wave shielding film for plasma display, and protective plate for plasma display
CN201000491Y (en) * 2007-01-17 2008-01-02 深圳市蓝思科技有限公司 Window glasses lens having anti-dirt antireflective film
JP5326407B2 (en) * 2008-07-31 2013-10-30 セイコーエプソン株式会社 Watch cover glass and watch
WO2015041257A1 (en) * 2013-09-18 2015-03-26 旭硝子株式会社 Tempered glass plate with low reflective coating and production method therfor
DE102014108057A1 (en) * 2014-06-06 2015-12-17 Schott Ag Scratch-resistant, chemically toughened glass substrate and its use
JP5920446B2 (en) * 2014-11-21 2016-05-18 日本電気硝子株式会社 Manufacturing method of optical film
JP6870348B2 (en) * 2016-02-04 2021-05-12 Agc株式会社 Cover glass and glass laminate

Also Published As

Publication number Publication date
CN107031145B (en) 2022-01-04
JP2017137235A (en) 2017-08-10
CN107031145A (en) 2017-08-11
CN206605867U (en) 2017-11-03

Similar Documents

Publication Publication Date Title
JP6870348B2 (en) Cover glass and glass laminate
US20210284571A1 (en) Cover glass
CN104955783B (en) Transparent base with anti-soil film
TWI695184B (en) Substrate with low reflection film
US20210293995A1 (en) Cover glass and process for producing the same
TWI767206B (en) Ion exchange processes and chemically strengthened glass substrates resulting therefrom
US9434644B2 (en) Cover glass and method for producing cover glass
KR102493138B1 (en) Method for manufacturing reinforced glass plate, and method for manufacturing glass plate for reinforcement
US20210214268A1 (en) Cover glass for display, in-vehicle display device, and manufacturing method of cover glass for display
TW201800358A (en) Tempered glass plate and production method for tempered glass plate
WO2017221805A1 (en) Reinforced glass production method and reinforced glass production apparatus
US11286201B2 (en) Cover glass and glass laminate
JP2017160111A (en) Method of manufacturing tempered glass substrate, and tempered glass substrate
WO2020171091A1 (en) Contamination prevention layer-attched glass substrate and method for manufacturing contamination prevention layer-attached glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R150 Certificate of patent or registration of utility model

Ref document number: 6870348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250