WO2017179360A1 - Method for manufacturing tempered glass and device for manufacturing tempered glass - Google Patents

Method for manufacturing tempered glass and device for manufacturing tempered glass Download PDF

Info

Publication number
WO2017179360A1
WO2017179360A1 PCT/JP2017/010479 JP2017010479W WO2017179360A1 WO 2017179360 A1 WO2017179360 A1 WO 2017179360A1 JP 2017010479 W JP2017010479 W JP 2017010479W WO 2017179360 A1 WO2017179360 A1 WO 2017179360A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
molten salt
film
tempered glass
ions
Prior art date
Application number
PCT/JP2017/010479
Other languages
French (fr)
Japanese (ja)
Inventor
田中 敦
睦 深田
清貴 木下
利之 梶岡
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201780005746.3A priority Critical patent/CN108463443B/en
Priority to JP2018511939A priority patent/JP6827652B2/en
Publication of WO2017179360A1 publication Critical patent/WO2017179360A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface

Definitions

  • the present invention relates to a method for producing tempered glass and an apparatus for producing tempered glass, and more specifically, relates to a method for producing tempered glass for chemically strengthening a glass plate by an ion exchange method and an apparatus for tempered glass.
  • a tempered glass plate that has been chemically strengthened as a cover glass has been used for touch panel displays mounted on electronic devices such as smartphones and tablet PCs.
  • Such a tempered glass plate is generally produced by chemically treating a glass plate containing an alkali metal as a composition with a tempering solution to form a compressive stress layer on the surface. Since such a tempered glass plate has a compressive stress layer on the main surface, the impact resistance to the main surface is improved. On the other hand, a tensile stress layer corresponding to the compressive stress layer on the main surface is formed inside such a tempered glass plate. If this tensile stress becomes excessively large, cracks on the end face are caused due to this. Damage due to progress (so-called self-destruction) is likely to occur. Further, when the compressive stress layer on the surface of the glass plate is formed to be shallow as a whole in order to reduce such tensile stress, there is a problem that sufficient impact resistance cannot be obtained at the end face.
  • Patent Document 1 by forming a film that suppresses ion exchange in advance on the main surface and suppressing the progress of chemical strengthening compared to the end surface, the compressive stress layer on the end surface is relatively deeper than the main surface.
  • a technique for forming and improving the strength at the end face is disclosed.
  • molten salt used for ion exchange of tempered glass gradually changes in liquid quality due to repeated use. Therefore, when a membrane that suppresses ion exchange is formed as in the technique of Cited Document 1, depending on the quality of the reinforcing liquid used for ion exchange, chemical strengthening is excessive at the location where the membrane that suppresses ion exchange is formed. In some cases, a sufficient compressive stress layer could not be obtained. That is, there is still room for improvement in the method for stably producing tempered glass having high strength.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a tempered glass manufacturing method and a tempered glass manufacturing apparatus capable of stably manufacturing a tempered glass plate having high strength.
  • the method for producing tempered glass of the present invention is a method for producing tempered glass for exchanging ions on a glass surface layer, and a step of forming an ion permeation suppression film for suppressing ion permeation on at least a part of the surface of the glass
  • a step of bringing the molten salt into contact with the surface of the glass on which the ion permeation suppressing film is formed and exchanging ions, and the molten salt is mixed with water to form an aqueous solution having a molten salt concentration of 20% by mass.
  • the pH is 6.5 or more.
  • the molten salt preferably has a pH of 6.7 to 10 when mixed with water to obtain an aqueous solution having a molten salt concentration of 20% by mass. .
  • the method for producing tempered glass of the present invention preferably further comprises a step of adjusting the pH value when an aqueous solution is prepared by adding a basic substance to the molten salt.
  • the ions on the glass surface layer are sodium ions
  • the molten salt contains potassium ions
  • the basic substance contains potassium hydroxide.
  • the glass has a glass composition of mass%, SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20%. %, And an ion permeation suppressing film is formed only on the main surface of the glass, and the formed glass is immersed in a molten salt at 370 to 480 ° C. for 0.1 to 72 hours for ion exchange. It is preferable.
  • the ion permeation suppression film preferably contains SiO 2 as a main component.
  • the method for producing tempered glass of the present invention further includes a step of adjusting the pH value of the aqueous solution by controlling the temperature of the molten salt.
  • the tempered glass manufacturing apparatus of the present invention is a tempered glass manufacturing apparatus provided with a salt bath containing molten salt for exchanging ions on the glass surface layer, and the molten salt is mixed with water so that the concentration of the molten salt is The pH when the aqueous solution is 20% by mass is 6.5 or more.
  • the tempered glass manufacturing apparatus of the present invention further includes a film forming apparatus that forms an ion permeation suppressing film that suppresses permeation of ions on at least a part of the surface of the glass, and a support apparatus that supports the formed glass.
  • the support device is preferably configured to be dipped in a salt bath while supporting the glass.
  • the present invention by appropriately adjusting the molten salt used for the chemical strengthening of glass, ion exchange is not excessively suppressed at the location where the ion permeation suppression film is formed, and the tempered glass plate has high strength. Can be manufactured stably.
  • FIG. 1A shows an example of a method for producing tempered glass of the present invention.
  • FIG. 1B shows an example of a method for producing the tempered glass of the present invention.
  • FIG. 1C shows an example of a method for producing the tempered glass of the present invention.
  • FIG. 1D shows an example of a method for producing the tempered glass of the present invention.
  • FIG. 2 is a flowchart showing another example of the method for producing tempered glass according to the present invention.
  • FIG. 1 is a diagram showing an example of a method for producing tempered glass of the present invention.
  • the preparation process is a process of preparing the original glass G1.
  • the original glass G1 is a glass that can be tempered using an ion exchange method.
  • the original glass G1 preferably contains, by mass%, SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20% as a glass composition. If the glass composition range is regulated as described above, it becomes easy to achieve both ion exchange performance and devitrification resistance at a high level.
  • the thickness of the original glass G1 is, for example, 1.5 mm or less, preferably 1.3 mm or less, 1.1 mm or less, 1.0 mm or less, 0.8 mm or less, 0.7 mm or less, 0.6 mm or less, 0.5 mm or less, 0.4 mm or less, 0.3 mm or less, 0.2 mm or less, especially 0 mm. 1 mm or less.
  • the thickness of the original glass G1 is preferably 0.01 mm or more.
  • the dimensions of the main surface of the original glass G1 are, for example, 480 ⁇ 320 mm to 3350 ⁇ 3950 mm.
  • the original glass G1 is preferably formed using an overflow downdraw method, and its main surface S is not polished. With the original glass G1 thus formed, a tempered glass plate having high surface quality can be obtained at low cost. In addition, you may select arbitrarily the shaping
  • the original glass G1 may be formed using a float process, and the main surface S and the end surface E may be polished.
  • the film forming step is a step of forming the glass with film G2 by forming the ion permeation suppressing film M on at least a part of the surface of the original glass G1.
  • the ion permeation suppression film M is a film layer that suppresses permeation of ions when ion exchange is performed on the surface layer of the original glass G1 in the strengthening process described later.
  • the film-coated glass G2 has the ion permeation suppression film M formed only on the front and back main surfaces S, and the end face E is exposed.
  • the ion permeation suppression film M As a material of the ion permeation suppression film M, any material may be used as long as permeation of ions to be ion-exchanged can be suppressed.
  • the exchanged ions are alkali metal ions
  • the ion permeation suppression film M is, for example, a metal oxide, metal nitride, metal carbide, metal oxynitride, metal oxycarbide, metal carbonitride film, or the like. Is preferred.
  • the material of the ion permeation suppressive film M for example, SiO 2, Al 2 O 3 , SiN, SiC, Al 2 O 3, AlN, ZrO 2, TiO 2, Ta 2 O 5, Nb 2 O 5 , a film containing one or more of HfO 2 and SnO 2 .
  • the ion permeation suppression film M it is preferable to use SiO 2 as the main component of the ion permeation suppression film M because the ion permeation suppression film M can be easily formed at low cost and can function as an antireflection film.
  • Ion permeation suppressive film M is good as a film made of only SiO 2.
  • the ion permeation suppression film M may have a composition containing 99% or more of SiO 2 by mass%.
  • the thickness of the ion permeation suppression film M is preferably 5 to 300 nm, more preferably 20 to 200 nm, still more preferably 20 to 150 nm, 40 to 120 nm, and most preferably 80 to 100 nm.
  • the film formation method of the ion permeation suppression film M is a PVD method (physical vapor deposition method) such as a sputtering method or a vacuum evaporation method, a CVD method (chemical vapor deposition method) such as a thermal CVD method or a plasma CVD method, dip coating, etc.
  • a wet coating method such as a method or a slit coating method can be used.
  • a sputtering method and a dip coating method are preferable.
  • the deposition location of the ion permeation suppression film M may be set by any method.
  • the film formation may be performed in a state where a mask is previously applied to a non-film formation portion (end surface E in the present embodiment).
  • the tempering step is a step of chemically strengthening the film-coated glass G2 by an ion exchange method to obtain a film-coated tempered glass G3. Specifically, ion exchange is performed by immersing the film-coated glass G2 in a molten salt T containing alkali metal ions.
  • the pH value of the aqueous solution (hereinafter referred to as pH at the time of aqueous solution) is 6. It is a salt of 5 or more.
  • the aqueous pH is preferably 6.7 to 10, more preferably 6.8 to 8.5, and still more preferably 7.0 to 8.0.
  • the pH when water is in the range of 7.0 to 8.0.
  • the pH at the time of aqueous solution can be measured, for example, by once cooling and solidifying the molten salt, pulverizing and weighing the molten salt to prepare the aqueous solution.
  • the molten salt T in the present embodiment is, for example, potassium nitrate molten salt, but a well-known molten salt used for ion exchange of glass may be used.
  • the adjustment step of adjusting the pH of the molten salt T when it is in water within the above range before or after the strengthening step.
  • the pH at the time of aqueous solution can be adjusted by adding an additive to the molten salt T.
  • the additive is, for example, a basic substance.
  • the basic substance is a substance having a hydrogen ion index (pH) of more than 7 when mixed with water.
  • KOH, NaOH or the like can be used alone or in combination.
  • the temperature of the molten salt in the strengthening step may be arbitrarily determined, and is, for example, 350 to 500 ° C., preferably 370 to 480 ° C.
  • the time for immersing the film-coated glass G2 in the molten salt T may be arbitrarily determined, and is, for example, 0.1 to 72 hours, preferably 0.5 to 24 hours.
  • the tempering step sodium ions on the surface of the film-coated glass G2 and potassium ions in the molten salt T are exchanged to obtain a film-reinforced glass G3 having a compressive stress layer C on the surface.
  • a portion (main surface S) where the ion permeation suppression film M is provided is suppressed in ion exchange compared to the exposed portion E where the surface of the original glass G1 is exposed.
  • the depth of the compressive stress layer is reduced. In other words, in the exposed portion E, the ion exchange can proceed more easily than the portion where the ion permeation suppression film M is provided, and the depth of the compressive stress layer is increased.
  • the tempered glass with film G3 has a deeper compressive stress layer at the end surface than the main surface, and therefore has a lower internal tensile stress than the tempered glass strengthened entirely, and at the end portion. High impact resistance. Therefore, the damage resulting from the progress of the crack from the end can be suitably suppressed.
  • the ion permeation suppression film M when the above-described inorganic composition material is adopted as the ion permeation suppression film M, it is melted as compared with a conventional organic protective film or the like even when immersed in the molten salt T with the film provided. It is difficult to deteriorate the salt T.
  • the processing conditions such as the processing temperature and the dipping time in the tempering step may be appropriately determined according to the characteristics required for the tempered glass with film G3.
  • the processing conditions are preferably adjusted so that the depth of the compressive stress layer on the main surface S of the tempered glass G3 with film is smaller than the depth of the compressive stress layer on the exposed portion E.
  • the tempered glass G3 with a film can be used as a product as it is, but the ion permeation suppression film M can be used depending on the application. It may be peeled off. In the peeling step shown in FIG. 1D, the ion permeation suppression film M is peeled from the tempered glass G3 with film to obtain a tempered glass plate G4.
  • the ion permeation suppression film M is removed by attaching an etching solution to the tempered glass with film G3.
  • the ion permeation suppression film M is a film containing SiO 2
  • a solution containing fluorine, TMAH, EDP, KOH, or the like can be used as an etchant, and a hydrofluoric acid solution is particularly preferably used as an etchant.
  • the peeling method of the ion permeation suppression film M is not limited to the above, and a known method may be used as a method for removing the film provided on the glass plate.
  • the ion permeation suppression film M may be formed by machining such as polishing. It may be removed.
  • the peeling step only the ion permeation suppression film M on one main surface side may be removed, or the ion permeation suppression films M on both main surfaces may be removed. Further, the ion permeation suppression film M may be partially removed from each main surface, or the ion permeation suppression film M may be entirely removed.
  • the etching liquid is partially adhered using a spray, roll, brush, etc., or the masked tempered glass G3 is partially masked to etch the liquid. It is possible to remove the film by immersing the film in the film.
  • the entire tempered glass with film G3 may be immersed in an etching solution. If the entire tempered glass with film G3 is immersed in the etching solution in this way, there are cases where a tempered glass plate G4 with further improved strength can be obtained by reducing microcracks that cause damage.
  • the tempered glass G3 and the tempered glass G4 with less damage from the end face can be efficiently produced.
  • the material of the ion permeation suppression film M described above is an example, and any material may be used as long as the film can suppress permeation of ions exchanged in the strengthening process.
  • a processing step for performing any one of cutting, end surface processing, and drilling processing may be provided.
  • the glass plate may be appropriately washed and dried.
  • the manufacturing method of the tempered glass mentioned above can be implemented using the tempered glass manufacturing apparatus provided with the salt bath X which accommodated the said molten salt T.
  • the salt tub X is, for example, a tank made of a metal casing having an upper opening, and has an internal space filled with the molten salt T.
  • the said tempered glass manufacturing apparatus is further provided with the support apparatus (not shown) which is comprised by the shape and dimension which can be accommodated in the salt tub X, and can support the glass G2 with a film
  • the support device is a jig constituted by a metal frame such as stainless steel, for example.
  • the treatment of the strengthening step can be performed.
  • the tempered glass manufacturing apparatus may further include a film forming apparatus (not shown) that performs the film forming process.
  • a film forming apparatus a known sputter film forming apparatus or the like can be used.
  • FIG. 2 is a flowchart showing another example of the method for producing tempered glass according to the present invention.
  • the method includes a preparation step S1, a film formation step S2, a molten salt generation step S3, a pH measurement step S4, a determination step S5, a pH adjustment step S6, a strengthening step S7, and a peeling step S8.
  • the preparation step S1, the film formation step S2, and the peeling step S8 are the same as the example in FIG.
  • Generation process S3 is a process which heats and melts metal nitrate (for example, potassium nitrate etc.), and obtains molten salt T.
  • metal nitrate for example, potassium nitrate etc.
  • PH measurement step S4 is performed after the molten salt generation step S3.
  • the pH measurement step S4 the pH when the molten salt T is mixed with water to make an aqueous solution having a concentration of 20% by mass is measured.
  • an off-the-shelf pH meter is used for measuring the pH.
  • the determination step S5 it is determined whether or not the pH value of the molten salt T measured in the pH measurement step S4 is suitable for the strengthening step S7. This determination is made by comparison with a predetermined reference value.
  • the reference value is set according to various conditions such as dimensions, thickness, DOL, and CS of the tempered glass. For example, when the reference value of pH is 6.5, when the measured pH value of the molten salt T is 6.5 or more (Yes in determination step S5), the process proceeds to the next strengthening step S7. When the measured pH value of the molten salt T is less than 6.5 (No in the determination step S5), the pH adjustment step S6 is performed before the strengthening step S7.
  • the pH adjustment step S6 at least one step such as a step of adding a basic substance to the molten salt T, a step of immersing the film-adjusting member for pH adjustment in the molten salt T, or a step of controlling the temperature of the molten salt T. To adjust the pH value of the molten salt T.
  • a basic substance having a pH higher than 7 when mixed with water is added to the molten salt T, and the molten salt T Adjust the pH.
  • the membrane-attached member In the step of immersing the membrane-attached member for pH adjustment in the molten salt, the membrane-attached member is immersed in the molten salt T, and the membrane-attached member is melted when the pH of the molten salt T reaches a desired value.
  • pH membrane with members for adjustment for example, be constituted by a glass substrate having a film made of SiO 2 is desired, it may be used after forming the SiO 2 film on the metal substrate.
  • the pH value can be lowered. That is, the hydroxide ions in the molten salt T break Si—O bonds in the SiO 2 film.
  • the SiO 2 film is desirably formed on a glass or metal substrate by sputtering, but is not limited thereto, and may be formed by wet coating or spin coating.
  • the pH value of the molten salt T can be increased by maintaining the molten salt T at a temperature equal to or higher than its boiling point.
  • a part of the potassium nitrate is changed to potassium nitrite. Since this potassium nitrite has deliquescence, moisture (H 2 O) in the atmosphere is taken into the molten salt T.
  • the film-coated glass G2 is immersed in the molten salt T accommodated in the salt bath X, as in the example of FIG. After immersion for a certain time, the tempered glass with film G3 is taken out from the salt bath X. The tempered glass with film G3 becomes the tempered glass plate G4 after the peeling step S8.
  • this invention is not limited to the structure of the said embodiment, It is not limited to the above-mentioned effect.
  • the present invention can be variously modified without departing from the gist of the present invention.
  • the present invention is not limited to this, and the pH adjusting step S6 and the tempering step S7 may be executed simultaneously.
  • the pH adjusting step S6 may be executed simultaneously.
  • the tempered glass with film G3 may be reinforced by immersing the molten salt T in the molten salt T while maintaining the molten salt T at a temperature equal to or higher than the boiling point.
  • the pH value of the molten salt T may change greatly during strengthening.
  • the salt bath X be made of quartz. According to this, since hydrogen ions do not come out of the molten salt T, a change in pH value can be suppressed as compared with the metal salt bath X.
  • the glass composition is glass so that it contains 61.6% of SiO 2 , 19.6% of Al 2 O 3 , 0.8% of B 2 O 3 , 16% of Na 2 O, and 2 % of K 2 O in mass%.
  • the raw materials were mixed and melted, and molded using an overflow downdraw method to obtain a plurality of original glasses having a thickness of 0.4 mm.
  • membrane which has an exposed part in an end surface was obtained by cutting out into the rectangular shape of a dimension.
  • the samples No. 10 to 18 were cut as described above without performing the film formation.
  • the obtained glass with a film was immersed in a 430 ° C. potassium nitrate solution having a pH at the time of water listed in Table 1 for 5 hours to chemically strengthen, washed with pure water and naturally dried, and then No. 1 in Table 1. 1 to 18 tempered glass plate samples were obtained.
  • Main surface compressive stress value CS, main surface stress depth DOL, and internal tensile stress CT were measured with a stress meter (FSM-6000LE and FsmXP manufactured by Orihara Seisakusho).
  • the falling ball test was carried out by placing the edge of a tempered glass plate sample having a size of 65 mm in length and 130 mm in width created in the same manner as described above on a frame-shaped jig having an open center portion made of paper bakelite.
  • a steel ball was dropped on the center of the glass, and the height at which it was damaged by a single collision was recorded. Specifically, from a height of 15 cm, a steel ball is dropped in increments of 5 cm, the height at which the tempered glass is broken is recorded, the height at which the tempered glass is broken is Weibull plotted, and the height at which the breakage probability has reached 63% is recorded. Obtained as an average value.
  • Sample No. 9 which is a comparative example, has a pH under water that is smaller than 6.5. Therefore, ion exchange is excessively suppressed by the ion permeation suppression membrane, and the surface compressive stress value CS and The surface compressive stress depth DOL could not be obtained.
  • a compressive stress layer having an appropriate surface compressive stress value and surface compressive stress depth was formed on the surface on which the ion permeation suppression film was formed.
  • each sample of the example was prepared by strengthening with an ion permeation suppression film formed on the main surface and an exposed portion on the end surface, and therefore compression of the surface and end surface
  • the balance of stress is suitably set, and as a result, the internal tensile stress CT is reduced as compared with the samples of Comparative Examples No. 10 to 18 which are not formed with an ion permeation suppression film and are strengthened with pH under water conditions under the same conditions. It is harder to self-destruct.
  • Table 3 below shows the change of the pH of the molten salt with respect to the immersion time when the glass plate on which the SiO 2 film is formed is immersed in molten potassium nitrate held at a predetermined temperature (temperature below the boiling point). Show. Sample No. shown in Table 3
  • Each of the molten salts 21 to 24 contains 600 g of potassium nitrate and 13.6 g of sodium nitrate. Furthermore, sample no. The 21 molten salt contains 0.10 g of potassium hydroxide. Sample No. The 22 molten salt contains 0.60 g of potassium hydroxide. Sample No. The molten salt of No. 23 was obtained by adding 6.00 g of potassium hydroxide to Sample No. The 24 molten salt contains 0.05 g of potassium hydroxide.
  • the pH value of the molten salt shown in Table 3 is a value when the molten salt is a 20% by mass aqueous solution. As shown in Table 3, each sample No. From 21 to 24, it was found that the pH value of the molten salt decreased with the passage of time. From this, it can be seen that the glass plate on which the SiO 2 film is formed can be effectively used as an adjusting material for lowering the pH value of the molten salt in the pH adjusting step.
  • the present inventors conducted a test for confirming the influence of the salt bath containing the molten salt T on the pH of the molten salt.
  • the molten salt is accommodated in a quartz salt bath (beaker) and a stainless steel salt bath, and the pH value is measured when the molten salt is made into a 20% by mass aqueous solution after a certain period of time. did.
  • the molten salt contains 600 g of potassium nitrate.
  • the temperature of the molten salt was maintained below the boiling point.
  • Table 4 The test results are shown in Table 4 below. As shown in Table 4, the molten salt accommodated in the quartz salt tub has a smaller degree of change (increase) in pH with the passage of time than that accommodated in the stainless steel salt tub. I understand.
  • the present inventors conducted a test to confirm the relationship between temperature and pH change in molten salt.
  • the temperature of the potassium nitrate molten salt was set to 400 ° C., 430 ° C., and 460 ° C., and the pH value of the molten salt (20% by mass aqueous solution) after a lapse of a fixed time was measured.
  • the test results are shown in Table 5 below. As shown in Table 5, it can be seen that the higher the temperature of the molten salt, the greater the change (increase) in the pH of the molten salt with respect to the elapsed time. This test confirmed that the pH of the molten salt can be adjusted by controlling the temperature of the molten salt in the pH adjustment step.
  • the tempered glass plate of the present invention and the manufacturing method thereof are useful as a glass substrate used for a touch panel display and the like, a manufacturing method thereof, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

This method for manufacturing tempered glass by performing ion exchange on the surface layer of glass is characterized by including: a step of forming, on at least a portion of the surface of glass, an ion permeation suppression film that suppresses permeation of ions; and a step of bringing molten salt into contact with the surface of the glass on which the ion permeation suppression film is formed and performing ion exchange. The molten salt has a pH of 6.5 or higher when mixed with water to produce an aqueous solution with a concentration of 20 mass%.

Description

強化ガラスの製造方法および強化ガラス製造装置Tempered glass manufacturing method and tempered glass manufacturing apparatus
 本発明は、強化ガラスの製造方法および強化ガラス製造装置に関し、より具体的には、イオン交換法によってガラス板の化学強化を行う強化ガラスの製造方法および強化ガラスの装置に関する。 The present invention relates to a method for producing tempered glass and an apparatus for producing tempered glass, and more specifically, relates to a method for producing tempered glass for chemically strengthening a glass plate by an ion exchange method and an apparatus for tempered glass.
 従来、スマートフォンやタブレットPCなどの電子機器に搭載されるタッチパネルディスプレイには、カバーガラスとして化学強化された強化ガラス板が用いられている。 Conventionally, a tempered glass plate that has been chemically strengthened as a cover glass has been used for touch panel displays mounted on electronic devices such as smartphones and tablet PCs.
 このような強化ガラス板は、一般的に、アルカリ金属を組成として含むガラス板を強化液で化学的に処理し、表面に圧縮応力層を形成することによって製造される。このような強化ガラス板は、主表面に圧縮応力層を有するために主表面への衝撃耐性が向上している。一方、このような強化ガラス板の内部には、主表面の圧縮応力層に対応して引張応力層が形成されるが、この引張応力が大きくなりすぎると、これに起因して端面のクラックが進展することによる破損(所謂、自己破壊)が生じやすくなる。また、このような引張応力を小さくするためにガラス板表面の圧縮応力層を全体的に浅く形成した場合、端面において十分な耐衝撃性を得られないという問題があった。 Such a tempered glass plate is generally produced by chemically treating a glass plate containing an alkali metal as a composition with a tempering solution to form a compressive stress layer on the surface. Since such a tempered glass plate has a compressive stress layer on the main surface, the impact resistance to the main surface is improved. On the other hand, a tensile stress layer corresponding to the compressive stress layer on the main surface is formed inside such a tempered glass plate. If this tensile stress becomes excessively large, cracks on the end face are caused due to this. Damage due to progress (so-called self-destruction) is likely to occur. Further, when the compressive stress layer on the surface of the glass plate is formed to be shallow as a whole in order to reduce such tensile stress, there is a problem that sufficient impact resistance cannot be obtained at the end face.
 上記のような問題を解決すべく、強化ガラス板の主表面と端面の圧縮応力のバランスを適切に設定して内部引張応力を適切な範囲で低減する技術が開発されている。例えば、特許文献1には、主表面に予めイオン交換を抑制する膜を形成して、化学強化の進度を端面に比べて抑制することによって、相対的に主表面より端面の圧縮応力層を深く形成し、端面における強度を向上する技術が開示されている。 In order to solve the above problems, a technology has been developed to appropriately set the balance between the compressive stresses of the main surface and the end face of the tempered glass plate and reduce the internal tensile stress within an appropriate range. For example, in Patent Document 1, by forming a film that suppresses ion exchange in advance on the main surface and suppressing the progress of chemical strengthening compared to the end surface, the compressive stress layer on the end surface is relatively deeper than the main surface. A technique for forming and improving the strength at the end face is disclosed.
特開2014-208570号公報JP 2014-208570 A
 強化ガラスのイオン交換に使用される溶融塩は、繰り返し使用される事によって液質が徐々に変化する。そのため、引用文献1の技術のように、イオン交換を抑制する膜を形成した場合、イオン交換に用いられる強化液の液質によっては、イオン交換を抑制する膜を形成した箇所において化学強化が過度に抑制され、十分な圧縮応力層が得られない場合があった。すなわち、高い強度を有する強化ガラスを安定して生産する方法については未だ改良の余地があった。 ¡The molten salt used for ion exchange of tempered glass gradually changes in liquid quality due to repeated use. Therefore, when a membrane that suppresses ion exchange is formed as in the technique of Cited Document 1, depending on the quality of the reinforcing liquid used for ion exchange, chemical strengthening is excessive at the location where the membrane that suppresses ion exchange is formed. In some cases, a sufficient compressive stress layer could not be obtained. That is, there is still room for improvement in the method for stably producing tempered glass having high strength.
 本発明は、このような事情を考慮して成されたものであり、高い強度を有する強化ガラス板を安定して製造可能とする強化ガラスの製造方法および強化ガラス製造装置を提供することを課題とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a tempered glass manufacturing method and a tempered glass manufacturing apparatus capable of stably manufacturing a tempered glass plate having high strength. And
 本発明の強化ガラスの製造方法は、ガラス表層のイオンを交換する強化ガラスの製造方法であって、ガラスの表面の少なくとも一部にイオンの透過を抑制するイオン透過抑制膜を成膜する工程と、イオン透過抑制膜が成膜されたガラスの表面に溶融塩を接触させてイオンを交換する工程とを備え、溶融塩は、水と混合して溶融塩の濃度が20質量%の水溶液とした場合のpHが6.5以上であることを特徴とする。 The method for producing tempered glass of the present invention is a method for producing tempered glass for exchanging ions on a glass surface layer, and a step of forming an ion permeation suppression film for suppressing ion permeation on at least a part of the surface of the glass A step of bringing the molten salt into contact with the surface of the glass on which the ion permeation suppressing film is formed and exchanging ions, and the molten salt is mixed with water to form an aqueous solution having a molten salt concentration of 20% by mass. In this case, the pH is 6.5 or more.
 本発明の強化ガラスの製造方法において、溶融塩は、水と混合して溶融塩の濃度が20質量%の水溶液とした場合のpHが6.7~10であることを特徴とすることが好ましい。 In the method for producing tempered glass of the present invention, the molten salt preferably has a pH of 6.7 to 10 when mixed with water to obtain an aqueous solution having a molten salt concentration of 20% by mass. .
 本発明の強化ガラスの製造方法は、溶融塩に塩基性物質を添加して、水溶液とした際のpH値を調整する工程をさらに備えることが好ましい。 The method for producing tempered glass of the present invention preferably further comprises a step of adjusting the pH value when an aqueous solution is prepared by adding a basic substance to the molten salt.
 本発明の強化ガラスの製造方法において、ガラス表層のイオンはナトリウムイオンであり、溶融塩はカリウムイオンを含み、塩基性物質は水酸化カリウムを含むことが好ましい。 In the method for producing tempered glass of the present invention, it is preferable that the ions on the glass surface layer are sodium ions, the molten salt contains potassium ions, and the basic substance contains potassium hydroxide.
 本発明の強化ガラスの製造方法において、ガラスは、ガラス組成として質量%で、SiO2 45~75%、Al23 1~30%、Na2O 0~20%、K2O 0~20%を含有する板ガラスであり、ガラスの主表面にのみイオン透過抑制膜を成膜し、成膜されたガラスを370~480℃の溶融塩に0.1~72時間浸漬してイオン交換を行うことが好ましい。 In the method for producing tempered glass of the present invention, the glass has a glass composition of mass%, SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20%. %, And an ion permeation suppressing film is formed only on the main surface of the glass, and the formed glass is immersed in a molten salt at 370 to 480 ° C. for 0.1 to 72 hours for ion exchange. It is preferable.
 本発明の強化ガラスの製造方法において、前記イオン透過抑制膜は、SiO2を主成分として含むことが好ましい。 In the method for producing tempered glass according to the present invention, the ion permeation suppression film preferably contains SiO 2 as a main component.
 本発明の強化ガラスの製造方法は、前記溶融塩の温度を制御して、前記水溶液とした際のpH値を調整する工程をさらに備えることが好ましい。 It is preferable that the method for producing tempered glass of the present invention further includes a step of adjusting the pH value of the aqueous solution by controlling the temperature of the molten salt.
 本発明の強化ガラス製造装置は、ガラス表層のイオンを交換するための溶融塩を収容した塩浴槽を備えた強化ガラス製造装置であって、溶融塩は、水と混合して溶融塩の濃度が20質量%の水溶液とした場合のpHが6.5以上であることを特徴とする。 The tempered glass manufacturing apparatus of the present invention is a tempered glass manufacturing apparatus provided with a salt bath containing molten salt for exchanging ions on the glass surface layer, and the molten salt is mixed with water so that the concentration of the molten salt is The pH when the aqueous solution is 20% by mass is 6.5 or more.
 本発明の強化ガラス製造装置は、ガラスの表面の少なくとも一部にイオンの透過を抑制するイオン透過抑制膜を成膜する成膜装置と、成膜されたガラスを支持する支持装置とをさらに備え、支持装置は前記ガラスを支持した状態で塩浴槽に浸漬可能に構成されることが好ましい。 The tempered glass manufacturing apparatus of the present invention further includes a film forming apparatus that forms an ion permeation suppressing film that suppresses permeation of ions on at least a part of the surface of the glass, and a support apparatus that supports the formed glass. The support device is preferably configured to be dipped in a salt bath while supporting the glass.
 本発明によれば、ガラスの化学強化に用いられる溶融塩を適切に調整することによって、イオン透過抑制膜の形成箇所においてイオン交換が過度に抑制されることがなく、高い強度を有する強化ガラス板を安定して製造することが可能である。 According to the present invention, by appropriately adjusting the molten salt used for the chemical strengthening of glass, ion exchange is not excessively suppressed at the location where the ion permeation suppression film is formed, and the tempered glass plate has high strength. Can be manufactured stably.
図1Aは、本発明の強化ガラスの製造方法の一例を示す。FIG. 1A shows an example of a method for producing tempered glass of the present invention. 図1Bは、本発明の強化ガラスの製造方法の一例を示す。FIG. 1B shows an example of a method for producing the tempered glass of the present invention. 図1Cは、本発明の強化ガラスの製造方法の一例を示す。FIG. 1C shows an example of a method for producing the tempered glass of the present invention. 図1Dは、本発明の強化ガラスの製造方法の一例を示す。FIG. 1D shows an example of a method for producing the tempered glass of the present invention. 図2は、本発明に係る強化ガラスの製造方法の他の例を示すフローチャートである。FIG. 2 is a flowchart showing another example of the method for producing tempered glass according to the present invention.
 以下、本発明の実施形態の強化ガラスの製造方法について説明する。図1は、本発明の強化ガラスの製造方法の一例を示す図である。 Hereinafter, the manufacturing method of the tempered glass of embodiment of this invention is demonstrated. FIG. 1 is a diagram showing an example of a method for producing tempered glass of the present invention.
 先ず、図1Aに示す準備工程の処理を実施する。準備工程は、元ガラスG1を準備する工程である。元ガラスG1は、イオン交換法を用いて強化可能なガラスである。 First, the preparatory process shown in FIG. 1A is performed. The preparation process is a process of preparing the original glass G1. The original glass G1 is a glass that can be tempered using an ion exchange method.
 元ガラスG1は、ガラス組成として質量%で、SiO2 45~75%、Al23 1~30%、Na2O 0~20%、K2O 0~20%を含有することが好ましい。上記のようにガラス組成範囲を規制すれば、イオン交換性能と耐失透性を高いレベルで両立し易くなる。 The original glass G1 preferably contains, by mass%, SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20% as a glass composition. If the glass composition range is regulated as described above, it becomes easy to achieve both ion exchange performance and devitrification resistance at a high level.
 元ガラスG1の板厚は、例えば、1.5mm以下であり、好ましくは1.3mm以下、1.1mm以下、1.0mm以下、0.8mm以下、0.7mm以下、0.6 mm以下、0.5mm以下、0.4mm以下、0.3mm以下、0.2mm以下、特に0 .1mm以下である。強化ガラス基板の板厚が小さい程、強化ガラス基板を軽量化することでき、結果として、デバイスの薄型化、軽量化を図ることができる。なお、生産性等を考慮すれば元ガラスG1の板厚は0.01mm以上であることが好ましい。 The thickness of the original glass G1 is, for example, 1.5 mm or less, preferably 1.3 mm or less, 1.1 mm or less, 1.0 mm or less, 0.8 mm or less, 0.7 mm or less, 0.6 mm or less, 0.5 mm or less, 0.4 mm or less, 0.3 mm or less, 0.2 mm or less, especially 0 mm. 1 mm or less. As the plate thickness of the tempered glass substrate is smaller, the tempered glass substrate can be made lighter, and as a result, the device can be made thinner and lighter. In consideration of productivity and the like, the thickness of the original glass G1 is preferably 0.01 mm or more.
 元ガラスG1の主表面の寸法は、例えば、480×320mm~3350×3950mmである。 The dimensions of the main surface of the original glass G1 are, for example, 480 × 320 mm to 3350 × 3950 mm.
 元ガラスG1は、オーバーフローダウンドロー法を用いて成形され、その主表面Sが研磨されていないものであることが好ましい。このように成形された元ガラスG1であれば低コストで高い表面品位を有する強化ガラス板を得られる。なお、元ガラスG1の成形方法や加工状態は任意に選択しても良い。例えば、元ガラスG1はフロート法を用いて成形され、主表面Sおよび端面Eは研磨加工されたものであっても良い。 The original glass G1 is preferably formed using an overflow downdraw method, and its main surface S is not polished. With the original glass G1 thus formed, a tempered glass plate having high surface quality can be obtained at low cost. In addition, you may select arbitrarily the shaping | molding method and processing state of the original glass G1. For example, the original glass G1 may be formed using a float process, and the main surface S and the end surface E may be polished.
 次いで、上記準備工程の後、図1Bに示す成膜工程の処理を実施する。成膜工程は、元ガラスG1の表面の少なくとも一部にイオン透過抑制膜Mを形成して膜付ガラスG2を得る工程である。イオン透過抑制膜Mは、後述の強化工程において、元ガラスG1表層のイオン交換を行う際にイオンの透過を抑制する膜層である。本実施形態では、膜付ガラスG2は、表裏の主表面Sにのみイオン透過抑制膜Mが形成され、端面Eは露出した状態とされている。 Next, after the above preparation process, the film forming process shown in FIG. 1B is performed. The film forming step is a step of forming the glass with film G2 by forming the ion permeation suppressing film M on at least a part of the surface of the original glass G1. The ion permeation suppression film M is a film layer that suppresses permeation of ions when ion exchange is performed on the surface layer of the original glass G1 in the strengthening process described later. In the present embodiment, the film-coated glass G2 has the ion permeation suppression film M formed only on the front and back main surfaces S, and the end face E is exposed.
 イオン透過抑制膜Mの材質としては、イオン交換されるイオンの透過を抑制可能であれば任意の材質を用いて良い。交換されるイオンがアルカリ金属イオンである場合、イオン透過抑制膜Mは、例えば、金属酸化物、金属窒化物、金属炭化物、金属酸窒化物、金属酸炭化物、金属炭窒化物膜などであることが好ましい。より詳細には、イオン透過抑制膜Mの材質としては、例えば、SiO2、Al23、SiN、SiC、Al23、AlN、ZrO2、TiO2、Ta25、Nb25、HfO2、SnO2の中から1種類以上を含む膜とすることができる。 As a material of the ion permeation suppression film M, any material may be used as long as permeation of ions to be ion-exchanged can be suppressed. When the exchanged ions are alkali metal ions, the ion permeation suppression film M is, for example, a metal oxide, metal nitride, metal carbide, metal oxynitride, metal oxycarbide, metal carbonitride film, or the like. Is preferred. More specifically, as the material of the ion permeation suppressive film M, for example, SiO 2, Al 2 O 3 , SiN, SiC, Al 2 O 3, AlN, ZrO 2, TiO 2, Ta 2 O 5, Nb 2 O 5 , a film containing one or more of HfO 2 and SnO 2 .
 特にSiO2をイオン透過抑制膜Mの主成分とすれば、安価且つ容易にイオン透過抑制膜Mを形成可能であり、反射防止膜としても機能し得るため、好ましい。イオン透過抑制膜Mは、SiO2のみから成る膜として良い。具体的には、イオン透過抑制膜Mは質量%でSiO2を99%以上含有する組成を有するものとして良い。 In particular, it is preferable to use SiO 2 as the main component of the ion permeation suppression film M because the ion permeation suppression film M can be easily formed at low cost and can function as an antireflection film. Ion permeation suppressive film M is good as a film made of only SiO 2. Specifically, the ion permeation suppression film M may have a composition containing 99% or more of SiO 2 by mass%.
 イオン透過抑制膜Mの厚さは、好ましくは5~300nm、より好ましくは20~200nm、さらに好ましくは20~150nm、40~120nm、最も好ましくは80~100nmである。イオン透過抑制膜Mの厚さを上記範囲とすることにより、イオンを透過してしまったり、イオンを遮断し過ぎたりすることなく、好適にイオン交換を行うことができる。 The thickness of the ion permeation suppression film M is preferably 5 to 300 nm, more preferably 20 to 200 nm, still more preferably 20 to 150 nm, 40 to 120 nm, and most preferably 80 to 100 nm. By setting the thickness of the ion permeation suppression film M in the above range, ion exchange can be suitably performed without permeating ions or blocking ions too much.
 イオン透過抑制膜Mの成膜方法は、スパッタ法や真空蒸着法などのPVD法(物理気相成長法)、熱CVD法やプラズマCVD法などのCVD法(化学気相成長法)、ディップコート法やスリットコート法などのウェットコート法を用いることができる。特にスパッタ法、ディップコート法が好ましい。スパッタ法を用いた場合、イオン透過抑制膜Mを容易に均一に形成できる。イオン透過抑制膜Mの成膜箇所は任意の手法で設定して良い。例えば、非成膜箇所(本実施形態では端面E)に予めマスクを施した状態で成膜を行う等して良い。 The film formation method of the ion permeation suppression film M is a PVD method (physical vapor deposition method) such as a sputtering method or a vacuum evaporation method, a CVD method (chemical vapor deposition method) such as a thermal CVD method or a plasma CVD method, dip coating, etc. A wet coating method such as a method or a slit coating method can be used. In particular, a sputtering method and a dip coating method are preferable. When the sputtering method is used, the ion permeation suppression film M can be easily and uniformly formed. The deposition location of the ion permeation suppression film M may be set by any method. For example, the film formation may be performed in a state where a mask is previously applied to a non-film formation portion (end surface E in the present embodiment).
 次いで、上記成膜工程の後、図1Cに示す強化工程の処理を実施する。強化工程は、膜付ガラスG2をイオン交換法により化学強化して、膜付きの膜付強化ガラスG3を得る工程である。具体的には、アルカリ金属イオンを含む溶融塩Tに膜付ガラスG2を浸漬してイオン交換する。 Next, after the film forming process, the strengthening process shown in FIG. 1C is performed. The tempering step is a step of chemically strengthening the film-coated glass G2 by an ion exchange method to obtain a film-coated tempered glass G3. Specifically, ion exchange is performed by immersing the film-coated glass G2 in a molten salt T containing alkali metal ions.
 本発明において溶融塩Tは、当該溶融塩を水と混合して当該溶融塩の濃度が20質量%の水溶液とした場合に、当該水溶液のpH値(以下、水溶時pHと称する)が6.5以上となる塩である。水溶時pHを上記範囲とすることで、交換対象となるイオンをイオン透過抑制膜Mに適度に透過させることができ、成膜箇所において適度にイオン交換を行うことができる。水溶時pHは、好ましくは6.7~10、より好ましくは6.8~8.5、さらに好ましくは7.0~8.0である。膜付強化ガラスG3の面強度の低下を抑制する観点からは、水溶時pHは7.0~8.0の範囲内とすることが好ましい。水溶時pHは、例えば、溶融塩を一旦冷却固化し、粉砕し、計量して、上記水溶液を作成することにより測定できる。本実施形態における溶融塩Tは、例えば、硝酸カリウム溶融塩であるが、ガラスのイオン交換に用いられる周知の溶融塩を用いて良い。 In the present invention, when the molten salt T is mixed with water to form an aqueous solution having a concentration of the molten salt of 20% by mass, the pH value of the aqueous solution (hereinafter referred to as pH at the time of aqueous solution) is 6. It is a salt of 5 or more. By setting the pH at the time of aqueous solution in the above range, ions to be exchanged can be appropriately permeated through the ion permeation suppression membrane M, and ion exchange can be appropriately performed at the film forming location. The aqueous pH is preferably 6.7 to 10, more preferably 6.8 to 8.5, and still more preferably 7.0 to 8.0. From the viewpoint of suppressing a reduction in surface strength of the tempered glass with film G3, it is preferable that the pH when water is in the range of 7.0 to 8.0. The pH at the time of aqueous solution can be measured, for example, by once cooling and solidifying the molten salt, pulverizing and weighing the molten salt to prepare the aqueous solution. The molten salt T in the present embodiment is, for example, potassium nitrate molten salt, but a well-known molten salt used for ion exchange of glass may be used.
 本発明では、溶融塩Tの水溶時pHを上記範囲に調整する調整工程を強化工程の前または後において実施することが好ましい。調整工程では、例えば、溶融塩Tに添加物を加えることによって水溶時pHを調整できる。添加物は、例えば、塩基性物質である。本発明において塩基性物質は、水と混合した場合に水素イオン指数(pH)が7より大となる物質である。添加物としては、例えば、KOH、NaOH等を単体あるいは組み合わせて用いることができる。 In the present invention, it is preferable to carry out the adjustment step of adjusting the pH of the molten salt T when it is in water within the above range before or after the strengthening step. In the adjustment step, for example, the pH at the time of aqueous solution can be adjusted by adding an additive to the molten salt T. The additive is, for example, a basic substance. In the present invention, the basic substance is a substance having a hydrogen ion index (pH) of more than 7 when mixed with water. As the additive, for example, KOH, NaOH or the like can be used alone or in combination.
 強化工程における溶融塩の温度は任意に定めて良いが、例えば、350~500℃、好ましくは370~480℃である。また、膜付ガラスG2を溶融塩T中に浸漬する時間は任意に定めて良いが、例えば、0.1~72時間、好ましくは0.5~24時間である。 The temperature of the molten salt in the strengthening step may be arbitrarily determined, and is, for example, 350 to 500 ° C., preferably 370 to 480 ° C. Further, the time for immersing the film-coated glass G2 in the molten salt T may be arbitrarily determined, and is, for example, 0.1 to 72 hours, preferably 0.5 to 24 hours.
 上記強化工程では、膜付ガラスG2の表面のナトリウムイオンと溶融塩T中のカリウムイオンとが交換され、表面に圧縮応力層Cを有する膜付強化ガラスG3が得られる。ここで、膜付ガラスG2の表面のうち、イオン透過抑制膜Mが設けられた部位(主表面S)は、元ガラスG1の表面が露出した露出部Eに比べてイオン交換が抑制されるため、圧縮応力層の深さが小さくなる。換言すれば、露出部Eは、イオン透過抑制膜Mが設けられた部位に比べてイオン交換が進み易く、圧縮応力層の深さが大きくなる。このように、膜付強化ガラスG3は、主表面に比べ端面の圧縮応力層の深さが大きくなるため、全面的に強化された強化ガラスに比べて内部の引張応力が小さく且つ端部においては高い耐衝撃性を有する。したがって、端部からのクラックの進展に起因する破損を好適に抑制できる。 In the tempering step, sodium ions on the surface of the film-coated glass G2 and potassium ions in the molten salt T are exchanged to obtain a film-reinforced glass G3 having a compressive stress layer C on the surface. Here, in the surface of the film-coated glass G2, a portion (main surface S) where the ion permeation suppression film M is provided is suppressed in ion exchange compared to the exposed portion E where the surface of the original glass G1 is exposed. The depth of the compressive stress layer is reduced. In other words, in the exposed portion E, the ion exchange can proceed more easily than the portion where the ion permeation suppression film M is provided, and the depth of the compressive stress layer is increased. In this way, the tempered glass with film G3 has a deeper compressive stress layer at the end surface than the main surface, and therefore has a lower internal tensile stress than the tempered glass strengthened entirely, and at the end portion. High impact resistance. Therefore, the damage resulting from the progress of the crack from the end can be suitably suppressed.
 また、イオン透過抑制膜Mとして上述の無機組成材料を採用した場合には、該膜を設けたまま溶融塩Tに浸漬した場合であっても、従来の有機系の保護膜等に比べて溶融塩Tを劣化させ難い。 In addition, when the above-described inorganic composition material is adopted as the ion permeation suppression film M, it is melted as compared with a conventional organic protective film or the like even when immersed in the molten salt T with the film provided. It is difficult to deteriorate the salt T.
 上記強化工程における処理温度や浸漬時間等の処理条件は、膜付強化ガラスG3に要求される特性に応じて適宜定めて良い。上記処理条件は、膜付強化ガラスG3の主表面Sの圧縮応力層の深さが、露出部Eの圧縮応力層の深さより小さくなるよう調整することが好ましい。 The processing conditions such as the processing temperature and the dipping time in the tempering step may be appropriately determined according to the characteristics required for the tempered glass with film G3. The processing conditions are preferably adjusted so that the depth of the compressive stress layer on the main surface S of the tempered glass G3 with film is smaller than the depth of the compressive stress layer on the exposed portion E.
 イオン透過抑制膜Mは電子デバイスの保護コートや反射防止膜としても機能するため、膜付強化ガラスG3は、そのまま製品として使用することも可能であるが、用途に応じてイオン透過抑制膜Mを剥離しても良い。図1Dに示す剥離工程では、膜付強化ガラスG3からイオン透過抑制膜Mを剥離して強化ガラス板G4を得る。 Since the ion permeation suppression film M also functions as a protective coating or an antireflection film for electronic devices, the tempered glass G3 with a film can be used as a product as it is, but the ion permeation suppression film M can be used depending on the application. It may be peeled off. In the peeling step shown in FIG. 1D, the ion permeation suppression film M is peeled from the tempered glass G3 with film to obtain a tempered glass plate G4.
 具体的には、膜付強化ガラスG3にエッチング液を付着させてイオン透過抑制膜Mを除去する。イオン透過抑制膜MがSiO2を含有する膜である場合、例えば、フッ素、TMAH、EDP、KOH等を含む溶液をエッチング液として用いることができ、特にフッ酸溶液をエッチング液として用いることが好ましい。なお、イオン透過抑制膜Mの剥離方法は上記に限らず、ガラス板に設けられた膜を除去する方法として周知の方法を用いて良く、例えば、研磨等の機械加工によってイオン透過抑制膜Mを除去しても良い。 Specifically, the ion permeation suppression film M is removed by attaching an etching solution to the tempered glass with film G3. When the ion permeation suppression film M is a film containing SiO 2 , for example, a solution containing fluorine, TMAH, EDP, KOH, or the like can be used as an etchant, and a hydrofluoric acid solution is particularly preferably used as an etchant. . In addition, the peeling method of the ion permeation suppression film M is not limited to the above, and a known method may be used as a method for removing the film provided on the glass plate. For example, the ion permeation suppression film M may be formed by machining such as polishing. It may be removed.
 剥離工程では、一方の主表面側のイオン透過抑制膜Mのみを除去しても良いし、両方の主表面のイオン透過抑制膜Mを除去しても良い。また各主面においてイオン透過抑制膜Mを部分的に除去しても良いし、イオン透過抑制膜Mを全て除去しても良い。 In the peeling step, only the ion permeation suppression film M on one main surface side may be removed, or the ion permeation suppression films M on both main surfaces may be removed. Further, the ion permeation suppression film M may be partially removed from each main surface, or the ion permeation suppression film M may be entirely removed.
 イオン透過抑制膜Mを片面側や部分的に除去する場合、スプレーやロール、刷毛等を用いてエッチング液を部分的に付着させたり、膜付強化ガラスG3に部分的にマスキングを施してエッチング液に浸漬させたりして該膜の除去が可能である。 When the ion permeation suppression film M is partially removed or partially removed, the etching liquid is partially adhered using a spray, roll, brush, etc., or the masked tempered glass G3 is partially masked to etch the liquid. It is possible to remove the film by immersing the film in the film.
 イオン透過抑制膜Mを全て除去する場合は膜付強化ガラスG3全体をエッチング液に浸漬すると良い。このように膜付強化ガラスG3全体をエッチング液に浸漬すれば、破損の原因となるマイクロクラックを減少させてさらに強度を向上した強化ガラス板G4を得られる場合がある。 When removing all of the ion permeation suppression film M, the entire tempered glass with film G3 may be immersed in an etching solution. If the entire tempered glass with film G3 is immersed in the etching solution in this way, there are cases where a tempered glass plate G4 with further improved strength can be obtained by reducing microcracks that cause damage.
 以上に説明した通り、本発明の実施形態に係る強化ガラスの製造方法によれば、端面からの破損の少ない膜付強化ガラスG3、強化ガラスG4を効率良く製造できる。 As described above, according to the method for producing tempered glass according to the embodiment of the present invention, the tempered glass G3 and the tempered glass G4 with less damage from the end face can be efficiently produced.
 なお、上述したイオン透過抑制膜Mの材質は一例であり、強化工程において交換されるイオンの透過を抑制可能な膜であれば任意の材質を用いて良い。 The material of the ion permeation suppression film M described above is an example, and any material may be used as long as the film can suppress permeation of ions exchanged in the strengthening process.
 また、上記に示した任意の工程の前後において、切断加工、端面加工、および孔あけ加工の何れかの加工を実施する加工工程を設けても良い。また、上記に示した任意の工程の前後において、ガラス板に洗浄および乾燥処理を適宜行なって良い。 In addition, before and after the arbitrary steps shown above, a processing step for performing any one of cutting, end surface processing, and drilling processing may be provided. In addition, before and after the arbitrary steps described above, the glass plate may be appropriately washed and dried.
 上述した強化ガラスの製造方法は、上記溶融塩Tを収容した塩浴槽Xを備えた強化ガラス製造装置を用いて実施することができる。塩浴槽Xは、例えば、上部を開口した金属製筐体からなる槽であり、溶融塩Tで満たされる内部空間を有する。当該強化ガラス製造装置は、塩浴槽X内に収容可能な形状および寸法で構成され、且つ膜付ガラスG2を支持可能な支持装置(図示せず)をさらに備える。支持装置は、例えば、ステンレス鋼等の金属フレームによって構成された治具である。支持装置に膜付ガラスG2を支持させた状態で、塩浴槽X内の溶融塩Tに浸漬させることによって、上記強化工程の処理を実施できる。なお、強化ガラス製造装置は上記成膜工程の処理を実施する成膜装置(図示せず)をさらに備えた構成であって良い。成膜装置としては周知のスパッタ成膜装置等を用いることができる。 The manufacturing method of the tempered glass mentioned above can be implemented using the tempered glass manufacturing apparatus provided with the salt bath X which accommodated the said molten salt T. FIG. The salt tub X is, for example, a tank made of a metal casing having an upper opening, and has an internal space filled with the molten salt T. The said tempered glass manufacturing apparatus is further provided with the support apparatus (not shown) which is comprised by the shape and dimension which can be accommodated in the salt tub X, and can support the glass G2 with a film | membrane. The support device is a jig constituted by a metal frame such as stainless steel, for example. By immersing in the molten salt T in the salt bath X in a state where the glass G2 with film is supported by the support device, the treatment of the strengthening step can be performed. Note that the tempered glass manufacturing apparatus may further include a film forming apparatus (not shown) that performs the film forming process. As the film forming apparatus, a known sputter film forming apparatus or the like can be used.
 図2は、本発明に係る強化ガラスの製造方法の他の例を示すフローチャートである。図2に示すように、本方法は、準備工程S1、成膜工程S2、溶融塩生成工程S3、pH測定工程S4、判定工程S5、pH調整工程S6、強化工程S7、及び剥離工程S8を備える。準備工程S1、成膜工程S2、及び剥離工程S8については、図1の例と同様である。溶融塩生成工程S3は、金属硝酸塩(例えば、硝酸カリウム等)を加熱、溶融させて、溶融塩Tを得る工程である。 FIG. 2 is a flowchart showing another example of the method for producing tempered glass according to the present invention. As shown in FIG. 2, the method includes a preparation step S1, a film formation step S2, a molten salt generation step S3, a pH measurement step S4, a determination step S5, a pH adjustment step S6, a strengthening step S7, and a peeling step S8. . The preparation step S1, the film formation step S2, and the peeling step S8 are the same as the example in FIG. Molten salt production | generation process S3 is a process which heats and melts metal nitrate (for example, potassium nitrate etc.), and obtains molten salt T. FIG.
 pH測定工程S4は、溶融塩生成工程S3の後に実施される。pH測定工程S4では、溶融塩Tを水と混合して濃度を20質量%の水溶液とした場合のpHを測定する。pHの測定には、例えば既製のpHメータが使用される。 PH measurement step S4 is performed after the molten salt generation step S3. In the pH measurement step S4, the pH when the molten salt T is mixed with water to make an aqueous solution having a concentration of 20% by mass is measured. For example, an off-the-shelf pH meter is used for measuring the pH.
 判定工程S5では、pH測定工程S4にて測定された溶融塩TのpH値が強化工程S7に適したものであるか否かを判定する。この判定は所定の基準値との比較により行われる。基準値は、強化ガラスの寸法、厚み、DOL、CS等の諸条件に応じて設定される。例えばpHの基準値が6.5である場合、測定された溶融塩TのpH値が6.5以上であると(判定工程S5においてYes)、次の強化工程S7に移行する。また、測定された溶融塩TのpH値が6.5未満である場合(判定工程S5においてNo)、強化工程S7の前にpH調整工程S6が実施される。 In the determination step S5, it is determined whether or not the pH value of the molten salt T measured in the pH measurement step S4 is suitable for the strengthening step S7. This determination is made by comparison with a predetermined reference value. The reference value is set according to various conditions such as dimensions, thickness, DOL, and CS of the tempered glass. For example, when the reference value of pH is 6.5, when the measured pH value of the molten salt T is 6.5 or more (Yes in determination step S5), the process proceeds to the next strengthening step S7. When the measured pH value of the molten salt T is less than 6.5 (No in the determination step S5), the pH adjustment step S6 is performed before the strengthening step S7.
 pH調整工程S6では、溶融塩Tに塩基性物質を添加する工程、pH調整用の膜付部材を溶融塩Tに浸漬させる工程、あるいは溶融塩Tの温度を制御する工程等の少なくとも一の工程により、溶融塩TのpH値を調整する。 In the pH adjustment step S6, at least one step such as a step of adding a basic substance to the molten salt T, a step of immersing the film-adjusting member for pH adjustment in the molten salt T, or a step of controlling the temperature of the molten salt T. To adjust the pH value of the molten salt T.
 溶融塩Tに塩基性物質を添加する工程では、図1の例と同様に、水と混合した場合にpHが7より大となる塩基性物質を溶融塩Tに添加し、当該溶融塩TのpHを調整する。 In the step of adding a basic substance to the molten salt T, as in the example of FIG. 1, a basic substance having a pH higher than 7 when mixed with water is added to the molten salt T, and the molten salt T Adjust the pH.
 pH調整用の膜付部材を溶融塩に浸漬させる工程では、膜付部材を溶融塩Tに浸漬して、当該溶融塩TのpHが所望の値になったときに、この膜付部材を溶融塩Tから除去する。pH調整用の膜付部材は、例えばSiO2からなる膜を形成したガラス基板により構成されることが望ましいが、金属基板にSiO2膜を形成したものを使用してもよい。SiO2膜を含むガラス基板を溶融塩Tに浸漬することで、そのpH値を下げることができる。すなわち、溶融塩T中の水酸化物イオンは、SiO2膜におけるSi-Oの結合を破壊する。この反応により水酸化物イオンが減少し、溶融塩TのpHが低下する。このSiO2膜は、スパッタリングによりガラス製や金属製の基板に成膜されることが望ましいが、これに限らず、ウェットコートやスピンコートなどで成膜されてもよい。 In the step of immersing the membrane-attached member for pH adjustment in the molten salt, the membrane-attached member is immersed in the molten salt T, and the membrane-attached member is melted when the pH of the molten salt T reaches a desired value. Remove from salt T. pH membrane with members for adjustment, for example, be constituted by a glass substrate having a film made of SiO 2 is desired, it may be used after forming the SiO 2 film on the metal substrate. By immersing the glass substrate including the SiO 2 film in the molten salt T, the pH value can be lowered. That is, the hydroxide ions in the molten salt T break Si—O bonds in the SiO 2 film. By this reaction, hydroxide ions are reduced, and the pH of the molten salt T is lowered. The SiO 2 film is desirably formed on a glass or metal substrate by sputtering, but is not limited thereto, and may be formed by wet coating or spin coating.
 溶融塩Tの温度を制御する工程では、溶融塩Tをその沸点以上の温度で維持することで、当該溶融塩TのpH値を上げることができる。例えば硝酸カリウムの溶融塩Tを沸点以上の温度に維持する場合において、硝酸カリウムの一部は亜硝酸カリウムに変化する。この亜硝酸カリウムは潮解性を有することから、大気中の水分(H2O)を溶融塩T内に取り込む。この場合、水素イオンはステンレス鋼などから成る金属製の塩浴槽Xに向かって移動するため、結果として溶融塩T内に水酸化物イオンが残り、溶融塩T内の水酸化物イオンの濃度が上昇すると推察される。硝酸カリウムと硝酸ナトリウムとを混合して溶融塩Tを構成した場合、その濃度によって沸点は変化するが、本発明者等は、この現象が概ね450℃以上で発生することを見出した。溶融塩TのpHが目標の値(基準値以上)になると、当該溶融塩Tを沸点以下の温度に維持する。これにより、溶融塩TのpH値の変化はなくなり、当該溶融塩Tを所望のpH値にて維持できる。 In the step of controlling the temperature of the molten salt T, the pH value of the molten salt T can be increased by maintaining the molten salt T at a temperature equal to or higher than its boiling point. For example, in the case where the molten salt T of potassium nitrate is maintained at a temperature higher than the boiling point, a part of the potassium nitrate is changed to potassium nitrite. Since this potassium nitrite has deliquescence, moisture (H 2 O) in the atmosphere is taken into the molten salt T. In this case, since hydrogen ions move toward the metal salt bath X made of stainless steel or the like, as a result, hydroxide ions remain in the molten salt T, and the concentration of hydroxide ions in the molten salt T is reduced. Presumed to rise. When the molten salt T is constituted by mixing potassium nitrate and sodium nitrate, the boiling point changes depending on the concentration, but the present inventors have found that this phenomenon occurs at approximately 450 ° C. or higher. When the pH of the molten salt T reaches a target value (above the reference value), the molten salt T is maintained at a temperature below the boiling point. Thereby, the change in pH value of the molten salt T is eliminated, and the molten salt T can be maintained at a desired pH value.
 強化工程S7では、図1の例と同様に、塩浴槽Xに収容されている溶融塩Tに膜付ガラスG2が浸漬される。一定時間の浸漬の後、塩浴槽Xから膜付強化ガラスG3が取り出される。膜付強化ガラスG3は、剥離工程S8を経て強化ガラス板G4となる。 In the strengthening step S7, the film-coated glass G2 is immersed in the molten salt T accommodated in the salt bath X, as in the example of FIG. After immersion for a certain time, the tempered glass with film G3 is taken out from the salt bath X. The tempered glass with film G3 becomes the tempered glass plate G4 after the peeling step S8.
 なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 In addition, this invention is not limited to the structure of the said embodiment, It is not limited to the above-mentioned effect. The present invention can be variously modified without departing from the gist of the present invention.
 上記の強化ガラスの製造方法では、pH調整工程S6の後に、強化工程S7を実行する例を示したが、これに限定されず、pH調整工程S6と強化工程S7とを同時に実行してもよい。例えば、pH調整工程S6において、溶融塩Tを沸点以上の温度に維持しながら、当該溶融塩Tに膜付強化ガラスG3を浸漬して強化してもよい。この場合において、強化中に溶融塩TのpH値が大きく変化する場合がある。pH値の変化を抑制する対策として、塩浴槽Xを石英製にすることが望ましい。これによれば、水素イオンは溶融塩T内から出ていかないため、pH値の変化を金属製の塩浴槽Xと比べて抑制できる。 In the above tempered glass manufacturing method, the example in which the tempering step S7 is executed after the pH adjusting step S6 has been shown. However, the present invention is not limited to this, and the pH adjusting step S6 and the tempering step S7 may be executed simultaneously. . For example, in the pH adjusting step S6, the tempered glass with film G3 may be reinforced by immersing the molten salt T in the molten salt T while maintaining the molten salt T at a temperature equal to or higher than the boiling point. In this case, the pH value of the molten salt T may change greatly during strengthening. As a measure for suppressing changes in pH value, it is desirable that the salt bath X be made of quartz. According to this, since hydrogen ions do not come out of the molten salt T, a change in pH value can be suppressed as compared with the metal salt bath X.
 また、溶融塩生成工程S3の処理は、pH測定工程S4以前であれば、準備工程S1および成膜工程S2の処理と並行して実施されても良いし、準備工程S1および成膜工程S2の開始前に実施されても良い。 Moreover, if the process of molten salt production | generation process S3 is before pH measurement process S4, you may implement in parallel with the process of preparatory process S1 and film-forming process S2, or of preparatory process S1 and film-forming process S2. It may be performed before the start.
 以下、実施例に基づいて、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.
 表1および表2において、No.1~8は本発明の実施例を示し、No.9~18は比較例を示している。


In Tables 1 and 2, Nos. 1 to 8 show examples of the present invention, and Nos. 9 to 18 show comparative examples.


Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2中の各試料は以下のようにして作製した。先ず、ガラス組成として質量%で、SiO2 61.6%、Al23 19.6%、B23 0.8%、Na2O 16%、K2O 2%を含有するようガラス原料を混合および溶融し、オーバーフローダウンドロー法を用いて成形して厚さ0.4mmの複数の元ガラスを得た。次いで、表1、2に記載の膜厚を有しSiO2 100%の膜をイオン透過抑制膜として上記元ガラスの両主表面にスパッタ法を用いて成膜した後、スクライブ割断によって20×50mm寸法の矩形状に切り出すことにより端面に露出部を有する膜付ガラスを得た。なお、No.10~18の試料については上記成膜を行うことなく上記切断を行った。次いで、得られた膜付ガラスを表1記載の水溶時pHを有する430℃の硝酸カリウム溶液に5時間浸漬して化学強化し、純水洗浄および自然乾燥して表1記載のNo.1~18の強化ガラス板試料を得た。 Each sample in Table 1 and Table 2 was produced as follows. First, the glass composition is glass so that it contains 61.6% of SiO 2 , 19.6% of Al 2 O 3 , 0.8% of B 2 O 3 , 16% of Na 2 O, and 2 % of K 2 O in mass%. The raw materials were mixed and melted, and molded using an overflow downdraw method to obtain a plurality of original glasses having a thickness of 0.4 mm. Next, after forming a film of 100% SiO 2 having the film thickness shown in Tables 1 and 2 as an ion permeation suppression film on both main surfaces of the original glass by sputtering, 20 × 50 mm by scribe cleaving. The glass with a film | membrane which has an exposed part in an end surface was obtained by cutting out into the rectangular shape of a dimension. The samples No. 10 to 18 were cut as described above without performing the film formation. Subsequently, the obtained glass with a film was immersed in a 430 ° C. potassium nitrate solution having a pH at the time of water listed in Table 1 for 5 hours to chemically strengthen, washed with pure water and naturally dried, and then No. 1 in Table 1. 1 to 18 tempered glass plate samples were obtained.
 上記のようにして得た各ガラス試料について、下記測定試験を行った。 The following measurement test was performed on each glass sample obtained as described above.
 主表面圧縮応力値CS、主表面応力深さDOL、および内部引張応力CTは、応力計(折原製作所製のFSM-6000LEおよびFsmXP)で測定した。 Main surface compressive stress value CS, main surface stress depth DOL, and internal tensile stress CT were measured with a stress meter (FSM-6000LE and FsmXP manufactured by Orihara Seisakusho).
 落球試験は、上記と同様の方法で作成した縦65mm×横130mmの寸法の強化ガラス板試料の縁部を、紙ベークライト製の中央部が開口した枠状治具上に載置し、130gの鋼球をガラス中心に落下させ、一度の衝突で破損する高さを記録した。詳細には、15cmの高さから、5cm刻みで鋼球を落下させ、強化ガラスが破損した高さを記録し、破損した高さをワイブルプロットし、破損確率が63%になった高さを平均値として求めた。なお、各試料は予め端面を800番手の砥石で研磨した。また、各試料の強化ガラスは各辺ののりしろが5mmとなるよう治具に載置した。 The falling ball test was carried out by placing the edge of a tempered glass plate sample having a size of 65 mm in length and 130 mm in width created in the same manner as described above on a frame-shaped jig having an open center portion made of paper bakelite. A steel ball was dropped on the center of the glass, and the height at which it was damaged by a single collision was recorded. Specifically, from a height of 15 cm, a steel ball is dropped in increments of 5 cm, the height at which the tempered glass is broken is recorded, the height at which the tempered glass is broken is Weibull plotted, and the height at which the breakage probability has reached 63% is recorded. Obtained as an average value. In addition, each sample grind | polished the end surface beforehand with the 800th grindstone. Further, the tempered glass of each sample was placed on a jig so that the margin of each side was 5 mm.
 表1および表2に示すように、比較例である試料No.9は、水溶時pHが6.5より小さいため、イオン透過抑制膜によりイオン交換が過度に抑制され、表面圧縮応力値CSおよび表面圧縮応力深さDOLを得られなかった。一方、実施例の各試料は、pHが適切に調整された結果、イオン透過抑制膜が形成された表面において適切な表面圧縮応力値および表面圧縮応力深さを有する圧縮応力層が形成された。 As shown in Tables 1 and 2, Sample No. 9, which is a comparative example, has a pH under water that is smaller than 6.5. Therefore, ion exchange is excessively suppressed by the ion permeation suppression membrane, and the surface compressive stress value CS and The surface compressive stress depth DOL could not be obtained. On the other hand, as a result of appropriately adjusting the pH of each sample of the example, a compressive stress layer having an appropriate surface compressive stress value and surface compressive stress depth was formed on the surface on which the ion permeation suppression film was formed.
 また、表1および表2に示すように、実施例の各試料は、主表面にイオン透過抑制膜が形成され且つ端面に露出部を有する状態で強化されて作成されたため、表面および端面の圧縮応力のバランスが好適に設定されており、その結果、イオン透過抑制膜を形成せず同条件の水溶時pHで強化した比較例No.10~18の試料に比べ内部引張応力CTが低減され、自己破壊し難くなっている。 Further, as shown in Table 1 and Table 2, each sample of the example was prepared by strengthening with an ion permeation suppression film formed on the main surface and an exposed portion on the end surface, and therefore compression of the surface and end surface The balance of stress is suitably set, and as a result, the internal tensile stress CT is reduced as compared with the samples of Comparative Examples No. 10 to 18 which are not formed with an ion permeation suppression film and are strengthened with pH under water conditions under the same conditions. It is harder to self-destruct.
 下記の表3は、SiO2膜が表面に形成されたガラス板を、所定温度(沸点未満の温度)に保持された硝酸カリウム溶融塩に浸漬した場合における、溶融塩のpHの浸漬時間に対する変化を示す。表3に示す試料No.21~24の溶融塩は、いずれも硝酸カリウム600g、硝酸ナトリウム13.6gを含有する。さらに、試料No.21の溶融塩は、水酸化カリウム0.10gを含有する。試料No.22の溶融塩は、水酸化カリウム0.60gを含有する。また、試料No.23の溶融塩は、6.00gの水酸化カリウムを、試料No.24の溶融塩は、0.05gの水酸化カリウムを含有する。表3に示す溶融塩のpH値は、当該溶融塩を20質量%の水溶液とした場合の値である。表3に示すように、各試料No.21~24は、時間の経過とともに溶融塩のpH値が低下することが判明した。このことから、SiO2膜が形成されたガラス板を、pH調整工程において溶融塩のpH値を低下させるための調整材として有効に使用できることが判る。 Table 3 below shows the change of the pH of the molten salt with respect to the immersion time when the glass plate on which the SiO 2 film is formed is immersed in molten potassium nitrate held at a predetermined temperature (temperature below the boiling point). Show. Sample No. shown in Table 3 Each of the molten salts 21 to 24 contains 600 g of potassium nitrate and 13.6 g of sodium nitrate. Furthermore, sample no. The 21 molten salt contains 0.10 g of potassium hydroxide. Sample No. The 22 molten salt contains 0.60 g of potassium hydroxide. Sample No. The molten salt of No. 23 was obtained by adding 6.00 g of potassium hydroxide to Sample No. The 24 molten salt contains 0.05 g of potassium hydroxide. The pH value of the molten salt shown in Table 3 is a value when the molten salt is a 20% by mass aqueous solution. As shown in Table 3, each sample No. From 21 to 24, it was found that the pH value of the molten salt decreased with the passage of time. From this, it can be seen that the glass plate on which the SiO 2 film is formed can be effectively used as an adjusting material for lowering the pH value of the molten salt in the pH adjusting step.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明者らは、溶融塩Tを収容する塩浴槽が当該溶融塩のpHに与える影響について確認するための試験を行った。この試験では、石英製の塩浴槽(ビーカ)と、ステンレス鋼製の塩浴槽とに、溶融塩を収容し、一定時間経過後に当該溶融塩を20質量%の水溶液とした場合のpH値を測定した。溶融塩は、硝酸カリウム600gを含有する。また、この試験では、溶融塩の温度を沸点未満に維持した。下記の表4に試験結果を示す。表4に示すように、石英製の塩浴槽に収容された溶融塩は、ステンレス製の塩浴槽に収容されたものと比較して、時間の経過に対するpHの変化(増加)の程度が小さいことが判る。 The present inventors conducted a test for confirming the influence of the salt bath containing the molten salt T on the pH of the molten salt. In this test, the molten salt is accommodated in a quartz salt bath (beaker) and a stainless steel salt bath, and the pH value is measured when the molten salt is made into a 20% by mass aqueous solution after a certain period of time. did. The molten salt contains 600 g of potassium nitrate. In this test, the temperature of the molten salt was maintained below the boiling point. The test results are shown in Table 4 below. As shown in Table 4, the molten salt accommodated in the quartz salt tub has a smaller degree of change (increase) in pH with the passage of time than that accommodated in the stainless steel salt tub. I understand.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

 本発明者らは、溶融塩における温度とpHの変化との関係を確認するための試験を行った。この試験は、硝酸カリウム溶融塩の温度を400℃、430℃、460℃に設定し、一定時間経過後における、当該溶融塩(20質量%の水溶液)のpH値を測定した。下記の表5に試験結果を示す。表5に示すように、溶融塩の温度が高い程、経過時間に対する当該溶融塩のpHの変化(増加)が大きいことが判る。この試験により、pH調整工程において、溶融塩の温度を制御することにより、当該溶融塩のpHを調整できることが確認された。 The present inventors conducted a test to confirm the relationship between temperature and pH change in molten salt. In this test, the temperature of the potassium nitrate molten salt was set to 400 ° C., 430 ° C., and 460 ° C., and the pH value of the molten salt (20% by mass aqueous solution) after a lapse of a fixed time was measured. The test results are shown in Table 5 below. As shown in Table 5, it can be seen that the higher the temperature of the molten salt, the greater the change (increase) in the pH of the molten salt with respect to the elapsed time. This test confirmed that the pH of the molten salt can be adjusted by controlling the temperature of the molten salt in the pH adjustment step.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

 本発明の強化ガラス板およびその製造方法は、タッチパネルディスプレイ等に用いられるガラス基板およびその製造方法等として有用である。 The tempered glass plate of the present invention and the manufacturing method thereof are useful as a glass substrate used for a touch panel display and the like, a manufacturing method thereof, and the like.
G1 元ガラス
G2 膜付ガラス
G3 膜付強化ガラス
G4 強化ガラス板
M イオン透過抑制膜
T 溶融塩
X 塩浴槽
G1 Original glass G2 Glass with film G3 Tempered glass with film G4 Tempered glass plate M Ion permeation suppression film T Molten salt X Salt bath

Claims (9)

  1.  ガラス表層のイオンを交換する強化ガラスの製造方法であって、
     前記ガラスの表面の少なくとも一部に前記イオンの透過を抑制するイオン透過抑制膜を成膜する工程と、
     前記イオン透過抑制膜が成膜された前記ガラスの表面に溶融塩を接触させて前記イオンを交換する工程とを備え、
     前記溶融塩は、水と混合して濃度を20質量%の水溶液とした場合のpHが6.5以上であることを特徴とする、強化ガラスの製造方法。
    A method for producing tempered glass for exchanging ions on a glass surface,
    Forming an ion permeation suppressing film for suppressing permeation of the ions on at least a part of the surface of the glass;
    A step of bringing the molten salt into contact with the surface of the glass on which the ion permeation suppression film is formed and exchanging the ions,
    The molten salt has a pH of 6.5 or more when mixed with water to form an aqueous solution having a concentration of 20% by mass.
  2.  前記溶融塩は、水と混合して前記溶融塩の濃度が20質量%の水溶液とした場合のpHが6.7~10であることを特徴とする、請求項1に記載の強化ガラスの製造方法。 The tempered glass production according to claim 1, wherein the molten salt has a pH of 6.7 to 10 when mixed with water to form an aqueous solution having a concentration of the molten salt of 20% by mass. Method.
  3.  前記溶融塩に塩基性物質を添加して、前記水溶液とした際のpH値を調整する工程をさらに備えることを特徴とする、請求項1または2に記載の強化ガラスの製造方法。 The method for producing tempered glass according to claim 1 or 2, further comprising a step of adjusting a pH value when a basic substance is added to the molten salt to obtain the aqueous solution.
  4.  前記ガラス表層のイオンはナトリウムイオンであり、
     前記溶融塩はカリウムイオンを含み、
     前記塩基性物質は水酸化カリウムを含む、請求項3に記載の強化ガラスの製造方法。
    The glass surface ions are sodium ions,
    The molten salt contains potassium ions,
    The method for producing tempered glass according to claim 3, wherein the basic substance contains potassium hydroxide.
  5.  前記ガラスは、ガラス組成として質量%で、SiO2 45~75%、Al23 1~30%、Na2O 0~20%、K2O 0~20%を含有するガラス板であり、
     前記ガラスの主表面にのみ前記イオン透過抑制膜を成膜し、
     前記成膜された前記ガラスを
     370~480℃の前記溶融塩に0.1~72時間浸漬して前記イオン交換を行う、請求項1から4の何れか一項に記載の強化ガラスの製造方法。
    The glass contains, by mass% as a glass composition, a glass plate containing SiO 2 45 ~ 75%, Al 2 O 3 1 ~ 30%, Na 2 O 0 ~ 20%, the K 2 O 0 ~ 20%,
    Forming the ion permeation suppression film only on the main surface of the glass,
    The method for producing tempered glass according to any one of claims 1 to 4, wherein the ion exchange is performed by immersing the formed glass in the molten salt at 370 to 480 ° C for 0.1 to 72 hours. .
  6.  前記イオン透過抑制膜は、SiO2を主成分として含む、請求項1から5の何れか一項に記載の強化ガラスの製造方法。
    The ion transmission suppressing layer includes SiO 2 as a main component, method for producing a tempered glass according to any one of claims 1 to 5.
  7.  前記溶融塩の温度を制御して、前記水溶液とした際のpH値を調整する工程をさらに備えることを特徴とする、請求項1から6の何れか一項に記載の強化ガラスの製造方法。 The method for producing tempered glass according to any one of claims 1 to 6, further comprising a step of adjusting a pH value of the aqueous solution by controlling a temperature of the molten salt.
  8.  ガラス表層のイオンを交換するための溶融塩を収容した塩浴槽を備えた強化ガラス製造装置であって、
     前記溶融塩は、水と混合して濃度を20質量%の水溶液とした場合のpHが6.5以上であることを特徴とする、強化ガラス製造装置。
    A tempered glass manufacturing apparatus comprising a salt bath containing molten salt for exchanging ions on the glass surface layer,
    The molten salt has a pH of 6.5 or more when mixed with water to form an aqueous solution having a concentration of 20% by mass.
  9.  前記ガラスの表面の少なくとも一部に前記イオンの透過を抑制するイオン透過抑制膜を成膜する成膜装置と、
     前記成膜された前記ガラスを支持する支持装置とを備え、
     前記支持装置は前記ガラスを支持した状態で前記塩浴槽に浸漬可能に構成される、請求項8に記載の強化ガラス製造装置。
    A film forming apparatus for forming an ion permeation suppressing film for suppressing permeation of the ions on at least a part of the surface of the glass;
    A support device for supporting the glass that is formed into a film,
    The tempered glass manufacturing apparatus according to claim 8, wherein the support device is configured to be dipped in the salt bath while supporting the glass.
PCT/JP2017/010479 2016-04-12 2017-03-15 Method for manufacturing tempered glass and device for manufacturing tempered glass WO2017179360A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780005746.3A CN108463443B (en) 2016-04-12 2017-03-15 Method for producing tempered glass and device for producing tempered glass
JP2018511939A JP6827652B2 (en) 2016-04-12 2017-03-15 Tempered glass manufacturing method and tempered glass manufacturing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016079277 2016-04-12
JP2016-079277 2016-04-12

Publications (1)

Publication Number Publication Date
WO2017179360A1 true WO2017179360A1 (en) 2017-10-19

Family

ID=60041691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010479 WO2017179360A1 (en) 2016-04-12 2017-03-15 Method for manufacturing tempered glass and device for manufacturing tempered glass

Country Status (4)

Country Link
JP (1) JP6827652B2 (en)
CN (1) CN108463443B (en)
TW (1) TW201738192A (en)
WO (1) WO2017179360A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062141A1 (en) * 2016-09-30 2018-04-05 旭硝子株式会社 Method for producing chemically toughened glass

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7366346B2 (en) * 2018-10-09 2023-10-23 日本電気硝子株式会社 How to manufacture tempered glass
JP7283380B2 (en) * 2019-12-26 2023-05-30 Agc株式会社 Chemically strengthened glass manufacturing method and lithium ion adsorbent
WO2024041455A1 (en) * 2022-08-22 2024-02-29 福耀高性能玻璃科技(福建)有限公司 Glass to be strengthened having coating, glass set to be strengthened, and laser welded composite glass plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5232481A (en) * 1991-12-26 1993-08-03 Corning Incorporated Glass dimensional control using ion exchange
JP2005529056A (en) * 2002-06-13 2005-09-29 インターナショナル・ビジネス・マシーンズ・コーポレーション PH adjustment of melt for microetching of glass substrate
JP2014208570A (en) * 2013-03-25 2014-11-06 日本電気硝子株式会社 Tempered glass substrate and method of manufacturing the same
JP2015131763A (en) * 2013-07-19 2015-07-23 旭硝子株式会社 Chemically strengthened glass
WO2015186753A1 (en) * 2014-06-06 2015-12-10 旭硝子株式会社 Chemically toughened glass plate with function film, method for producing same, and article
JP2016132597A (en) * 2015-01-20 2016-07-25 旭硝子株式会社 Manufacturing method of chemical reinforced glass

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101542605B (en) * 2006-12-04 2011-05-18 柯尼卡美能达精密光学株式会社 Process for producing glass substrate for recording medium, glass substrate for recording medium, recording medium, and holding jig

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5232481A (en) * 1991-12-26 1993-08-03 Corning Incorporated Glass dimensional control using ion exchange
JP2005529056A (en) * 2002-06-13 2005-09-29 インターナショナル・ビジネス・マシーンズ・コーポレーション PH adjustment of melt for microetching of glass substrate
JP2014208570A (en) * 2013-03-25 2014-11-06 日本電気硝子株式会社 Tempered glass substrate and method of manufacturing the same
JP2015131763A (en) * 2013-07-19 2015-07-23 旭硝子株式会社 Chemically strengthened glass
WO2015186753A1 (en) * 2014-06-06 2015-12-10 旭硝子株式会社 Chemically toughened glass plate with function film, method for producing same, and article
JP2016132597A (en) * 2015-01-20 2016-07-25 旭硝子株式会社 Manufacturing method of chemical reinforced glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062141A1 (en) * 2016-09-30 2018-04-05 旭硝子株式会社 Method for producing chemically toughened glass

Also Published As

Publication number Publication date
JP6827652B2 (en) 2021-02-10
CN108463443A (en) 2018-08-28
CN108463443B (en) 2021-07-13
TW201738192A (en) 2017-11-01
JPWO2017179360A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
WO2017179360A1 (en) Method for manufacturing tempered glass and device for manufacturing tempered glass
CN107108347B (en) Method for producing tempered glass sheet, and method for producing tempered glass sheet
CN106167357B (en) Method for producing chemically strengthened glass
JP2018002552A (en) Manufacturing method of reinforced glass and reinforced glass manufacturing method
JPWO2020075708A1 (en) Tempered glass and manufacturing method of tempered glass
US20090113935A1 (en) Process for producing glass bar
WO2012153797A1 (en) Process for producing cover glass for electronic appliance, and holder for glass substrate for cover glass for electronic appliance
US20170144923A1 (en) Removal of inorganic coatings from glass substrates
WO2018066314A1 (en) Method for manufacturing reinforced glass plate, film-coated glass plate, and reinforced glass plate
JP6860829B2 (en) Tempered glass manufacturing method and tempered glass manufacturing equipment
JP6886127B2 (en) Manufacturing method of tempered glass plate and tempered glass plate
WO2018008359A1 (en) Method for manufacturing reinforced glass plate
WO2018056329A1 (en) Method for producing reinforced glass sheet, glass sheet for reinforcing, and reinforced glass sheet
JP2019001691A (en) Method for manufacturing reinforced glass plate, glass plate for reinforcement and reinforced glass plate
CN110746112B (en) Low-sodium glass, chemically strengthened glass and preparation method of chemically strengthened glass
JP2017160111A (en) Method of manufacturing tempered glass substrate, and tempered glass substrate
KR102565702B1 (en) Strengthened glass substrate manufacturing method and strengthened glass substrate
WO2018097096A1 (en) Reinforced glass plate and method for producing reinforced glass plate
CN116332528A (en) Method for producing chemically strengthened glass, cover glass, and display device
WO2015122631A1 (en) Method for manufacturing tempered glass

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018511939

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782178

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782178

Country of ref document: EP

Kind code of ref document: A1