WO2016208572A1 - 蓄熱成形体、蓄熱積層体及び蓄熱成形体の製造方法 - Google Patents

蓄熱成形体、蓄熱積層体及び蓄熱成形体の製造方法 Download PDF

Info

Publication number
WO2016208572A1
WO2016208572A1 PCT/JP2016/068377 JP2016068377W WO2016208572A1 WO 2016208572 A1 WO2016208572 A1 WO 2016208572A1 JP 2016068377 W JP2016068377 W JP 2016068377W WO 2016208572 A1 WO2016208572 A1 WO 2016208572A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
plasticizer
molded body
resin
heat
Prior art date
Application number
PCT/JP2016/068377
Other languages
English (en)
French (fr)
Inventor
藤崎 健一
小関 祐子
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to DE112016002898.9T priority Critical patent/DE112016002898T5/de
Priority to JP2016549814A priority patent/JP6037192B1/ja
Priority to KR1020177035100A priority patent/KR102612303B1/ko
Priority to CN201680031768.2A priority patent/CN107614653B/zh
Publication of WO2016208572A1 publication Critical patent/WO2016208572A1/ja
Priority to US15/831,602 priority patent/US10502499B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/14Layered products comprising a layer of synthetic resin next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/048Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material made of particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/028Paper layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/025Acrylic resin particles, e.g. polymethyl methacrylate or ethylene-acrylate copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0221Vinyl resin
    • B32B2266/0228Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0285Condensation resins of aldehydes, e.g. with phenols, ureas, melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/58Cuttability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • B32B2509/10Refrigerators or refrigerating equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/003Interior finishings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/10Trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • B32B2607/02Wall papers, wall coverings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat storage molded body capable of maintaining an appropriate temperature and saving energy according to various usage modes.
  • the present invention relates to a heat storage molded article useful for maintaining a suitable temperature in a living space such as a house or a room such as an automobile.
  • a material obtained by mixing a gypsum board encapsulating a latent heat storage material is disclosed (see Patent Document 1). Further, as a material using a flexible material, a heat storage thermoplastic resin sheet (see Patent Document 2) containing a heat storage material in a thermoplastic resin is disclosed.
  • JP 2003-284939 A Japanese Patent Laid-Open No. 2009-5016
  • the material in which the latent heat storage material is mixed in the gypsum board is used for the wall surface and the like, thereby increasing the heat capacity of the wall surface and the like to save energy.
  • the material is poor in flexibility and handleability and has limited usage.
  • thermoplastic resin is flexible by using thermoplastic resin, but it disturbs endocrine action and adversely affects reproduction and development of wildlife and humans (environmental hormone) Phthalic acid-based materials that are of concern are being used. Since a heat storage material is often used in a space close to a human body, a heat storage material with a reduced phthalic acid content has been demanded.
  • the problem to be solved by the present invention is to provide a heat storage molded article having excellent flexibility and heat resistance while suppressing the use of a phthalic acid-based material, and having heat storage properties that can contribute to maintaining an appropriate temperature according to the use mode. It is to provide.
  • the present invention is a heat storage molded article in which a heat storage material is dispersed in a resin matrix, wherein the resin matrix is made of a resin composition containing a thermoplastic resin and a plasticizer, and the plasticizer is a non-phthalic acid plasticizer.
  • the resin matrix is made of a resin composition containing a thermoplastic resin and a plasticizer
  • the plasticizer is a non-phthalic acid plasticizer.
  • the heat storage molded body of the present invention is such that the HSP distance between the non-phthalic acid plasticizer used in the resin composition and the heat storage material dispersed in the molded body is 6 or more, so that the heat storage molded body at a high temperature.
  • the desorption of desorbed components from can be suppressed, and favorable heat resistance can be realized together with good heat storage properties.
  • the resin composition containing the thermoplastic resin and the plasticizer is used as the matrix material, it is excellent in flexibility and handleability as compared with a rigid material such as gypsum board.
  • by making it into a sheet shape it can be easily wound up in a roll shape and laminated with other functional layers such as a decorative layer and a heat conductive layer, and various cutting properties and workability are also provided. Use in the embodiment is possible.
  • Such a heat storage molded body of the present invention can be used for various applications, such as walls and wallpaper of living spaces such as houses, interiors of automobiles, trains, aircraft, agricultural houses, etc., and refrigerators for refrigerator cars and refrigerators.
  • it can contribute to energy saving suitably in various applications such as materials applied to closed spaces such as the interiors of aircraft, electric parts that generate heat such as personal computer CPUs and storage batteries.
  • the heat storage molded article of the present invention is a heat storage molded article in which a heat storage material is dispersed in a resin matrix comprising a resin composition containing a thermoplastic resin and a plasticizer, and the plasticizer is a non-phthalic plasticizer
  • the HSP distance between the plasticizer and the heat storage material is a heat storage molded body having 6 or more.
  • thermoplastic resin used in the present invention is not particularly limited as long as it can form a resin matrix together with a plasticizer.
  • a plasticizer for example, vinyl chloride resin, acrylic resin, urethane resin, olefin resin, ethylene vinyl acetate
  • examples include polymerization, styrene / butadiene resin, polystyrene resin, polybutadiene resin, polyester resin, polyamide resin, polyimide resin, polycarbonate resin, 1,2-polybutadiene resin, polycarbonate resin, polyimide resin, etc. it can.
  • it is preferable to use a vinyl chloride resin because it is easy to obtain moldability at low temperatures and dispersibility of the heat storage material.
  • the vinyl sol coating liquid is a paste-like coating liquid in which a heat storage material is dispersed and suspended in a resin composition containing vinyl chloride resin particles and a plasticizer.
  • the average particle diameter of the vinyl chloride resin particles is preferably 0.01 to 10 ⁇ m, and preferably 0.1 to 5 ⁇ m.
  • the particles may be dispersed directly or may be dispersed in a state of being aggregated into spherical secondary particles as the primary particles. Further, particles having different particle diameters may be mixed to have two or more particle size distribution peaks.
  • the particle diameter can be measured by a laser method or the like.
  • the shape of the vinyl chloride resin particles used in the vinyl sol coating solution is preferably a substantially spherical shape because it is easy to obtain suitable fluidity and the change in aging viscosity is small.
  • the vinyl chloride resin particles those produced by emulsion polymerization or suspension polymerization are preferable because they can easily obtain a spherical shape and can easily control the particle size distribution.
  • the polymerization degree of the vinyl chloride resin used is preferably 500 to 4000, more preferably 600 to 2000.
  • vinyl chloride resin particles used in the present invention commercially available vinyl chloride resin particles can be used as appropriate.
  • ZEST PQ83, PWLT, PQ92, P24Z manufactured by Shin-Daiichi PVC Co., Ltd. PSL- manufactured by Kaneka Corporation 675, 685 and the like.
  • the plasticizer used in the present invention is a non-phthalic acid plasticizer other than the phthalic acid plasticizer, which is feared to adversely affect the human body.
  • the plasticizer include epoxy plasticizer, methacrylate plasticizer, polyester plasticizer, polyetherester plasticizer, aliphatic diester plasticizer, trimellitic acid plasticizer, adipic acid plasticizer, and benzoic acid.
  • a plasticizer or the like can be used as appropriate. Two or more kinds of plasticizers may be appropriately mixed and used.
  • a plasticizer having an HSP distance of 6 or more from the heat storage material to be used among these plasticizers it is possible to suppress detachment of desorbed components from the heat storage molded body at a high temperature. It is possible to realize suitable heat resistance that hardly causes volume shrinkage even at high temperatures. In a molded article made of a resin composition containing a general thermoplastic resin and a plasticizer that does not contain a heat storage material, large volume shrinkage hardly occurs even at high temperatures. However, in a heat storage molded article containing a heat storage material, there is a case where volume contraction is greatly caused at a high temperature.
  • the HSP distance between the heat storage material and the plasticizer within the above range, it is possible to suppress the incorporation of the plasticizer that causes a large amount of desorption components at high temperatures into the heat storage material. It is found that the volume shrinkage of the resin can be suppressed, and an excellent heat-resistant heat storage molded article can be realized.
  • the HSP distance is preferably 7 or more, more preferably 8 or more, because it is easy to obtain suitable heat resistance.
  • the upper limit is not particularly limited as long as it is generally used as a plasticizer, but it is preferably 40 or less, more preferably 30 or less because it is easy to obtain suitable compatibility and moldability. More preferably, it is 25 or less.
  • the HSP distance is an index representing the solubility between substances using the Hansen solubility parameter (HSP).
  • the Hansen solubility parameter represents solubility as a multi-dimensional (typically three-dimensional) vector, and the vector can be represented by a dispersion term, a polar term, and a hydrogen bond term. And the similarity of the said vector is represented as the distance (HSP distance) of a Hansen solubility parameter.
  • Hansen solubility parameter numerical values that are helpful in various literatures are presented, and examples include Hansen Solubility Parameters: A User's Handbook (Charles Hansen et al., 2007, 2nd edition).
  • Hansen solubility parameters can be calculated based on the chemical structure of a substance using commercially available software such as Hansen Solubility Parameter in Practice (HSPiP). The calculation is performed at a solvent temperature of 25 ° C.
  • the HSP distance between the thermoplastic resin to be used and the plasticizer is preferably 15 or less, and more preferably 12 or less, because the resin matrix of the molded article can be suitably configured.
  • the lower limit is not particularly limited, but is preferably 1 or more, more preferably 2 or more, and further preferably 3 or more.
  • a plasticizer having the above HSP value can be appropriately used from a non-phthalic acid plasticizer according to the heat storage material to be used.
  • a heat storage material having an acrylic outer shell Epoxy plasticizers polyester plasticizers, trimellitic acid plasticizers, and the like can be preferably used.
  • the thermal storage material which has a melamine type outer shell an epoxy plasticizer, a polyester plasticizer, a trimellitic acid plasticizer, a benzoic acid plasticizer, etc. can be used preferably.
  • plasticizers various commercially available plasticizers can be used as appropriate.
  • an epoxy plasticizer DIC Monosizer W-150; Shin Nippon Rika Co., Ltd. Sansosizer E-PS, E-PO E-4030, E-6000, E-2000H, E-9000H; ADEKA Adekasizer O-130P, O-180A, D-32, D-55, Kao Kapox S-6, etc.
  • polyester plastic As the agent, Polycizer W-2050, W-2310, W-230H manufactured by DIC; Adeka Sizer PN-7160, PN-160, PN-9302, PN-150, PN-170, PN-230, PN manufactured by ADEKA -7230, PN-1010, Mitsubishi Chemical D620, D621, D623, D643, D64 D620N; Kao Corporation HA-5, etc.
  • Trimellitic acid plasticizers include DIC Monosizer W-705, ADEKA Adeka Sizer C-9N, Mitsubishi Chemical Corporation TOTM, TOTM-NB, Benzo, etc.
  • acid plasticizer include Monosizer PB-3A manufactured by DIC, JP120 manufactured by Mitsubishi Chemical Corporation, and the like.
  • the gelation end temperature is preferably 150 ° C. or lower, more preferably 140 ° C. or lower, further preferably 130 ° C. or lower, further preferably 120 ° C. or lower, It is particularly preferably 110 ° C. or lower.
  • the gelation completion temperature can be defined as a temperature at which the light transmittance of the gelled film becomes constant.
  • an epoxy plasticizer, a polyester plasticizer, and a benzoic acid plasticizer can be preferably used as the plasticizer having good low temperature moldability.
  • the epoxy plasticizer and the polyester are used.
  • a plasticizer can be particularly preferably used.
  • an epoxy plasticizer and a polyester plasticizer can be preferably used, and an epoxy plasticizer is particularly preferable.
  • the gelation end point temperature is obtained by mixing a vinyl chloride resin for paste (polymerization degree 1700), the above plasticizer and a heat stabilizer (Ca—Zn) at a mass ratio of 100/80 / 1.5.
  • a temperature at which the light transmittance is constant by sandwiching between a glass plate and a slide and raising the temperature at a heating rate of 5 ° C./min and observing a change in light transmittance using a hot stage for microscopic observation (Meter 800). Is the gelation end point temperature.
  • the plasticizer used in the present invention preferably has a viscosity at 25 ° C. of 1500 mPa ⁇ s or less, more preferably 1000 mPa ⁇ s or less, still more preferably 500 mPa ⁇ s or less, and 300 mPa ⁇ s or less. It is particularly preferred that By setting it as the said range, since the viscosity of a vinyl sol coating liquid can be restrained low, the filling rate of a thermal storage material can be raised. In addition, the conditions of a plasticizer viscosity measurement can be measured in the conditions in the below-mentioned Example.
  • the plasticizer used in the present invention preferably has a weight average molecular weight of 200 to 3,000, more preferably 300 to 1,000. By setting it as the said range, since the plasticizer itself is hard to bleed out and the viscosity of the vinyl sol coating liquid can be kept low, the filling rate of the heat storage material can be increased.
  • the weight average molecular weight (Mw) is a value in terms of polystyrene based on gel permeation chromatography (hereinafter abbreviated as “GPC”) measurement. The GPC measurement can be performed under the following conditions.
  • Measuring device Guard column "HLC-8330" manufactured by Tosoh Corporation Column: “TSK SuperH-H” manufactured by Tosoh Corporation + Tosoh Corporation “TSK gel SuperHZM-M” + Tosoh Corporation “TSK gel SuperHZM-M” + Tosoh Corporation “TSK gel SuperHZ-2000” + Tosoh Corporation “TSK gel SuperHZ-2000” Detector: RI (differential refractometer) Data processing: “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation Column temperature: 40 ° C Developing solvent: Tetrahydrofuran (THF) Flow rate: 0.35 mL / min Sample: 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids with a microfilter (100 ⁇ l) Standard sample: The following monodispersed polystyrene having a known molecular weight was used in accordance with the measurement
  • the heat storage material used in the present invention is not particularly limited as long as the HSP distance with the plasticizer to be used is in the above range, and various known heat storage materials can be used. Among them, it is preferable to use a latent heat storage material by a solid-liquid phase change because it is easy to handle and mold the molded body.
  • the latent heat storage material is encapsulated in which the latent heat storage material such as paraffin is encapsulated in the outer shell made of organic material in consideration of problems such as oozing out due to phase change and dispersibility when mixed.
  • Thermal storage particles are preferred.
  • the HSP distance is calculated based on the HSP of the material used for the outer shell of the heat storage particles.
  • the outer shell is not easily embrittled by the plasticizer, and the heat storage material is not damaged. Hard to occur.
  • heat storage particles for example, those using an outer shell made of melamine resin, Thermomemory FP-16, FP-25, FP-31, FP-39 manufactured by Mitsubishi Paper Industries, Inc., Riken Resin manufactured by Miki Riken Kogyo Co., Ltd. PMCD-15SP, 25SP, 32SP, etc. can be exemplified.
  • a material using an outer shell made of silica such as Riken Resins LA-15, LA-25, LA-32 manufactured by Miki Riken Kogyo Co., Ltd., and using a shell made of polymethyl methacrylate resin, MicroDS5001X manufactured by BASF , 5040X and the like.
  • the particle size of the heat storage particles is not particularly limited, but is preferably about 10 to 1000 ⁇ m, and more preferably 50 to 500 ⁇ m.
  • the particle size of the heat storage particles is preferably such that the particle size of the primary particles is within the above range, but the particles with a primary particle size of 1 to 50 ⁇ m, preferably 2 to 10 ⁇ m aggregate to form secondary particles. It is also preferable that the heat storage particles have a secondary particle size in the above range.
  • Such heat storage particles are easily damaged by pressure and shear. However, according to the configuration of the present invention, the heat storage particles can be suitably prevented from being damaged, and the heat storage material is less likely to leak or leak.
  • the heat storage molded body of the present invention can also exude or leak heat storage material even when such a latent heat storage material is used. Is easily suppressed.
  • the particle diameter of all the heat storage particles used in the heat storage molded body may not be in the above range, and 80% by mass or more of the heat storage particles in the heat storage molded body is preferably the heat storage particles in the above range, and 90% by mass. More preferably, it is more preferably 95% by mass or more.
  • the latent heat storage material undergoes a phase change at a specific melting point. That is, when the room temperature exceeds the melting point, the phase changes from a solid to a liquid, and when the room temperature falls below the melting point, the phase changes from a liquid to a solid.
  • the melting point of the latent heat storage material may be adjusted according to the use mode, and a material exhibiting a solid / liquid phase transition in a temperature range of about ⁇ 20 ° C. to 120 ° C. can be appropriately used.
  • the melting point is set to a temperature suitable for daily life, specifically 10
  • a latent heat storage material designed to 35 to 35 ° C, preferably 15 to 30 ° C
  • a latent heat storage material having a melting point of about 25 to 28 ° C. is mixed for the purpose of maintaining the heating effect in winter.
  • a latent heat storage material having a melting point of about 20 to 23 ° C. can be mixed.
  • latent heat storage materials having different melting point designs may be mixed. Further, in order to save energy in a refrigerator such as a refrigerator, a latent heat storage material having a melting point of about ⁇ 10 ° C. to 5 ° C. may be used.
  • the heat storage molded body of the present invention is a heat storage molded body in which a heat storage material is dispersed in a resin matrix made of a resin composition containing the above thermoplastic resin and plasticizer. Since the heat storage molded body of the present invention is mainly composed of a resin component, it has suitable flexibility. In addition, since non-phthalic acid plasticizers are used as plasticizers, there is no fear of adverse effects on human bodies based on phthalic acid materials. Moreover, since the HSP distance between the plasticizer and the heat storage material in the heat storage molded body is 6 or more, there is little volume shrinkage even at high temperatures, and suitable heat resistance can be realized.
  • the shape of the heat storage molded body of the present invention may be molded into an appropriate shape according to its use mode, but by making it into a sheet shape, it can be applied to various uses such as wall materials and wallpaper of living spaces such as houses. This is preferable because it is easy to apply. Also, since it can be made into a roll shape by making it into a sheet shape, it is easy to laminate with other functional layers such as a decorative layer and a heat conductive layer, and the cutting property and workability are also good. preferable.
  • the thickness of the heat storage molded body of the present invention may be appropriately adjusted according to the usage mode. For example, when applied to a wall surface of a closed space or the like, 50 ⁇ m or more is preferable, 100 ⁇ m or more is more preferable, 500 ⁇ m or more is more preferable, and 1 mm or more is particularly preferable because a suitable heat storage effect is easily obtained. Moreover, since it is easy to obtain suitable softness
  • the content of the thermoplastic resin in the heat storage molded body is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, and further preferably 30 to 60% by mass. By setting it as the said range, it becomes easy to form a flexible sheet.
  • the plasticizer content in the heat storage molded body is preferably 5 to 75% by mass, more preferably 10 to 70% by mass, and still more preferably 20 to 60% by mass. By setting it as the said range, it becomes easy to obtain favorable coating suitability and moldability.
  • the content of the heat storage material in the heat storage molded body is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, and further preferably 30 to 60% by mass. By setting it as the said range, it is easy to obtain a favorable heat storage effect and it becomes easy to obtain favorable moldability.
  • the content ratio of the plasticizer to the thermoplastic resin is preferably 30 to 150 parts by mass, more preferably 30 to 120 parts by mass, and more preferably 40 to 40 parts by mass with respect to 100 parts by mass of the thermoplastic resin. More preferably, it is 100 parts by mass.
  • the heat storage molded body of the present invention preferably has a tensile strength of 0.1 MPa or more, more preferably 0.3 MPa or more, still more preferably 0.6 MPa or more, and 1 MPa or more. Is particularly preferred. By setting it as the said tensile strength, it can be set as a tough heat storage molded object while having a softness
  • the upper limit of the tensile strength is not particularly limited, but is preferably about 15 MPa or less, more preferably 10 MPa or less, and particularly preferably 5 MPa or less.
  • the elongation at the time of tensile fracture is preferably 10% or more, more preferably 15% or more, further preferably 20% or more, and particularly preferably 25% or more.
  • the upper limit of the elongation is preferably 1000% or less, more preferably 500% or less, still more preferably 300% or less, and particularly preferably 200% or less.
  • Tensile strength and elongation at break are measured according to JIS K6251. Specifically, the heat storage molded body is cut into a dumbbell-shaped No. 2 shape, and an initial distance between marked lines is set to 20 mm to prepare a test piece with two marked lines. This test piece is attached to a tensile tester and pulled at a speed of 200 mm / min to break. At this time, the maximum force until break (N) and the distance between marked lines (mm) at break are measured, and the tensile strength and the elongation at break are calculated by the following formulas.
  • the tensile strength TS (MPa) is calculated by the following formula.
  • TS F m / Wt
  • F m Maximum force (N)
  • W Width of parallel part (mm)
  • t thickness of parallel part (mm)
  • Elongation Eb (%) at the time of tensile fracture is calculated by the following formula.
  • E b (L b ⁇ L 0 ) / L 0 ⁇ 100
  • L b Distance between marked lines at break (mm)
  • L 0 Initial distance between marked lines (mm)
  • the heat storage molded article of the present invention is applied with a coating liquid in which a resin composition containing a thermoplastic resin and a plasticizer and a heat storage material are mixed, or is poured into a mold having an arbitrary shape, and then heated or dried.
  • a molded body having an arbitrary shape can be formed.
  • Step of adjusting a coating liquid by mixing a non-phthalic acid plasticizer and a heat storage material having an HSP distance of 6 or more with a thermoplastic resin (2) Applying the coating liquid on a support After forming the coating film, heating the coating film at a temperature of 150 ° C. or lower to form a heat storage molded body, A production method having
  • the coating solution is adjusted in the step (1), and in the step (2), the coating solution is applied onto the support to obtain a coating film.
  • the support used here when the heat storage molded body is peeled off for distribution and use, the obtained heat storage formed body can be peeled off and the one having heat resistance at the temperature of the heating step can be used as appropriate.
  • the heat storage molded body is used by being laminated with another functional layer or base material, the other functional layer or base material may be used as a support.
  • resin films used as various process films can be preferably used as the support in the case of peeling the heat storage molded body.
  • the resin film include polyester resin films such as a polyethylene terephthalate resin film and a polybutylene terephthalate resin film.
  • the thickness of the resin film is not particularly limited, but a resin film having a thickness of about 25 to 100 ⁇ m is easy to handle and obtain.
  • the resin film used as the support one having a surface that has been peeled off can be preferably used.
  • the release treatment agent used for the release treatment include alkyd resins, urethane resins, olefin resins, and silicone resins.
  • a coating machine such as a roll knife coater, a reverse roll coater, or a comma coater can be used.
  • a method of feeding a vinyl sol coating solution onto a support and forming a coating film having a certain thickness with a doctor knife or the like can be preferably used.
  • the obtained coating film is heated to be gelled or cured, thereby forming a heat storage molded body on the support.
  • the heating temperature is preferably a temperature at which the coating film temperature is 150 ° C. or lower, more preferably a temperature at 140 ° C. or lower, further preferably a temperature at 130 ° C. or lower, and further preferably a temperature at 120 ° C. or lower.
  • the heating time may be appropriately adjusted according to the gelation rate or the like, but may be adjusted in the range of about 10 seconds to 10 minutes. Moreover, you may use together drying, such as air drying suitably with the said heating.
  • the solvent may be removed at the same time in the heating step, but it is also preferable to perform preliminary drying before the heating.
  • the heat storage molded body formed as described above can be used as a heat storage molded body by a process of peeling the heat storage molded body from the support.
  • the separation may be performed by a suitable method as appropriate.
  • stacking when the state laminated
  • the method for producing the heat storage molded article of the present invention may be suitably produced by the above method, and among them, a vinyl sol coating liquid using vinyl chloride resin particles as a thermoplastic resin is used to form a sheet by sol casting.
  • the forming method is preferred.
  • molding becomes possible, without passing through kneading
  • molding at a low temperature is facilitated, and therefore, the method can be particularly preferably used because it is easy to suppress destruction of the heat storage material due to heat.
  • the content of the vinyl chloride resin is 10 to 80% by mass in the solid content (components other than the solvent) contained in the coating solution. It is preferably 20 to 70% by mass, more preferably 30 to 60% by mass.
  • the content of the plasticizer is preferably 30 to 150 parts by mass, more preferably 30 to 120 parts by mass with respect to 100 parts by mass of the thermoplastic resin contained in the resin composition. More preferably, it is ⁇ 100 parts by mass.
  • the content of the heat storage material to be mixed in the coating liquid is preferably 10 to 80% by mass, more preferably 20 to 70% by mass in the solid content contained in the coating liquid, More preferably, it is 30 to 60% by mass.
  • a solvent can be appropriately used in the vinyl sol coating solution.
  • a solvent used in a sol-cast method of vinyl chloride resin can be used as appropriate, and among them, ketones such as diisobutyl ketone and methyl isobutyl ketone, esters such as butyl acetate, glycol ethers and the like are preferable. It can be illustrated. These solvents are preferable because they slightly swell the resin at room temperature to facilitate dispersion, and also facilitate melting gelation in the heating step. These solvents may be used alone or in combination of two or more.
  • a diluting solvent may be used together with the above solvent.
  • a solvent that does not dissolve the resin and suppresses the swelling property of the dispersion solvent can be preferably used.
  • a diluting solvent for example, paraffinic hydrocarbons, naphthenic hydrocarbons, aromatic hydrocarbons, terpene hydrocarbons and the like can be used.
  • the vinyl sol coating liquid it is also preferable to use a heat stabilizer in order to suppress degradation and coloration mainly due to dehydrochlorination reaction of vinyl chloride resin.
  • a heat stabilizer for example, a calcium / zinc stabilizer, an octyl tin stabilizer, a barium / zinc stabilizer, or the like can be used.
  • the content of the heat stabilizer is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the vinyl chloride resin.
  • additives such as a thinning agent, a dispersing agent, and an antifoaming agent may be appropriately contained as necessary in addition to the above components.
  • the content of these additives is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the vinyl chloride resin.
  • the viscosity at the time of coating of the vinyl sol coating solution may be appropriately adjusted depending on the desired thickness of the sheet, coating conditions, etc., but is preferably 1000 mPa ⁇ s or more because it is easy to obtain good coating suitability. -More than s is more preferable and 5000 mPa * s or more is still more preferable.
  • the upper limit of the viscosity is preferably 50000 mPa ⁇ s or less, more preferably 30000 mPa ⁇ s or less, further preferably 27000 mPa ⁇ s or less, and particularly preferably 25000 mPa ⁇ s or less.
  • the coating solution viscosity can be measured with a B-type viscometer.
  • the heat storage molded body made of a sol cast film of a vinyl sol coating liquid containing the vinyl chloride resin particles and the heat storage material is not subject to shear or pressure on the heat storage material at the time of manufacture. Even though the material is used, it is difficult for the heat storage material to ooze out. Moreover, while having the thermal storage property by the said thermal storage material, favorable softness
  • the heat storage molded body of the present invention is also preferably a heat storage laminate by laminating with various functional layers.
  • flame retardancy can be improved by laminating with a non-combustible layer such as non-combustible paper, which is particularly suitable for application to living spaces.
  • heat storage can be more effectively expressed by laminating with a heat diffusion layer or a heat insulating layer.
  • a decorative layer and a decoration layer can also be provided.
  • Examples of the configuration laminated with the incombustible layer include a configuration in which the incombustible paper is laminated on one side or both sides of the heat storage molded body of the present invention.
  • the configuration in which the non-combustible paper is laminated on one side may be a configuration in which the heat storage molded body of the present invention is bonded to the non-combustible paper, but the vinyl sol coating liquid that directly forms the heat storage molded body of the present invention on the non-combustible paper.
  • a coated and gelled structure is preferable because it is easy to form.
  • the configuration having the non-combustible paper on both sides may be a configuration in which the non-combustible paper is bonded to both sides of the heat storage molded article of the present invention, but the non-combustible paper is coated with a vinyl sol coating liquid and gelled. It can form easily by bonding together the heat storage molded object surfaces of a laminated heat storage molded object.
  • the incombustible paper is not particularly limited as long as it has incombustibility.
  • paper in which a flame retardant is applied, impregnated, or internally added can be used.
  • the flame retardant include metal hydroxides such as magnesium hydroxide and aluminum hydroxide, basic compounds such as phosphates, borates, and stephamates, glass fibers, and the like.
  • the heat diffusion layer When it is applied to a closed space such as a room as a laminated structure of heat diffusion layers, the heat diffusion layer has the effect of uniformizing the heat in the room, and indoors (residential spaces such as houses, cars, trains, Heat from indoors such as airplanes, refrigerators of refrigerated vehicles, closed spaces such as aircraft storage, etc.) can be dispersed and transferred to the heat storage layer with low thermal resistance.
  • indoors residential spaces such as houses, cars, trains, Heat from indoors such as airplanes, refrigerators of refrigerated vehicles, closed spaces such as aircraft storage, etc.
  • the heat storage particles absorb indoor heat and release the heat into the room, and the indoor temperature environment can be controlled to an appropriate temperature.
  • thermal diffusion layer a layer having a high thermal conductivity of 5 to 400 W / m ⁇ K can be preferably used. Due to the high thermal conductivity, locally concentrated heat can be diffused and transmitted to the heat storage layer to improve thermal efficiency and make room temperature uniform.
  • Examples of the material for the heat diffusion layer include aluminum, copper, iron, and graphite.
  • aluminum can be particularly preferably used.
  • the reason why aluminum is preferable is that a heat insulating effect due to reflection of radiant heat is also exhibited.
  • the heating efficiency can be improved by a heat insulating effect.
  • Examples of the heating appliance mainly using radiant heat include electric floor heating, hot water type floor heating, and an infrared heater.
  • flame retardancy can be improved from the viewpoint of disaster prevention.
  • an appropriate form such as a layer made of a sheet of the above material or a vapor deposition layer of the above material can be used.
  • a vapor deposition layer of the above material for example, an aluminum foil, an aluminum vapor deposition layer, or the like having flexibility is preferably used.
  • the layer thickness of the thermal diffusion layer is not particularly limited, but is preferably about 3 to 500 ⁇ m because it is easy to ensure suitable thermal diffusion and handling properties.
  • the heat storage layer when the heat storage layer is laminated on the heat storage layer, heat absorption and heat release of the heat storage layer are effectively performed on the indoor side, and the effect of maintaining an appropriate temperature in the room can be particularly suitably exhibited. It is also effective in preventing the outflow of heat in the room or reducing the influence of heat from the outside air.
  • the heat storage laminate of the present invention can keep the room at an appropriate temperature by suppressing the temperature change in the room by these combined actions. Further, when an air conditioner such as an air conditioner or refrigeration equipment is used, the energy consumption can be reduced. Thereby, it can contribute to the energy-saving indoors suitably.
  • the heat insulating layer a layer having a thermal conductivity of less than 0.1 W / m ⁇ K can be preferably used.
  • the said heat insulation layer exhibits the effect which prevents the outflow of the heat
  • the heat insulating layer is not particularly limited as long as it can form a layer having a thermal conductivity of less than 0.1 W / m ⁇ K.
  • a heat insulating sheet such as a foamed resin sheet or a resin sheet containing a heat insulating material, or extruded Insulating boards such as polystyrene, bead polystyrene, polyethylene foam, urethane foam, and phenol foam can be used as appropriate.
  • a heat insulating sheet is easy to ensure workability, it is preferable and it is more preferable that it is a resin sheet containing a heat insulating material since heat conductivity can be reduced.
  • a foam sheet is preferable because it is easily available and inexpensive.
  • the measured value by a cylindrical mandrel bending tester JIS K 5600 is a mandrel diameter of 2 to 32 mm.
  • the heat insulating material used for the heat insulating layer enhances the heat insulating property of the heat storage laminate, and examples thereof include porous silica, porous acrylic, hollow glass beads, vacuum beads, and hollow fibers.
  • porous silica porous acrylic
  • hollow glass beads hollow glass beads
  • vacuum beads hollow fibers.
  • porous acrylic can be preferably used as the heat insulating material 5.
  • the particle size of the heat insulating material is not limited, but is preferably about 1 to 300 ⁇ m.
  • the heat insulating material is mixed into the base resin material to form a sheet.
  • the resin material include polyvinyl chloride, polyphenylene sulfide, polypropylene, polyethylene, polyester, or acrylonitrile-butadiene-styrene resin, as described above.
  • polyester A-PET, PET-G and the like can be used.
  • a self-digestible vinyl chloride resin can be suitably used.
  • the sheet is formed by using a molding machine such as extrusion molding or calender molding using a vinyl chloride resin, a plasticizer, and a heat insulating material.
  • a molding machine such as extrusion molding or calender molding using a vinyl chloride resin, a plasticizer, and a heat insulating material.
  • the content of the heat insulating material in the heat insulating layer is preferably 20% by mass or more in the heat insulating layer, more preferably 20 to 80% by mass, still more preferably 30 to 80% by mass, It is particularly preferably 80 to 80% by mass.
  • additives such as a plasticizer and a flame retardant may be blended as necessary.
  • the layer thickness of the heat insulating layer is not particularly limited, but as the thickness increases, the heat retaining property in the room increases. In order to maintain the bendability and workability of the sheet, the thickness is preferably about 50 to 3000 ⁇ m.
  • the heat storage molded body of the present invention is preferably used mainly as an interior material application for an inner wall, ceiling, floor, etc. of a building, but can also be applied as an interior material for a window sash frame or a vehicle. . Moreover, it can be used not only in the walls, floors, and ceilings of buildings but also in rooms such as automobiles, trains, and airplanes. It can also be used as a low-temperature maintenance material for refrigeration equipment and a low-temperature maintenance material for electrical components that generate heat, such as a CPU and storage battery of a personal computer. In addition, a heater such as a planar heating element may be used in combination to develop an energy saving effect due to heat storage.
  • Example 1 100 parts by weight of polyvinyl chloride resin particles having a polymerization degree of 900 (ZEST PQ92, manufactured by Shin-Daiichi PVC Co., Ltd.), epoxy plasticizer (Monicizer W-150, manufactured by DIC: viscosity 85 mPa ⁇ s, gelation end point temperature 121 ° C.) 60 3 parts by mass, 3 parts by mass of a heat stabilizer (Greek ML-538, Showa Varnish), 6 parts by mass of a viscosity reducing agent (BYK, Viscobyk-5125, manufactured by BYK) and a dispersant (Disperplast-, manufactured by BYK) 1150) 3 parts by mass and 60 parts by mass of a latent heat storage material (Micro DS5001X manufactured by BASF, particle size: 100 to 300 ⁇ m, melting point: 26 ° C.) obtained by microencapsulating paraffin with an outer shell made of polymethyl methacrylate (PMMA) resin
  • PMMA
  • the calculated value of the HSP distance between the plasticizer used and the latent heat storage material is 8.88
  • the calculated value of the HSP distance between the plasticizer and the vinyl chloride resin is 4.6
  • the coating liquid immediately after being mixed and homogeneously mixed
  • the viscosity of was 7000 mPa ⁇ s. This was coated on a PET film with a 5 mm applicator and then heated for 8 minutes at a dryer temperature of 150 ° C. for gelation to form a heat storage molded product having a thickness of 3 mm.
  • the tensile strength was 2.06 MPa and the elongation at break was 114.6%.
  • Example 2 In place of the epoxy plasticizer used in Example 1, a polyester plasticizer (polysizer W-230H manufactured by DIC: viscosity 220 mPa ⁇ s, gelation end point temperature 136 ° C.) was used, and the same as in Example 1. Thus, a heat storage molded body was formed. The calculated value of the HSP distance between the used plasticizer and the latent heat storage material is 11.04, the calculated value of the HSP distance between the plasticizer and the vinyl chloride resin is 6.4, and the viscosity of the coating liquid is 8500 mPa ⁇ s. there were. The obtained heat storage molded product had a tensile strength of 1.10 MPa and an elongation at break of 81.8%.
  • Example 3 Example except that instead of the epoxy plasticizer used in Example 1, a trimellitic acid plasticizer (Monicizer W-705 manufactured by DIC: viscosity 220 mPa ⁇ s, gelation end point temperature 143 ° C.) was used. In the same manner as in No. 1, a heat storage molded body was formed. The calculated value of the HSP distance between the used plasticizer and the latent heat storage material is 9.07, the calculated value of the HSP distance between the plasticizer and the vinyl chloride resin is 4.1, and the viscosity of the coating liquid is 8500 mPa ⁇ s. there were. The obtained heat storage molded body did not substantially stretch.
  • a trimellitic acid plasticizer (Monicizer W-705 manufactured by DIC: viscosity 220 mPa ⁇ s, gelation end point temperature 143 ° C.) was used.
  • a heat storage molded body was formed.
  • the calculated value of the HSP distance between the used plasticizer and the latent heat storage material is
  • Example 4 instead of 60 parts by mass of the latent heat storage material used in Example 1, a latent heat storage material in which paraffin is microencapsulated using an outer shell made of melamine resin (Thermo Memory FP-25, manufactured by Mitsubishi Paper Industries Co., Ltd .: average particle size 50 ⁇ m) A melting point 25 ° C.) was used in the same manner as in Example 1 except that 80 parts by mass was used to form a heat storage molded body.
  • the calculated value of the HSP distance between the plasticizer used and the latent heat storage material was 22.30, and the viscosity of the coating liquid was 8000 mPa ⁇ s.
  • the obtained heat storage molded product had a tensile strength of 1.67 MPa and an elongation at break of 70.1%.
  • Example 5 Similar to Example 4, except that a polyester plasticizer (DICizer Polycizer W-230H: viscosity 220 mPa ⁇ s, gelation end point temperature 136 ° C.) was used instead of the epoxy plasticizer used in Example 4. Thus, a heat storage molded body was formed. The calculated value of the HSP distance between the plasticizer used and the latent heat storage material was 23.20, and the viscosity of the coating solution was 12000 mPa ⁇ s. The obtained heat storage molded product had a tensile strength of 0.72 MPa and an elongation at break of 31.0%.
  • a polyester plasticizer DIDICizer Polycizer W-230H: viscosity 220 mPa ⁇ s, gelation end point temperature 136 ° C.
  • Example 6 Example except that a benzoic acid plasticizer (manufactured by DIC, Monosizer PB-10: viscosity 80 mPa ⁇ s, gelation end point temperature 100 ° C. or lower) was used in place of the epoxy plasticizer used in Example 4.
  • a heat storage molded body was formed.
  • the calculated value of the HSP distance between the used plasticizer and the latent heat storage material is 17.10
  • the calculated value of the HSP distance between the plasticizer and the vinyl chloride resin is 1.4
  • the viscosity of the coating liquid is 8500 mPa ⁇ s. there were.
  • the obtained heat storage molded product had a tensile strength of 2.28 MPa and an elongation at break of 156.7%.
  • Example 1 Example except that benzoic acid plasticizer (manufactured by DIC, monosizer PB-10: viscosity 80 mPa ⁇ s, gelation end point temperature 100 ° C. or lower) was used instead of the epoxy plasticizer used in Example 1.
  • a heat storage molded body was formed.
  • the calculated value of the HSP distance between the plasticizer used and the latent heat storage material was 4.33, and the viscosity of the coating solution was 8500 mPa ⁇ s.
  • the obtained heat storage molded body had a tensile strength of 3.50 MPa and an elongation at break of 222.9%.
  • Example 2 a heat storage molded article was obtained in the same manner as in Example 1 except that a phthalic acid plasticizer (Sanso Sizer DINP: viscosity 65 mPa ⁇ s manufactured by Nippon Nippon Chemical Co., Ltd.) was used. Formed.
  • the calculated value of the HSP distance between the used plasticizer and the latent heat storage material is 8.77
  • the calculated value of the HSP distance between the plasticizer and the vinyl chloride resin is 3.7
  • the viscosity of the coating liquid is 6000 mPa ⁇ s. there were.
  • the evaluation method of the coating liquid used in the above Examples and Comparative Examples and the evaluation method of the obtained heat storage molded body are as follows.
  • Measuring device B-type viscometer ("BM type” manufactured by Tokimec Co., Ltd.) Measurement conditions: temperature 25 ° C. 4 rotors, 12 rpm
  • HSP distance [4 (dDA ⁇ dDB) 2 + (dPA ⁇ dPB) 2 + (dHA ⁇ dHB) 2 ] 0.5
  • ⁇ Heat storage evaluation test> Two test specimens each having a size of 50 mm in width and 50 mm in length were stacked on the sheets prepared in Examples and Comparative Examples, and a thermocouple was sandwiched between the sheets. After keeping the outside air temperature at 35 ° C. for 2 hours in the environmental test machine, the temperature was lowered to 5 ° C. in 50 minutes, and further kept at 5 ° C. for 1 hour. At this time, the time during which the temperature in the sheet was maintained at 28 ° C. to 20 ° C. was measured, and the amount of time for maintaining the appropriate temperature was calculated from the 28 ° C. to 20 ° C. holding time (800 seconds) of the outside air temperature. Appropriate temperature maintenance was evaluated. The evaluation criteria are as follows. ⁇ : Retention time +200 seconds or more ⁇ : Retention time +50 seconds or more and less than 200 seconds ⁇ : Retention time less than +50 seconds
  • ⁇ Cutability> The sheet prepared in the example was cut into a size of 50 mm ⁇ 50 mm in width with a cutter knife, and the cut surface was observed.
  • the heat storage molded products of the present invention of Examples 1 to 6 have suitable heat resistance while using a flexible resin-based sheet, and can contribute to maintaining an appropriate temperature according to the use mode. It was possible to realize sex. Since the heat storage molded products of these examples do not use a phthalic acid-based material, they are less harmful to the human body and can be suitably used in a human living environment.
  • the heat storage molded bodies of Examples 1 to 6 could be easily cut with a cutter knife. Furthermore, the heat storage molded bodies of Examples 1 to 2, 4 to 6 had a suitable sheet formability even at low temperatures where cracks did not occur even in the 90 ° bending test and the heat storage material did not ooze out. . In particular, the heat storage molded bodies of Examples 1, 4, and 6 did not cause cracking even in the 180 ° bending test, and had high toughness.
  • the molded body of Comparative Example 1 had a large heat loss at high temperatures and poor heat resistance. Moreover, since the molded body of Comparative Example 2 uses a phthalic acid-based material, it was difficult to apply in a living environment, and cracks were generated on the surface in a 90 ° bending test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

樹脂マトリクス中に蓄熱材が分散した蓄熱成形体であって、樹脂マトリクスが熱可塑性樹脂及び可塑剤を含有する樹脂組成物からなり、可塑剤が非フタル酸系可塑剤であり、可塑剤と蓄熱材とのHSP距離が6以上である蓄熱成形体により、石膏ボード等の剛直な材料に比して良好な柔軟性や取扱い性と共に、高温下での蓄熱成形体からの脱離成分の脱離を抑制でき、良好な蓄熱性や好適な耐熱性を実現でき、また、熱可塑性樹脂と可塑剤とを含有する樹脂組成物をマトリクス材とすることから、石膏ボード等の剛直な材料に比して柔軟性や取扱い性に優れる。

Description

蓄熱成形体、蓄熱積層体及び蓄熱成形体の製造方法
 本発明は、各種使用態様に応じた適温保持、省エネルギー化が可能な蓄熱成形体に関する。特に、住宅等の居住空間や自動車等の室内の適温保持に有用な蓄熱成形体に関する。
 近年、住宅やオフィス等の居住空間において省エネルギー化の要請が高まっており、住宅等に使用される建築材料にも省エネルギー化に貢献する材料が求められている。一般的には、床、天井、壁面等に断熱材を用いて冷暖房の効率化が図られているが、さらなる省エネルギー化のために各種材料の検討がなされている。また、自動車や航空機等の閉空間や、冷蔵車等の冷蔵庫内においても同様に省エネルギー化の要請が高い。
 このような材料としては、例えば、石膏ボードに潜熱蓄熱材をカプセル化したものを混ぜ合わせた材料が開示されている(特許文献1参照)。また、柔軟性のある材料を使用した材料として、熱可塑性樹脂中に蓄熱材を含有する蓄熱性熱可塑性樹脂シート(特許文献2参照)等が開示されている。
特開2003-284939号公報 特開2009-51016号公報
 上記石膏ボード中に潜熱蓄熱材を混合した材料は、壁面等に使用することで、壁面等の熱容量を増加させて省エネルギー化を図るものである。しかし、当該材料は柔軟性や取扱い性に乏しく、使用態様に制限があるものであった。
 上記熱可塑性樹脂を使用したシートは、熱可塑性樹脂を使用することで柔軟性を有するものであるが、内分泌作用を攪乱し、野生生物やヒトの生殖・発育に悪影響を与える物質(環境ホルモン)として懸念されるフタル酸系材料が使用されている。蓄熱性の材料は人体に近い空間で用いられることも多いことから、当該フタル酸含量を低減した蓄熱材が求められていた。
 しかし、フタル酸系材料を使用せず、蓄熱材を含有する蓄熱成形体を形成した場合には、高温下での体積収縮が生じる場合があり、好適な耐熱性を実現することが困難であった。
 本発明が解決しようとする課題は、フタル酸系材料の使用を抑制しつつ、優れた柔軟性や耐熱性を有し、使用態様に応じた適温保持に貢献できる蓄熱性を有する蓄熱成形体を提供することにある。
 より好適には、上記課題に加え、可塑剤や潜熱蓄熱材の染み出しを好適に抑制できる蓄熱成形体を提供することにある。
 本発明は、樹脂マトリクス中に蓄熱材が分散した蓄熱成形体であって、前記樹脂マトリクスが熱可塑性樹脂及び可塑剤を含有する樹脂組成物からなり、前記可塑剤が非フタル酸系可塑剤であり、前記可塑剤と蓄熱材とのHSP距離が6以上である蓄熱成形体により上記課題を解決するものである。
 本発明の蓄熱成形体は、樹脂組成物中に使用する非フタル酸系可塑剤と、成形体中に分散させる蓄熱材とのHSP距離を6以上とすることで、高温下での蓄熱成形体からの脱離成分の脱離を抑制でき、良好な蓄熱性と共に好適な耐熱性を実現できる。また、熱可塑性樹脂と可塑剤とを含有する樹脂組成物をマトリクス材とすることから、石膏ボード等の剛直な材料に比して柔軟性や取扱い性に優れる。また、シート形状とすることで、ロール状への巻き取りや、化粧層や熱伝導層等の他の機能層との積層加工も容易であり、切断性や加工性も良好であることから各種態様での使用が可能である。
 さらに、低温下で成形しやすく、蓄熱材の破損も生じにくいことから、可塑剤や蓄熱材の染み出しを抑制しやすい。このため、蓄熱材の染み出しを抑制するための保護層等が不要となり、当該蓄熱成形体単体での流通や使用も可能である。
 このような本発明の蓄熱成形体は、各種用途に使用でき、住宅等の居住空間の壁材や壁紙、自動車、電車、航空機、農業ハウス等の室内、さらには、冷蔵車や冷蔵設備の冷蔵庫内、航空機の庫内等の閉空間、パソコンのCPUや蓄電池などの熱を発生する電気部品に適用する材料等、各種用途において好適に省エネルギー化に貢献できる。
 本発明の蓄熱成形体は、樹脂マトリクスが熱可塑性樹脂及び可塑剤を含有する樹脂組成物からなる樹脂マトリクス中に、蓄熱材が分散した蓄熱成形体であり、可塑剤が非フタル酸系可塑剤であり、当該可塑剤と蓄熱材とのHSP距離が6以上の蓄熱成形体である。
[熱可塑性樹脂]
 本発明に使用する熱可塑性樹脂は、可塑剤と共に樹脂マトリクスを形成できる樹脂であれば特に制限されず、例えば、塩化ビニル系樹脂、アクリル系樹脂、ウレタン系樹脂、オレフィン系樹脂、エチレン酢酸ビニル共重合、スチレン・ブタジエン系樹脂、ポリスチレン系樹脂、ポリブタジエン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂、1,2-ポリブタジエン系樹脂、ポリカーボネート系樹脂、ポリイミド系樹脂等を例示できる。なかでも、低温下での成形性や蓄熱材の分散性を得やすいことから塩化ビニル系樹脂を使用することが好ましい。
 塩化ビニル系樹脂を使用する場合には、塩化ビニル樹脂粒子を使用したビニルゾル塗工液を用いて、ゾルキャスト膜を形成することで、低温下での蓄熱成形体の形成が可能となるため好ましい。ビニルゾル塗工液は、塩化ビニル樹脂粒子及び可塑剤を含有する樹脂組成物中に蓄熱材が分散、懸濁されたペースト状の塗工液である。
 塩化ビニル樹脂粒子の平均粒子径は、0.01~10μmであることが好ましく、0.1~5μmであることが好ましい。塗工液中では、当該粒子が直接分散した状態でも、当該粒子を一次粒子として、球状の二次粒子に凝集した状態で分散した状態であってもよい。また、粒子径の異なる粒子が混合されて、粒度分布のピークが二以上あるものであってもよい。粒子径はレーザー法等により測定できる。
 ビニルゾル塗工液に使用する塩化ビニル樹脂粒子の形状は、好適な流動性を得やすく、熟成粘度変化が小さいことから、略球形形状であることが好ましい。塩化ビニル樹脂粒子は、乳化重合、懸濁重合により製造されたものが、球形形状を得やすく、また、粒度分布を制御しやすいため好ましい。
 使用する塩化ビニル樹脂の重合度としては、500~4000であることが好ましく、600~2000であることがより好ましい。
 本発明に使用する塩化ビニル樹脂粒子は、市販されている塩化ビニル樹脂粒子を適宜使用でき、例えば、新第一塩ビ株式会社製ZEST PQ83,PWLT,PQ92,P24Z等や、株式会社カネカ製PSL-675,685等が挙げられる。
[可塑剤]
 本発明に使用する可塑剤は、人体への悪影響が懸念されるフタル酸系可塑剤以外の非フタル酸系可塑剤である。当該可塑剤としては、エポキシ系可塑剤、メタクリレート系可塑剤、ポリエステル系可塑剤、ポリエーテルエステル系可塑剤、脂肪族ジエステル系可塑剤、トリメリット酸系可塑剤、アジピン酸系可塑剤、安息香酸系可塑剤等を適宜使用できる。また、2種類以上の可塑剤を適宜混合して使用しても良い。
 本発明においては、これら可塑剤の中から、使用する蓄熱材とのHSP距離が6以上の可塑剤を使用することで、高温下での蓄熱成形体からの脱離成分の脱離を抑制でき、高温下でも体積収縮が生じにくい好適な耐熱性を実現できる。蓄熱材を含有しない、一般的な熱可塑性樹脂と可塑剤とを含有する樹脂組成物からなる成形品においては、高温下でも大きな体積収縮は生じにくい。しかし、蓄熱材を含有する蓄熱成形体においては、高温下で大きく体積収縮を生じる場合がある。本発明においては、蓄熱材と可塑剤とのHSP距離を上記範囲とすることで、高温下で多量の脱離成分を生じる要因となる可塑剤の蓄熱材への取り込みを抑制し、高温下での体積収縮を抑制できることを見い出し、優れた耐熱性の蓄熱成形体を実現できる。当該HSP距離は好適な耐熱性を得やすいことから、7以上であることが好ましく、8以上であることがより好ましい。また、一般的に可塑剤として使用されるものであれば特に上限は制限されないが、好適な相溶性や成形性を得やすいことから40以下であることが好ましく、30以下であることがより好ましく、25以下であることが更に好ましい。
 HSP距離とは、ハンセン溶解度パラメータ(HSP)を用いた物質間の溶解性を表す指標である。ハンセン溶解度パラメータは、溶解性を多次元(典型的には三次元)のベクトルで表すものであり、当該ベクトルは、分散項、極性項、水素結合項で表すことができる。そして、当該ベクトルの類似度を、ハンセン溶解度パラメータの距離(HSP距離)として表すものである。
 ハンセン溶解度パラメータは、各種文献において参考となる数値が提示されており、例えば、Hansen Solubility Parameters:A User’s Handbook(Charles Hansen等、2007、第2版)等が挙げられる。また、市販のソフトウェア、例えば、Hansen Solubility Parameter in Practice (HSPiP)を用いて、物質の化学構造に基づいてハンセン溶解度パラメータを算出することもできる。算出は、溶媒温度を25℃として行う。
 また、本発明においては、成形体の樹脂マトリクスを好適に構成しやすいことから、使用する熱可塑性樹脂と可塑剤とのHSP距離が15以下であることが好ましく、12以下であることがより好ましい。また下限は特に制限されないが1以上であることが好ましく、2以上であることがより好ましく、3以上であることがさらに好ましい。
 本発明においては、非フタル酸系の可塑剤から、使用する蓄熱材に応じて上記HSP値となる可塑剤を適宜使用でき、例えば、アクリル系の外殻を有する蓄熱材を使用する場合には、エポキシ系可塑剤、ポリエステル系可塑剤、トリメリット酸系可塑剤等を好ましく使用できる。また、メラミン系の外殻を有する蓄熱材を使用する場合には、エポキシ系可塑剤、ポリエステル系可塑剤、トリメリット酸系可塑剤、安息香酸系可塑剤等を好ましく使用できる。
 これら可塑剤としては、各種市販されている可塑剤を適宜使用でき、例えば、エポキシ系可塑剤としては、DIC社製 モノサイザーW-150;新日本理化社製 サンソサイザー E-PS、E-PO、E-4030、E-6000、E-2000H、E-9000H;ADEKA社製 アデカサイザー O-130P、O-180A、D-32、D-55、花王社製 カポックス S-6等、ポリエステル系可塑剤としては、DIC社製 ポリサイザーW-2050、W-2310、W-230H;ADEKA社製 アデカサイザー PN-7160、PN-160、PN-9302、PN-150、PN-170、PN-230、PN-7230、PN-1010、三菱化学社製 D620、D621、D623、D643、D645、D620N;花王社製 HA-5等、トリメリット酸系可塑剤としては、DIC社製 モノサイザーW-705、ADEKA社製 アデカサイザーC-9N、三菱化学社製 TOTM、TOTM-NB等、安息香酸系可塑剤としては、DIC社製 モノサイザーPB-3A、三菱化学社製 JP120等を例示できる。
 本発明においては、蓄熱材や可塑剤の染み出しを抑制しやすいことから、上記のなかでも特に低温でゲル化できる可塑剤を好ましく使用できる。当該可塑剤としては、ゲル化終了温度が150℃以下であることが好ましく、140℃以下であることがより好ましく、130℃以下であることがさらに好ましく、120℃以下であることがさらに好ましく、110℃以下であることが特に好ましい。ゲル化終了温度は、ゲル化膜の光透過性が一定となる温度をゲル化終了温度とできる。当該低温成形性の良好な可塑剤としては、エポキシ系可塑剤、ポリエステル系可塑剤、安息香酸系可塑剤を好ましく使用でき、上記耐熱性と低温成形性の観点からは、エポキシ系可塑剤及びポリエステル系可塑剤を特に好ましく使用できる。また、強靭性の観点からもエポキシ系可塑剤及びポリエステル系可塑剤を好ましく使用でき、エポキシ系可塑剤が特に好ましい。
 ゲル化終点温度は具体的には、ペースト用塩化ビニル樹脂(重合度1700)と上記可塑剤と熱安定剤(Ca-Zn系)を質量比100/80/1.5で混合した組成物をガラスプレートとプレパラート間に挟み込み、5℃/minの昇温速度で昇温し、光透過性の変化を顕微観察用ホットステージ(Metter 800)を用いて観察し、光透過性が一定となる温度をゲル化終点温度とする。
 本発明に使用する可塑剤は、25℃における粘度が1500mPa・s以下であることが好ましく、1000mPa・s以下であることがより好ましく、500mPa・s以下であることがさらに好ましく、300mPa・s以下であることが特に好ましい。当該範囲とすることで、ビニルゾル塗工液の粘度を低く抑えることができるため、蓄熱材の充填率が高めることができる。なお、可塑剤粘度測定の条件は後述実施例における条件にて測定できる。
 本発明に使用する可塑剤は、その重量平均分子量が200~3000であることが好ましく、300~1000であることがより好ましい。当該範囲とすることで、可塑剤自身が染み出しにくく、且つビニルゾル塗工液の粘度を低く抑えることができるため、蓄熱材の充填率を高めることができる。なお、重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(以下、「GPC」と略記する。)測定に基づきポリスチレン換算した値である。なお、GPC測定は以下の条件にて測定できる。
(重量平均分子量の測定条件)
 測定装置:東ソー株式会社製ガードカラム「HLC-8330」
 カラム:東ソー株式会社製「TSK SuperH-H」
    +東ソー株式会社製「TSK gel SuperHZM-M」
    +東ソー株式会社製「TSK gel SuperHZM-M」
    +東ソー株式会社製「TSK gel SuperHZ-2000」
    +東ソー株式会社製「TSK gel SuperHZ-2000」
 検出器:RI(示差屈折計)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.10」
 カラム温度:40℃
 展開溶媒:テトラヒドロフラン(THF)
 流速:0.35mL/分
 試料:樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
 標準試料:前記「GPC-8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(標準試料:単分散ポリスチレン)
 東ソー株式会社製「A-300」
 東ソー株式会社製「A-500」
 東ソー株式会社製「A-1000」
 東ソー株式会社製「A-2500」
 東ソー株式会社製「A-5000」
 東ソー株式会社製「F-1」
 東ソー株式会社製「F-2」
 東ソー株式会社製「F-4」
 東ソー株式会社製「F-10」
 東ソー株式会社製「F-20」
 東ソー株式会社製「F-40」
 東ソー株式会社製「F-80」
 東ソー株式会社製「F-128」
 東ソー株式会社製「F-288」
[蓄熱材]
 本発明に使用する蓄熱材は、使用する可塑剤とのHSP距離が上記範囲の蓄熱材であれば特に限定されず、各種の公知の蓄熱材を使用できる。なかでも、取扱いや成形体の成形が容易であることから、固体-液体の相変化による潜熱蓄熱材を使用する事が好ましい。
 潜熱蓄熱材は、相変化による溶融時の染み出し等の問題や、混入時の分散性を考慮して、有機材料等からなる外殻中にパラフィンなどの潜熱蓄熱材料を内包した、カプセル化された蓄熱粒子が好ましい。本発明においてこのような外殻を有する蓄熱粒子を使用する場合には、当該蓄熱粒子の外殻に使用する材料のHSPに基づき、上記HSP距離を算出する。本発明の蓄熱成形体は、有機材料からなる外殻中にパラフィン等の潜熱蓄熱材料を含有する蓄熱材を使用した場合にも可塑剤による外殻の脆化が生じにくく、蓄熱材の破損が生じにくい。
 このような蓄熱粒子としては、例えば、メラミン樹脂からなる外殻を用いたものとして、三菱製紙社製サーモメモリーFP-16,FP-25,FP-31,FP-39、三木理研工業社製リケンレジンPMCD-15SP,25SP,32SP等が例示できる。また、シリカからなる外殻を用いたものとして、三木理研工業社製リケンレジンLA-15,LA-25,LA-32等、ポリメチルメタクリレート樹脂からなる外殻を用いたものとして、BASF社製MicronalDS5001X,5040X等が例示できる。
 蓄熱粒子の粒径は、特に限定されないが、10~1000μm程度であることが好ましく、50~500μmであることがより好ましい。蓄熱粒子の粒子径は、その一次粒子の粒子径が上記範囲であることも好ましいが、一次粒子径が1~50μm、好ましくは2~10μmの粒子が凝集して二次粒子を形成し、当該二次粒子の粒径が上記範囲となった蓄熱粒子であることも好ましい。このような蓄熱粒子は、圧力やシェアにより破損しやすいが、本発明の構成によれば、当該蓄熱粒子の破損を好適に抑制でき、蓄熱材料の染み出しや漏れが生じにくくなる。特に、外殻が有機材料から形成される場合には温度による破損のおそれも生じるが、本発明の蓄熱成形体は、このような潜熱蓄熱材を使用した場合にも蓄熱材料の染み出しや漏れを好適に抑制しやすい。なお、蓄熱成形体中に使用する全蓄熱粒子の粒子径が上記範囲でなくともよく、蓄熱成形体中の蓄熱粒子の80質量%以上が上記範囲の蓄熱粒子であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることが特に好ましい。
 潜熱蓄熱材は、特定の温度の融点において相変化する。すなわち、室温が融点を超えた場合は、固体から液体へ相変化し、室温が融点より下がった場合は、液体から固体へ相変化する。潜熱蓄熱材の融点は、その使用態様に応じて調整すればよく、-20℃~120℃程度の温度範囲にて固/液相転移を示すものを適宜使用できる。例えば、住宅等の居住空間や、自動車、電車、航空機、農業ハウス等の室内等の適温を維持し、省エネルギー化を図る場合には、この融点を日常生活に適した温度、具体的には10~35℃、好ましくは15~30℃に設計した潜熱蓄熱材を混入する事により、適温維持性能を発揮する事ができる。より詳細に冬季又は夏季の適温維持性能を調整する場合には、冬場の暖房効果を持続させる事を目的とすれば25~28℃程度を融点とした潜熱蓄熱材を混入する。もしくは、夏場の冷房効率を持続させる事を目的とすれば20~23℃程度を融点とした潜熱蓄熱材を混入する事ができる。両方の効果を発現するには融点設計の異なる2種類以上の潜熱蓄熱材を混入すればよい。また、冷蔵設備等の庫内の省エネルギー化を図る場合には、-10℃~5℃程度の融点の潜熱蓄熱材を使用すればよい。
[蓄熱成形体]
 本発明の蓄熱成形体は、上記の熱可塑性樹脂及び可塑剤を含有する樹脂組成物からなる樹脂マトリクス中に、蓄熱材が分散した蓄熱成形体である。本発明の蓄熱成形体は樹脂成分を主体とするため好適な柔軟性を有する。また、可塑剤として非フタル酸系可塑剤を使用することからフタル酸系材料に基づく人体への悪影響の懸念がない。また、蓄熱成形体中の可塑剤と蓄熱材とのHSP距離が6以上であることから、高温下でも体積収縮が少なく、好適な耐熱性を実現できる。
 本発明の蓄熱成形体の形状は、その使用態様に応じて適宜の形状に成形すればよいが、シート形状とすることで、住宅等の居住空間の壁材や壁紙等、各種の用途への適用が容易となるため好ましい。また、シート形状とすることで、ロール状とすることもできるため、化粧層や、熱伝導層等の他の機能層との積層加工も容易であり、切断性や加工性も良好となるため好ましい。
 本発明の蓄熱成形体の厚みは、使用態様に応じて適宜調整すればよい。例えば、閉空間の壁面等へ適用する場合には、好適な蓄熱効果を得やすいことから50μm以上が好ましく、100μm以上がより好ましく、500μm以上がさらに好ましく、1mm以上が特に好ましい。また、好適な柔軟性を得やすいことから10mm以下であることが好ましく、6mm以下がより好ましく、5mm以下がさらに好ましく、3mm以下が特に好ましい。本発明の蓄熱成形体は、蓄熱性をより向上させる為、これを積層して使用することも好ましい。
 蓄熱成形体中の熱可塑性樹脂の含有量は、10~80質量%であることが好ましく、20~70質量%であることがより好ましく、30~60質量%であることがさらに好ましい。当該範囲とすることで、柔軟性を有するシート形成しやすくなる。蓄熱成形体中の可塑剤の含有量は、5~75質量%であることが好ましく、10~70質量%であることがより好ましく、20~60質量%であることがさらに好ましい。当該範囲とすることで、良好な塗工適性や成形性を得やすくなる。また、蓄熱成形体中の蓄熱材の含有量は10~80質量%であることが好ましく、20~70質量%であることがより好ましく、30~60質量%であることがさらに好ましい。当該範囲とすることで、良好な蓄熱効果を得やすく、良好な成形性が得られやすくなる。
 また、熱可塑性樹脂に対する可塑剤の含有比率は、熱可塑性樹脂100質量部に対して可塑剤が30~150質量部であることが好ましく、30~120質量部であることがより好ましく、40~100質量部であることがさらに好ましい。
 本発明の蓄熱成形体は、引張強さが、0.1MPa以上であることが好ましく、0.3MPa以上であることがより好ましく、0.6MPa以上であることが更に好ましく、1MPa以上であることが特に好ましい。当該引張強さとすることで、柔軟性を有しながらも強靭な蓄熱成形体とすることができ、好適な加工性や取扱い性、搬送適正、曲げ適性等を得やすくなる。引張強さの上限は特に制限されるものではないが、15MPa以下程度であることが好ましく、10MPa以下であることがより好ましく、5MPa以下であることが特に好ましい。
 また、引張破断時の伸び率が10%以上であることが好ましく、15%以上であることがより好ましく、20%以上であることが更に好ましく、25%以上であることが特に好ましい。伸び率の上限は1000%以下であることが好ましく、500%以下であることがより好ましく、300%以下であることが更に好ましく、200%以下が特に好ましい。伸び率を当該範囲とすることで、強靭でありながら好適な柔軟性を実現でき、良好な加工性や取扱い性、搬送適正、曲げ適性等を得やすくなる。
 引張強さ、引張破断時の伸び率は、JIS K6251に準じて測定される。具体的には、蓄熱成形体をダンベル状2号形に切り出し、初期の標線間距離を20mmとして2本の標線をつけた試験片を作成する。この試験片を引張り試験機に取り付け、速度200mm/minで引張って破断させる。この時、破断までの最大の力(N)、及び破断時の標線間距離(mm)を測定し、以下の式により引張り強さと引張り破断時の伸び率を算出する。
 引張強さTS(MPa)は以下の式により算出する。
 TS=F/Wt
  F:最大の力(N)
  W:平行部分の幅(mm)
  t:平行部分の厚さ(mm)
 引張り破断時の伸び率E(%)は以下の式により算出する。
 E=(L-L)/L×100
  L:破断時の標線間距離(mm)
  L:初期の標線間距離(mm)
 本発明の蓄熱成形体は、熱可塑性樹脂及び可塑剤を含有する樹脂組成物と、蓄熱材とを混合した塗工液を塗布、あるいは任意の形状の型枠へ投入した後、加熱や乾燥させることで、任意の形状の成形体を形成できる。
 シート形状の蓄熱積層体を好適に得る方法としては、
(1)HSP距離が6以上となる非フタル酸系可塑剤と蓄熱材とを、熱可塑性樹脂と混合して塗工液を調整する工程
(2)支持体上に塗工液を塗布して塗工膜を形成した後、塗工膜温度が150℃以下となる温度で加熱して蓄熱成形体を形成する工程、
を有する製造方法が好適である。
 (1)の工程にて塗工液を調整し、(2)の工程において、支持体上に、塗工液を塗布して塗工膜を得る。ここで使用する支持体は、蓄熱成形体を剥離して流通、使用等する場合には、得られる蓄熱成形体を剥離可能で、加熱工程の温度での耐熱性を有するものを適宜使用できる。また、蓄熱成形体を他の機能層や基材と積層して使用する場合には、当該他の機能層や基材を支持体としてもよい。
 蓄熱成形体を剥離する場合の支持体としては、例えば、各種の工程フィルムとして使用される樹脂フィルムを好ましく使用できる。当該樹脂フィルムとしては、例えば、ポリエチレンテレフタレート樹脂フィルム、ポリブチレンテレフタレート樹脂フィルム等のポリエステル樹脂フィルムなどが挙げられる。樹脂フィルムの厚みは特に制限されないが、25~100μm程度のものが取扱いや入手が容易である。
 支持体として使用する樹脂フィルムは、表面が剥離処理されているものを好ましく使用できる。剥離処理に用いられる剥離処理剤としては、例えば、アルキッド系樹脂、ウレタン系樹脂、オレフィン系樹脂、シリコーン系樹脂などが挙げられる。
 ビニルゾル塗工液を塗布するキャスト成膜の方法としては、ロールナイフコーター、リバースロールコーター、コンマコーターなどの塗工機を使用できる。なかでも、支持体上にビニルゾル塗工液を送り出し、ドクターナイフ等により、一定の厚みの塗工膜を形成する方法を好ましく使用できる。
 また(2)の工程においては、得られた塗工膜を加熱してゲル化や硬化させることで、支持体上に蓄熱成形体を形成する。加熱温度は、塗工膜温度が150℃以下となる温度が好ましく、140℃以下となる温度がより好ましく、130℃以下となる温度がさらに好ましく、120℃以下となる温度がさらに好ましい。塗工膜温度が当該温度で成形することにより、蓄熱材の熱による破壊を好適に抑制できる。加熱時間は、ゲル化速度等に応じて適宜調整すればよいが、10秒~10分程度で調整すればよい。また、当該加熱と共に、適宜風乾等の乾燥を併用してもよい。
 塗工液に溶媒を使用する場合には、上記加熱工程において溶媒の除去を同時に行ってもよいが、上記加熱の前に、予備乾燥を行うことも好ましい。
 上記にて形成された蓄熱成形体は、蓄熱成形体を支持体から剥離する工程により、蓄熱成形体として使用できる。当該剥離は、適宜好適な手法で剥離すればよい。また、各種加工や積層を行うにあたり、支持体上に積層した状態が好ましい場合には、支持体上に積層した状態で流通することもできる。
 本発明の蓄熱成形体の製造方法は上記方法にて適宜製造すればよいが、なかでも、熱可塑性樹脂として塩化ビニル樹脂粒子を使用したビニルゾル塗工液を用いて、ゾルキャストによりシート状等に形成する方法が好ましい。当該製造方法とすることで、ミキサー等による混練や押出成形等を経ることなく成形が可能となり、蓄熱材の破壊が生じにくく、得られる蓄熱成形体からの蓄熱材の染み出し等が生じにくい。また、当該方法によれば、低温下での成形が容易となることから、熱による蓄熱材の破壊を抑制しやすいため当該方法が特に好ましく使用できる。
 塩化ビニル樹脂を使用して、ビニルゾル塗工液とする場合には、塩化ビニル樹脂の含有量が、塗工液に含まれる固形分(溶媒以外の成分)中の10~80質量%であることが好ましく、20~70質量%であることがより好ましく、30~60質量%であることがさらに好ましい。また、可塑剤の含有量は、樹脂組成物中に含まれる熱可塑性樹脂100質量部に対して、30~150質量部であることが好ましく、30~120質量部であることがより好ましく、40~100質量部であることがさらに好ましい。さらに、当該塗工液中に混合する蓄熱材の含有量は、塗工液に含まれる固形分中の10~80質量%であることが好ましく、20~70質量%であることがより好ましく、30~60質量%であることがさらに好ましい。
 ビニルゾル塗工液中には、適宜溶媒を使用することもできる。当該溶媒としては、塩化ビニル樹脂のゾルキャスト法にて使用される溶媒を適宜使用でき、なかでも、ジイソブチルケトン、メチルイソブチルケトンなどのケトン類、酢酸ブチルなどのエステル類、グリコールエーテル類等を好ましく例示できる。これら溶媒は、常温で樹脂をわずかに膨潤して分散を助長しやすく、また、加熱工程で溶融ゲル化を促進しやすいため好ましい。これらの溶媒は単独で用いてもよく、2種以上を混合して用いてもよい。
 また、上記溶媒と共に希釈溶媒を使用してもよい。希釈溶媒としては、樹脂を溶解せず、分散溶媒の膨潤性を抑制する溶媒を好ましく使用できる。このような希釈溶媒としては、例えば、パラフィン系炭化水素、ナフテン系炭化水素、芳香族炭化水素、テルペン系炭化水素などを使用できる。
 ビニルゾル塗工液には、塩化ビニル樹脂の脱塩化水素反応を主とする分解劣化、着色を抑制するために熱安定剤を使用することも好ましい。熱安定剤としては、例えば、カルシウム/亜鉛系安定剤、オクチル錫系安定剤、バリウム/亜鉛系安定剤等を使用できる。熱安定剤の含有量は、塩化ビニル樹脂100質量部に対して、0.5~10質量部が好ましい。
 ビニルゾル塗工液には、上記以外の成分として、減粘剤、分散剤、消泡剤等の添加剤を、必要に応じて適宜含有してもよい。これら添加剤の含有量は、各々、塩化ビニル樹脂100質量部に対して、0.5~10質量部が好ましい。
 ビニルゾル塗工液の塗工時の粘度は、所望のシートの厚みや、塗工条件等により適宜調整すればよいが、良好な塗工適正を得やすいことから、1000mPa・s以上が好ましく、3000mPa・s以上がより好ましく、5000mPa・s以上がさらに好ましい。また、当該粘度の上限は50000mPa・s以下が好ましく、30000mPa・s以下がより好ましく、27000mPa・s以下がさらに好ましく、25000mPa・s以下が特に好ましい。なお、塗工液粘度はB型粘度計にて測定できる。
 上記塩化ビニル樹脂粒子及び蓄熱材を含有するビニルゾル塗工液のゾルキャスト膜からなる蓄熱成形体は、製造時に蓄熱材にシェアや圧力がかからないため蓄熱材の破壊が生じにくいことから、樹脂系の材料を使用しながらも蓄熱材の染み出しが生じにくい。また、当該蓄熱材による蓄熱性を有すると共に、良好な柔軟性を実現できる。さらに、容易に他の層との積層や加工も可能であることから各種用途や態様での使用が可能である。
[蓄熱積層体]
 本発明の蓄熱成形体は、各種の機能層と積層することで蓄熱積層体とすることも好ましい。例えば、不燃紙等の不燃層と積層することで難燃性を向上させることができ、居住空間への適用に特に好適である。また、例えば、熱拡散層や断熱層と積層することで、蓄熱性をより効果的に発現することもできる。また、居住空間の内壁等へ適用するために、化粧層や装飾層を設けることもできる。
 不燃層と積層した構成としては、本発明の蓄熱成形体の片面又は両面に不燃紙を積層した構成を例示できる。片面に不燃紙を積層した構成としては、本発明の蓄熱成形体を不燃紙に貼り合せた構成であってもよいが、不燃紙上に直接本発明の蓄熱成形体を形成するビニルゾル塗工液を塗布、ゲル化した構成とすると形成が容易であるため好ましい。また、両面に不燃紙を有する構成としては、本発明の蓄熱成形体の両面に不燃紙を貼り合せた構成であってもよいが、不燃紙上にビニルゾル塗工液を塗布、ゲル化した不燃紙積層蓄熱成形体の蓄熱成形体面同士を貼り合せることで容易に形成できる。
 当該不燃紙としては、不燃性を有するものであれば特に限定しないが、例えば、紙に難燃剤を塗布、含浸、内添しているものを使用できる。難燃剤としては、水酸化マグネシウム、水酸化アルミニウム等の金属水酸化物、リン酸塩、ホウ酸塩、ステファミン酸塩等の塩基性化合物、ガラス繊維等が例示できる。
 熱拡散層を積層した構成として室内等の閉空間に適用した場合には、熱拡散層で室内の熱を均一化する効果を持たせるとともに、室内(住宅等の居住空間や、自動車、電車、航空機等の室内、冷蔵車の冷蔵庫内、航空機の庫内等の閉空間等)からの熱を分散して熱抵抗が少なく蓄熱層へ伝える事ができる。蓄熱層では蓄熱粒子により室内の熱吸収及び室内への熱放出がなされ、室内の温度環境下を適温に制御できる。
 熱拡散層としては、熱伝導率が5~400W/m・Kの高い熱伝導率を有する層を好ましく使用できる。高い熱伝導率により、局所に集中した熱を拡散して蓄熱層へ伝えて熱効率を向上し、かつ室温を均一化できる。
 熱拡散層の材料としては、例えば、アルミニウム、銅、鉄、グラファイトなどが挙げられる。本発明では、特にアルミニウムを好適に用いることができる。アルミニウムが好適な理由として、放射熱の反射による断熱効果も発現することが挙げられる。特に、放射熱による暖房器具では、断熱効果により暖房効率を向上する事ができる。放射熱を主とした暖房器具としては、例えば、電気式床暖房、温水式床暖房、赤外線ヒーターなどが挙げられる。また、防災の視点からも難燃性能を向上させる事ができる。
 熱拡散層の形態としては、上記材料のシートからなる層や、上記材料の蒸着層等の適宜な形態を使用できる。材料としてアルミニウムを使用する場合には、たとえば、アルミ箔、アルミ蒸着層などの湾曲性があるものを好ましく使用できる。
 熱拡散層の層厚は、特に限定されないが、3~500μm程度とすることで、好適な熱拡散性や取扱い性を確保しやすくなるため好ましい。
 また、蓄熱層に断熱層を積層した構成とした場合には、蓄熱層の熱吸収及び熱放出が室内側と効果的になされ、室内の適温維持効果を特に好適に発揮することができる。また、室内の熱の流出を防ぐ、もしくは、外気からの熱の影響の軽減にも有効である。本発明の蓄熱積層体は、これら複合作用により、室内の温度変化を抑制し、室内を適温に保つ事ができる。また、エアコンや冷蔵設備等の空調機器を使用した場合に、その消費エネルギーを低減することもできる。これにより、好適に室内の省エネルギー化に貢献できる。
 断熱層としては、熱伝導率が0.1W/m・K未満の層を好ましく使用できる。当該断熱層は、蓄熱層から外気への熱の流出を防ぎ、かつ、外気の温度影響を低減させる効果を発揮するものである。断熱層は、熱伝導率が0.1W/m・K未満の層を形成できるものであれば特に限定されず、例えば、発泡樹脂シート、断熱材料を含有する樹脂シート等の断熱シートや、押出し法ポリスチレン、ビーズ法ポリスチレン、ポリエチレンフォーム、ウレタンフォーム、フェノールフォーム等の断熱ボード等を適宜使用できる。なかでも、断熱シートは施工性を確保しやすいため好ましく、断熱材料を含有した樹脂シートである事が熱伝導率を低減できるためより好ましい。また、発泡シートは入手が容易であり、安価であるため好ましい。
 断熱層はシート状とすることで施工性を確保しやすくなるが、なかでも、円筒形マンドレル屈曲試験機(JIS K 5600)による測定値が、マンドレル直径で2~32mmであることが好ましい。
 断熱層に使用する断熱材料は、蓄熱積層体の断熱性を高めるものであり、例えば、多孔質シリカ、多孔質アクリル、中空ガラスビーズ、真空ビーズ、中空ファイバーなどが挙げられる。この断熱材料5は、公知のものを用いればよい。本発明では、特に、多孔質アクリルを好適として用いる事ができる。断熱材料の粒径は、限定される事はないが、1~300μm程度である事が好ましい。
 断熱層として断熱材料を含有する樹脂シートを使用する場合には、断熱材料を、ベースとなる樹脂材料に混入してシート成形を行う。樹脂材料としては、前述と同様に、例えば、ポリ塩化ビニル、ポリフェニレンサルファイド、ポリプロピレン、ポリエチレン、ポリエステル、又はアクリロニトリル-ブタジエン-スチレン樹脂などが挙げられる。ポリエステルとしては、A-PET、PET-G等を使用できる。なかでも、火災時の低燃焼性の面から、自己消化性である塩化ビニル樹脂を好適に用いる事ができる。
 シートの成形方法としては、例えば、塩化ビニル樹脂と可塑剤と断熱材料を、押出し成形、カレンダー成形などの成形機を用いてシートの成形を行う。
 断熱層中の断熱材料の含有量は、断熱層中の20質量%以上であることが好ましく、20~80質量%であることがより好ましく、30~80質量%であることが更に好ましく、40~80質量%であることが特に好ましい。断熱材の含有量を当該範囲とすることで、好適に断熱効果を発揮でき、また、断熱層を形成しやすくなる。
 断熱層中には、必要に応じて、可塑剤、難燃材等の添加剤を配合してもよい。
 断熱層の層厚は、特に限定されないが、厚みが増す程室内の保温性が上がる。シートとしての湾曲性や施工性を保有する為には、50~3000μm程度である事が好ましい。
 本発明の蓄熱成形体は、主に建築物の内壁、天井、床などにおける内装材用途として好適に用いられるが、窓のサッシ枠の被服材や、車両等の内装材としても適用可能である。また、建築物の壁、床、天井に限らず、自動車、電車、飛行機などの室内に使用する事も可能である。また、冷蔵設備の低温保持材料や、パソコンのCPUや蓄電池など熱を発生する電気部品の低温維持材料としても使用することも可能である。また、面状発熱体等のヒーターを併用して、蓄熱による省エネルギー効果を発現しても良い。
(実施例1)
 重合度900のポリ塩化ビニル樹脂粒子(新第一塩ビ社製 ZEST PQ92)100質量部、エポキシ系可塑剤(DIC社製 モノサイザーW-150:粘度85mPa・s、ゲル化終点温度121℃)60質量部、熱安定剤(昭和ワニス社製 グレックML-538)3質量部、その他添加剤として減粘剤(BYK社製 減粘剤VISCOBYK-5125)6質量部及び分散剤(BYK社製 Disperplast-1150)3質量部と、パラフィンをポリメチルメタクリレート(PMMA)樹脂からなる外殻を用いてマイクロカプセル化した潜熱蓄熱材(BASF社製 Micronal DS5001X:粒子径100~300μm、融点26℃)60質量部を配合し、プラスチゾル塗工液を作成した。使用した可塑剤と潜熱蓄熱材とのHSP距離の計算値は8.88、可塑剤と塩化ビニル樹脂とのHSP距離の計算値は4.6、配合して均質に混合した直後の塗工液の粘度は7000mPa・sであった。これをPETフィルム上に5mmアプリケーターにて塗布した後、150℃のドライヤー温度で8分間加熱してゲル化させ、厚さ3mmの蓄熱成形体を形成した。引張強さは2.06MPa、引張破断時の伸び率は114.6%であった。
(実施例2)
 実施例1にて使用したエポキシ系可塑剤に代えて、ポリエステル系可塑剤(DIC社製 ポリサイザーW-230H:粘度220mPa・s、ゲル化終点温度136℃)を使用した以外は実施例1と同様にして蓄熱成形体を形成した。なお、使用した可塑剤と潜熱蓄熱材とのHSP距離の計算値は11.04、可塑剤と塩化ビニル樹脂とのHSP距離の計算値は6.4、塗工液の粘度は8500mPa・sであった。得られた蓄熱成形体の引張強さは1.10MPa、引張破断時の伸び率は81.8%であった。
(実施例3)
 実施例1にて使用したエポキシ系可塑剤に代えて、トリメリット酸系可塑剤(DIC社製 モノサイザーW-705:粘度220mPa・s、ゲル化終点温度143℃)を使用した以外は実施例1と同様にして蓄熱成形体を形成した。なお、使用した可塑剤と潜熱蓄熱材とのHSP距離の計算値は9.07、可塑剤と塩化ビニル樹脂とのHSP距離の計算値は4.1、塗工液の粘度は8500mPa・sであった。得られた蓄熱成形体は、ほぼ伸びが生じなかった。
(実施例4)
 実施例1にて使用した潜熱蓄熱材60質量部に代えて、パラフィンをメラミン樹脂からなる外殻を用いてマイクロカプセル化した潜熱蓄熱材(三菱製紙社製 サーモメモリー FP-25:平均粒子径50μm、融点25℃)を80質量部使用した以外は実施例1と同様にして、蓄熱成形体を形成した。なお、使用した可塑剤と潜熱蓄熱材とのHSP距離の計算値は22.30、塗工液の粘度は8000mPa・sであった。得られた蓄熱成形体の引張強さは1.67MPa、引張破断時の伸び率は70.1%であった。
(実施例5)
 実施例4にて使用したエポキシ系可塑剤に代えて、ポリエステル系可塑剤(DIC社製 ポリサイザーW-230H:粘度220mPa・s、ゲル化終点温度136℃)を使用した以外は実施例4と同様にして蓄熱成形体を形成した。なお、使用した可塑剤と潜熱蓄熱材とのHSP距離の計算値は23.20、塗工液の粘度は12000mPa・sであった。得られた蓄熱成形体の引張強さは0.72MPa、引張破断時の伸び率は31.0%であった。
(実施例6)
 実施例4にて使用したエポキシ系可塑剤に代えて、安息香酸系可塑剤(DIC社製 モノサイザーPB-10:粘度80mPa・s、ゲル化終点温度100℃以下)を使用した以外は実施例4と同様にして蓄熱成形体を形成した。なお、使用した可塑剤と潜熱蓄熱材とのHSP距離の計算値は17.10、可塑剤と塩化ビニル樹脂とのHSP距離の計算値は1.4、塗工液の粘度は8500mPa・sであった。得られた蓄熱成形体の引張強さは2.28MPa、引張破断時の伸び率は156.7%であった。
(比較例1)
 実施例1にて使用したエポキシ系可塑剤に代えて、安息香酸系可塑剤(DIC社製 モノサイザーPB-10:粘度80mPa・s、ゲル化終点温度100℃以下)を使用した以外は実施例1と同様にして蓄熱成形体を形成した。なお、使用した可塑剤と潜熱蓄熱材とのHSP距離の計算値は4.33、塗工液の粘度は8500mPa・sであった。得られた蓄熱成形体の引張強さは3.50MPa、引張破断時の伸び率は222.9%であった。
(比較例2)
 実施例1にて使用したエポキシ系可塑剤に代えて、フタル酸系可塑剤(新日本理化社製 サンソサイザーDINP:粘度65mPa・s)を使用した以外は実施例1と同様にして蓄熱成形体を形成した。なお、使用した可塑剤と潜熱蓄熱材とのHSP距離の計算値は8.77、可塑剤と塩化ビニル樹脂とのHSP距離の計算値は3.7、塗工液の粘度は6000mPa・sであった。
 上記実施例及び比較例にて使用した塗工液の評価方法及び得られた蓄熱成形体の評価方法は下記のとおりである。
<可塑剤粘度の測定条件>
 測定装置:B型粘度計(東京計器株式会社製「DVM-B型」)
 測定条件:温度25℃、No.2ロータ、30rpm
<塗工液粘度の測定条件>
 測定装置:B型粘度計(トキメック株式会社製「BM型」)
 測定条件:温度25℃、No.4ロータ、12rpm
<HSP距離>
 実施例及び比較例にて使用した可塑剤と潜熱蓄熱材とのHSP距離、可塑剤と塩化ビニルとのHSP距離を下記にて算出した。
 HSPiPにより算出された溶解度パラメータの成分分散項dD、極性項dP、水素結合項dHを用いて、成分Aと成分BとのHSP距離を以下の式にて算出した。
 HSP距離=[4(dDA-dDB)+(dPA-dPB)+(dHA-dHB)0.5
<蓄熱性評価試験>
 実施例及び比較例にて作成したシートを幅50mm×長さ50mmのサイズにした試験体を2枚重ねに積層し、熱伝対をシート中央に挟んで設置した。環境試験機内で外気温を35℃で2時間保持した後、50分間で5℃まで下降させ、さらに1時間5℃を保持した。この際、シート内の温度が28℃~20℃の温度を保持した時間を測定し、外気温の28℃~20℃保持時間(800秒)からどのくらい適温維持時間が延びたかを計算して、適温維持性を評価した。評価基準は以下のとおりである。
 ◎:保持時間が+200秒以上
 ○:保持時間が+50秒以上200秒未満
 ×:保持時間が+50秒未満
<染み出し評価試験>
 実施例及び比較例にて作成したシートを幅50mm×長さ50mmのサイズにし、同サイズの油取り紙を挟んで積層した試験体を、荷重50g/cm、40℃50%RH環境下で15時間圧着し、シートから染み出した蓄熱材成分について、油取り紙への染みで目視評価した。評価基準は以下の通りである。
 ○:染みなし
 △:部分的に染みあり
 ×:全面に染みあり
<耐熱性試験(加熱減量)>
 実施例及び比較例にて作成したシートを幅50mm×長さ50mmのサイズにし、80℃環境下に1週間静置した際の質量変化を測定した。評価基準は以下の通りである。
 ◎:質量変化が10%未満
 ○:質量変化が10%以上15%未満
 ×:質量変化が15%以上
<強靭性評価試験(90°曲げ試験、180°曲げ試験)>
 実施例及び比較例にて作成したシートを幅50mm×長さ50mmのサイズにし、90°及び180°の角度に折り曲げて保持した際のシートの状態を観察した。
<切断加工性>
 実施例にて作成したシートを幅50mm×50mmのサイズにカッターナイフで切断加工し、切断面を観察した。
Figure JPOXMLDOC01-appb-T000001
 上記表から明らかなとおり、実施例1~6の本発明の蓄熱成形体は、柔軟な樹脂系のシートを使用しつつ好適な耐熱性を有し、使用態様に応じた適温保持に貢献できる蓄熱性を実現できるものであった。これら実施例の蓄熱成形体はフタル酸系材料を使用しないため人体への有害性が低く、人の住環境下でも好適に使用できる。
 また、実施例1~6の蓄熱成形体はカッターナイフで容易に切断できるものであった。さらに、実施例1~2、4~6の蓄熱成形体は、90°曲げ試験によってもひび割れが生じず、蓄熱材の染み出しが生じにくい低温下でも好適なシート成形性を有するものであった。特に、実施例1、4、6の蓄熱成形体は180°曲げ試験によってもひび割れが生じず、高い強靭性を有するものであった。
 一方、比較例1の成形体は、高温下での加熱減量が大きく、耐熱性に乏しいものであった。また比較例2の成形体はフタル酸系材料を使用するものであるため住環境下への適用は困難であり、また、90°曲げ試験において表面にひび割れが生じるものであった。

Claims (11)

  1.  樹脂マトリクス中に蓄熱材が分散した蓄熱成形体であって、
     前記樹脂マトリクスが熱可塑性樹脂及び可塑剤を含有する樹脂組成物からなり、
     前記可塑剤が非フタル酸系可塑剤であり、
     前記可塑剤と蓄熱材とのHSP距離が6以上であることを特徴とする蓄熱成形体。
  2.  前記熱可塑性樹脂と可塑剤とのHSP距離が15以下である請求項1に記載の蓄熱成形体。
  3.  前記蓄熱材が、-20℃~120℃の温度範囲で固/液相転移を示す潜熱蓄熱材を内包する蓄熱粒子である請求項1又は2に記載の蓄熱成形体。
  4.  前記可塑剤のゲル化終点温度が150℃以下である請求項1~3のいずれかに記載の蓄熱成形体。
  5.  150℃以下で成形された請求項1~4のいずれかに記載の蓄熱成形体。
  6.  前記樹脂組成物中の可塑剤の含有量が、熱可塑性樹脂100質量部に対して30~150質量部である請求項1~5のいずれかに記載の蓄熱成形体。
  7.  前記蓄熱材の含有量が10~80質量%である請求項1~6のいずれかに記載の蓄熱成形体。
  8.  シート形状を有する請求項1~7のいずれかに記載の蓄熱成形体。
  9.  請求項1~8のいずれかに記載の蓄熱成形体に、熱拡散層及び断熱層の少なくとも一種が積層された蓄熱積層体。
  10.  請求項1~8のいずれかに記載の蓄熱成形体に、不燃層が積層された蓄熱積層体。
  11.  (1)HSP距離が6以上となる非フタル酸系可塑剤と蓄熱材とを、熱可塑性樹脂と混合して塗工液を調整する工程
     (2)支持体上に塗工液を塗布して塗工膜を形成した後、塗工膜温度が150℃以下となる温度で加熱して蓄熱成形体を形成する工程、
    を有することを特徴とする蓄熱成形体の製造方法。
PCT/JP2016/068377 2015-06-23 2016-06-21 蓄熱成形体、蓄熱積層体及び蓄熱成形体の製造方法 WO2016208572A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112016002898.9T DE112016002898T5 (de) 2015-06-23 2016-06-21 Wärmespeicherformkörper, Wärmespeicherlaminat, und Wärmespeicherformkörperherstellungsverfahren
JP2016549814A JP6037192B1 (ja) 2015-06-23 2016-06-21 蓄熱成形体、蓄熱積層体及び蓄熱成形体の製造方法
KR1020177035100A KR102612303B1 (ko) 2015-06-23 2016-06-21 축열 성형체, 축열 적층체 및 축열 성형체의 제조 방법
CN201680031768.2A CN107614653B (zh) 2015-06-23 2016-06-21 蓄热成型体、蓄热层叠体和蓄热成型体的制造方法
US15/831,602 US10502499B2 (en) 2015-06-23 2017-12-05 Heat storage molded body, heat storage laminate, and heat storage molded body production method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-125645 2015-06-23
JP2015125644 2015-06-23
JP2015125642 2015-06-23
JP2015-125642 2015-06-23
JP2015125645 2015-06-23
JP2015-125644 2015-06-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/831,602 Continuation US10502499B2 (en) 2015-06-23 2017-12-05 Heat storage molded body, heat storage laminate, and heat storage molded body production method

Publications (1)

Publication Number Publication Date
WO2016208572A1 true WO2016208572A1 (ja) 2016-12-29

Family

ID=57585617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068377 WO2016208572A1 (ja) 2015-06-23 2016-06-21 蓄熱成形体、蓄熱積層体及び蓄熱成形体の製造方法

Country Status (6)

Country Link
US (1) US10502499B2 (ja)
JP (1) JP6037192B1 (ja)
KR (1) KR102612303B1 (ja)
CN (1) CN107614653B (ja)
DE (1) DE112016002898T5 (ja)
WO (1) WO2016208572A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221803A1 (ja) * 2016-06-22 2017-12-28 Dic株式会社 蓄熱性組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10174236B2 (en) * 2014-03-20 2019-01-08 Sumitomo Chemical Company, Limited Heat storage material composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023229A (ja) * 2003-07-03 2005-01-27 Mitsubishi Paper Mills Ltd 蓄熱性樹脂組成物
JP2008291083A (ja) * 2007-05-23 2008-12-04 Yokohama Rubber Co Ltd:The 放熱材用熱可塑性エラストマー組成物
JP2011052076A (ja) * 2009-08-31 2011-03-17 Nippon Zeon Co Ltd 蓄熱性樹脂成形体の製造方法
JP2015020383A (ja) * 2013-07-22 2015-02-02 Dic株式会社 蓄熱積層体
WO2015141677A1 (ja) * 2014-03-18 2015-09-24 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10163162A1 (de) 2001-12-20 2003-07-03 Basf Ag Mikrokapseln
CN101107340B (zh) * 2005-01-27 2013-07-03 Sk化研株式会社 蓄热体形成用组合物、蓄热体和蓄热体的制造方法
JP5192199B2 (ja) 2007-08-23 2013-05-08 アキレス株式会社 蓄熱性熱可塑性樹脂シート状成形体
US10113043B2 (en) * 2010-02-26 2018-10-30 Twin Brook Capital Partners, Llc Polyurethane gel particles, methods and use in flexible foams
EP2539904A4 (en) * 2010-02-27 2018-01-10 Innova Dynamics, Inc. Structures with surface-embedded additives and related manufacturing methods
EP2643393A4 (en) * 2010-11-24 2014-07-02 Basf Se THERMOPLASTIC MOLDING COMPOSITION USING MICROCAPED MATERIAL FOR LATENT HEAT ACCUMULATION
CN103171225B (zh) * 2013-01-25 2015-11-18 天津工业大学 一种储能变色建筑膜材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023229A (ja) * 2003-07-03 2005-01-27 Mitsubishi Paper Mills Ltd 蓄熱性樹脂組成物
JP2008291083A (ja) * 2007-05-23 2008-12-04 Yokohama Rubber Co Ltd:The 放熱材用熱可塑性エラストマー組成物
JP2011052076A (ja) * 2009-08-31 2011-03-17 Nippon Zeon Co Ltd 蓄熱性樹脂成形体の製造方法
JP2015020383A (ja) * 2013-07-22 2015-02-02 Dic株式会社 蓄熱積層体
WO2015141677A1 (ja) * 2014-03-18 2015-09-24 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221803A1 (ja) * 2016-06-22 2017-12-28 Dic株式会社 蓄熱性組成物
JP6274373B1 (ja) * 2016-06-22 2018-02-07 Dic株式会社 蓄熱性組成物

Also Published As

Publication number Publication date
CN107614653A (zh) 2018-01-19
US20180094872A1 (en) 2018-04-05
KR102612303B1 (ko) 2023-12-11
JP6037192B1 (ja) 2016-12-07
CN107614653B (zh) 2021-06-01
JPWO2016208572A1 (ja) 2017-06-29
KR20180020969A (ko) 2018-02-28
US10502499B2 (en) 2019-12-10
DE112016002898T5 (de) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6395021B2 (ja) 蓄熱シート
JP6274373B1 (ja) 蓄熱性組成物
JP6041078B1 (ja) 蓄熱成形体、蓄熱積層体及び蓄熱成形体の製造方法
JP6528686B2 (ja) 蓄熱シート、蓄熱積層体及び蓄熱シートの製造方法
JP6460435B2 (ja) 蓄熱積層体
JP6037192B1 (ja) 蓄熱成形体、蓄熱積層体及び蓄熱成形体の製造方法
JP2020040265A (ja) 保温シート
JP2021017796A (ja) 屋内面施工方法及び蓄熱積層体
JP2020094205A (ja) 蓄熱材及び蓄熱材の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016549814

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177035100

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016002898

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814342

Country of ref document: EP

Kind code of ref document: A1