WO2017221803A1 - 蓄熱性組成物 - Google Patents

蓄熱性組成物 Download PDF

Info

Publication number
WO2017221803A1
WO2017221803A1 PCT/JP2017/022080 JP2017022080W WO2017221803A1 WO 2017221803 A1 WO2017221803 A1 WO 2017221803A1 JP 2017022080 W JP2017022080 W JP 2017022080W WO 2017221803 A1 WO2017221803 A1 WO 2017221803A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
mass
plasticizer
heat
resin
Prior art date
Application number
PCT/JP2017/022080
Other languages
English (en)
French (fr)
Inventor
小関 祐子
藤崎 健一
淳一郎 小池
恭一 豊村
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2017550956A priority Critical patent/JP6274373B1/ja
Priority to KR1020187031637A priority patent/KR102280229B1/ko
Priority to DE112017003135.4T priority patent/DE112017003135T5/de
Priority to CN201780026545.1A priority patent/CN109071959A/zh
Publication of WO2017221803A1 publication Critical patent/WO2017221803A1/ja
Priority to US16/212,810 priority patent/US10968379B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/06Polymer mixtures characterised by other features having improved processability or containing aids for moulding methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/18Spheres
    • C08L2205/20Hollow spheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa

Definitions

  • the present invention relates to a heat storage composition that forms a heat storage material having flexibility that is useful for maintaining a suitable temperature in a living space such as a house or a room such as an automobile.
  • a material obtained by mixing a gypsum board encapsulating a latent heat storage material is disclosed (see Patent Document 1). Further, as a material using a flexible material, a heat storage thermoplastic resin sheet (see Patent Document 2) containing a heat storage material in a thermoplastic resin is disclosed.
  • JP 2003-284939 A Japanese Patent Laid-Open No. 2009-5016
  • the material in which the latent heat storage material is mixed in the above-mentioned gypsum board is used for the wall surface or the like, thereby increasing the heat capacity of the wall surface or the like to save energy.
  • the material is poor in flexibility and handleability and has limited usage.
  • the sheet using the above-mentioned thermoplastic resin has flexibility by using the thermoplastic resin, but its thickness is about 100 ⁇ m.
  • the problem to be solved by the present invention is to provide a heat storage composition which can be applied with a thick film and hardly causes dripping even when the thick film is applied.
  • Another object is to provide a heat storage composition that can be easily kneaded even when the composition is adjusted.
  • the present invention relates to a heat storage composition containing a resin and a heat storage material, and has a viscosity of 100 to 1000 dPa ⁇ s measured with a cylindrical rotational viscometer, and a temperature of 25 ° C. by a dynamic viscoelasticity measurement method.
  • the above problems are solved by a heat storage composition having a storage elastic modulus (G ′) of 3 Pa or more at an angular frequency of 1 rad / s measured at a strain of 0.1%.
  • the heat storage composition of the present invention has a specific viscosity and viscoelasticity, it is possible to apply a thick film, and it is difficult for drooling to occur when the thick film is applied.
  • a membrane sheet can be suitably formed.
  • a thick film sheet can be easily and continuously formed by coating, a thick film can be formed without using a method of filling a coating liquid into a frame and a method of laminating a plurality of layers. Therefore, a heat storage sheet with suitable heat storage performance can be manufactured at low cost. Further, since thick film coating can be suitably performed without excessively high viscosity, blending and kneading at the time of adjusting the composition do not become difficult, and the composition can be adjusted satisfactorily.
  • a flexible heat storage sheet having a thick film can be formed easily and at low cost, and the heat storage sheet can be used for wall materials and wallpaper for living spaces such as houses, automobiles, trains, aircraft, agriculture. It is required to save energy, such as materials applied to heat generating parts such as indoors such as houses, refrigerators in refrigerators and refrigerators, refrigerators in aircraft, and aircraft storage, and CPUs and storage batteries of personal computers. It can be usefully applied to various uses.
  • the heat storage composition of the present invention is a heat storage composition containing a resin and a heat storage material, and has a viscosity of 100 to 1000 dPa ⁇ s measured with a cylindrical rotating year clock.
  • the storage elastic modulus (G ′) at an angular frequency of 1 rad / s measured at a temperature of 25 ° C. and a strain of 0.1% is 3 Pa or more.
  • the resin used in the heat storage composition of the present invention is a resin component that forms a matrix during sheet formation.
  • various resins such as a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin can be used.
  • a thermoplastic resin can be preferably used because it is easy to form a coating film.
  • the resin include 1,2-polybutadiene resin, polycarbonate resin, and polyimide resin.
  • it is preferable to use a vinyl chloride resin because it is easy to obtain moldability at low temperatures and dispersibility of the heat storage material.
  • the heat storage composition is a paste-like composition in which a heat storage material is dispersed and suspended in a resin composition containing vinyl chloride resin particles and a plasticizer.
  • the average particle diameter of the vinyl chloride resin particles is preferably 0.01 to 10 ⁇ m, and preferably 0.1 to 5 ⁇ m.
  • the particles may be dispersed directly or may be dispersed in a state where the particles are aggregated into spherical secondary particles as primary particles. Further, particles having different particle diameters may be mixed to have two or more particle size distribution peaks. The particle diameter can be measured by a laser method or the like.
  • the shape of the vinyl chloride resin particles used in the heat storage composition is preferably a substantially spherical shape because it is easy to obtain suitable fluidity and the change in aging viscosity is small.
  • the vinyl chloride resin particles those produced by emulsion polymerization or suspension polymerization are preferable because they can easily obtain a spherical shape and can easily control the particle size distribution.
  • the polymerization degree of the vinyl chloride resin used is preferably 500 to 4000, more preferably 600 to 2000. Moreover, it becomes easy to adjust the viscosity and stationary shear viscosity of a rotational viscometer in the suitable range of this invention by setting it as the said range.
  • vinyl chloride resin particles used in the present invention commercially available vinyl chloride resin particles can be used as appropriate.
  • ZEST PQ83, PWLT, PQ92, P24Z manufactured by Shin-Daiichi PVC Co., Ltd. PSL- manufactured by Kaneka Corporation 675, 685 and the like.
  • the content of the thermoplastic resin is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, More preferably, it is ⁇ 60% by mass.
  • seat can be formed suitably, and it becomes easy to form the sheet
  • thermoplastic resin When a thermoplastic resin is used as the resin used in the heat storage sheet of the present invention, it is preferable to use a plasticizer in combination because it is easy to ensure good coatability and film formability.
  • the plasticizer include epoxy plasticizer, methacrylate plasticizer, polyester plasticizer, polyetherester plasticizer, aliphatic diester plasticizer, trimellitic acid plasticizer, adipic acid plasticizer, and benzoic acid.
  • a plasticizer, a phthalic acid plasticizer, and the like can be used as appropriate. Two or more kinds of plasticizers may be appropriately mixed and used.
  • a non-phthalic plasticizer other than the phthalic plasticizer, which may cause adverse effects on the human body.
  • plasticizers various commercially available plasticizers can be used as appropriate.
  • an epoxy plasticizer DIC Monosizer W-150; Shin Nippon Rika Co., Ltd. Sansosizer E-PS, E-PO E-4030, E-6000, E-2000H, E-9000H; ADEKA Adekasizer O-130P, O-180A, D-32, D-55, Kao Kapox S-6, etc.
  • polyester plastic As the agent, Polycizer W-2050, W-2310, W-230H manufactured by DIC; Adeka Sizer PN-7160, PN-160, PN-9302, PN-150, PN-170, PN-230, PN manufactured by ADEKA -7230, PN-1010, Mitsubishi Chemical D620, D621, D623, D643, D64 D620N; Kao Corporation HA-5, etc.
  • Trimellitic acid plasticizers include DIC Monosizer W-705, ADEKA Adeka Sizer C-9N, Mitsubishi Chemical Corporation TOTM, TOTM-NB, Benzo, etc.
  • acid plasticizer include Monosizer PB-3A manufactured by DIC, JP120 manufactured by Mitsubishi Chemical Corporation, and the like.
  • the gelation end temperature is preferably 150 ° C. or lower, more preferably 140 ° C. or lower, further preferably 130 ° C. or lower, further preferably 120 ° C. or lower, It is particularly preferably 110 ° C. or lower.
  • the gelation completion temperature can be defined as a temperature at which the light transmittance of the gelled film becomes constant.
  • the plasticizer with good low-temperature moldability include epoxy plasticizers, polyester plasticizers, and benzoic acid plasticizers. These plasticizers having good low-temperature moldability are preferable because they can easily obtain the toughness of the resin matrix together with suitable heat storage properties. From the viewpoint of heat resistance and low temperature moldability, epoxy plasticizers and polyester plasticizers can be particularly preferably used.
  • the gelation end point temperature is obtained by mixing a vinyl chloride resin for paste (polymerization degree 1700), the above plasticizer and a heat stabilizer (Ca—Zn) at a mass ratio of 100/80 / 1.5.
  • a temperature at which the light transmittance is constant by sandwiching between a glass plate and a slide and raising the temperature at a heating rate of 5 ° C./min and observing a change in light transmittance using a hot stage for microscopic observation (Meter 800). Is the gelation end point temperature.
  • the plasticizer used in the present invention preferably has a viscosity at 25 ° C. of 1500 mPa ⁇ s or less, more preferably 1000 mPa ⁇ s or less, still more preferably 500 mPa ⁇ s or less, and 300 mPa ⁇ s or less. It is particularly preferred that By setting it as the said range, since the viscosity of a thermal storage composition can be restrained low, the filling rate of a thermal storage material can be raised. Moreover, it becomes easy to adjust the viscosity and stationary shear viscosity of a rotational viscometer in the suitable range of this invention by setting it as the said range. In addition, the conditions of a plasticizer viscosity measurement can be measured in the conditions in the below-mentioned Example.
  • the plasticizer used in the present invention preferably has a weight average molecular weight of 200 to 3,000, more preferably 300 to 1,000.
  • the weight average molecular weight (Mw) is a value in terms of polystyrene based on gel permeation chromatography (hereinafter abbreviated as “GPC”) measurement.
  • GPC gel permeation chromatography
  • ⁇ Standard sample monodisperse polystyrene> “A-300” manufactured by Tosoh Corporation “A-500” manufactured by Tosoh Corporation “A-1000” manufactured by Tosoh Corporation “A-2500” manufactured by Tosoh Corporation "A-5000” manufactured by Tosoh Corporation “F-1” manufactured by Tosoh Corporation “F-2” manufactured by Tosoh Corporation “F-4” manufactured by Tosoh Corporation “F-10” manufactured by Tosoh Corporation “F-20” manufactured by Tosoh Corporation “F-40” manufactured by Tosoh Corporation “F-80” manufactured by Tosoh Corporation “F-128” manufactured by Tosoh Corporation “F-288” manufactured by Tosoh Corporation
  • the heat storage material used in the present invention is a microcapsule heat storage material containing a heat storage material in the resin outer shell, among these plasticizers, the HSP distance to the heat storage material to be used is 6 or more. It is preferable to use a plasticizer. By using the plasticizer, it is possible to suppress desorption of desorbed components from the heat storage sheet at a high temperature, and it becomes easy to realize suitable heat resistance that hardly causes volume shrinkage even at a high temperature. In a molded article made of a resin composition containing a general thermoplastic resin and a plasticizer that does not contain a heat storage material, large volume shrinkage hardly occurs even at high temperatures.
  • the HSP distance between the heat storage material and the plasticizer within the above range, it is possible to suppress the incorporation of the plasticizer that causes a large amount of desorption components at high temperatures into the heat storage material. It becomes easy to suppress the volume shrinkage of the resin, and it becomes easy to realize suitable heat resistance.
  • the HSP distance is preferably 7 or more, more preferably 8 or more, because it is easy to obtain suitable heat resistance.
  • the upper limit is not particularly limited as long as it is generally used as a plasticizer, but it is preferably 40 or less, more preferably 30 or less because it is easy to obtain suitable compatibility and moldability. More preferably, it is 25 or less.
  • the HSP distance is an index representing the solubility between substances using the Hansen solubility parameter (HSP).
  • the Hansen solubility parameter represents solubility as a multi-dimensional (typically three-dimensional) vector, and the vector can be represented by a dispersion term, a polar term, and a hydrogen bond term. And the similarity of the said vector is represented as the distance (HSP distance) of a Hansen solubility parameter.
  • Hansen solubility parameter numerical values that are helpful in various literatures are presented, and examples include Hansen Solubility Parameters: A User's Handbook (Charles Hansen et al., 2007, 2nd edition).
  • Hansen solubility parameters can be calculated based on the chemical structure of a substance using commercially available software such as Hansen Solubility Parameter in Practice (HSPiP). The calculation is performed at a solvent temperature of 25 ° C.
  • a plasticizer and a heat storage material for example, when using a heat storage material having an acrylic outer shell, an epoxy plasticizer, a polyester plasticizer, a trimellitic acid plasticizer, or the like can be preferably used. Moreover, when using the thermal storage material which has a melamine type outer shell, an epoxy plasticizer, a polyester plasticizer, a trimellitic acid plasticizer, a benzoic acid plasticizer, etc. can be used preferably. In particular, an epoxy plasticizer is preferable because various properties such as heat resistance are easily obtained.
  • the HSP distance between the thermoplastic resin to be used and the plasticizer is preferably 15 or less, and more preferably 12 or less, because the resin matrix of the molded article can be suitably configured.
  • the lower limit is not particularly limited, but is preferably 1 or more, more preferably 2 or more, and further preferably 3 or more.
  • a plasticizer having a plasticizer absorption amount of 150 parts by mass or less with respect to 100 parts by mass of the heat storage material to be used can be preferably used.
  • the absorption amount is preferably 140 parts by mass or less, more preferably 135 parts by mass or less, and still more preferably 130 parts by mass or less because it is easy to obtain suitable heat resistance.
  • the lower limit is not particularly limited as long as it is generally used as a plasticizer, but it is preferably 5% by mass or more because it is easy to obtain suitable compatibility and moldability, and is 10% by mass or more. It is more preferable. Moreover, it becomes easy to adjust the storage elastic modulus of a composition to the suitable range of this invention by setting it as the said range.
  • the absorption amount of the plasticizer is measured according to the oil absorption measurement method of JIS K5101-13-1. Specifically, a heat storage material weighing 1 to 20 g according to the expected absorption amount is placed on a glass plate as a sample, and 4 to 5 drops of plasticizer are gradually added from a burette at a time. Each time, it is kneaded into the sample with a steel pallet knife. This is repeated and dripping is continued until a plasticizer and a sample lump are formed. Thereafter, the solution is repeatedly dripped drop by drop and completely kneaded, and the point at which the paste becomes smooth is set as the end point, and the absorption amount is defined as the absorption amount of the plasticizer. Note that the paste can be spread without cracking or ragging, and can be lightly attached to the measurement plate.
  • the content of the plasticizer in the heat storage sheet is preferably 5 to 75% by mass, more preferably 10 to 70% by mass, further preferably 20 to 60% by mass, and 20 to 40% by mass. % Is particularly preferred. By setting it as the said range, it becomes easy to obtain favorable coating suitability and moldability. Further, the content ratio of the plasticizer to the thermoplastic resin is such that the viscosity of the composition is easily adjusted within the range of the present invention, so that the plasticizer is 30 to 150 parts by mass with respect to 100 parts by mass of the thermoplastic resin. The amount is preferably 40 to 130 parts by mass, more preferably 50 to 120 parts by mass.
  • the heat storage material is not particularly limited as long as it has heat storage properties, and is a latent heat type heat storage material, a sensible heat type heat storage material, a chemical reaction type heat storage material utilizing heat absorption or heat generation associated with a chemical reaction. Can be used. Among these, a latent heat type heat storage material is preferable because it is easy to secure a large amount of energy in a small volume and easily adjust the heat absorption / release temperature.
  • latent heat storage material As a latent heat storage material (latent heat storage material), in consideration of problems such as leaching during melting due to phase change and dispersibility when mixed, latent heat such as paraffin in the outer shell made of organic materials etc.
  • Encapsulated heat storage particles containing a heat storage material are preferred.
  • the HSP distance is calculated based on the HSP of the material used for the outer shell of the heat storage particles.
  • the outer shell is not easily embrittled by the plasticizer, and the heat storage material is damaged. Hateful.
  • heat storage particles for example, those using an outer shell made of melamine resin, Thermo Memory FP-16, FP-25, FP-27, FP-31, FP-39 manufactured by Mitsubishi Paper Industries, Ltd., Miki RIKEN Examples include Riken Resin PMCD-15SP, 25SP, and 32SP manufactured by Kogyo Co., Ltd.
  • Riken Resin PMCD-15SP 25SP, and 32SP manufactured by Kogyo Co., Ltd.
  • silica such as Riken Resins LA-15, LA-25, LA-32 manufactured by Miki Riken Kogyo Co., Ltd.
  • MicroDS5001X manufactured by BASF , 5040X and the like.
  • the particle size of the heat storage particles is preferably about 10 to 1000 ⁇ m, and more preferably 50 to 500 ⁇ m.
  • the particle size of the heat storage particles is preferably such that the particle size of the primary particles is within the above range, but the particles with a primary particle size of 1 to 50 ⁇ m, preferably 2 to 10 ⁇ m aggregate to form secondary particles. It is also preferable that the heat storage particles have a secondary particle size in the above range.
  • the secondary particle diameter is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and 100 ⁇ m or less. It is particularly preferable to do this.
  • Such heat storage particles are easily damaged by pressure and shear, but according to the configuration of the present invention, the heat storage particles can be suitably prevented from being damaged, and the heat storage material is less likely to leak or leak.
  • the heat storage sheet of the present invention prevents the heat storage material from leaking out or leaking even when such a latent heat storage material is used. It is easy to suppress suitably.
  • the particle diameter of all the heat storage particles used in the heat storage sheet may not be in the above range, and 80% by mass or more of the heat storage particles in the heat storage sheet are preferably heat storage particles in the above range, and 90% by mass or more More preferably, it is particularly preferably 95% by mass or more.
  • the latent heat storage material undergoes a phase change at a specific melting point. That is, when the room temperature exceeds the melting point, the phase changes from a solid to a liquid, and when the room temperature falls below the melting point, the phase changes from a liquid to a solid.
  • the melting point of the latent heat storage material may be adjusted according to the use mode, and a material exhibiting a solid / liquid phase transition in a temperature range of about ⁇ 20 ° C. to 120 ° C. can be used as appropriate.
  • the melting point is set to a temperature suitable for daily life, specifically 10
  • a latent heat storage material designed to 35 to 35 ° C, preferably 15 to 30 ° C
  • a latent heat storage material having a melting point of about 18 to 28 ° C. for the purpose of maintaining the heating effect in winter.
  • the temperature is preferably about 18 to 23 ° C.
  • two or more types of latent heat storage materials having different melting point designs may be mixed.
  • a latent heat storage material having a melting point of about ⁇ 10 ° C. to 5 ° C. may be used.
  • the heat storage material used in the present invention preferably has a moisture content of 3% by mass or less, more preferably 2.0% by mass or less, and further preferably 1.5% by mass or less. It is particularly preferably 2% by mass or less.
  • the content of the heat storage material in the heat storage sheet is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, and still more preferably 30 to 60% by mass. By setting it as the said range, it becomes easy to obtain a favorable heat storage effect and moldability. Moreover, it becomes easy to adjust a composition viscosity and a storage elastic modulus in the range of this invention by making content of a thermal storage material into 10 mass% or more.
  • the heat storage composition of the present invention is a heat storage composition having a viscosity of 100 dPa ⁇ s or more and 1000 dPa ⁇ s or less measured by a cylindrical rotational viscometer (visco tester). By setting it as the said viscosity, thick film formation becomes possible suitably and the shape retainability at the time of thick film coating also becomes favorable.
  • the viscosity is preferably 120 dPa ⁇ s or more, and more preferably 150 dPa ⁇ s or more.
  • the upper limit of the viscosity is more preferably 800 dPa ⁇ s or less, further preferably 600 dPa ⁇ s or less, and particularly preferably 500 dPa ⁇ s or less.
  • the viscosity can be measured under the following conditions. Measuring device: Viscotester VT-04 (manufactured by Lion Co., Ltd.) Measurement conditions: temperature 25 ° C. 2 rotor (62.5 rpm)
  • the steady shear viscosity at a shear rate of 10 [1 / s] is preferably 50 Pa ⁇ s or less, and more preferably 30 Pa ⁇ s or less.
  • the steady shear viscosity is a steady shear viscosity measured in a shear rate range of 0.1 to 700 [1 / s] under conditions of a temperature of 25 ° C. in accordance with JIS K 7117-2. Specifically, it is measured using a parallel plate PP50 (diameter 50 mm) by a rotating rheometer MCR102 manufactured by Anton Paar.
  • the sample used for the measurement is a sample that is uniformly dispersed by stirring at about 500 rpm / 2 minutes using a homodisper.
  • about 2 g of the composition to be measured is placed on the sample stage of the rheometer and the parallel plate for measurement is lowered and sandwiched by a gap of about 1.1 to 1.3 mm, so that the state before this measurement is the same. It is also preferable to perform the main measurement after giving a pre-shear in advance.
  • the pre-share conditions are, for example, a share rate of 10 [1 / s] and an application time of 60 [sec].
  • the heat storage composition of the present invention has a storage elastic modulus (G ′) of 1 [rad / s] measured by dynamic viscoelasticity measurement at a temperature of 25 ° C. and a strain of 0.1% and a heat storage property of 3 Pa or more. It is a composition.
  • the storage elastic modulus (G ′) is preferably 5 Pa or more, and more preferably 8 Pa or more.
  • the upper limit is not particularly limited, but is preferably 200 Pa or less, and more preferably 150 Pa or less.
  • the loss elastic modulus (G ′′) of 1 [rad / s] measured above is preferably 10 Pa or more.
  • the upper limit is preferably 200 Pa or less, and 150 Pa or less. By setting it within this range, it becomes easy to obtain suitable shape retention and coating suitability during thick film coating.
  • the heat storage composition of the present invention maintains a good shape even during thick film coating by setting the loss tangent (tan ⁇ ) at an angular frequency of 1 [rad / s] measured by dynamic viscoelasticity measurement to 3 or less. Therefore, a thick film sheet can be easily formed by coating.
  • the loss tangent is more preferably 2 or less, and further preferably 1.5 or less. Moreover, it is preferable to set it as 0.3 or more, and it is more preferable to set it as 0.5 or more.
  • Dynamic viscoelasticity is a dynamic viscosity measured at an angular frequency of 0.3 to 100 rad / s at a strain of 0.1% under a temperature of 25 ° C. in accordance with JIS K 7244-10. It is elastic. Specifically, it is measured using a parallel plate PP50 (diameter 50 mm) by a rotating rheometer MCR102 manufactured by Anton Paar.
  • the sample used for the measurement is a sample that is uniformly dispersed by stirring at about 500 rpm / 2 minutes using a homodisper.
  • the composition to be measured was mixed for 1 hour after mixing the blending components, and about 2 g was placed on the sample stage of the rheometer and the parallel plate for measurement was lowered and sandwiched with a gap of about 1.1 to 1.3 mm.
  • the pre-share conditions are, for example, a share rate of 10 [1 / s] and an application time of 60 [sec].
  • the heat storage composition of the present invention is prepared by blending the above resin component and heat storage material.
  • a vinyl chloride resin is used as the thermoplastic resin
  • a method of forming a heat storage layer by sol casting using a vinyl sol coating liquid using vinyl chloride resin particles as a heat storage composition is preferable.
  • molding becomes possible, without passing through kneading
  • the method molding at a low temperature is facilitated, and therefore, the method can be particularly preferably used because it is easy to suppress destruction of the heat storage material due to heat.
  • the content of the vinyl chloride resin is 10 to 80 mass in the solid content (components other than the solvent) contained in the heat storage composition. %, More preferably 20 to 70% by mass, and further preferably 30 to 60% by mass.
  • the content of the plasticizer is preferably 30 to 150 parts by weight, more preferably 30 to 120 parts by weight, with respect to 100 parts by weight of the thermoplastic resin contained in the composition. More preferably, it is 100 parts by mass.
  • the content of the heat storage material to be mixed in the composition is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, and more preferably 30 to 30% by mass in the solid content contained in the composition. More preferably, it is 60 mass%.
  • a solvent can be appropriately used.
  • a solvent used in a sol-cast method of vinyl chloride resin can be used as appropriate, and among them, ketones such as diisobutyl ketone and methyl isobutyl ketone, esters such as butyl acetate, glycol ethers and the like are preferable. It can be illustrated. These solvents are preferable because they slightly swell the resin at room temperature to facilitate dispersion, and also facilitate melting gelation in the heating step. These solvents may be used alone or in combination of two or more.
  • a diluting solvent may be used together with the above solvent.
  • a solvent that does not dissolve the resin and suppresses the swelling property of the dispersion solvent can be preferably used.
  • a diluting solvent for example, paraffinic hydrocarbons, naphthenic hydrocarbons, aromatic hydrocarbons, terpene hydrocarbons and the like can be used.
  • a heat stabilizer in order to suppress degradation and coloration mainly due to dehydrochlorination reaction of vinyl chloride resin.
  • a heat stabilizer for example, a calcium / zinc stabilizer, an octyl tin stabilizer, a barium / zinc stabilizer, or the like can be used.
  • the content of the heat stabilizer is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the vinyl chloride resin.
  • additives such as a thinning agent, a dispersing agent, and an antifoaming agent may be appropriately contained as necessary in addition to the above components.
  • the content of these additives is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the vinyl chloride resin.
  • the heat storage sheet composed of the sol-cast film of the heat storage composition containing the vinyl chloride resin particles and the heat storage material is a resin-based material because the heat storage material is not subject to shear or pressure at the time of manufacture, so that the heat storage material is not easily destroyed. It is difficult for the heat storage material to ooze out while using the. Moreover, while having the thermal storage property by the said thermal storage material, favorable softness
  • the heat storage composition of this invention can form a heat storage sheet
  • a resin composition containing a resin and a heat storage material is prepared, and after coating the composition on a support to form a coating film, the coating film temperature becomes 150 ° C. or lower. It is a method of forming a heat storage sheet by heating at a temperature.
  • a support having heat resistance at the temperature of the heating process can be used as appropriate.
  • stacked with another functional layer and a base material it is good also considering the said other functional layer and base material as a support body.
  • resin films used as various process films can be preferably used.
  • the resin film include polyester resin films such as a polyethylene terephthalate resin film and a polybutylene terephthalate resin film.
  • the thickness of the resin film is not particularly limited, but a resin film having a thickness of about 25 to 100 ⁇ m is easy to handle and obtain.
  • the resin film used as the support one having a surface that has been peeled off can be preferably used.
  • the release treatment agent used for the release treatment include alkyd resins, urethane resins, olefin resins, and silicone resins.
  • a coating machine such as a roll knife coater, a reverse roll coater, or a comma coater can be used.
  • the method of sending out a heat storage resin composition on a support body and forming a coating film of fixed thickness with a doctor knife etc. can be used preferably.
  • the obtained coating film can form a sheet by gelation or curing by heating or drying.
  • the heating temperature is preferably a temperature at which the coating film temperature is 150 ° C. or lower, more preferably a temperature at 140 ° C. or lower, further preferably a temperature at 130 ° C. or lower, and further preferably a temperature at 120 ° C. or lower.
  • the heating time may be appropriately adjusted according to the gelation rate or the like, but may be adjusted in the range of about 10 seconds to 10 minutes.
  • the solvent may be removed simultaneously in the heating step, but it is also preferable to perform preliminary drying before the heating.
  • the heat storage sheet formed as described above can be used as a heat storage sheet by the process of peeling the heat storage sheet from the support.
  • the separation may be performed by a suitable method as appropriate.
  • stacking when the state laminated
  • seat suitably according to a usage condition.
  • 100 ⁇ m or more is preferable, 500 ⁇ m or more is more preferable, 1 mm or more is more preferable, and 3 mm or more is particularly preferable because a suitable heat storage effect is easily obtained.
  • the upper limit of the thickness is not particularly limited, but it is suitable when the organic heat storage layer is handled alone, such as when the sheet-like organic heat storage layer is formed and then bonded to the inorganic base material. Since it is easy to obtain flexibility and handleability, the molding is preferably performed at 20 mm or less, more preferably 10 mm or less, and further preferably 6 mm or less.
  • the heat storage sheet of the present invention is a sheet having a thickness of, for example, 500 ⁇ m or more, or even 1 mm or more, cracking and chipping are unlikely to occur during processing and conveyance, and excellent workability and handling can be realized. .
  • the heat storage sheet of the present invention is formed into a heat storage laminate by laminating with various functional layers.
  • the flame retardancy can be improved by laminating with a non-combustible layer such as a non-combustible paper or a non-combustible base material, which is particularly suitable for application to a living space.
  • heat storage can be more effectively expressed by laminating with a heat diffusion layer or a heat insulating layer.
  • a decorative layer and a decoration layer can also be provided.
  • non-combustible layer various non-combustible base materials can be used, and quasi-incombustibility and non-combustibility can be imparted by laminating with the non-combustible base material.
  • the non-combustible base material include gypsum board, calcium silicate board, flexible board, cement board, and inorganic base materials such as fiber reinforced plates.
  • incombustible paper can be used, and a configuration in which the incombustible paper is laminated on one side or both sides of the heat storage sheet of the present invention can be exemplified.
  • the configuration in which the non-combustible paper is laminated on one side may be a configuration in which the heat storage sheet of the present invention is bonded to the non-combustible paper, but the composition that forms the heat storage sheet of the present invention is directly applied to the non-combustible paper and gelled.
  • the above structure is preferable because it can be easily formed.
  • the structure which bonded the nonflammable paper on both surfaces of the heat storage sheet of this invention may be sufficient, but the heat storage composition was apply
  • surfaces or both surfaces can also be used preferably.
  • the incombustible paper is not particularly limited as long as it has incombustibility.
  • paper in which a flame retardant is applied, impregnated, or internally added can be used.
  • the flame retardant include metal hydroxides such as magnesium hydroxide and aluminum hydroxide, basic compounds such as phosphates, borates, and stephamates, glass fibers, and the like.
  • the heat diffusion layer When it is applied to a closed space such as a room as a laminated structure of heat diffusion layers, the heat diffusion layer has the effect of uniformizing the heat in the room, and indoors (residential spaces such as houses, cars, trains, Heat from indoors such as airplanes, refrigerators of refrigerated vehicles, closed spaces such as aircraft storage, etc.) can be dispersed and transferred to the heat storage layer with low thermal resistance.
  • indoors residential spaces such as houses, cars, trains, Heat from indoors such as airplanes, refrigerators of refrigerated vehicles, closed spaces such as aircraft storage, etc.
  • the heat storage particles absorb indoor heat and release the heat into the room, and the indoor temperature environment can be controlled to an appropriate temperature.
  • thermal diffusion layer a layer having a high thermal conductivity of 5 to 400 W / m ⁇ K can be preferably used. Due to the high thermal conductivity, locally concentrated heat can be diffused and transmitted to the heat storage layer to improve thermal efficiency and make room temperature uniform.
  • Examples of the material for the heat diffusion layer include aluminum, copper, iron, and graphite.
  • aluminum can be particularly preferably used.
  • the reason why aluminum is preferable is that a heat insulating effect due to reflection of radiant heat is also exhibited.
  • the heating efficiency can be improved by a heat insulating effect.
  • Examples of the heating appliance mainly using radiant heat include electric floor heating, hot water type floor heating, and an infrared heater.
  • flame retardancy can be improved from the viewpoint of disaster prevention.
  • an appropriate form such as a layer made of a sheet of the above material or a vapor deposition layer of the above material can be used.
  • a vapor deposition layer of the above material for example, an aluminum foil, an aluminum vapor deposition layer, or the like having flexibility is preferably used.
  • the layer thickness of the thermal diffusion layer is not particularly limited, but is preferably about 3 to 500 ⁇ m because it is easy to ensure suitable thermal diffusion and handling properties.
  • the heat storage layer when the heat storage layer is laminated on the heat storage layer, heat absorption and heat release of the heat storage layer are effectively performed on the indoor side, and the effect of maintaining an appropriate temperature in the room can be particularly suitably exhibited. It is also effective in preventing the outflow of heat in the room or reducing the influence of heat from the outside air.
  • the heat storage laminate of the present invention can keep the room at an appropriate temperature by suppressing the temperature change in the room by these combined actions. Further, when an air conditioner such as an air conditioner or refrigeration equipment is used, the energy consumption can be reduced. Thereby, it can contribute to the energy-saving indoors suitably.
  • the heat insulating layer a layer having a thermal conductivity of less than 0.1 W / m ⁇ K can be preferably used.
  • the said heat insulation layer exhibits the effect which prevents the outflow of the heat
  • the heat insulating layer is not particularly limited as long as it can form a layer having a thermal conductivity of less than 0.1 W / m ⁇ K.
  • a heat insulating sheet such as a foamed resin sheet or a resin sheet containing a heat insulating material, or extruded Insulating boards such as polystyrene, bead polystyrene, polyethylene foam, urethane foam, and phenol foam can be used as appropriate.
  • a heat insulating sheet is easy to ensure workability, it is preferable and it is more preferable that it is a resin sheet containing a heat insulating material since heat conductivity can be reduced.
  • a foam sheet is preferable because it is easily available and inexpensive.
  • the measured value by a cylindrical mandrel bending tester JIS K 5600 is a mandrel diameter of 2 to 32 mm.
  • the heat insulating material used for the heat insulating layer enhances the heat insulating property of the heat storage laminate, and examples thereof include porous silica, porous acrylic, hollow glass beads, vacuum beads, and hollow fibers.
  • porous silica porous acrylic
  • hollow glass beads hollow glass beads
  • vacuum beads hollow fibers.
  • porous acrylic can be preferably used as the heat insulating material 5.
  • the particle size of the heat insulating material is not limited, but is preferably about 1 to 300 ⁇ m.
  • the heat insulating material is mixed into the base resin material to form a sheet.
  • the resin material include polyvinyl chloride, polyphenylene sulfide, polypropylene, polyethylene, polyester, or acrylonitrile-butadiene-styrene resin, as described above.
  • polyester A-PET, PET-G and the like can be used.
  • a self-digestible vinyl chloride resin can be suitably used.
  • the sheet is formed by using a molding machine such as extrusion molding or calender molding using a vinyl chloride resin, a plasticizer, and a heat insulating material.
  • a molding machine such as extrusion molding or calender molding using a vinyl chloride resin, a plasticizer, and a heat insulating material.
  • the content of the heat insulating material in the heat insulating layer is preferably 20% by mass or more in the heat insulating layer, more preferably 20 to 80% by mass, still more preferably 30 to 80% by mass, It is particularly preferably 80 to 80% by mass.
  • additives such as a plasticizer and a flame retardant may be blended as necessary.
  • the layer thickness of the heat insulating layer is not particularly limited, but as the thickness increases, the heat retaining property in the room increases. In order to maintain the bendability and workability of the sheet, the thickness is preferably about 50 to 3000 ⁇ m.
  • the heat storage sheet made of the heat storage composition of the present invention is preferably used mainly as an interior material for interior walls, ceilings, floors, etc. of buildings, but as a clothing material for window sash frames, or an interior material for vehicles, etc. Is also applicable. Moreover, it can be used not only in the walls, floors, and ceilings of buildings but also in rooms such as automobiles, trains, and airplanes. It can also be used as a low-temperature maintenance material for refrigeration equipment and a low-temperature maintenance material for electrical components that generate heat, such as a CPU and storage battery of a personal computer. In addition, a heater such as a planar heating element may be used in combination to develop an energy saving effect due to heat storage.
  • Example 1 100 parts by mass of polyvinyl chloride resin particles having a polymerization degree of 900 (ZEST PQ92, manufactured by Shin-Daiichi PVC Co., Ltd.), epoxy plasticizer (Monicizer W-150, manufactured by DIC Co., Ltd., viscosity 85 mPa ⁇ s, gelation end point temperature 121 ° C.) 62 3 parts by mass, heat stabilizer (Greek ML-610A, manufactured by Showa Varnish Co., Ltd.), 6 parts by mass of a thickener (thickener VISCOBYK-5125, manufactured by BYK) and a dispersant (Disperplast- manufactured by BYK) 1150) Latent heat storage material microcapsulated with 6 parts by mass and an outer shell made of melamine resin (Thermo Memory FP-27, manufactured by Mitsubishi Paper Industries Co., Ltd .: average particle size 50 ⁇ m, melting point 27 ° C., water content 0.9 (Mass%) 90 mass parts was mix
  • the calculated value of the HSP distance between the used plasticizer and the latent heat storage material is 22.30, the calculated value of the HSP distance between the plasticizer and the vinyl chloride resin is 4.6, and the plasticity with respect to 100 parts by mass of the used latent heat storage material.
  • the absorbed amount of the agent was 81 parts by mass.
  • Example 2 A heat storage composition was prepared in the same manner as in Example 1 except that the blending amount of the latent heat storage material used in Example 1 was 110 parts by mass.
  • Example 3 In place of the epoxy plasticizer used in Example 1, a polyester plasticizer (polysizer W-230H manufactured by DIC: viscosity 220 mPa ⁇ s, gelation end point temperature 136 ° C.) was used, and the same as in Example 1. Thus, a heat storage composition was prepared. The calculated value of the HSP distance between the used plasticizer and the latent heat storage material is 23.20, the calculated value of the HSP distance between the plasticizer and the vinyl chloride resin is 6.4, and the plasticity with respect to 100 parts by mass of the used latent heat storage material. The absorbed amount of the agent was 72 parts by mass.
  • Example 4 A heat storage composition was prepared in the same manner as in Example 3 except that the amount of the latent heat storage material used in Example 3 was 60 parts by mass.
  • Example 5 A heat storage composition was prepared in the same manner as in Example 1 except that the amount of the polyvinyl chloride resin particles used in Example 1 was changed to 60 parts by mass.
  • Example 6 instead of the polyvinyl chloride resin particles having a polymerization degree of 900 used in Example 1, polyvinyl chloride resin particles having a polymerization degree of 1800 (ZEST PQHT manufactured by Shin-Daiichi PVC Co., Ltd.) were used and used in Example 1.
  • a heat storage composition was prepared in the same manner as in Example 1 except that the blending amount of the latent heat storage material was 80 parts by mass.
  • Example 7 Instead of 90 parts by mass of the latent heat storage material used in Example 1, a latent heat storage material in which paraffin is microencapsulated using an outer shell made of polymethyl methacrylate (PMMA) resin (Micro DS5001X manufactured by BASF): particle size 100
  • PMMA polymethyl methacrylate
  • a heat storage composition was prepared in the same manner as in Example 1 except that 82 parts by mass of ( ⁇ 300 ⁇ m, melting point 26 ° C., water content 0.8% by mass) was used.
  • the calculated value of the HSP distance between the used plasticizer and the latent heat storage material is 8.88
  • the calculated value of the HSP distance between the plasticizer and the vinyl chloride resin is 4.6
  • the plasticizer is 100 parts by mass of the latent heat storage material.
  • the amount absorbed was 129 parts by mass.
  • Example 8 100 parts by mass of polyvinyl chloride resin particles having a polymerization degree of 900 (ZEST PQ92, manufactured by Shin-Daiichi PVC Co.), epoxy plasticizer (Monicizer W-150, manufactured by DIC: viscosity 85 mPa ⁇ s, end point temperature of gelation 121 ° C.) 105 3 parts by weight, 3 parts by weight of a heat stabilizer (Greg ML-610A, manufactured by Showa Varnish Co., Ltd.), 12 parts by weight of a thinning agent (BYK, a thickener VISCOBYK-5125, manufactured by BYK) and a dispersant (Disperplast-, manufactured by BYK) 1150)
  • a latent heat storage material in which 12 parts by mass and microcapsules of paraffin are used for the outer shell made of melamine resin Thermo Memory FP-27 manufactured by Mitsubishi Paper Industries Co., Ltd .: average particle size 50 ⁇ m, melting point 27
  • Example 9 100 parts by weight of polyvinyl chloride resin particles having a polymerization degree of 900 (ZEST PQ92 made by Shin-Daiichi PVC Co.), epoxy plasticizer (Monicizer W-150 made by DIC: viscosity 85 mPa ⁇ s, end point temperature of gelation 121 ° C.) 50 3 parts by mass, heat stabilizer (Greek ML-610A, manufactured by Showa Varnish Co., Ltd.) and a latent heat storage material in which paraffin is microencapsulated using an outer shell made of melamine resin (Thermo Memory FP-27, manufactured by Mitsubishi Paper Industries Co., Ltd.) 25 parts by mass of an average particle size of 50 ⁇ m, a melting point of 27 ° C., and a water content of 0.9% by mass were blended to prepare a heat storage composition.
  • ZEST PQ92 made by Shin-Daiichi PVC Co.
  • epoxy plasticizer Monicizer W-150 made by DIC: viscosity
  • Example 10 A heat storage composition was prepared in the same manner as in Example 7 except that the amount of the latent heat storage material used in Example 7 was 68 parts by mass.
  • Example 11 A heat storage composition was prepared in the same manner as in Example 1 except that the amount of the polyvinyl chloride resin particles used in Example 1 was 60 parts by mass and the amount of the latent heat storage material was 100 parts by mass. .
  • Example 12 A heat storage composition was prepared in the same manner as in Example 11 except that the blending amount of the latent heat storage material used in Example 11 was 130 parts by mass.
  • Example 13 Example except that benzoic acid plasticizer (manufactured by DIC, monosizer PB-10: viscosity 80 mPa ⁇ s, gelation end point temperature 100 ° C. or lower) was used instead of the epoxy plasticizer used in Example 1.
  • a heat storage composition was prepared.
  • the calculated value of the HSP distance between the used plasticizer and the latent heat storage material is 17.10
  • the calculated value of the HSP distance between the plasticizer and the vinyl chloride resin is 1.4
  • the plasticity for 100 parts by mass of the used latent heat storage material was 96 parts by mass.
  • Example 1 A heat storage composition was prepared in the same manner as in Example 1 except that the blending amount of the latent heat storage material used in Example 1 was 150 parts by mass.
  • Example 2 A heat storage composition was prepared in the same manner as in Example 1 except that the blending amount of the latent heat storage material used in Example 1 was 50 parts by mass.
  • Example 3 In place of the epoxy plasticizer used in Example 1, a benzoic acid plasticizer (DIC-made W-83: viscosity 220 mPa ⁇ s, gelation end point temperature 136 ° C.) was used in Example 1.
  • a heat storage composition was prepared in the same manner as in Example 1 except that the blending amount of the latent heat storage material was 30 parts by mass.
  • the calculated value of the HSP distance between the used plasticizer and the latent heat storage material is 18.90
  • the calculated value of the HSP distance between the plasticizer and the vinyl chloride resin is 1.7
  • the plasticity with respect to 100 parts by mass of the used latent heat storage material The absorbed amount of the agent was 90 parts by mass.
  • the amount of plasticizer absorbed in the heat storage material was measured by the following method according to JIS K5101-13-1.
  • a sample weighed 1 g of heat storage material (2 g in Example 5) was placed on a glass plate, and 4 to 5 drops of plasticizer were gradually added from a burette at a time and kneaded into the sample with a steel pallet knife. It is. This was repeated until the plasticizer and the sample lump were formed. Thereafter, the solution was repeatedly dripped drop by drop and completely kneaded. The point at which the paste became a smooth hardness was taken as the end point, and the amount absorbed was taken as the amount absorbed by the plasticizer.
  • the steady-state shear viscosity of the heat storage compositions obtained in the examples and comparative examples is determined according to JIS K 7117-2 under the condition of a temperature of 25 ° C. and a shear rate range of 0.1 to 700 [1 / s] was measured using a parallel plate PP50 (diameter 50 mm) with an Anton Paar rotary rheometer MCR102. The measurement was performed by mixing the composition, stirring at about 500 rpm for 2 minutes using a homodisper and uniformly dispersing the sample as a measurement sample, and placing about 2 g of the sample on the sample stage of the rheometer.
  • the main measurement was performed after pre-shearing was given in advance.
  • the pre-share conditions were a share rate of 10 [1 / s] and an application time of 60 [sec].
  • the dynamic viscoelasticity of the heat storage compositions obtained in the examples and comparative examples is 0.3 to 100 rad / s under the conditions of a temperature of 25 ° C. and a strain of 0.1% in accordance with JIS K 7244-10.
  • the measurement was performed using a parallel plate PP50 (diameter: 50 mm) with a rotational rheometer MCR102 manufactured by Anton Paar at an angular frequency of s.
  • the measurement was performed by mixing the composition, stirring at about 500 rpm for 2 minutes using a homodisper and uniformly dispersing the sample as a measurement sample, and placing about 2 g of the sample on the sample stage of the rheometer.
  • the main measurement was performed after pre-shearing was given in advance.
  • the pre-share conditions were a share rate of 10 [1 / s] and an application time of 60 [sec].
  • the moisture content of the heat storage compositions obtained in the examples and comparative examples was measured according to the moisture measurement method b) drying loss method of JIS K0068 chemical products. Take 10 g of the heat storage composition obtained in the examples and comparative examples in a flat scale bottle (specified in JIS R 3503: body diameter 60 mm ⁇ height 30 mm, capacity 25 ml), and use a constant temperature with a 105 ° C. dryer. It was measured every hour until it became constant (constant weight: when the mass difference from the previous time became 1/1000 or less).
  • each of the heat storage compositions of the present invention of Examples 1 to 13 has a maximum thickness of 2 mm or more when the heat storage sheet is formed, and has a sheet area of 50 cm 2 or less and contains heat storage particles.
  • it had a suitable thick film coating suitability and had a suitable thick film shape retaining property without causing any dripping or the like.
  • the compositions of Examples 1 to 11 and 13 had sheet areas in the range of 30 to 50 cm 2 and were particularly excellent in coating suitability and thick film shape retention.
  • the composition of Example 12 was superior in forming a thick film.
  • the compositions of Comparative Examples 1 to 3 did not have suitable coatability and thick film coatability.
  • Example 14 A heat storage composition was prepared in the same manner as in Example 1 except that a latent heat storage material having a moisture content of 1.5 mass% was used. Using the obtained heat storage composition, a heat storage sheet was prepared by the same method as the method of ⁇ Appearance evaluation>, and the appearance was evaluated. The evaluation result was “ ⁇ ” (no swelling or recess having a diameter of 5 mm or more was confirmed).
  • Example 15 A heat storage sheet was prepared in the same manner as in Example 14 except that a latent heat storage material having a moisture content of 2.1% by mass was used, and appearance evaluation was performed. The evaluation result was ⁇ (less than 5 bulges and recesses with a diameter of 5 mm or more).
  • Example 16 A heat storage sheet was prepared in the same manner as in Example 15 except that the drying temperature was 130 ° C., and the appearance was evaluated. It was (circle) (the swelling and recessed part more than diameter 5mm were not confirmed).
  • Example 17 A heat storage sheet was prepared and the appearance was evaluated in the same manner as in Example 14 except that the heat storage composition similar to that in Example 1 was used as the heat storage composition and the drying temperature was 165 ° C. The evaluation result was ⁇ (less than 5 bulges and recesses with a diameter of 5 mm or more).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本発明は、樹脂と蓄熱材とを含有する蓄熱性組成物であって、円筒形回転粘度計で測定される粘度が100~1000dPa・sであり、動的粘弾性測定法により、温度25℃、ひずみ0.1%にて測定した角周波数1rad/sにおける貯蔵弾性率(G')が3Pa以上である蓄熱性組成物により、厚膜の塗工が可能で、厚膜塗工した際にもだれが生じにくいため、1mmを越えるような厚膜シートを塗工により簡易かつ連続的に形成できる。

Description

蓄熱性組成物
 本発明は、住宅等の居住空間や自動車等の室内の適温保持に有用な柔軟性を有する蓄熱材を形成する蓄熱性組成物に関する。
 近年、住宅やオフィス等の居住空間において省エネルギー化の要請が高まっており、住宅等に使用される建築材料にも省エネルギー化に貢献する材料が求められている。一般的には、床、天井、壁面等に断熱材を用いて冷暖房の効率化が図られているが、さらなる省エネルギー化のために各種材料の検討がなされている。また、自動車や航空機等の閉空間や、冷蔵車等の冷蔵庫内においても同様に省エネルギー化の要請が高い。
 このような材料としては、例えば、石膏ボードに潜熱蓄熱材をカプセル化したものを混ぜ合わせた材料が開示されている(特許文献1参照)。また、柔軟性のある材料を使用した材料として、熱可塑性樹脂中に蓄熱材を含有する蓄熱性熱可塑性樹脂シート(特許文献2参照)等が開示されている。
特開2003-284939号公報 特開2009-51016号公報
 上記の石膏ボード中に潜熱蓄熱材を混合した材料は、壁面等に使用することで、壁面等の熱容量を増加させて省エネルギー化を図るものである。しかし、当該材料は柔軟性や取扱い性に乏しく、使用態様に制限があるものであった。
 一方、上記の熱可塑性樹脂を使用したシートは、熱可塑性樹脂を使用することで柔軟性を有するものであるが、その厚みは100μm程度のものであった。居住空間等において有用な蓄熱性能を実現するためには蓄熱シートの厚膜化が求められるが、当該シートに使用する樹脂組成物では厚膜塗工が困難であった。
 本願発明が解決しようとする課題は、厚膜での塗工が可能で、厚膜塗工した際にもだれが生じにくい蓄熱性組成物を提供することにある。
 さらに、組成物調整時にも混練が容易な蓄熱性組成物を提供することにある。
 本発明は、樹脂と蓄熱材とを含有する蓄熱性組成物であって、円筒形回転粘度計で測定される粘度が100~1000dPa・sであり、動的粘弾性測定法により、温度25℃、ひずみ0.1%にて測定した角周波数1rad/sにおける貯蔵弾性率(G’)が3Pa以上である蓄熱性組成物により上記課題を解決するものである。
 本発明の蓄熱性組成物は、特定の粘度と粘弾性とを有することで、厚膜の塗工が可能で、厚膜塗工した際にもだれが生じにくいため、1mmを越えるような厚膜シートを好適に形成できる。このように、厚膜シートを塗工により簡易かつ連続的に形成できることから、枠形成した中に塗液を充填する方法や、複数層を積層する方法を使用しなくとも厚膜形成が可能なため、好適な蓄熱性能の蓄熱シートを低コストで製造できる。また、過度に高粘度としなくとも好適に厚膜塗工が可能であることから組成物調整時の配合や混練が困難となることが無く、良好に組成物の調整が可能である。
 本発明の蓄熱性組成物によれば、厚膜の柔軟な蓄熱シートを簡易かつ低コストで形成でき、当該蓄熱シートは、住宅等の居住空間の壁材や壁紙、自動車、電車、航空機、農業ハウス等の室内、さらには、冷蔵車や冷蔵設備の冷蔵庫内、航空機の庫内等の閉空間、パソコンのCPUや蓄電池などの熱を発生する電気部品に適用する材料等、省エネルギー化の求められる各種用途に有用に適用できる。
 本発明の蓄熱性組成物は、樹脂と蓄熱材とを含有する蓄熱性組成物であり、円筒形回転年時計で測定される粘度が100~1000dPa・sであり、動的粘弾性測定法により、温度25℃、ひずみ0.1%にて測定した角周波数1rad/sにおける貯蔵弾性率(G’)が3Pa以上である。
[樹脂]
 本発明の蓄熱性組成物に使用する樹脂は、シート形成時のマトリクスを形成する樹脂成分である。当該樹脂としては、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂等の各種樹脂を使用できる。なかでも、塗膜形成が容易であることから熱可塑性樹脂を好ましく使用できる。塩化ビニル系樹脂、アクリル系樹脂、ウレタン系樹脂、オレフィン系樹脂、エチレン酢酸ビニル共重合、スチレン・ブタジエン系樹脂、ポリスチレン系樹脂、ポリブタジエン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂、1,2-ポリブタジエン系樹脂、ポリカーボネート系樹脂、ポリイミド系樹脂等を例示できる。なかでも、低温下での成形性や蓄熱材の分散性を得やすいことから塩化ビニル系樹脂を使用することが好ましい。
 塩化ビニル系樹脂を使用する場合には、塩化ビニル樹脂粒子を使用した蓄熱性組成物を用いて、ゾルキャスト膜を形成することで、低温下での蓄熱シートの形成が可能となるため好ましい。蓄熱性組成物は、塩化ビニル樹脂粒子及び可塑剤を含有する樹脂組成物中に蓄熱材が分散、懸濁されたペースト状の組成物である。
 塩化ビニル樹脂粒子の平均粒子径は、0.01~10μmであることが好ましく、0.1~5μmであることが好ましい。蓄熱性組成物中では、当該粒子が直接分散した状態でも、当該粒子を一次粒子として、球状の二次粒子に凝集した状態で分散した状態であってもよい。また、粒子径の異なる粒子が混合されて、粒度分布のピークが二以上あるものであってもよい。粒子径はレーザー法等により測定できる。
 蓄熱性組成物に使用する塩化ビニル樹脂粒子の形状は、好適な流動性を得やすく、熟成粘度変化が小さいことから、略球形形状であることが好ましい。塩化ビニル樹脂粒子は、乳化重合、懸濁重合により製造されたものが、球形形状を得やすく、また、粒度分布を制御しやすいため好ましい。
 使用する塩化ビニル樹脂の重合度としては、500~4000であることが好ましく、600~2000であることがより好ましい。また、上記範囲とすることで、回転粘度計の粘度や定常せん断粘度を本発明の好適な範囲に調整しやすくなる。
 本発明に使用する塩化ビニル樹脂粒子は、市販されている塩化ビニル樹脂粒子を適宜使用でき、例えば、新第一塩ビ株式会社製ZEST PQ83,PWLT,PQ92,P24Z等や、株式会社カネカ製PSL-675,685等が挙げられる。
 蓄熱シートを形成する樹脂として熱可塑性樹脂を使用する場合には、当該熱可塑性樹脂の含有量は、10~80質量%であることが好ましく、20~70質量%であることがより好ましく、30~60質量%であることがさらに好ましい。当該範囲とすることで、シート中の樹脂マトリクスを好適に形成でき、柔軟性と強靭性とを有するシートを形成しやすくなる。また、上記範囲とすることで、貯蔵弾性率を本発明の範囲に調整しやすくなる。
[可塑剤]
 本発明の蓄熱シートに使用する樹脂として熱可塑性樹脂を使用する場合には、良好な塗工性や成膜性を確保しやすいことから、可塑剤を併用することが好ましい。当該可塑剤としては、エポキシ系可塑剤、メタクリレート系可塑剤、ポリエステル系可塑剤、ポリエーテルエステル系可塑剤、脂肪族ジエステル系可塑剤、トリメリット酸系可塑剤、アジピン酸系可塑剤、安息香酸系可塑剤、フタル酸系可塑剤等を適宜使用できる。また、2種類以上の可塑剤を適宜混合して使用しても良い。住宅等の建築材料用途や自動車用途等へ使用する場合には、人体への悪影響が懸念されるフタル酸系可塑剤以外の非フタル酸系可塑剤を使用することが好ましい。
 これら可塑剤としては、各種市販されている可塑剤を適宜使用でき、例えば、エポキシ系可塑剤としては、DIC社製 モノサイザーW-150;新日本理化社製 サンソサイザー E-PS、E-PO、E-4030、E-6000、E-2000H、E-9000H;ADEKA社製 アデカサイザー O-130P、O-180A、D-32、D-55、花王社製 カポックス S-6等、ポリエステル系可塑剤としては、DIC社製 ポリサイザーW-2050、W-2310、W-230H;ADEKA社製 アデカサイザー PN-7160、PN-160、PN-9302、PN-150、PN-170、PN-230、PN-7230、PN-1010、三菱化学社製 D620、D621、D623、D643、D645、D620N;花王社製 HA-5等、トリメリット酸系可塑剤としては、DIC社製 モノサイザーW-705、ADEKA社製 アデカサイザーC-9N、三菱化学社製 TOTM、TOTM-NB等、安息香酸系可塑剤としては、DIC社製 モノサイザーPB-3A、三菱化学社製 JP120等を例示できる。
 本発明においては、蓄熱材や可塑剤の染み出しを抑制しやすいことから、上記のなかでも特に低温でゲル化できる可塑剤を好ましく使用できる。当該可塑剤としては、ゲル化終了温度が150℃以下であることが好ましく、140℃以下であることがより好ましく、130℃以下であることがさらに好ましく、120℃以下であることがさらに好ましく、110℃以下であることが特に好ましい。ゲル化終了温度は、ゲル化膜の光透過性が一定となる温度をゲル化終了温度とできる。当該低温成形性の良好な可塑剤としては、エポキシ系可塑剤、ポリエステル系可塑剤、安息香酸系可塑剤を例示できる。これら低温成形性の良好な可塑剤は、好適な蓄熱性と共に、樹脂マトリクスの強靭性を特に得やすいため好ましい。また、耐熱性と低温成形性の観点からは、エポキシ系可塑剤及びポリエステル系可塑剤を特に好ましく使用できる。
 ゲル化終点温度は具体的には、ペースト用塩化ビニル樹脂(重合度1700)と上記可塑剤と熱安定剤(Ca-Zn系)を質量比100/80/1.5で混合した組成物をガラスプレートとプレパラート間に挟み込み、5℃/minの昇温速度で昇温し、光透過性の変化を顕微観察用ホットステージ(Metter 800)を用いて観察し、光透過性が一定となる温度をゲル化終点温度とする。
 本発明に使用する可塑剤は、25℃における粘度が1500mPa・s以下であることが好ましく、1000mPa・s以下であることがより好ましく、500mPa・s以下であることがさらに好ましく、300mPa・s以下であることが特に好ましい。当該範囲とすることで、蓄熱性組成物の粘度を低く抑えることができるため、蓄熱材の充填率が高めることができる。また、上記範囲とすることで、回転粘度計の粘度や定常せん断粘度を本発明の好適な範囲に調整しやすくなる。なお、可塑剤粘度測定の条件は後述実施例における条件にて測定できる。
 本発明に使用する可塑剤は、その重量平均分子量が200~3000であることが好ましく、300~1000であることがより好ましい。当該範囲とすることで、可塑剤自身が染み出しにくく、且つ蓄熱性組成物の粘度を低く抑えることができるため、蓄熱材の充填率を高めることができる。また、上記範囲とすることで、回転粘度計の粘度や定常せん断粘度を本発明の好適な範囲に調整しやすくなる。なお、重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(以下、「GPC」と略記する。)測定に基づきポリスチレン換算した値である。なお、GPC測定は以下の条件にて測定できる。
<重量平均分子量の測定条件>
 測定装置:東ソー株式会社製ガードカラム「HLC-8330」
 カラム:東ソー株式会社製「TSK SuperH-H」
    +東ソー株式会社製「TSK gel SuperHZM-M」
    +東ソー株式会社製「TSK gel SuperHZM-M」
    +東ソー株式会社製「TSK gel SuperHZ-2000」
    +東ソー株式会社製「TSK gel SuperHZ-2000」
 検出器:RI(示差屈折計)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.10」
 カラム温度:40℃
 展開溶媒:テトラヒドロフラン(THF)
 流速:0.35mL/分
 試料:樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
 標準試料:前記「GPC-8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
<標準試料:単分散ポリスチレン>
 東ソー株式会社製「A-300」
 東ソー株式会社製「A-500」
 東ソー株式会社製「A-1000」
 東ソー株式会社製「A-2500」
 東ソー株式会社製「A-5000」
 東ソー株式会社製「F-1」
 東ソー株式会社製「F-2」
 東ソー株式会社製「F-4」
 東ソー株式会社製「F-10」
 東ソー株式会社製「F-20」
 東ソー株式会社製「F-40」
 東ソー株式会社製「F-80」
 東ソー株式会社製「F-128」
 東ソー株式会社製「F-288」
 また、本発明に使用する蓄熱材が、樹脂外殻中に蓄熱材料を含有するマイクロカプセル状の蓄熱材である場合には、これら可塑剤の中でも、使用する蓄熱材とのHSP距離が6以上の可塑剤を使用することが好ましい。当該可塑剤を使用することで、高温下での蓄熱シートからの脱離成分の脱離を抑制でき、高温下でも体積収縮が生じにくい好適な耐熱性を実現しやすくなる。蓄熱材を含有しない、一般的な熱可塑性樹脂と可塑剤とを含有する樹脂組成物からなる成形品においては、高温下でも大きな体積収縮は生じにくい。しかし、蓄熱材を含有する蓄熱シートにおいては、高温下で大きく体積収縮を生じる場合がある。本発明においては、蓄熱材と可塑剤とのHSP距離を上記範囲とすることで、高温下で多量の脱離成分を生じる要因となる可塑剤の蓄熱材への取り込みを抑制し、高温下での体積収縮を抑制しやすくなり、好適な耐熱性を実現しやすくなる。当該HSP距離は好適な耐熱性を得やすいことから、7以上であることが好ましく、8以上であることがより好ましい。また、一般的に可塑剤として使用されるものであれば特に上限は制限されないが、好適な相溶性や成形性を得やすいことから40以下であることが好ましく、30以下であることがより好ましく、25以下であることが更に好ましい。
 HSP距離とは、ハンセン溶解度パラメータ(HSP)を用いた物質間の溶解性を表す指標である。ハンセン溶解度パラメータは、溶解性を多次元(典型的には三次元)のベクトルで表すものであり、当該ベクトルは、分散項、極性項、水素結合項で表すことができる。そして、当該ベクトルの類似度を、ハンセン溶解度パラメータの距離(HSP距離)として表すものである。
 ハンセン溶解度パラメータは、各種文献において参考となる数値が提示されており、例えば、Hansen Solubility Parameters:A User’s Handbook(Charles Hansen等、2007、第2版)等が挙げられる。また、市販のソフトウェア、例えば、Hansen Solubility Parameter in Practice (HSPiP)を用いて、物質の化学構造に基づいてハンセン溶解度パラメータを算出することもできる。算出は、溶媒温度を25℃として行う。
 可塑剤と蓄熱材の好ましい組み合わせとしては、例えば、アクリル系の外殻を有する蓄熱材を使用する場合には、エポキシ系可塑剤、ポリエステル系可塑剤、トリメリット酸系可塑剤等を好ましく使用できる。また、メラミン系の外殻を有する蓄熱材を使用する場合には、エポキシ系可塑剤、ポリエステル系可塑剤、トリメリット酸系可塑剤、安息香酸系可塑剤等を好ましく使用できる。特にエポキシ系可塑剤は、耐熱性等の各種特性を好適に得やすいため好ましい。
 また、本発明においては、成形体の樹脂マトリクスを好適に構成しやすいことから、使用する熱可塑性樹脂と可塑剤とのHSP距離が15以下であることが好ましく、12以下であることがより好ましい。また下限は特に制限されないが1以上であることが好ましく、2以上であることがより好ましく、3以上であることがさらに好ましい。
 また、樹脂外殻中に蓄熱材料を含有するマイクロカプセル状の蓄熱材を使用する場合には、使用する蓄熱材に対して可塑剤を混合した際のJIS K5101-13-1に準じて測定される蓄熱材100質量部に対する可塑剤の吸収量が150質量部以下の可塑剤を好ましく使用できる。当該可塑剤を使用することで、高温下での蓄熱シートからの脱離成分の脱離を抑制でき、高温下でも体積収縮が生じにくい好適な耐熱性を実現できる。当該吸収量は好適な耐熱性を得やすいことから、140質量部以下であることが好ましく、135質量部以下であることがより好ましく、130質量部以下であることがさらに好ましい。また、一般的に可塑剤として使用されるものであれば特に下限は制限されないが、好適な相溶性や成形性を得やすいことから5質量%以上であることが好ましく、10質量%以上であることがより好ましい。また、上記範囲とすることで、組成物の貯蔵弾性率を本発明の好適な範囲に調整しやすくなる。
 可塑剤の吸収量は、JIS K5101-13-1の吸油量の測定方法に準じて測定される。具体的には、予想される吸収量に応じて1~20gを秤量した蓄熱材を試料としてガラス板上に設置し、可塑剤をビュレットから一回に4~5滴ずつ徐々に加える。その都度、鋼製のパレットナイフで試料に練り込む。これを繰り返し、可塑剤及び試料の塊ができるまで滴下を続ける。以後、1滴ずつ滴下し完全に混練するようにして繰り返し、ペーストが滑らかな硬さになったところを終点とし、当該吸収量を可塑剤の吸収量とする。なお、ペーストは割れたりぼろぼろになったりせず広げることができ、かつ、測定板に軽く付着する程度のものとする。
 蓄熱シート中の可塑剤の含有量は、5~75質量%であることが好ましく、10~70質量%であることがより好ましく、20~60質量%であることがさらに好ましく、20~40質量%であることが特に好ましい。当該範囲とすることで、良好な塗工適性や成形性を得やすくなる。また、熱可塑性樹脂に対する可塑剤の含有比率は、組成物の粘度を本願発明の範囲に調整しやすいことから、熱可塑性樹脂100質量部に対して可塑剤が30~150質量部であることが好ましく、40~130質量部であることがより好ましく、50~120質量部であることがさらに好ましい。
[蓄熱材]
 蓄熱材としては、蓄熱性を有するものであれば特に制限されず、潜熱型の蓄熱性材料、顕熱型の蓄熱性材料、化学反応にともなう吸熱や発熱を利用した化学反応型の蓄熱性材料を使用できる。なかでも、潜熱型の蓄熱性材料は、小さい体積で多くのエネルギーを確保しやすく、吸放熱温度を調整しやすいため好ましい。
 潜熱型の蓄熱性材料(潜熱蓄熱材)としては、相変化による溶融時の染み出し等の問題や、混入時の分散性を考慮して、有機材料等からなる外殻中にパラフィンなどの潜熱蓄熱材料を内包した、カプセル化された蓄熱粒子が好ましい。本発明においてこのような外殻を有する蓄熱粒子を使用する場合には、当該蓄熱粒子の外殻に使用する材料のHSPに基づき、上記HSP距離を算出する。本発明の蓄熱シートは、有機材料からなる外殻中にパラフィン等の潜熱蓄熱材料を含有する蓄熱材を使用した場合にも可塑剤による外殻の脆化が生じにくく、蓄熱材の破損が生じにくい。
 このような蓄熱粒子としては、例えば、メラミン樹脂からなる外殻を用いたものとして、三菱製紙社製サーモメモリーFP-16,FP-25,FP-27,FP-31,FP-39、三木理研工業社製リケンレジンPMCD-15SP,25SP,32SP等が例示できる。また、シリカからなる外殻を用いたものとして、三木理研工業社製リケンレジンLA-15,LA-25,LA-32等、ポリメチルメタクリレート樹脂からなる外殻を用いたものとして、BASF社製MicronalDS5001X,5040X等が例示できる。
 蓄熱粒子の粒径は、10~1000μm程度であることが好ましく、50~500μmであることがより好ましい。蓄熱粒子の粒子径は、その一次粒子の粒子径が上記範囲であることも好ましいが、一次粒子径が1~50μm、好ましくは2~10μmの粒子が凝集して二次粒子を形成し、当該二次粒子の粒径が上記範囲となった蓄熱粒子であることも好ましい。当該蓄熱粒子を使用することで、貯蔵弾性率を本発明の範囲に調整しやすくなり、特に、二次粒子径を500μm以下とすることが好ましく、300μm以下とすることがより好ましく、100μm以下とすることが特に好ましい。
 このような蓄熱粒子は、圧力やシェアにより破損しやすいが、本発明の構成によれば、当該蓄熱粒子の破損を好適に抑制でき、蓄熱材料の染み出しや漏れが生じにくくなる。特に、外殻が有機材料から形成される場合には温度による破損のおそれも生じるが、本発明の蓄熱シートは、このような潜熱蓄熱材を使用した場合にも蓄熱材料の染み出しや漏れを好適に抑制しやすい。なお、蓄熱シート中に使用する全蓄熱粒子の粒子径が上記範囲でなくともよく、蓄熱シート中の蓄熱粒子の80質量%以上が上記範囲の蓄熱粒子であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることが特に好ましい。
 潜熱蓄熱材は、特定の温度の融点において相変化する。すなわち、室温が融点を超えた場合は、固体から液体へ相変化し、室温が融点より下がった場合は、液体から固体へ相変化する。潜熱蓄熱材の融点は、その使用態様に応じて調整すればよく、-20℃~120℃程度の温度範囲にて固/液相転移を示すものを適宜使用できる。例えば、住宅等の居住空間や、自動車、電車、航空機、農業ハウス等の室内等の適温を維持し、省エネルギー化を図る場合には、この融点を日常生活に適した温度、具体的には10~35℃、好ましくは15~30℃に設計した潜熱蓄熱材を混入する事により、適温維持性能を発揮する事ができる。より詳細に冬季又は夏季の適温維持性能を調整する場合には、冬場の暖房効果を持続させる事を目的とすれば18~28℃程度を融点とした潜熱蓄熱材を混入することが好ましく、より好ましくは18~23℃程度である。もしくは、夏場の温度上昇を抑制させる事を目的とすれば20~30℃程度を融点とした潜熱蓄熱材を混入する事が好ましく、より好ましくは25~30℃程度である。両方の効果を発現するには融点設計の異なる2種類以上の潜熱蓄熱材を混入すればよい。また、冷蔵設備等の庫内の省エネルギー化を図る場合には、-10℃~5℃程度の融点の潜熱蓄熱材を使用すればよい。
 本発明に使用する蓄熱材は、その含水率が3質量%以下であることが好ましく、2.0質量%以下であることがより好ましく、1.5質量%以下であることがさらに好ましく、1.2質量%以下であることが特に好ましい。蓄熱性組成物を調整する際の蓄熱材の含水率を当該範囲とすることで、得られる蓄熱シートの微細な膨れや凹み等を抑制しやすくなり、好適な外観の蓄熱シートを得やすくなる。
 蓄熱シート中の蓄熱材の含有量は10~80質量%であることが好ましく、20~70質量%であることがより好ましく、30~60質量%であることがさらに好ましい。当該範囲とすることで、良好な蓄熱効果や成形性が得られやすくなる。また、蓄熱材の含有量を10質量%以上とすることで、組成物粘度及び貯蔵弾性率を本願発明の範囲に調整しやすくなる。
[蓄熱性組成物]
 本発明の蓄熱性組成物は、円筒形回転粘度計(ビスコテスター)にて測定される粘度が100dPa・s以上1000dPa・s以下の蓄熱性組成物である。当該粘度とすることで、好適に厚膜形成が可能となり、また厚膜塗工時の形状保持性も良好となる。当該粘度は、120dPa・s以上であることが好ましく、150dPa・s以上であることがより好ましい。また、粘度の上限は800dPa・s以下がより好ましく、600dPa・s以下がさらに好ましく、500dPa・s以下が特に好ましい。
 当該粘度の測定は、以下の条件にて測定できる。
 測定装置:ビスコテスターVT-04(リオン株式会社製)
 測定条件:温度25℃、No.2ローター(62.5rpm)
 また、本発明においては、せん断速度10[1/s]における定常せん断粘度が50Pa・s以下であることが好ましく、30Pa・s以下とすることがより好ましい。定常せん断粘度を当該範囲とすることで、塗工時の蓄熱性組成物の好適な流動性を得やすく、塗工適性を向上させやすくなる。
 定常せん断粘度は、JIS K 7117-2に準拠して、温度25℃の条件下にて、せん断速度範囲0.1~700[1/s]にて測定される定常せん断粘度である。具体的には、アントンパール社製回転型レオメータMCR102により、パラレルプレートPP50(直径50mm)を用いて測定される。
 測定に用いる試料は、ホモディスパーを用いて約500rpm/2分間撹拌して均一分散したものを測定試料とする。また、測定する組成物は、約2g程度をレオメータの試料台に乗せ測定用パラレルプレートを下げてギャップ約1.1~1.3mmで挟んだ状態として、本測定前の状態を同一とするために、予めプリシェアを与えてから本測定を行うことも好ましい。プリシェアの条件は、例えば、シェアレート10[1/s]、印加時間60[sec]である。
 本発明の蓄熱性組成物は、温度25℃、ひずみ0.1%にて動的粘弾性測定により測定される1[rad/s]の貯蔵弾性率(G’)を、3Pa以上の蓄熱性組成物である。貯蔵弾性率(G’)を当該範囲とすることで、厚膜塗工時のだれを好適に抑制でき、良好な厚膜塗膜の形成が可能となる。貯蔵弾性率(G’)は、5Pa以上であることが好ましく、8Pa以上であることがより好ましい。上限は特に制限されるものではないが200Pa以下であることが好ましく、150Pa以下であることがより好ましい。
 また、上記にて測定される1[rad/s]の損失弾性率(G”)が、10Pa以上であることが好ましい。また上限としては200Pa以下であることが好ましく、150Pa以下であることがより好ましい。当該範囲とすることで、厚膜塗工時に好適な形状保持性や、塗工適性を得やすくなる。
 本発明の蓄熱性組成物は、動的粘弾性測定により測定される角周波数1[rad/s]の損失正接(tanδ)を3以下とすることで、厚膜塗工時にも良好な形状保持性を実現でき、好適にだれを抑制できることから、塗工により容易に厚膜のシートを形成できる。当該損失正接は2以下とすることがより好ましく、1.5以下とすることが更に好ましい。また、0.3以上とすることが好ましく、0.5以上とすることがより好ましい。
 動的粘弾性は、JIS K 7244-10 に準拠して、温度25℃の条件下にてひずみ0.1%にて、0.3~100rad/sの角周波数にて測定される動的粘弾性である。具体的には、アントンパール社製回転型レオメータMCR102により、パラレルプレートPP50(直径50mm)を用いて測定される。
 測定に用いる試料は、ホモディスパーを用いて約500rpm/2分間撹拌して均一分散したものを測定試料とする。また、測定する組成物は、配合成分を混合して1時間静置したのち、約2g程度をレオメータの試料台に乗せ測定用パラレルプレートを下げてギャップ約1.1~1.3mmで挟んだ状態として、本測定前の状態を同一とするために、予めプリシェアを与えてから本測定を行うことも好ましい。プリシェアの条件は、例えば、シェアレート10[1/s]、印加時間60[sec]である。
 本発明の蓄熱性組成物は、上記した樹脂成分や蓄熱材を配合して調整される。例えば、熱可塑性樹脂として塩化ビニル樹脂を使用する場合には、塩化ビニル樹脂粒子を使用したビニルゾル塗工液を蓄熱性組成物として、ゾルキャストにより蓄熱層を形成する方法が好ましい。当該製造方法とすることで、ミキサー等による混練や押出成形等を経ることなく成形が可能となり、蓄熱材の破壊が生じにくく、得られる蓄熱シートからの蓄熱材の染み出し等が生じにくい。また、当該方法によれば、低温下での成形が容易となることから、熱による蓄熱材の破壊を抑制しやすいため当該方法が特に好ましく使用できる。
 塩化ビニル樹脂を使用したビニルゾル塗工液を蓄熱性組成物とする場合には、塩化ビニル樹脂の含有量が、蓄熱性組成物に含まれる固形分(溶媒以外の成分)中の10~80質量%であることが好ましく、20~70質量%であることがより好ましく、30~60質量%であることがさらに好ましい。また、可塑剤の含有量は、組成物中に含まれる熱可塑性樹脂100質量部に対して、30~150質量部であることが好ましく、30~120質量部であることがより好ましく、40~100質量部であることがさらに好ましい。さらに、当該組成物中に混合する蓄熱材の含有量は、組成物に含まれる固形分中の10~80質量%であることが好ましく、20~70質量%であることがより好ましく、30~60質量%であることがさらに好ましい。
 蓄熱性組成物中には、適宜溶媒を使用することもできる。当該溶媒としては、塩化ビニル樹脂のゾルキャスト法にて使用される溶媒を適宜使用でき、なかでも、ジイソブチルケトン、メチルイソブチルケトンなどのケトン類、酢酸ブチルなどのエステル類、グリコールエーテル類等を好ましく例示できる。これら溶媒は、常温で樹脂をわずかに膨潤して分散を助長しやすく、また、加熱工程で溶融ゲル化を促進しやすいため好ましい。これらの溶媒は単独で用いてもよく、2種以上を混合して用いてもよい。
 また、上記溶媒と共に希釈溶媒を使用してもよい。希釈溶媒としては、樹脂を溶解せず、分散溶媒の膨潤性を抑制する溶媒を好ましく使用できる。このような希釈溶媒としては、例えば、パラフィン系炭化水素、ナフテン系炭化水素、芳香族炭化水素、テルペン系炭化水素などを使用できる。
 蓄熱性組成物には、塩化ビニル樹脂の脱塩化水素反応を主とする分解劣化、着色を抑制するために熱安定剤を使用することも好ましい。熱安定剤としては、例えば、カルシウム/亜鉛系安定剤、オクチル錫系安定剤、バリウム/亜鉛系安定剤等を使用できる。熱安定剤の含有量は、塩化ビニル樹脂100質量部に対して、0.5~10質量部が好ましい。
 蓄熱性組成物には、上記以外の成分として、減粘剤、分散剤、消泡剤等の添加剤を、必要に応じて適宜含有してもよい。これら添加剤の含有量は、各々、塩化ビニル樹脂100質量部に対して、0.5~10質量部が好ましい。
 上記塩化ビニル樹脂粒子及び蓄熱材を含有する蓄熱性組成物のゾルキャスト膜からなる蓄熱シートは、製造時に蓄熱材にシェアや圧力がかからないため蓄熱材の破壊が生じにくいことから、樹脂系の材料を使用しながらも蓄熱材の染み出しが生じにくい。また、当該蓄熱材による蓄熱性を有すると共に、良好な柔軟性を実現できる。さらに、容易に他の層との積層や加工も可能であることから各種用途や態様での使用が可能である。
[蓄熱シート]
 本発明の蓄熱性組成物は、塗布、あるいは任意の形状の型枠へ投入した後、加熱や乾燥させることで蓄熱シートを形成できる。好ましい製造例としては、樹脂と蓄熱材とを含有する樹脂組成物を調整し、支持体上に当該組成物を塗布して塗工膜を形成した後、塗工膜温度が150℃以下となる温度で加熱して蓄熱シートを形成する方法である。
 使用する支持体は、蓄熱シートを剥離して流通、使用等する場合には、得られる蓄熱シートを剥離可能で、加熱工程の温度での耐熱性を有するものを適宜使用できる。また、蓄熱シートを他の機能層や基材と積層して使用する場合には、当該他の機能層や基材を支持体としてもよい。
 蓄熱シートを剥離する場合の支持体としては、例えば、各種の工程フィルムとして使用される樹脂フィルムを好ましく使用できる。当該樹脂フィルムとしては、例えば、ポリエチレンテレフタレート樹脂フィルム、ポリブチレンテレフタレート樹脂フィルム等のポリエステル樹脂フィルムなどが挙げられる。樹脂フィルムの厚みは特に制限されないが、25~100μm程度のものが取扱いや入手が容易である。
 支持体として使用する樹脂フィルムは、表面が剥離処理されているものを好ましく使用できる。剥離処理に用いられる剥離処理剤としては、例えば、アルキッド系樹脂、ウレタン系樹脂、オレフィン系樹脂、シリコーン系樹脂などが挙げられる。
 蓄熱性組成物を塗布するキャスト成膜の方法としては、ロールナイフコーター、リバースロールコーター、コンマコーターなどの塗工機を使用できる。なかでも、支持体上に蓄熱性樹脂組成物を送り出し、ドクターナイフ等により、一定の厚みの塗工膜を形成する方法を好ましく使用できる。
 また、得られた塗工膜は加熱や乾燥によるゲル化や硬化によりシートを形成できる。加熱温度は、塗工膜温度が150℃以下となる温度が好ましく、140℃以下となる温度がより好ましく、130℃以下となる温度がさらに好ましく、120℃以下となる温度がさらに好ましい。塗工膜温度を当該温度とすることにより、蓄熱材の熱による破壊を好適に抑制できる。加熱時間は、ゲル化速度等に応じて適宜調整すればよいが、10秒~10分程度で調整すればよい。また、当該加熱と共に、適宜風乾等の乾燥を併用してもよい。
 蓄熱性組成物に溶媒を使用する場合には、上記加熱工程において溶媒の除去を同時に行ってもよいが、上記加熱の前に、予備乾燥を行うことも好ましい。
 上記にて形成された蓄熱シートは、蓄熱シートを支持体から剥離する工程により、蓄熱シートとして使用できる。当該剥離は、適宜好適な手法で剥離すればよい。また、各種加工や積層を行うにあたり、支持体上に積層した状態が好ましい場合には、支持体上に積層した状態で流通することもできる。
 蓄熱シートの厚みは、使用態様に応じて適宜調整すればよい。例えば、閉空間の壁面等へ適用する場合には、好適な蓄熱効果を得やすいことから100μm以上が好ましく、500μm以上がより好ましく、1mm以上がさらに好ましく、3mm以上が特に好ましい。厚みの上限は特に制限されるものではないが、シート状の有機系蓄熱層を形成した後に、上記無機系基材に貼り合わせる場合等、有機系蓄熱層を単独で取扱う場合には、好適な柔軟性や取扱い性を得やすいことから20mm以下で成形することが好ましく、10mm以下がより好ましく、6mm以下がさらに好ましい。本発明の蓄熱シートは、例えば500μm以上、さらには1mm以上のような厚みが厚いシートとした際にも、加工時や搬送時に割れや欠けが生じにくく、優れた加工性や取扱い性を実現できる。
[蓄熱積層体]
 本発明の蓄熱シートは、各種の機能層と積層することで蓄熱積層体とすることも好ましい。例えば、不燃紙や不燃基材等の不燃層と積層することで難燃性を向上させることができ、居住空間への適用に特に好適である。また、例えば、熱拡散層や断熱層と積層することで、蓄熱性をより効果的に発現することもできる。また、居住空間の内壁等へ適用するために、化粧層や装飾層を設けることもできる。
 不燃層としては、各種の不燃基材を使用でき、当該不燃基材と積層することで準不燃性や不燃性を付与することもできる。当該不燃基材としては、石膏ボード、ケイ酸カルシウム板、フレキ板、セメント板、および、これらの繊維補強版等の無機系基材を例示できる。
 また、不燃層としては、不燃紙を使用することもでき、本発明の蓄熱シートの片面又は両面に不燃紙を積層した構成を例示できる。片面に不燃紙を積層した構成としては、本発明の蓄熱シートを不燃紙に貼り合せた構成であってもよいが、不燃紙上に直接本発明の蓄熱シートを形成する組成物を塗布、ゲル化した構成とすると形成が容易であるため好ましい。また、両面に不燃紙を有する構成としては、本発明の蓄熱シートの両面に不燃紙を貼り合せた構成であってもよいが、不燃紙上に蓄熱性組成物を塗布、ゲル化した不燃紙積層蓄熱シートの蓄熱シート面同士を貼り合せることで容易に形成できる。また、これら片面や両面に不燃紙を積層した構成等に、さらに上記の不燃基材を積層した構成も好ましく使用できる。
 当該不燃紙としては、不燃性を有するものであれば特に限定しないが、例えば、紙に難燃剤を塗布、含浸、内添しているものを使用できる。難燃剤としては、水酸化マグネシウム、水酸化アルミニウム等の金属水酸化物、リン酸塩、ホウ酸塩、ステファミン酸塩等の塩基性化合物、ガラス繊維等が例示できる。
 熱拡散層を積層した構成として室内等の閉空間に適用した場合には、熱拡散層で室内の熱を均一化する効果を持たせるとともに、室内(住宅等の居住空間や、自動車、電車、航空機等の室内、冷蔵車の冷蔵庫内、航空機の庫内等の閉空間等)からの熱を分散して熱抵抗が少なく蓄熱層へ伝える事ができる。蓄熱層では蓄熱粒子により室内の熱吸収及び室内への熱放出がなされ、室内の温度環境下を適温に制御できる。
 熱拡散層としては、熱伝導率が5~400W/m・Kの高い熱伝導率を有する層を好ましく使用できる。高い熱伝導率により、局所に集中した熱を拡散して蓄熱層へ伝えて熱効率を向上し、かつ室温を均一化できる。
 熱拡散層の材料としては、例えば、アルミニウム、銅、鉄、グラファイトなどが挙げられる。本発明では、特にアルミニウムを好適に用いることができる。アルミニウムが好適な理由として、放射熱の反射による断熱効果も発現することが挙げられる。特に、放射熱による暖房器具では、断熱効果により暖房効率を向上する事ができる。放射熱を主とした暖房器具としては、例えば、電気式床暖房、温水式床暖房、赤外線ヒーターなどが挙げられる。また、防災の視点からも難燃性能を向上させる事ができる。
 熱拡散層の形態としては、上記材料のシートからなる層や、上記材料の蒸着層等の適宜な形態を使用できる。材料としてアルミニウムを使用する場合には、たとえば、アルミ箔、アルミ蒸着層などの湾曲性があるものを好ましく使用できる。
 熱拡散層の層厚は、特に限定されないが、3~500μm程度とすることで、好適な熱拡散性や取扱い性を確保しやすくなるため好ましい。
 また、蓄熱層に断熱層を積層した構成とした場合には、蓄熱層の熱吸収及び熱放出が室内側と効果的になされ、室内の適温維持効果を特に好適に発揮することができる。また、室内の熱の流出を防ぐ、もしくは、外気からの熱の影響の軽減にも有効である。本発明の蓄熱積層体は、これら複合作用により、室内の温度変化を抑制し、室内を適温に保つ事ができる。また、エアコンや冷蔵設備等の空調機器を使用した場合に、その消費エネルギーを低減することもできる。これにより、好適に室内の省エネルギー化に貢献できる。
 断熱層としては、熱伝導率が0.1W/m・K未満の層を好ましく使用できる。当該断熱層は、蓄熱層から外気への熱の流出を防ぎ、かつ、外気の温度影響を低減させる効果を発揮するものである。断熱層は、熱伝導率が0.1W/m・K未満の層を形成できるものであれば特に限定されず、例えば、発泡樹脂シート、断熱材料を含有する樹脂シート等の断熱シートや、押出し法ポリスチレン、ビーズ法ポリスチレン、ポリエチレンフォーム、ウレタンフォーム、フェノールフォーム等の断熱ボード等を適宜使用できる。なかでも、断熱シートは施工性を確保しやすいため好ましく、断熱材料を含有した樹脂シートである事が熱伝導率を低減できるためより好ましい。また、発泡シートは入手が容易であり、安価であるため好ましい。
 断熱層はシート状とすることで施工性を確保しやすくなるが、なかでも、円筒形マンドレル屈曲試験機(JIS K 5600)による測定値が、マンドレル直径で2~32mmであることが好ましい。
 断熱層に使用する断熱材料は、蓄熱積層体の断熱性を高めるものであり、例えば、多孔質シリカ、多孔質アクリル、中空ガラスビーズ、真空ビーズ、中空ファイバーなどが挙げられる。この断熱材料5は、公知のものを用いればよい。本発明では、特に、多孔質アクリルを好適として用いる事ができる。断熱材料の粒径は、限定される事はないが、1~300μm程度である事が好ましい。
 断熱層として断熱材料を含有する樹脂シートを使用する場合には、断熱材料を、ベースとなる樹脂材料に混入してシート成形を行う。樹脂材料としては、前述と同様に、例えば、ポリ塩化ビニル、ポリフェニレンサルファイド、ポリプロピレン、ポリエチレン、ポリエステル、又はアクリロニトリル-ブタジエン-スチレン樹脂などが挙げられる。ポリエステルとしては、A-PET、PET-G等を使用できる。なかでも、火災時の低燃焼性の面から、自己消化性である塩化ビニル樹脂を好適に用いる事ができる。
 シートの成形方法としては、例えば、塩化ビニル樹脂と可塑剤と断熱材料を、押出し成形、カレンダー成形などの成形機を用いてシートの成形を行う。
 断熱層中の断熱材料の含有量は、断熱層中の20質量%以上であることが好ましく、20~80質量%であることがより好ましく、30~80質量%であることが更に好ましく、40~80質量%であることが特に好ましい。断熱材の含有量を当該範囲とすることで、好適に断熱効果を発揮でき、また、断熱層を形成しやすくなる。
 断熱層中には、必要に応じて、可塑剤、難燃材等の添加剤を配合してもよい。
 断熱層の層厚は、特に限定されないが、厚みが増す程室内の保温性が上がる。シートとしての湾曲性や施工性を保有する為には、50~3000μm程度である事が好ましい。
 本発明の蓄熱性組成物からなる蓄熱シートは、主に建築物の内壁、天井、床などにおける内装材用途として好適に用いられるが、窓のサッシ枠の被服材や、車両等の内装材としても適用可能である。また、建築物の壁、床、天井に限らず、自動車、電車、飛行機などの室内に使用する事も可能である。また、冷蔵設備の低温保持材料や、パソコンのCPUや蓄電池など熱を発生する電気部品の低温維持材料としても使用することも可能である。また、面状発熱体等のヒーターを併用して、蓄熱による省エネルギー効果を発現しても良い。
(実施例1)
 重合度900のポリ塩化ビニル樹脂粒子(新第一塩ビ社製 ZEST PQ92)100質量部、エポキシ系可塑剤(DIC社製 モノサイザーW-150:粘度85mPa・s、ゲル化終点温度121℃)62質量部、熱安定剤(昭和ワニス社製 グレックML-610A)3質量部、その他添加剤として減粘剤(BYK社製 減粘剤VISCOBYK-5125)6質量部及び分散剤(BYK社製 Disperplast-1150)6質量部と、パラフィンをメラミン樹脂からなる外殻を用いてマイクロカプセル化した潜熱蓄熱材(三菱製紙社製 サーモメモリー FP-27:平均粒子径50μm、融点27℃、含水率0.9質量%)90質量部を配合し、蓄熱性組成物を作製した。なお、使用した可塑剤と潜熱蓄熱材とのHSP距離の計算値は22.30、可塑剤と塩化ビニル樹脂とのHSP距離の計算値は4.6、使用した潜熱蓄熱材100質量部に対する可塑剤の吸収量は81質量部であった。
(実施例2)
 実施例1にて使用した潜熱蓄熱材の配合量を110質量部とした以外は実施例1と同様にして、蓄熱性組成物を作製した。
(実施例3)
 実施例1にて使用したエポキシ系可塑剤に代えて、ポリエステル系可塑剤(DIC社製 ポリサイザーW-230H:粘度220mPa・s、ゲル化終点温度136℃)を使用した以外は実施例1と同様にして蓄熱性組成物を作製した。なお、使用した可塑剤と潜熱蓄熱材とのHSP距離の計算値は23.20、可塑剤と塩化ビニル樹脂とのHSP距離の計算値は6.4、使用した潜熱蓄熱材100質量部に対する可塑剤の吸収量は72質量部であった。
(実施例4)
 実施例3にて使用した潜熱蓄熱材の配合量を60質量部とした以外は実施例3と同様にして、蓄熱性組成物を作製した。
(実施例5)
 実施例1にて使用したポリ塩化ビニル樹脂粒子の配合量を60質量部とした以外は実施例1と同様にして、蓄熱性組成物を作製した。
(実施例6)
 実施例1にて使用した重合度900のポリ塩化ビニル樹脂粒子に代えて、重合度1800のポリ塩化ビニル樹脂粒子(新第一塩ビ社製 ZEST PQHT)を使用し、実施例1にて使用した潜熱蓄熱材の配合量を80質量部とした以外は実施例1と同様にして、蓄熱性組成物を作製した。
(実施例7)
 実施例1にて使用した潜熱蓄熱材90質量部に代えて、パラフィンをポリメチルメタクリレート(PMMA)樹脂からなる外殻を用いてマイクロカプセル化した潜熱蓄熱材(BASF社製 Micronal DS5001X:粒子径100~300μm、融点26℃、含水率0.8質量%)82質量部を使用した以外は実施例1と同様にして蓄熱性組成物を作製した。なお、使用した可塑剤と潜熱蓄熱材とのHSP距離の計算値は8.88、可塑剤と塩化ビニル樹脂とのHSP距離の計算値は4.6、潜熱蓄熱材100質量部に対する可塑剤の吸収量は129質量部であった。
(実施例8)
 重合度900のポリ塩化ビニル樹脂粒子(新第一塩ビ社製 ZEST PQ92)100質量部、エポキシ系可塑剤(DIC社製 モノサイザーW-150:粘度85mPa・s、ゲル化終点温度121℃)105質量部、熱安定剤(昭和ワニス社製 グレックML-610A)3質量部、その他添加剤として減粘剤(BYK社製 減粘剤VISCOBYK-5125)12質量部及び分散剤(BYK社製 Disperplast-1150)12質量部と、パラフィンをメラミン樹脂からなる外殻を用いてマイクロカプセル化した潜熱蓄熱材(三菱製紙社製 サーモメモリー FP-27:平均粒子径50μm、融点27℃、含水率0.9質量%)160質量部を配合し、蓄熱性組成物を作製した。
(実施例9)
 重合度900のポリ塩化ビニル樹脂粒子(新第一塩ビ社製 ZEST PQ92)100質量部、エポキシ系可塑剤(DIC社製 モノサイザーW-150:粘度85mPa・s、ゲル化終点温度121℃)50質量部、熱安定剤(昭和ワニス社製 グレックML-610A)3質量部と、パラフィンをメラミン樹脂からなる外殻を用いてマイクロカプセル化した潜熱蓄熱材(三菱製紙社製 サーモメモリー FP-27:平均粒子径50μm、融点27℃、含水率0.9質量%)25質量部を配合し、蓄熱性組成物を作製した。
(実施例10)
 実施例7にて使用した潜熱蓄熱材の配合量を68質量部とした以外は実施例7と同様にして、蓄熱性組成物を作製した。
(実施例11)
 実施例1にて使用したポリ塩化ビニル樹脂粒子の配合量を60質量部とし、潜熱蓄熱材の配合量を100質量部とした以外は実施例1と同様にして、蓄熱性組成物を作製した。
(実施例12)
 実施例11にて使用した潜熱蓄熱材の配合量を130質量部とした以外は実施例11と同様にして、蓄熱性組成物を作製した。
(実施例13)
 実施例1にて使用したエポキシ系可塑剤に代えて、安息香酸系可塑剤(DIC社製 モノサイザーPB-10:粘度80mPa・s、ゲル化終点温度100℃以下)を使用した以外は実施例1と同様にして蓄熱性組成物を作製した。なお、使用した可塑剤と潜熱蓄熱材とのHSP距離の計算値は17.10、可塑剤と塩化ビニル樹脂とのHSP距離の計算値は1.4、使用した潜熱蓄熱材100質量部に対する可塑剤の吸収量は96質量部であった。
(比較例1)
 実施例1にて使用した潜熱蓄熱材の配合量を150質量部とした以外は実施例1と同様にして、蓄熱性組成物を作製した。
(比較例2)
 実施例1にて使用した潜熱蓄熱材の配合量を50質量部とした以外は実施例1と同様にして、蓄熱性組成物を作製した。
(比較例3)
 実施例1にて使用したエポキシ系可塑剤に代えて、安息香酸系可塑剤(DIC社製 W-83:粘度220mPa・s、ゲル化終点温度136℃)を使用し、実施例1にて使用した潜熱蓄熱材の配合量を30質量部とした以外は実施例1と同様にして蓄熱性組成物を作製した。なお、使用した可塑剤と潜熱蓄熱材とのHSP距離の計算値は18.90、可塑剤と塩化ビニル樹脂とのHSP距離の計算値は1.7、使用した潜熱蓄熱材100質量部に対する可塑剤の吸収量は90質量部であった。
 上記実施例及び比較例にて得られた蓄熱性組成物等の評価方法は下記のとおりである。
<可塑剤粘度の測定条件>
 測定装置:B型粘度計(東京計器株式会社製「DVM-B型」)
 測定条件:温度25℃、No.2ロータ、30rpm
<可塑剤吸収量>
 蓄熱材への可塑剤の吸収量を、JIS K5101-13-1に準じて以下の方法にて測定した。蓄熱材1g(実施例5においては2g)を秤量した試料をガラス板上に設置し、可塑剤をビュレットから一回に4~5滴ずつ徐々に加え、鋼製のパレットナイフで試料に練り込んだ。これを繰り返し、可塑剤及び試料の塊ができるまで滴下を続けた。以後、1滴ずつ滴下して完全に混練するようにして繰り返し、ペーストが滑らかな硬さになったところを終点とし、当該吸収量を可塑剤の吸収量とした。
<蓄熱性組成物粘度の測定条件>
(円筒形回転粘度計)
 実施例、比較例で得られた蓄熱性組成物の各構成材料を総量で300gになるように混ぜ合わせ、ホモディスパーを用いて約500rpm/2分間撹拌して均一分散したものを測定試料とした。当該測定試料を液温25℃に調整し、円筒形回転粘度計にて粘度を測定した。
 測定装置:ビスコテスターVT-04(リオン株式会社製)
 測定条件:温度25℃、No.2ローター(62.5rpm)
<定常せん断粘度>
 実施例及び比較例にて得られた蓄熱性組成物の定常せん断粘度を、JIS K 7117-2に準拠して、温度25℃の条件下にて、せん断速度範囲0.1~700[1/s]にて、アントンパール社製回転型レオメータMCR102により、パラレルプレートPP50(直径50mm)を用いて測定した。なお、測定は、組成物を配合後、ホモディスパーを用いて約500rpmで2分間撹拌して均一分散したものを測定試料とし、当該試料約2g程度をレオメータの試料台に乗せ測定用パラレルプレートを下げてギャップ約1.1~1.3mmで挟んだ状態として、本測定前の状態を同一とするために、予めプリシェアを与えてから本測定を行った。プリシェアの条件はシェアレート10[1/s]、印加時間60[sec]とした。
<動的粘弾性測定>
 実施例及び比較例にて得られた蓄熱性組成物の動的粘弾性を、JIS K 7244-10 に準拠して、温度25℃、ひずみ0.1%の条件下、0.3~100rad/sの角周波数にて、アントンパール社製回転型レオメータMCR102により、パラレルプレートPP50(直径50mm)を用いて測定した。なお、測定は、組成物を配合後、ホモディスパーを用いて約500rpmで2分間撹拌して均一分散したものを測定試料とし、当該試料約2g程度をレオメータの試料台に乗せ測定用パラレルプレートを下げてギャップ約1.1~1.3mmで挟んだ状態として、本測定前の状態を同一とするために、予めプリシェアを与えてから本測定を行った。プリシェアの条件はシェアレート10[1/s]、印加時間60[sec]とした。
<塗工適性>
 実施例及び比較例にて得られた蓄熱性組成物を、オートアプリケーターを用いて、厚み3mmの塗膜形成を行った。
 得られた塗膜を下記基準にて目視にて評価した。
 ○:塗工域全域において、連続した塗膜形成が可能であった。
 ×:塗工域内で、塗布した組成物の塗料抜けが生じ、連続した塗膜形成ができなかった。
<厚膜形状保持性評価>
 実施例及び比較例にて得られた蓄熱性組成物6gを鋼板上の1点に15秒間で流し、60秒間静置した後、150℃のドライヤー温度で8分間加熱してゲル化させ、蓄熱シートを得た。得られた蓄熱シートの面積及び厚みを測定し、以下の基準で評価した。
 ○:厚み2mm以上かつ面積50cm以下
 ×:厚み2mm未満又は面積50cm以上
<含水率測定>
 実施例及び比較例にて得られた蓄熱性組成物の含水率をJIS K0068化学製品の水分測定方法b)乾燥減量法に準じて測定した。
 平型はかり瓶(JIS R 3503に規定:胴径60mm×高さ30mm、容量25ml)に実施例及び比較例にて得られた蓄熱性組成物を10gとり、105℃乾燥機にて、恒量になるまで1時間毎に測定した(恒量:前回との質量の差が1/1000以下になったとき)。
      W=(S-S)/(S-S)×100
        W:含水率(%)
        S:乾燥前の試料とはかり瓶の質量(g)
        S:乾燥後の試料とはかり瓶の質量(g)
        S:はかり瓶の質量(g)
<外観評価>
 実施例及び比較例にて得られた蓄熱性組成物を鋼板上に厚み3mmで塗布して150℃のドライヤー温度で8分間加熱してゲル化させ、蓄熱シートを得た。得られた蓄熱シート10cm角中の膨れの有無を確認し、以下の基準で評価した。
 ◎:直径5mm以上の膨れや凹部が確認されない
 ○:直径5mm以上の膨れや凹部が5個未満
 ×:直径5mm以上の膨れや凹部が5個以上
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記表から明らかなとおり、実施例1~13の本願発明の蓄熱性組成物は、いずれも蓄熱シート形成時に2mm以上の最大厚みを保持し、かつシート面積が50cm以下となり、蓄熱粒子を含有しながらも好適な厚膜塗工適性を有し、だれ等を生じることのない好適な厚膜形状保持性を有するものであった。特に、実施例1~11、13の組成物はシート面積が30~50cmの範囲内となり、塗工適性と厚膜形状保持性とが特に優れるものであった。また、実施例12の組成物は厚膜形成に優位であった。一方、比較例1~3の組成物は、好適な塗工性や厚膜塗工適性を有さないものであった。
(実施例14)
 含水率が1.5質量%の潜熱蓄熱材を使用した以外は実施例1と同様にして、蓄熱性組成物を作製した。得られた蓄熱性組成物を使用して<外観評価>の方法と同様の方法にて蓄熱シートを作成し、外観評価を行った。評価結果は◎(直径5mm以上の膨れや凹部が確認されない)であった。
(実施例15)
 含水率が2.1質量%の潜熱蓄熱材を使用した以外は実施例14と同様にして、蓄熱シートを作成し、外観評価を行った。評価結果は○(直径5mm以上の膨れや凹部が5個未満)であった。
(実施例16)
 乾燥温度を130℃とした以外は実施例15と同様にして、蓄熱シートを作成し、外観評価を行った。◎(直径5mm以上の膨れや凹部が確認されない)であった。
(実施例17)
 蓄熱性組成物として実施例1と同様の蓄熱性組成物を使用し、乾燥温度を165℃とした以外は実施例14と同様にして、蓄熱シートを作成し、外観評価を行った。評価結果は◎(直径5mm以上の膨れや凹部が5個未満)であった。

Claims (13)

  1.  樹脂と蓄熱材とを含有する蓄熱性組成物であって、
     円筒形回転粘度計で測定される粘度が100~1000dPa・sであり、
     動的粘弾性測定法により、温度25℃、ひずみ0.1%にて測定した角周波数1rad/sにおける貯蔵弾性率(G’)が3Pa以上であることを特徴とする蓄熱性組成物。
  2.  動的粘弾性測定法により、温度25℃、ひずみ0.1%にて測定した角周波数1rad/sにおける損失弾性率(G”)が10Pa以上である請求項1に記載の蓄熱性組成物。
  3.  定常せん断粘度が30Pa・s以下である請求項1又は2に記載の蓄熱性組成物。
  4.  蓄熱性組成物中の蓄熱材の含有量が10~80質量%である請求項1~3のいずれかに記載の蓄熱性組成物。
  5.  前記樹脂が熱可塑性樹脂である請求項1~4のいずれかに記載の蓄熱性組成物。
  6.  可塑剤を含有する請求項1~5のいずれかに記載の蓄熱性組成物。
  7.  前記可塑剤が、蓄熱材100質量部に対する可塑剤の吸収量が30質量部以上、150質量部以下の可塑剤である請求項6に記載の蓄熱性組成物。
  8.  前記可塑剤がエポキシ系可塑剤である請求項6又は7に記載の蓄熱性組成物。
  9.  前記蓄熱材が樹脂外殻中に潜熱蓄熱材料を内包するマイクロカプセルである請求項1~8のいずれかに記載の蓄熱性組成物。
  10.  前記蓄熱材の含水率が3質量%以下である請求項1~9のいずれかに記載の蓄熱性組成物。
  11.  樹脂と蓄熱材とを含有し、円筒形回転粘度計で測定される粘度が100~1000dPa・sであり、動的粘弾性測定法により、温度25℃、ひずみ0.1%にて測定した角周波数1rad/sにおける貯蔵弾性率(G’)が3Pa以上である蓄熱性組成物をキャストして塗工膜を形成する工程、
     得られた塗工膜を塗工膜温度が150℃以下の温度で加熱乾燥する工程、を有することを特徴とする蓄熱シートの製造方法。
  12.  加熱乾燥後の蓄熱シートの厚みが1mm以上である請求項11に記載の蓄熱シートの製造方法。
  13.  前記蓄熱材の含水率が3質量%以下である請求項11又は12に記載の蓄熱シートの製造方法。
PCT/JP2017/022080 2016-06-22 2017-06-15 蓄熱性組成物 WO2017221803A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017550956A JP6274373B1 (ja) 2016-06-22 2017-06-15 蓄熱性組成物
KR1020187031637A KR102280229B1 (ko) 2016-06-22 2017-06-15 축열성 조성물
DE112017003135.4T DE112017003135T5 (de) 2016-06-22 2017-06-15 Wärmespeicherzusammensetzung
CN201780026545.1A CN109071959A (zh) 2016-06-22 2017-06-15 蓄热性组合物
US16/212,810 US10968379B2 (en) 2016-06-22 2018-12-07 Heat-storage composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016123546 2016-06-22
JP2016-123546 2016-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/212,810 Continuation US10968379B2 (en) 2016-06-22 2018-12-07 Heat-storage composition

Publications (1)

Publication Number Publication Date
WO2017221803A1 true WO2017221803A1 (ja) 2017-12-28

Family

ID=60783494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022080 WO2017221803A1 (ja) 2016-06-22 2017-06-15 蓄熱性組成物

Country Status (6)

Country Link
US (1) US10968379B2 (ja)
JP (1) JP6274373B1 (ja)
KR (1) KR102280229B1 (ja)
CN (1) CN109071959A (ja)
DE (1) DE112017003135T5 (ja)
WO (1) WO2017221803A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020040265A (ja) * 2018-09-10 2020-03-19 Dic株式会社 保温シート
WO2020110661A1 (ja) * 2018-11-26 2020-06-04 富士フイルム株式会社 蓄熱シート、蓄熱部材、電子デバイス、及び、蓄熱シートの製造方法
JP2020088176A (ja) * 2018-11-26 2020-06-04 東洋インキScホールディングス株式会社 熱電発電デバイス

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7296207B2 (ja) * 2018-12-20 2023-06-22 三菱重工業株式会社 板状化学蓄熱体
CN113646412A (zh) * 2019-03-25 2021-11-12 富士胶片株式会社 蓄热组合物、蓄热部件、电子设备及蓄热部件的制造方法
EP3950849A4 (en) * 2019-03-29 2022-12-21 Kaneka Corporation LATENT HEAT ACCUMULATION MATERIAL
JP2021155608A (ja) * 2020-03-27 2021-10-07 三菱パワー株式会社 蓄熱材組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009051016A (ja) * 2007-08-23 2009-03-12 Achilles Corp 蓄熱性熱可塑性樹脂シート状成形体
JP2015020383A (ja) * 2013-07-22 2015-02-02 Dic株式会社 蓄熱積層体
WO2015098739A1 (ja) * 2013-12-25 2015-07-02 Dic株式会社 蓄熱シート、蓄熱積層体及び蓄熱シートの製造方法
WO2016208573A1 (ja) * 2015-06-23 2016-12-29 Dic株式会社 蓄熱成形体、蓄熱積層体及び蓄熱成形体の製造方法
WO2016208572A1 (ja) * 2015-06-23 2016-12-29 Dic株式会社 蓄熱成形体、蓄熱積層体及び蓄熱成形体の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3606652B2 (ja) * 1995-10-23 2005-01-05 三井化学株式会社 食品包装用ストレッチフィルムの製造方法
DE10163162A1 (de) 2001-12-20 2003-07-03 Basf Ag Mikrokapseln
US20080069617A1 (en) * 2006-09-19 2008-03-20 Mitsuyo Matsumoto Image forming apparatus, image forming method, and toner for developing electrostatic image for use in the image forming apparatus and method
CN102504766B (zh) * 2011-10-09 2014-12-17 上海工程技术大学 一种相变储能微胶囊及其制备方法和应用
US8754144B2 (en) * 2012-10-15 2014-06-17 Rohitha Muthumala Jayasuriya Radiation cureable heat seal blister-coating compositions
JP2016079230A (ja) * 2014-10-10 2016-05-16 株式会社カネカ 蓄熱性熱伝導性硬化性組成物、および蓄熱性熱伝導性樹脂硬化物
CN109071848B (zh) * 2016-06-22 2022-02-15 Dic株式会社 蓄热片
JP6460435B2 (ja) * 2016-06-22 2019-01-30 Dic株式会社 蓄熱積層体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009051016A (ja) * 2007-08-23 2009-03-12 Achilles Corp 蓄熱性熱可塑性樹脂シート状成形体
JP2015020383A (ja) * 2013-07-22 2015-02-02 Dic株式会社 蓄熱積層体
WO2015098739A1 (ja) * 2013-12-25 2015-07-02 Dic株式会社 蓄熱シート、蓄熱積層体及び蓄熱シートの製造方法
WO2016208573A1 (ja) * 2015-06-23 2016-12-29 Dic株式会社 蓄熱成形体、蓄熱積層体及び蓄熱成形体の製造方法
WO2016208572A1 (ja) * 2015-06-23 2016-12-29 Dic株式会社 蓄熱成形体、蓄熱積層体及び蓄熱成形体の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020040265A (ja) * 2018-09-10 2020-03-19 Dic株式会社 保温シート
WO2020110661A1 (ja) * 2018-11-26 2020-06-04 富士フイルム株式会社 蓄熱シート、蓄熱部材、電子デバイス、及び、蓄熱シートの製造方法
JP2020088176A (ja) * 2018-11-26 2020-06-04 東洋インキScホールディングス株式会社 熱電発電デバイス
JPWO2020110661A1 (ja) * 2018-11-26 2021-10-14 富士フイルム株式会社 蓄熱シート、蓄熱部材、電子デバイス、及び、蓄熱シートの製造方法
JP7050953B2 (ja) 2018-11-26 2022-04-08 富士フイルム株式会社 蓄熱シート、蓄熱部材、電子デバイス、及び、蓄熱シートの製造方法

Also Published As

Publication number Publication date
JP6274373B1 (ja) 2018-02-07
US10968379B2 (en) 2021-04-06
KR102280229B1 (ko) 2021-07-21
CN109071959A (zh) 2018-12-21
JPWO2017221803A1 (ja) 2018-06-21
US20190106612A1 (en) 2019-04-11
KR20190022464A (ko) 2019-03-06
DE112017003135T5 (de) 2019-02-28

Similar Documents

Publication Publication Date Title
JP6274373B1 (ja) 蓄熱性組成物
JP6395021B2 (ja) 蓄熱シート
JP6528686B2 (ja) 蓄熱シート、蓄熱積層体及び蓄熱シートの製造方法
JP6041078B1 (ja) 蓄熱成形体、蓄熱積層体及び蓄熱成形体の製造方法
JP6460435B2 (ja) 蓄熱積層体
JP6037192B1 (ja) 蓄熱成形体、蓄熱積層体及び蓄熱成形体の製造方法
JP2020040265A (ja) 保温シート
JP2021017796A (ja) 屋内面施工方法及び蓄熱積層体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017550956

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187031637

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815271

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17815271

Country of ref document: EP

Kind code of ref document: A1