WO2017221724A1 - 液晶表示素子 - Google Patents

液晶表示素子 Download PDF

Info

Publication number
WO2017221724A1
WO2017221724A1 PCT/JP2017/021279 JP2017021279W WO2017221724A1 WO 2017221724 A1 WO2017221724 A1 WO 2017221724A1 JP 2017021279 W JP2017021279 W JP 2017021279W WO 2017221724 A1 WO2017221724 A1 WO 2017221724A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
formula
compound represented
present
Prior art date
Application number
PCT/JP2017/021279
Other languages
English (en)
French (fr)
Inventor
丸山 和則
佐々木 剛
小川 真治
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2018516594A priority Critical patent/JP6414723B2/ja
Priority to KR1020187032430A priority patent/KR102009616B1/ko
Publication of WO2017221724A1 publication Critical patent/WO2017221724A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present invention relates to a liquid crystal display element.
  • TN twisted Nematic
  • STN super twisted nematic
  • VA vertical alignment
  • TFT thin film transistor
  • IPS in-plane switching
  • FFS far field switching
  • Liquid crystal display elements widely used in PC monitors and the like include TN type and STN type
  • display methods of liquid crystal display elements widely used in liquid crystal TVs and the like include VA type and IPS type.
  • Examples of a display method of a liquid crystal display element widely used in tablets and tablets include an IPS type and an FFS type. In all these driving methods, there is a demand for liquid crystal display elements that exhibit low-voltage driving, high-speed response, and a wide operating temperature range.
  • liquid crystal display elements driven with low power consumption are attracting attention due to the recent social circumstances of energy saving promotion and the spread of smartphones.
  • low frequency driving for reducing the driving frequency of the liquid crystal display element from the standard state and intermittent driving for providing a rest period after writing for one frame period are proposed.
  • flickering occurs particularly when the frame period is changed, resulting in a problem that display quality is deteriorated.
  • the cause of such flicker is considered to be complicatedly related to various factors such as flicker caused by flexographic polarization of liquid crystal molecules and flicker caused by leakage current.
  • the flicker caused by flexopolarization will be described as an example.
  • the liquid crystal display element changes with time in display characteristics due to charge-up. Inverted frame drive is common.
  • the alignment state of the liquid crystal molecules is controlled based only on the potential difference between the pixel electrode and the counter electrode.
  • the liquid crystal molecules are reversely polarized because a strong electric field acts on the edge of the pixel electrode.
  • this polarization (flexo polarization) reacts instantaneously, and flicker occurs due to luminance fluctuations.
  • Patent Document 1 discloses a technique for reducing flicker caused by flexopolarization.
  • the luminance amplitude of both the symmetric component and the antisymmetric component is reduced by setting the absolute value of the flexo coefficients (e11, e33) of the liquid crystal used in the liquid crystal display element to 1.6 pC / m or less. It is disclosed that flicker can be reduced.
  • Patent Document 2 discloses a technique for reducing flicker caused by TFT leakage current.
  • a numerical range of off-leakage current and a numerical range of resistivity of a liquid crystal or alignment film used for a liquid crystal display element are respectively defined, and when the numerical range is established in a predetermined relationship, It is disclosed that luminance fluctuation can be reduced.
  • the liquid crystal composition is a mixture of two components, a compound having a negative dielectric anisotropy (polar component) and a compound having a neutral dielectric anisotropy (nonpolar component), and the entire liquid crystal composition
  • polar component a compound having a negative dielectric anisotropy
  • nonpolar component a compound having a neutral dielectric anisotropy
  • the liquid crystal compound that actually contributes to flexopolarization is a compound having a negative dielectric anisotropy (polar component) in the liquid crystal composition, the liquid crystal constituting the liquid crystal layer as in Patent Document 1 above.
  • the current situation is that the molecular polarization cannot be averaged as theoretically, and the effect of reducing and suppressing the flicker is not exhibited.
  • Patent Document 2 described above, if the absolute value of the luminance change rate in one frame is reduced to 0.03 or less, flicker is not visually recognized, and compensation is performed by an increase in luminance due to impedance mismatch between the liquid crystal and the alignment film.
  • the cause of flicker in the off-leakage current itself is not only complicatedly related to various factors, but the above cited reference 2 only defines the relationship between the resistance and capacitance of the liquid crystal and the resistance and capacitance of the alignment film, and is used for the liquid crystal layer. Since no consideration is given to the characteristics and types of the compound used and the decrease in the voltage holding ratio of the liquid crystal layer, the effect of reducing and suppressing flicker is not exhibited.
  • the liquid crystal display device also has a problem due to deterioration over time of the liquid crystal layer because light is always irradiated from the backlight.
  • an aspect of the present invention aims to achieve both low power consumption driving and flicker reduction / suppression with a liquid crystal layer including a liquid crystal composition including a liquid crystal compound exhibiting a specific negative dielectric anisotropy.
  • the liquid crystal display device achieves both low power consumption driving and flicker reduction / suppression.
  • FIG. 1 It is a figure which shows typically an example of a structure of the liquid crystal display element (liquid crystal display part) of this invention. It is the figure which shows typically the structure of the electrode layer 3 of a liquid crystal display part, and is the schematic diagram which showed the pixel part with the equivalent circuit. It is a figure which shows typically the structure of the electrode layer 3 of a liquid crystal display part, and is a schematic diagram which shows an example of the shape of a pixel electrode. It is a figure which shows typically the structure of the electrode layer 3 of a liquid crystal display part, and is a schematic diagram which shows an example of the shape of a pixel electrode.
  • FIG. 5 is another example of a cross-sectional view of the liquid crystal display element shown in FIG. 1 taken along the line III-III in FIG. 3 or FIG.
  • FIG. 6 is a cross-sectional view of the IPS liquid crystal display unit shown in FIG. 1 cut in the direction of line III-III in FIG.
  • FIG. 6 shows typically the structure of the liquid crystal display part of a vertical alignment type liquid crystal display element.
  • FIG. 11A is a diagram illustrating a change over time in rewriting of an image signal in a pixel electrode of 2m rows and 2n columns.
  • FIG. 11B is a diagram illustrating one mode of change over time of rewriting of an image signal in a pixel electrode of 2m + 1 rows and 2n + 1 columns.
  • FIG. 12A is a diagram illustrating a change over time in rewriting of an image signal in a pixel electrode of 2m rows and 2n columns.
  • FIG. 12B is a diagram illustrating one mode of change over time in rewriting of image signals in pixel electrodes of 2m + 1 rows and 2n + 1 columns.
  • FIG. 13A is a diagram illustrating a change over time in rewriting of an image signal in a pixel electrode of 2m rows and 2n columns.
  • FIG. 13B is a diagram illustrating one mode of change over time of rewriting of an image signal in a pixel electrode of 2m + 1 rows and 2n + 1 columns.
  • the first of the present invention is filled between the first transparent substrate, the second transparent substrate opposed to the first transparent substrate, and the first transparent substrate and the second transparent substrate.
  • the liquid crystal composition has the following general formula (i):
  • R i1 and R i2 each independently represents an alkyl group having 1 to 10 carbon atoms, and one or non-adjacent two or more —CH 2 — in the alkyl group are each independently Optionally substituted by —CH ⁇ CH—, —C ⁇ C—, —O—, —CO—, —COO— or —OCO—,
  • a i1 and A i2 are each independently (a) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - is -O
  • (C) represents a group selected from the group consisting of 1,4-cyclohexenylene groups, and the groups (a), (b) and (c) are each independently a cyano group, a fluorine atom or a chlorine atom.
  • Z i1 and Z i2 each independently represents a single bond, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, —CH 2 CH 2 — or —CF 2 CF 2 —.
  • m i1 and m i2 each independently represents an integer of 0 to 3, but m i1 + m i2 each independently represents 1, 2 or 3, and a plurality of A i1 to A i2 and Z i1 to Z i2 If present, they may be the same or different.
  • the liquid crystal display element according to the present invention preferably has a liquid crystal display unit (so-called liquid crystal panel) and a display processing unit.
  • the liquid crystal display unit seals a liquid crystal layer between a driving substrate in which a driving circuit including a pixel electrode and a thin film transistor is provided for each pixel and a counter substrate, as will be described with reference to FIGS. It is a thing.
  • the display processing unit performs processing such as frame rate conversion on the video signal, and controls the backlight and the liquid crystal display unit according to the processing result.
  • FIG. 1 is a diagram schematically illustrating a configuration of a liquid crystal display unit of a liquid crystal display element.
  • the liquid crystal display element 10 according to the present invention includes a first (transparent insulating) substrate (also referred to as a transparent substrate) 2 and a second (transparent insulating) substrate 7 which are disposed to face each other.
  • a liquid crystal display element which has a liquid-crystal composition (or liquid-crystal layer 5) pinched
  • the first (transparent insulating) substrate 2 has an electrode layer 3 formed on the surface on the liquid crystal layer 5 side.
  • an alignment film 4 is provided between the liquid crystal layer 5 and each of the first (transparent insulating) substrate 2 and the second (transparent insulating) substrate 7, and when the voltage is not applied by the alignment film 4.
  • Liquid crystal molecules in the liquid crystal composition can be aligned in a predetermined direction with respect to the recording substrates 2 and 7.
  • a pixel electrode (not shown) and a common electrode (not shown) are provided on the first substrate 2 side as the electrode layer 3, but the pixel electrode is provided on the first substrate 2, A common electrode may be provided on the second substrate 7.
  • FIG. 1 shows a mode in which the second substrate 7 and the first substrate 2 are sandwiched between a pair of polarizing plates 1 and 8, but the position where the polarizing plates 1 and 8 are provided is limited to this figure. It doesn't mean.
  • a color filter 6 is provided between the second substrate 7 and the alignment film 4.
  • the liquid crystal display element according to the present invention may be a so-called color filter on array (COA), or a color filter 6 may be provided between the electrode layer 3 and the liquid crystal phase 5, or the electrode layer.
  • a color filter may be provided between 3 and the first substrate 2.
  • an overcoat layer (not shown) may be provided so as to cover the color filter layer 6 to prevent a substance contained in the color filter layer from flowing out to the liquid crystal layer.
  • the liquid crystal display element of the present invention includes the first substrate 2 or the second substrate.
  • the alignment film 4 may be formed on at least one of the substrates 7. For example, when the alignment film 4 is formed between the liquid crystal layer 5 and the first substrate 2 so as to contact the liquid crystal layer 5 on the first substrate 2, the other liquid crystal layer 5 and the second substrate 2 An alignment film may not be provided between the substrate 7 and the substrate 7.
  • the liquid crystal display element 10 includes a first substrate 2, an electrode layer 3, an alignment film 4, a liquid crystal layer 5 containing a liquid crystal composition, an alignment film 4, a color filter 6, It is preferable to include a configuration in which two substrates 7 are sequentially stacked.
  • the first substrate 2 and the second substrate 7 can be made of a flexible material such as glass or plastic, at least one of which is a transparent material and the other is a transparent material.
  • An opaque material such as The two substrates are bonded together by a sealing material and a sealing material such as an epoxy thermosetting composition disposed in the peripheral region, and in order to maintain the distance between the substrates, for example, glass particles, Spacer columns made of granular spacers such as plastic particles and alumina particles or a resin formed by photolithography may be arranged.
  • FIG. 2 shows a schematic diagram of a structure diagram of the electrode layer 3 of the liquid crystal display unit. More specifically, FIG. 2 is a schematic diagram showing the pixel portion in an equivalent circuit, and FIGS. 3 and 4 show the shape of the pixel electrode. It is a schematic diagram which shows an example. 2 to 4, as an example of the present embodiment, an FFS type liquid crystal display element including a liquid crystal display unit including pixels arranged in a mesh pattern.
  • a liquid crystal display device is driven by providing a backlight as illumination means for illuminating the liquid crystal display unit from the back side. Examples of the light source of the backlight include those using a light emitting diode or a cold cathode tube.
  • the electrode layer 3 includes a common electrode and a plurality of pixel electrodes.
  • the pixel electrode is disposed on the common electrode via an insulating layer (for example, silicon nitride (SiN)).
  • the pixel electrode is disposed for each display pixel, and a slit-shaped opening is formed.
  • the common electrode and the pixel electrode are transparent electrodes formed of, for example, ITO (Indium Tin Oxide), and the electrode layer 3 has a gate bus line GBL (extending along a row in which a plurality of display pixels are arranged in the display portion.
  • GBL1, GBL2,... GBLm a source bus line SBL (SBL1, SBL2,...
  • a thin film transistor is provided as a pixel switch.
  • the gate electrode of the thin film transistor is electrically connected to the corresponding gate bus line GBL, and the source electrode of the thin film transistor is electrically connected to the corresponding signal line SBL. Further, the drain electrode of the thin film transistor is electrically connected to the corresponding pixel electrode.
  • the electrode layer 3 includes a gate driver and a source driver as driving means for driving a plurality of display pixels, and the gate driver and the source driver are arranged around the liquid crystal display unit.
  • the plurality of gate bus lines are electrically connected to the output terminal of the gate driver, and the plurality of source bus lines are electrically connected to the output terminal of the source driver.
  • the gate driver sequentially applies an ON voltage to the plurality of gate bus lines, and supplies the ON voltage to the gate electrode of the thin film transistor electrically connected to the selected gate bus line. Conduction is established between the source and drain electrodes of the thin film transistor in which the ON voltage is supplied to the gate electrode.
  • the source driver supplies an output signal corresponding to each of the plurality of source bus lines. The signal supplied to the source bus line is applied to the corresponding pixel electrode through a thin film transistor in which the source and drain electrodes are electrically connected.
  • the operations of the gate driver and the source driver are controlled by a display processing unit (also referred to as a control circuit) arranged outside the liquid crystal display element.
  • the display processing unit has a low frequency driving function and an intermittent driving function for reducing driving power in addition to normal driving, and is an LSI for driving a gate bus line of a TFT liquid crystal panel. It controls the operation of a gate driver and the operation of a source driver which is an LSI for driving the source bus line of a TFT liquid crystal panel.
  • the common voltage V COM is supplied to the common electrode to control the operation of the backlight.
  • FIG. 3 is a diagram showing a comb-shaped pixel electrode as an example of the shape of the pixel electrode, and is an enlarged plan view of a region surrounded by the II line of the electrode layer 3 formed on the substrate 2 in FIG. .
  • the electrode layer 3 including a thin film transistor formed on the surface of the first substrate 2 includes a plurality of gate bus lines 26 for supplying scanning signals and a plurality of gate bus lines 26 for supplying display signals.
  • the source bus lines 25 are arranged in a matrix so as to cross each other.
  • a unit pixel of the liquid crystal display device is formed by a region surrounded by the plurality of gate bus lines 26 and the plurality of source bus lines 25, and a pixel electrode 21 and a common electrode 22 are formed in the unit pixel. ing.
  • a thin film transistor including a source electrode 27, a drain electrode 24, and a gate electrode 28 is provided in the vicinity of the intersection where the gate bus line 26 and the source bus line 25 intersect each other.
  • the thin film transistor is connected to the pixel electrode 21 as a switch element that supplies a display signal to the pixel electrode 21.
  • a common line 29 is provided in parallel with the gate bus line 26.
  • the common line 29 is connected to the common electrode 22 in order to supply a common signal to the common electrode 22.
  • a common electrode 22 is formed on the back surface of the pixel electrode 21 through an insulating layer 18 (not shown).
  • the shortest separation distance between the adjacent common electrode and the pixel electrode is shorter than the shortest separation distance (cell gap) between the alignment layers.
  • the surface of the pixel electrode is preferably covered with a protective insulating film and an alignment film layer.
  • a storage capacitor 23 for storing a display signal supplied through the source bus line 25 may be provided in a region surrounded by the plurality of gate bus lines 26 and the plurality of source bus lines 25.
  • FIG. 4 is a modification of FIG. 3 and shows a slit-shaped pixel electrode as an example of the shape of the pixel electrode.
  • the pixel electrode 21 shown in FIG. 4 has a substantially rectangular flat plate electrode cut out at the center and both ends of the flat plate with a triangular cutout, and the other portions are cut out in a substantially rectangular frame shape.
  • the shape is hollowed out at the part.
  • the shape of the notch is not particularly limited, and a notch having a known shape such as an ellipse, a circle, a rectangle, a rhombus, a triangle, or a parallelogram can be used.
  • FIGS. 3 and 4 only a pair of gate bus lines 26 and a pair of source bus lines 25 in one pixel are shown.
  • FIG. 6 is one example of a cross-sectional view of the liquid crystal display element shown in FIG. 1 cut along the line III-III in FIG. 3 or FIG.
  • the first substrate 2 having the alignment layer 4 and the electrode layer 3 including the thin film transistor formed on the surface thereof is separated from the second substrate 7 having the alignment layer 4 formed on the surface so that the alignment layers face each other with a predetermined gap G.
  • This space is filled with a liquid crystal layer 5 containing a liquid crystal composition.
  • a gate insulating film 12, a common electrode 22, an insulating film 18, a pixel electrode 21, and an alignment layer 4 are sequentially stacked on a part of the surface of the first substrate 2.
  • a preferred embodiment of the structure of the thin film transistor is, for example, as shown in FIG. 6, provided to cover the gate electrode 11 formed on the surface of the substrate 2 and the gate electrode 11 and cover the substantially entire surface of the substrate 2.
  • a source electrode 17 which covers the film 14 and the other side end of the semiconductor layer 13 and is in contact with the gate insulating layer 12 formed on the surface of the substrate 2;
  • An anodic oxide film may be formed on the surface of the gate electrode 11 for reasons such as eliminating a step with the gate electrode.
  • the common electrode 22 is a flat electrode formed on almost the entire surface of the gate insulating layer 12, while the pixel electrode 21 is an insulating protective layer 18 covering the common electrode 22. It is a comb-shaped electrode formed on the top. That is, the common electrode 22 is disposed at a position closer to the first substrate 2 than the pixel electrode 21, and these electrodes are disposed so as to overlap each other via the insulating protective layer 18.
  • the pixel electrode 21 and the common electrode 22 are formed of a transparent conductive material such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IZTO (Indium Zinc Tin Oxide), and the like. Since the pixel electrode 21 and the common electrode 22 are formed of a transparent conductive material, the area opened by the unit pixel area increases, and the aperture ratio and transmittance increase.
  • the pixel electrode 21 and the common electrode 22 have an interelectrode distance (also referred to as a minimum separation distance) R between the pixel electrode 21 and the common electrode 22 in order to form a fringe electric field between these electrodes. It is formed to be smaller than the thickness G of the liquid crystal layer 5 between the first substrate 2 and the second substrate 7.
  • the inter-electrode distance R represents the distance in the horizontal direction on the substrate between the electrodes.
  • the FFS type liquid crystal display element can use a horizontal electric field formed in a direction perpendicular to a line forming the comb shape of the pixel electrode 21 and a parabolic electric field.
  • the electrode width of the comb-shaped portion of the pixel electrode 21: l and the width of the gap of the comb-shaped portion of the pixel electrode 21: m are such that all the liquid crystal molecules in the liquid crystal layer 5 can be driven by the generated electric field. It is preferable to form.
  • the minimum separation distance R between the pixel electrode and the common electrode can be adjusted as the (average) film thickness of the gate insulating film 12.
  • the configuration of the IPS liquid crystal display element is a structure in which an electrode layer 3 (including a common electrode, a pixel electrode, and a TFT) is provided on one substrate as in the FFS type of FIG. Plate 1, first substrate 2, electrode layer 3, alignment film 4, liquid crystal layer 5 containing a liquid crystal composition, alignment film 4, color filter 6, second substrate 7, and second The polarizing plates 8 are sequentially laminated.
  • an electrode layer 3 including a common electrode, a pixel electrode, and a TFT
  • FIG. 5 is an enlarged plan view of a part of the region surrounded by the II line of the electrode layer 3 formed on the first substrate 2 of FIG. 1 in the IPS type liquid crystal display unit.
  • a comb-tooth shape is formed in a region (in a unit pixel) surrounded by a plurality of gate bus lines 26 for supplying scanning signals and a plurality of source bus lines 25 for supplying display signals.
  • the first electrode (for example, pixel electrode) 21 and the comb-shaped second electrode (for example, common electrode) 22 are loosely engaged with each other (the two electrodes are spaced apart and meshed with each other while maintaining a certain distance). Is provided).
  • a thin film transistor including a source electrode 27, a drain electrode 24, and a gate electrode 28 is provided in the vicinity of an intersection where the gate bus line 26 and the source bus line 25 intersect each other.
  • the thin film transistor is connected to the first electrode 21 as a switch element that supplies a display signal to the first electrode 21.
  • a common line (V com ) 29 is provided in parallel with the gate bus line 26. The common line 29 is connected to the second electrode 22 in order to supply a common signal to the second electrode 22.
  • FIG. 7 is a cross-sectional view of the IPS liquid crystal display section shown in FIG. 1 taken along the line III-III in FIG.
  • a gate insulating layer 32 is provided so as to cover the gate bus line 26 (not shown) and to cover substantially the entire surface of the first substrate 2, and on the surface of the gate insulating layer 32.
  • the formed insulating protective layer 31 is provided, and on the insulating protective film 31, a first electrode (pixel electrode) 21 and a second electrode (common electrode) 22 are provided separately.
  • the insulating protective layer 31 is a layer having an insulating function, and is formed of silicon nitride, silicon dioxide, silicon oxynitride film, or the like.
  • the first electrode 21 and the second electrode 22 are comb-shaped electrodes formed on the insulating protective layer 31, that is, on the same layer, and are separated from each other. And are engaged with each other.
  • the interelectrode distance G between the first electrode 21 and the second electrode 22 and the thickness of the liquid crystal layer between the first substrate 2 and the second substrate 7 ( Cell gap): H satisfies the relationship G ⁇ H.
  • the distance between electrodes: G represents the shortest distance in the horizontal direction with respect to the substrate between the first electrode 21 and the second electrode 22.
  • the first electrode 21 is used.
  • the distance H between the first substrate 2 and the second substrate 7 represents the thickness of the liquid crystal layer between the first substrate 2 and the second substrate 7, specifically, the first The distance (namely, cell gap) between the alignment films 4 (outermost surfaces) provided on each of the substrate 2 and the second substrate 7 and the thickness of the liquid crystal layer are represented.
  • the thickness of the liquid crystal layer between the first substrate 2 and the second substrate 7 is between the first electrode 21 and the second electrode 22.
  • the IPS liquid crystal display unit is less than the shortest distance in the horizontal direction with respect to the substrate, and the thickness of the liquid crystal layer between the first substrate 2 and the second substrate 7 is the same as that of the first electrode 21 and the second electrode. More than the shortest distance in the horizontal direction with respect to the substrate between the electrodes 22. Therefore, the difference between IPS and FFS does not depend on the positional relationship between the first electrode 21 and the second electrode 22 in the thickness direction.
  • the IPS liquid crystal display element drives liquid crystal molecules by using an electric field in a horizontal direction with respect to a substrate surface formed between the first electrode 21 and the second electrode 22.
  • the electrode width Q of the first electrode 21 and the electrode width R of the second electrode 22 are preferably formed such that all the liquid crystal molecules in the liquid crystal layer 5 can be driven by the generated electric field.
  • FIG. 8 is a diagram schematically illustrating a configuration of a liquid crystal display unit of a vertical alignment type liquid crystal display element. Further, in FIG. 8, for convenience of explanation, each component is illustrated separately.
  • FIG. 9 is an enlarged plan view of a region surrounded by the II line of the electrode layer 3 (or also referred to as the thin film transistor layer 3) including the thin film transistor formed on the substrate in FIG.
  • FIG. 10 is a cross-sectional view of the liquid crystal display element shown in FIG. 1 taken along the line III-III in FIG.
  • the configuration of the liquid crystal display element 10 according to the present invention includes a second substrate 7 provided with a transparent electrode (layer) 3 ′ (also referred to as a common electrode 3 ′) made of a transparent conductive material as shown in FIG. And a first substrate 2 including an electrode layer 3 on which a pixel electrode and a thin film transistor for controlling the pixel electrode included in each pixel are formed, and the first substrate 2 and the second substrate 7.
  • the liquid crystal composition is characterized in that the liquid crystal composition of the present invention is used. As shown in FIGS.
  • the first substrate 2 and the second substrate 7 may be sandwiched between a pair of polarizing plates 1 and 8. Further, in FIG. 8, a color filter 6 is provided between the second substrate 7 and the common electrode 3 '. Further, a pair of alignment films 4 are formed on the surfaces of the transparent electrodes (layers) 3 and 3 ′ so as to be in direct contact with the liquid crystal composition constituting the liquid crystal layer 5 adjacent to the liquid crystal layer 5 according to the present invention. Also good.
  • FIG. 9 is a diagram showing an inverted L-shaped pixel electrode as an example of the shape of the pixel electrode 21, and an area surrounded by the II line of the electrode layer 3 formed on the substrate 2 in FIG. 8 is enlarged. It is a top view. 3 and 4, the pixel electrode 21 is formed in an inverted L shape on substantially the entire surface surrounded by the gate bus line 26 and the source bus line 25.
  • the shape of the pixel electrode is as follows. It is not limited.
  • the liquid crystal display part of the vertical alignment type liquid crystal display element is formed with a common electrode 22 (not shown) facing and separating from the pixel electrode 21.
  • the pixel electrode 21 and the common electrode 22 are formed on different substrates.
  • the pixel electrode 21 and the common electrode 22 are formed on the same substrate.
  • the color filter 6 is preferably formed with a black matrix (not shown) in a portion corresponding to the thin film transistor and the storage capacitor 23 from the viewpoint of preventing light leakage.
  • the liquid crystal display element 10 is a cross-sectional view of the liquid crystal display element shown in FIG. 8 taken along the line III-III in FIG. That is, the liquid crystal display element 10 according to the present invention includes a first polarizing plate 1, a first substrate 2, an electrode layer (or also referred to as a thin film transistor layer) 3 including a thin film transistor, an alignment film 4, and a liquid crystal composition.
  • the layer 5 including the alignment layer 4, the common electrode 3 ′, the color filter 6, the second substrate 7, and the first polarizing plate 8 are sequentially stacked.
  • a preferred embodiment of the structure of the thin film transistor (region IV in FIG. 10) of the liquid crystal display element according to the present invention is as described above, and is omitted here.
  • the liquid crystal layer according to the present invention includes a liquid crystal composition containing one or more compounds represented by the general formula (i).
  • the liquid crystal composition is preferably a nematic liquid crystal composition.
  • the liquid crystal composition according to the present invention has a component having a negative dielectric anisotropy ( ⁇ ) ( ⁇ 2> ⁇ ) and a neutral dielectric anisotropy (( ⁇ 2 ⁇ ⁇ ⁇ 2)). It is preferable to have a component.
  • the dielectrically negative compound of the liquid crystal composition according to the present invention as in the compound represented by the general formula (i), has a ring structure in the molecule composed of a 6-membered ring and has a difluorobenzene group as an essential component.
  • the structure Compared to a compound such as a condensed ring structure, the structure has high reliability and is easy to maintain the initial characteristics for long-time backlight irradiation, thus reducing the occurrence of flicker even after long-time backlight irradiation. It is thought that it is done.
  • C represents a group selected from the group consisting of 1,4-cyclohexenylene groups, and the groups (a), (b) and (c) are each independently a cyano group, a fluorine atom or a chlorine atom.
  • the compound represented by the general formula (i) is preferably a compound having a negative ⁇ and an absolute value larger than 3.
  • R i1 and R i2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or a carbon atom.
  • An alkenyloxy group having 2 to 8 carbon atoms is preferable, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkenyloxy having 2 to 5 carbon atoms. Groups are preferred.
  • the ring structure to which R i1 and R i2 are bonded is a phenyl group (aromatic)
  • a linear alkyl group having 1 to 5 carbon atoms a linear alkyl group having 1 to 4 carbon atoms
  • An alkoxy group and an alkenyl group having 4 to 5 carbon atoms are preferred
  • the ring structure to which R i1 and R i2 are bonded is a saturated ring structure such as cyclohexane, pyran and dioxane
  • An alkyl group having ⁇ 5, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms are preferable.
  • the total of carbon atoms and oxygen atoms, if present is preferably 5 or less, and is preferably linear.
  • the alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dots in each formula represent carbon atoms in the ring structure.)
  • a i1 and A i2 are preferably aromatic when it is required to independently increase ⁇ n, and are preferably aliphatic to improve the response speed, and trans-1,4 -Cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group, 2, It preferably represents a 3-difluoro-1,4-phenylene group, a 1,4-cyclohexenylene group, a piperidine-1,4-diyl group, and more preferably represents the following structure,
  • it represents a trans-1,4-cyclohexylene group, a 1,4-cyclohexenylene group or a 1,4-phenylene group.
  • Z i1 and Z i2 are each independently -CH 2 O -, - CF 2 O -, - CH 2 CH 2 -, - CF 2 CF 2 - or preferably a single bond, -CH 2 O-, —CH 2 CH 2 — or a single bond is more preferable, —CH 2 O— or a single bond is particularly preferable.
  • n i1 + n i2 is preferably 1 or 2, a combination in which n i1 is 1 and n i2 is 0, a combination in which n i1 is 2 and n i2 is 0, n i1 is 1 and n i2 is 1 A combination is preferred, where n i1 is 2 and n i2 is 1.
  • the lower limit of the preferable content of the compound represented by the formula (i) with respect to the total amount of the composition of the present invention is 1%, 10%, 20%, 30%, 40 %, 50%, 55%, 60%, 65%, 70%, 75%, 80%.
  • the upper limit of the preferable content is 95%, 90%, 85%, 80%, 79%, 75%, 65%, 55%, 45% 35%, 25%, 20%.
  • the compounds represented by the following general formulas (N-1a) to (N-1f) can be given as preferable compounds represented by the general formula (i).
  • the compound represented by formula (i) according to the present invention is one or more compounds selected from the group consisting of compounds represented by formulas (N-1a) to (N-1f). Preferably there is.
  • R N11 and R N12 are as defined R N11 and R N12 in the general formula (i), n Na11 represents 0 or 1, n NB11 represents 0 or 1, n NC11 is 0 or 1, n Nd11 represents 1 or 2, n Ne11 represents 1 or 2, n Nf11 represents 0 or 1, n Nf12 represents 0 or 1, n nf11 + n Nf12 represents 1 or 2 .
  • the lower limit value is preferably low and the upper limit value is preferably low.
  • the above lower limit value is preferably low and the upper limit value is preferably low.
  • the above lower limit value is increased and the upper limit value is high.
  • the compound represented by the general formula (i) is a compound selected from the group of compounds represented by the following general formulas (N-1-1) to (N-1-21). Is preferred.
  • the compound represented by the general formula (N-1-1) is the following compound.
  • R N111 and R N112 each independently represent the same meaning as R N11 and R N12 in General Formula (N).
  • R N111 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and preferably a propyl group or a pentyl group.
  • RN112 is preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and preferably an ethoxy group or a butoxy group.
  • the compound represented by the general formula (N-1-1) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-1) with respect to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17%, 20%, 23%, 25%, 27%, 30%, 33%, 35%.
  • the upper limit of the preferable content is 50%, 40%, 38%, 35%, 33%, 30%, and 28% with respect to the total amount of the composition of the present invention. %, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8%, 7%, 6% %, 5%, 3%.
  • the compound represented by the general formula (N-1-1) is a compound selected from the group of compounds represented by the formula (N-1-1.1) to the formula (N-1-1.14).
  • it is a compound represented by the formulas (N-1-1.1) to (N-1-1.4), and the formula (N-1-1.1) and the formula (N
  • the compound represented by -1-1.3) is preferable.
  • the compounds represented by the formulas (N-1-1.1) to (N-1-1.4) can be used alone or in combination.
  • the lower limit of the preferred content of these compounds alone or with respect to the total amount is 5%, 10%, 13%, 15%, 17%, 20%, 23% 25% 27% 30% 33% 35%
  • the upper limit of the preferable content is 50%, 40%, 38%, 35%, 33%, 30%, and 28% with respect to the total amount of the composition of the present invention. %, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8%, 7%, 6% %, 5%, 3%.
  • the compound represented by the general formula (N-1-2) is the following compound.
  • R N121 and R N122 each independently represent the same meaning as R N11 and R N12 in General Formula (N).
  • RN121 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and preferably an ethyl group, a propyl group, a butyl group or a pentyl group.
  • RN122 is preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and includes a methyl group, a propyl group, a methoxy group, an ethoxy group, or a propoxy group. preferable.
  • the compound represented by the general formula (N-1-2) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-2) with respect to the total amount of the composition of the present invention is 5%, 7%, 10%, 13% 15%, 17%, 20%, 23%, 25%, 27%, 30%, 33%, 35%, 37% 40% and 42%.
  • the upper limit of the preferable content is 50%, 48%, 45%, 43%, 40%, 38%, and 35% with respect to the total amount of the composition of the present invention. %, 33%, 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% %, 8%, 7%, 6%, 5%.
  • the compound represented by the general formula (N-1-2) is a compound selected from the group of compounds represented by the formula (N-1-2.1) to the formula (N-1-2.13).
  • the compound represented by (N-1-2.13) is preferable, and when importance is placed on the improvement of ⁇ , the formula (N-1-2.3) to the formula (N-1-2.7) in the compounds represented, when emphasizing improvements in T NI formula (N-1-2.10), formula (N-1-2.11) and formula (N-1-2.13) It is preferable that it is a compound represented by these.
  • the compounds represented by the formula (N-1-2.1) to the formula (N-1-2.13) can be used alone or in combination.
  • the lower limit of the preferable content of these compounds alone or with respect to the total amount of is 5%, 10%, 13%, 15%, 17%, 20%, 23 %, 25%, 27%, 30%, 33%, and 35%.
  • the upper limit of the preferable content is 50%, 40%, 38%, 35%, 33%, 30%, and 28% with respect to the total amount of the composition of the present invention. %, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8%, 7%, 6% %, 5%, 3%.
  • the compound represented by the general formula (N-1-3) is the following compound.
  • R N131 and R N132 each independently represent the same meaning as R N11 and R N12 in General Formula (N).
  • R N131 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and preferably an ethyl group, a propyl group or a butyl group.
  • R N132 is preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and preferably an ethoxy group, a propoxy group, or a butoxy group.
  • the compound represented by the general formula (N-1-3) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-3) with respect to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferable content is 35%, 30%, 28%, 25%, 23%, 20%, and 18% with respect to the total amount of the composition of the present invention. %, 15%, and 13%.
  • the compound represented by the general formula (N-1-3) is a compound selected from the group of compounds represented by the formula (N-1-3.1) to the formula (N-1-3.11).
  • it is a compound represented by the formulas (N-1-3.1) to (N-1-3.7), and the formula (N-1-3.1) and the formula (N -1-3.2), formula (N-1-3.3), formula (N-1-3.4) and compounds represented by formula (N-1-3.6) are preferred.
  • the compounds represented by formula (N-1-3.1) to formula (N-1-3.4) and formula (N-1-3.6) may be used alone or in combination. Is possible, but the combination of formula (N-1-3.1) and formula (N-1-3.2), formula (N-1-3.3), formula (N-1-3.4) ) And a combination of two or three selected from formula (N-1-3.6) are preferred.
  • the lower limit of the preferred content of these compounds alone or with respect to the total amount of the composition of the present invention is 5%, 10%, 13%, 15%, 17%, 20% %.
  • the upper limit of the preferable content is 35%, 30%, 28%, 25%, 23%, 20%, and 18% with respect to the total amount of the composition of the present invention. %, 15%, and 13%.
  • the compound represented by the general formula (N-1-4) is the following compound.
  • R N141 and R N142 each independently represents the same meaning as R N11 and R N12 in the general formula (N).
  • R N141 and R N142 are each independently an alkyl group having 1 to 5 carbon atoms, an alkenyl group or an alkoxy group having 1 to 4 carbon atoms carbon atoms 4-5 preferably a methyl group, a propyl group, an ethoxy Group or butoxy group is preferred.
  • the compound represented by the general formula (N-1-4) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-4) with respect to the total amount of the composition of the present invention is 3%, 5%, 7%, 10% 13%, 15%, 17%, 20%.
  • the upper limit of the preferable content is 35%, 30%, 28%, 25%, 23%, 20%, and 18% with respect to the total amount of the composition of the present invention. %, 15%, 13%, 11%, 10%, and 8%.
  • the compound represented by the general formula (N-1-4) is a compound selected from the group of compounds represented by the formula (N-1-4.1) to the formula (N-1-4.14).
  • it is a compound represented by the formulas (N-1-4.1) to (N-1-4.4), and the formula (N-1-4.1) and the formula (N
  • the compound represented by -1-4.2) is preferable.
  • the compounds represented by formulas (N-1-4.1) to (N-1-4.4) can be used singly or in combination, but the compounds of the present invention
  • the lower limit of the preferable content of these compounds alone or with respect to the total amount is 3%, 5%, 7%, 10%, 13%, 15%, 17% And 20%.
  • the upper limit of the preferable content is 35%, 30%, 28%, 25%, 23%, 20%, and 18% with respect to the total amount of the composition of the present invention. %, 15%, 13%, 11%, 10%, and 8%.
  • the compound represented by the general formula (N-1-5) is the following compound.
  • R N151 and R N152 each independently represent the same meaning as R N11 and R N12 in General Formula (N).
  • R N151 and R N152 are each independently an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and preferably an ethyl group, a propyl group, or a butyl group. Is preferred.
  • the compound represented by the general formula (N-1-5) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-5) with respect to the total amount of the composition of the present invention is 5%, 8%, 10%, 13% 15%, 17%, 20%.
  • the upper limit of the preferable content is 35%, 33%, 30%, 28%, 25%, 23%, and 20% with respect to the total amount of the composition of the present invention. %, 18%, 15% and 13%.
  • the compound represented by the general formula (N-1-5) is a compound selected from the group of compounds represented by the formula (N-1-5.1) to the formula (N-1-5.6). It is preferable that a compound represented by the formula (N-1-3.2 and the formula (N-1-3.4) is preferable.
  • the compounds represented by formula (N-1-3.2) and formula (N-1-3.4) can be used alone or in combination.
  • the lower limit of the preferable content of these compounds alone or with respect to the total amount is 5%, 8%, 10%, 13%, 15%, 17%, 20%
  • the upper limit of the preferred content is 35%, 33%, 30%, 28%, 25%, and 23% with respect to the total amount of the composition of the present invention. Yes, 20%, 18%, 15%, 13%.
  • the compound represented by the general formula (N-1-10) is the following compound.
  • R N1101 and R N1102 each independently represent the same meaning as R N11 and R N12 in General Formula (N).
  • R N1101 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and preferably an ethyl group, a propyl group or a butyl group.
  • R N1102 is preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and preferably an ethoxy group, a propoxy group, or a butoxy group.
  • the compound represented by the general formula (N-1-10) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-10) with respect to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferable content is 35%, 30%, 28%, 25%, 23%, 20%, and 18% with respect to the total amount of the composition of the present invention. %, 15%, and 13%.
  • the compound represented by the general formula (N-1-10) is a compound selected from the group of compounds represented by the formula (N-1-10.1) to the formula (N-1-10.11).
  • it is a compound represented by the formulas (N-1-10.1) to (N-1-10.5), and the formula (N-1-10.1) and the formula (N
  • the compound represented by (1-10.2) is preferable.
  • the compounds represented by the formula (N-1-10.1) and the formula (N-1-10.2) can be used alone or in combination.
  • the lower limit of the preferable content of these compounds alone or with respect to the total amount is 5%, 10%, 13%, 15%, 17%, and 20%.
  • the upper limit of the preferable content is 35%, 30%, 28%, 25%, 23%, 20%, and 18% with respect to the total amount of the composition of the present invention. %, 15%, and 13%.
  • the compound represented by the general formula (N-1-11) is the following compound.
  • R N1111 and R N1112 each independently represent the same meaning as R N11 and R N12 in General Formula (N).
  • R N1111 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and preferably an ethyl group, a propyl group or a butyl group.
  • R N1112 is preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and preferably an ethoxy group, a propoxy group or a butoxy group.
  • the compound represented by the general formula (N-1-11) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-11) with respect to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferable content is 35%, 30%, 28%, 25%, 23%, 20%, and 18% with respect to the total amount of the composition of the present invention. %, 15%, and 13%.
  • the compound represented by the general formula (N-1-11) is a compound selected from the group of compounds represented by the formula (N-1-11.1) to the formula (N-1-11.15).
  • it is a compound represented by the formulas (N-1-11.1) to (N-1-11.15), and is preferably a compound represented by the formula (N-1-11.2) or the formula (N-- The compound represented by 1-11.4) is preferable.
  • the compounds represented by the formula (N-1-11.2) and the formula (N-1-11.4) can be used alone or in combination.
  • the lower limit of the preferable content of these compounds alone or with respect to the total amount is 5%, 10%, 13%, 15%, 17%, and 20%.
  • the upper limit of the preferable content is 35%, 30%, 28%, 25%, 23%, 20%, and 18% with respect to the total amount of the composition of the present invention. %, 15%, and 13%.
  • the compound represented by the general formula (N-1-12) is the following compound.
  • R N1121 and R N1122 each independently represent the same meaning as R N11 and R N12 in General Formula (N).
  • RN1121 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and preferably an ethyl group, a propyl group or a butyl group.
  • RN1122 is preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and preferably an ethoxy group, a propoxy group, or a butoxy group.
  • the compound represented by the general formula (N-1-12) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-12) with respect to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferable content is 35%, 30%, 28%, 25%, 23%, 20%, and 18% with respect to the total amount of the composition of the present invention. %, 15%, and 13%.
  • the compound represented by the general formula (N-1-13) is the following compound.
  • R N1131 and R N1132 each independently represent the same meaning as R N11 and R N12 in General Formula (N).
  • R N1131 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and preferably an ethyl group, a propyl group or a butyl group.
  • R N1132 is preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and preferably an ethoxy group, a propoxy group, or a butoxy group.
  • the compound represented by the general formula (N-1-13) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-13) with respect to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferable content is 35%, 30%, 28%, 25%, 23%, 20%, and 18% with respect to the total amount of the composition of the present invention. %, 15%, and 13%.
  • the compound represented by the general formula (N-1-14) is the following compound.
  • R N1141 and R N1142 each independently represent the same meaning as R N11 and R N12 in formula (N).
  • R N1141 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and preferably an ethyl group, a propyl group or a butyl group.
  • R N1142 is preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and preferably an ethoxy group, a propoxy group, or a butoxy group.
  • the compound represented by the general formula (N-1-14) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-14) with respect to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferable content is 35%, 30%, 28%, 25%, 23%, 20%, and 18% with respect to the total amount of the composition of the present invention. %, 15%, and 13%.
  • the compound represented by the general formula (N-1-15) is the following compound.
  • R N1151 and R N1152 each independently represent the same meaning as R N11 and R N12 in General Formula (N).
  • RN1151 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and preferably an ethyl group, a propyl group or a butyl group.
  • R N1152 is preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and preferably an ethoxy group, a propoxy group, or a butoxy group.
  • the compound represented by the general formula (N-1-15) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-15) with respect to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferable content is 35%, 30%, 28%, 25%, 23%, 20%, and 18% with respect to the total amount of the composition of the present invention. %, 15%, and 13%.
  • the compound represented by the general formula (N-1-16) is the following compound.
  • R N1161 and R N1162 each independently represent the same meaning as R N11 and R N12 in General Formula (N).
  • R N1161 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and preferably an ethyl group, a propyl group or a butyl group.
  • R N1162 is preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and preferably an ethoxy group, a propoxy group, or a butoxy group.
  • the compound represented by the general formula (N-1-16) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-16) with respect to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferable content is 35%, 30%, 28%, 25%, 23%, 20%, and 18% with respect to the total amount of the composition of the present invention. %, 15%, and 13%.
  • the compound represented by the general formula (N-1-17) is the following compound.
  • R N1171 and R N1172 each independently represent the same meaning as R N11 and R N12 in General Formula (N)).
  • RN1171 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and preferably an ethyl group, a propyl group or a butyl group.
  • R N1172 is preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and preferably an ethoxy group, a propoxy group, or a butoxy group.
  • the compound represented by the general formula (N-1-17) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-17) with respect to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferable content is 35%, 30%, 28%, 25%, 23%, 20%, and 18% with respect to the total amount of the composition of the present invention. %, 15%, and 13%.
  • the compound represented by the general formula (N-1-18) is the following compound.
  • R N1181 and R N1182 each independently represent the same meaning as R N11 and R N12 in General Formula (N)).
  • RN1181 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and preferably an ethyl group, a propyl group or a butyl group.
  • R N1182 is preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and preferably an ethoxy group, a propoxy group, or a butoxy group.
  • the compound represented by the general formula (N-1-18) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-18) with respect to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferable content is 35%, 30%, 28%, 25%, 23%, 20%, and 18% with respect to the total amount of the composition of the present invention. %, 15%, and 13%.
  • the compound represented by the general formula (N-1-20) is the following compound.
  • R N1201 and R N1202 each independently represent the same meaning as R i1 and R i2 in formula (i)).
  • R N1201 and R N1202 are each independently preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and preferably an ethyl group, a propyl group or a butyl group.
  • the compound represented by the general formula (N-1-20) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-20) with respect to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferable content is 35%, 30%, 28%, 25%, 23%, 20%, and 18% with respect to the total amount of the composition of the present invention. %, 15%, and 13%.
  • the compound represented by the general formula (N-1-21) is the following compound.
  • R N1211 and R N1212 each independently represent the same meaning as R i1 and R i2 in formula (i)).
  • R N1211 and R N1212 are each independently preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and preferably an ethyl group, a propyl group or a butyl group.
  • the compound represented by the general formula (N-1-21) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-21) with respect to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferable content is 35%, 30%, 28%, 25%, 23%, 20%, and 18% with respect to the total amount of the composition of the present invention. %, 15%, and 13%.
  • composition of the present invention preferably contains one or more compounds represented by the general formula (L).
  • the compound represented by the general formula (L) corresponds to a dielectrically neutral compound ( ⁇ value is ⁇ 2 to 2).
  • R L1 and R L2 each independently represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently Optionally substituted by —CH ⁇ CH—, —C ⁇ C—, —O—, —CO—, —COO— or —OCO—, n L1 represents 0, 1, 2 or 3,
  • a L1 , A L2 and A L3 each independently represent (a) a 1,4-cyclohexylene group (one —CH 2 — present in the group or two or more —CH 2 — not adjacent to each other).
  • n L1 is 2 or 3
  • a plurality of A L2 are present, they may be the same or different, and when n L1 is 2 or 3, and
  • the compound represented by general formula (L) may be used independently, it can also be used in combination.
  • the types of compounds that can be combined but they are used in appropriate combinations according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention.
  • the content of the compound represented by the general formula (L) is low-temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, image sticking, It is necessary to appropriately adjust according to required performance such as dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L) with respect to the total amount of the composition of the present invention is 1%, 10%, 20%, 30%, 40 %, 50%, 55%, 60%, 65%, 70%, 75%, 80%.
  • the upper limit of the preferable content is 95%, 85%, 75%, 65%, 55%, 45%, 35%, and 25%.
  • the above lower limit value is preferably high and the upper limit value is preferably high. Furthermore, when the composition of the present invention maintains a high Tni and requires a composition having good temperature stability, the above lower limit value is preferably high and the upper limit value is preferably high. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable that the above lower limit value is lowered and the upper limit value is low.
  • R L1 and R L2 are preferably both alkyl groups, and when importance is placed on reducing the volatility of the compound, it is preferably an alkoxy group, and importance is placed on viscosity reduction. In this case, at least one is preferably an alkenyl group.
  • the number of halogen atoms present in the molecule is preferably 0, 1, 2 or 3, preferably 0 or 1, and 1 is preferred when importance is attached to compatibility with other liquid crystal molecules.
  • R L1 and R L2 are each a linear alkyl group having 1 to 5 carbon atoms or a linear alkyl group having 1 to 4 carbon atoms when the ring structure to which R L1 is bonded is a phenyl group (aromatic).
  • a phenyl group aromatic
  • Alkyl groups, linear alkoxy groups having 1 to 4 carbon atoms and linear alkenyl groups having 2 to 5 carbon atoms are preferred.
  • the total of carbon atoms and oxygen atoms, if present, is preferably 5 or less, and is preferably linear.
  • the alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dots in each formula represent carbon atoms in the ring structure.)
  • n L1 is preferably 0 when importance is attached to the response speed, 2 or 3 is preferred for improving the upper limit temperature of the nematic phase, and 1 is preferred for balancing these. In order to satisfy the properties required for the composition, it is preferable to combine compounds having different values.
  • a L1 , A L2, and A L3 are preferably aromatic when it is required to increase ⁇ n, and are preferably aliphatic for improving the response speed, and are each independently trans- 1,4-cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group 1,4-cyclohexenylene group and piperidine-1,4-diyl group are preferable, and the following structure is more preferable.
  • it represents a trans-1,4-cyclohexylene group or a 1,4-phenylene group.
  • Z L1 and Z L2 are preferably single bonds when the response speed is important.
  • the compound represented by the general formula (L) preferably has 0 or 1 halogen atom in the molecule.
  • the compound represented by the general formula (L) according to the present invention may be one or more compounds selected from the group of compounds represented by the general formulas (L-1) to (L-7). preferable.
  • the compound represented by the general formula (L-1) is the following compound.
  • R L11 and R L12 each independently represent the same meaning as R L1 and R L2 in the general formula (L).
  • R L11 and R L12 are preferably a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms. .
  • the compound represented by the general formula (L-1) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content is 1%, 2%, 3%, 5%, 7%, 10%, and 15% with respect to the total amount of the composition of the present invention. %, 20%, 25%, 30%, 35%, 40%, 45%, 50%, and 55%.
  • the upper limit of the preferable content is 95%, 90%, 85%, 80%, 75%, 70%, 65%, based on the total amount of the composition of the present invention. %, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%.
  • the above lower limit value is preferably high and the upper limit value is preferably high. Furthermore, when the composition of the present invention requires a high Tni and a composition having good temperature stability, it is preferable that the lower limit value is moderate and the upper limit value is moderate. When it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable that the lower limit value is low and the upper limit value is low.
  • the compound represented by the general formula (L-1) is preferably a compound selected from the group of compounds represented by the general formula (L-1-1).
  • the compound represented by the general formula (L-1-1) is a compound selected from the group of compounds represented by the formula (L-1-1.1) to the formula (L-1-1.3). And is preferably a compound represented by formula (L-1-1.2) or formula (L-1-1.3), and particularly represented by formula (L-1-1.3). It is preferable that it is a compound.
  • the lower limit of the preferable content of the compound represented by the formula (L-1-1.3) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, 7%, and 10%.
  • the upper limit of the preferable content is 20%, 15%, 13%, 10%, 8%, 7%, and 6% with respect to the total amount of the composition of the present invention. %, 5%, 3%.
  • the compound represented by the general formula (L-1) is preferably a compound selected from the group of compounds represented by the general formula (L-1-2).
  • R L12 represents the same meaning as in general formula (L-1).
  • the lower limit of the preferable content of the compound represented by the formula (L-1-2) with respect to the total amount of the composition of the present invention is 1%, 5%, 10%, 15% 17%, 20%, 23%, 25%, 27%, 30%, 35%.
  • the upper limit of the preferable content is 60%, 55%, 50%, 45%, 42%, 40%, and 38% with respect to the total amount of the composition of the present invention. %, 35%, 33%, and 30%.
  • the compound represented by the general formula (L-1-2) is a compound selected from the group of compounds represented by the formula (L-1-2.1) to the formula (L-1-2.4).
  • it is a compound represented by the formula (L-1-2.2) to the formula (L-1-2.4).
  • the compound represented by the formula (L-1-2.2) is preferable because the response speed of the composition of the present invention is particularly improved.
  • it is preferable to use a compound represented by the formula (L-1-2.3) or the formula (L-1-2.4).
  • the content of the compounds represented by formula (L-1-2.3) and formula (L-1-2.4) is not preferably 30% or more in order to improve the solubility at low temperatures.
  • the lower limit of the preferable content of the compound represented by the formula (L-1-2.2) with respect to the total amount of the composition of the present invention is 10%, 15%, 18%, 20%, 23%, 25%, 27%, 30%, 33%, 35%, 38%, and 40%.
  • the upper limit of the preferable content is 60%, 55%, 50%, 45%, 43%, 40%, and 38% with respect to the total amount of the composition of the present invention. %, 35%, 32%, 30%, 27%, 25%, and 22%.
  • the lower limit of the preferable total content of the compound represented by the formula (L-1-1.3) and the compound represented by the formula (L-1-2.2) with respect to the total amount of the composition of the present invention The values are 10%, 15%, 20%, 25%, 27%, 30%, 35% and 40%.
  • the upper limit of the preferable content is 60%, 55%, 50%, 45%, 43%, 40%, and 38% with respect to the total amount of the composition of the present invention. %, 35%, 32%, 30%, 27%, 25%, and 22%.
  • the compound represented by the general formula (L-1) is preferably a compound selected from the group of compounds represented by the general formula (L-1-3).
  • R L13 and R L14 each independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms.
  • R L13 and R L14 are preferably a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms. .
  • the lower limit of the preferable content of the compound represented by the formula (L-1-3) with respect to the total amount of the composition of the present invention is 1%, 5%, 10%, 13% 15%, 17%, 20%, 23%, 25%, 30%.
  • the upper limit of the preferable content is 60%, 55%, 50%, 45%, 40%, 37%, and 35% with respect to the total amount of the composition of the present invention. %, 33%, 30%, 27%, 25%, 23%, 23%, 20%, 17%, 15%, 13%, 10% %.
  • the compound represented by the general formula (L-1-3) is a compound selected from the group of compounds represented by the formula (L-1-3.1) to the formula (L-1-3.12).
  • the compound represented by the formula (L-1-3.1) is preferable because the response speed of the composition of the present invention is particularly improved. Further, when obtaining Tni higher than the response speed, the equation (L-1-3.3), the equation (L-1-3.4), the equation (L-1-3.11), and the equation (L ⁇ It is preferable to use a compound represented by 1-3.12). Sum of compounds represented by formula (L-1-3.3), formula (L-1-3.4), formula (L-1-3.11) and formula (L-1-3.12) The content of is not preferably 20% or more in order to improve the solubility at low temperatures.
  • the lower limit of the preferable content of the compound represented by the formula (L-1-3.1) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, 7%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferable content is 20%, 17%, 15%, 13%, 10%, 8%, and 7% with respect to the total amount of the composition of the present invention. % And 6%.
  • the compound represented by the general formula (L-1) is preferably a compound selected from the group of compounds represented by the general formula (L-1-4) and / or (L-1-5).
  • R L15 and R L16 each independently represent an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms.
  • R L15 and R L16 are preferably a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms. .
  • the lower limit of the preferable content of the compound represented by the formula (L-1-4) with respect to the total amount of the composition of the present invention is 1%, 5%, 10%, 13% 15%, 17%, 20%.
  • the upper limit of the preferable content is 25%, 23%, 20%, 17%, 15%, 13%, and 10% with respect to the total amount of the composition of the present invention. %.
  • the lower limit of the preferable content of the compound represented by the formula (L-1-5) with respect to the total amount of the composition of the present invention is 1%, 5%, 10%, 13% 15%, 17%, 20%.
  • the upper limit of the preferable content is 25%, 23%, 20%, 17%, 15%, 13%, and 10% with respect to the total amount of the composition of the present invention. %.
  • the compounds represented by the general formulas (L-1-4) and (L-1-5) are represented by the formulas (L-1-4.1) to (L-1-5.3).
  • a compound represented by the formula (L-1-4.2) or the formula (L-1-5.2) is preferable.
  • the lower limit of the preferable content of the compound represented by the formula (L-1-4.2) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, 7%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferable content is 20%, 17%, 15%, 13%, 10%, 8%, and 7% with respect to the total amount of the composition of the present invention. % And 6%.
  • the compound represented by the general formula (L-2) is the following compound.
  • R L21 and R L22 each independently represent the same meaning as R L1 and R L2 in the general formula (L).
  • R L21 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R L22 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or a carbon atom.
  • An alkoxy group of 1 to 4 is preferable.
  • the compound represented by the general formula (L-1) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (L-2) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7% and 10%.
  • the upper limit of the preferable content is 20%, 15%, 13%, 10%, 8%, 7%, and 6% with respect to the total amount of the composition of the present invention. %, 5%, 3%.
  • the compound represented by the general formula (L-2) is preferably a compound selected from the group of compounds represented by the formulas (L-2.1) to (L-2.6).
  • a compound represented by formula (L-2.1), formula (L-2.3), formula (L-2.4) and formula (L-2.6) is preferred.
  • the compound represented by the general formula (L-3) is the following compound.
  • R L31 and R L32 each independently represent the same meaning as R L1 and R L2 in General Formula (L).
  • R L31 and R L32 are each independently preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • the compound represented by the general formula (L-3) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (L-3) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7% and 10%.
  • the upper limit of the preferable content is 20%, 15%, 13%, 10%, 8%, 7%, and 6% with respect to the total amount of the composition of the present invention. %, 5%, 3%.
  • the effect is high when the content is set to be large.
  • the effect is high when the content is set low.
  • the compound represented by the general formula (L-3) is preferably a compound selected from the group of compounds represented by the formulas (L-3.1) to (L-3.4).
  • a compound represented by the formula (L-3.7) from (L-3.2) is preferable.
  • the compound represented by the general formula (L-4) is the following compound.
  • R L41 and R L42 each independently represent the same meaning as R L1 and R L2 in General Formula (L).
  • R L41 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R L42 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or a carbon atom.
  • An alkoxy group of 1 to 4 is preferable.
  • the compound represented by the general formula (L-4) can be used alone, or two or more compounds can be used in combination.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the content of the compound represented by the general formula (L-4) is low-temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, It is necessary to adjust appropriately according to required performance such as image sticking and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L-4) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7%, 10%, 14%, 16%, 20%, 23%, 26%, 30%, 35%, 40% .
  • the upper limit of the preferable content of the compound represented by the formula (L-4) with respect to the total amount of the composition of the present invention is 50%, 40%, 35%, and 30%. 20%, 15%, 10%, 5%.
  • the compound represented by general formula (L-4) is preferably a compound represented by formula (L-4.1) to formula (L-4.3), for example.
  • the formula (L-4.2) Even if it contains a compound represented by formula (L-4.1), it contains both a compound represented by formula (L-4.1) and a compound represented by formula (L-4.2). Or all of the compounds represented by formulas (L-4.1) to (L-4.3) may be included.
  • the lower limit of the preferable content of the compound represented by formula (L-4.1) or formula (L-4.2) with respect to the total amount of the composition of the present invention is 3%, Yes, 7%, 9%, 11%, 12%, 13%, 18%, 21%, and the preferred upper limit is 45, 40% , 35%, 30%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% .
  • the amount of both compounds relative to the total amount of the composition of the present invention is The lower limit of the preferred content is 5%, 15%, 19%, 24%, 30%, and the preferred upper limit is 45, 40%, 35%. Yes, 30%, 25%, 23%, 20%, 18%, 15%, 13%.
  • the compound represented by the general formula (L-4) is preferably, for example, a compound represented by the formula (L-4.4) to the formula (L-4.6). It is preferable that it is a compound represented by this.
  • the formula (L -4.5) contains both the compound represented by formula (L-4.4) and the compound represented by formula (L-4.5). May be.
  • the lower limit of the preferable content of the compound represented by the formula (L-4.4) or the formula (L-4.5) with respect to the total amount of the composition of the present invention is 3%, Yes, 7%, 9%, 11%, 12%, 13%, 18%, 21%.
  • Preferred upper limit values are 45, 40%, 35%, 30%, 25%, 23%, 20%, 18%, 15%, 13% %, 10%, and 8%.
  • the amount of both compounds relative to the total amount of the composition of the present invention is The lower limit of the preferred content is 5%, 15%, 19%, 24%, 30%, and the preferred upper limit is 45, 40%, 35%. Yes, 30%, 25%, 23%, 20%, 18%, 15%, 13%.
  • the compound represented by the general formula (L-4) is preferably a compound represented by the formula (L-4.7) to the formula (L-4.10), and particularly the formula (L-4.
  • the compound represented by 9) is preferred.
  • the compound represented by the general formula (L-5) is the following compound.
  • R L51 and R L52 each independently represent the same meaning as R L1 and R L2 in the general formula (L).
  • R L51 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R L52 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or a carbon atom.
  • An alkoxy group of 1 to 4 is preferable.
  • the compound represented by the general formula (L-5) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the content of the compound represented by the general formula (L-5) includes solubility at low temperature, transition temperature, electrical reliability, birefringence index, process suitability, dripping marks, It is necessary to adjust appropriately according to required performance such as image sticking and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L-5) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7%, 10%, 14%, 16%, 20%, 23%, 26%, 30%, 35%, 40% .
  • the upper limit of the preferable content of the compound represented by the formula (L-5) with respect to the total amount of the composition of the present invention is 50%, 40%, 35%, and 30%. , 20%, 15%, 10%, 5%
  • the compound represented by the general formula (L-5) is represented by the formula (L-5.1) or the formula (L-5.2).
  • the compound represented by formula (L-5.1) is particularly desirable.
  • the lower limit of the preferable content of these compounds with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, and 7%.
  • the upper limit of the preferable content of these compounds is 20%, 15%, 13%, 10%, and 9%.
  • the compound represented by the general formula (L-5) is preferably a compound represented by the formula (L-5.3) or the formula (L-5.4).
  • the lower limit of the preferable content of these compounds with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, and 7%.
  • the upper limit of the preferable content of these compounds is 20%, 15%, 13%, 10%, and 9%.
  • the compound represented by the general formula (L-5) is preferably a compound selected from the group of compounds represented by the formula (L-5.5) to the formula (L-5.7).
  • the lower limit of the preferable content of these compounds with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, and 7%.
  • the upper limit of the preferable content of these compounds is 20%, 15%, 13%, 10%, and 9%.
  • the compound represented by the general formula (L-6) is the following compound.
  • R L61 and R L62 each independently represent the same meaning as R L1 and R L2 in the general formula (L), and X L61 and X L62 each independently represent a hydrogen atom or a fluorine atom.
  • R L61 and R L62 are each independently preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and one of X L61 and X L62 is a fluorine atom and the other is a hydrogen atom. Is preferred.
  • the compound represented by the general formula (L-6) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (L-6) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7%, 10%, 14%, 16%, 20%, 23%, 26%, 30%, 35%, 40% .
  • the upper limit of the preferable content of the compound represented by the formula (L-6) with respect to the total amount of the composition of the present invention is 50%, 40%, 35%, and 30%. 20%, 15%, 10%, 5%.
  • the compound represented by the general formula (L-6) is preferably a compound represented by the formula (L-6.1) to the formula (L-6.9).
  • the compound represented by the general formula (L-6) is preferably, for example, a compound represented by the formula (L-6.10) to the formula (L-6.17).
  • a compound represented by L-6.11) is preferable.
  • the lower limit of the preferable content of these compounds with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, and 7%.
  • the upper limit of the preferable content of these compounds is 20%, 15%, 13%, 10%, and 9%.
  • the compound represented by the general formula (L-7) is the following compound.
  • R L71 and R L72 each independently represent the same meaning as R L1 and R L2 in Formula (L), A L71 and A L72 is A L2 and in the general formula (L) independently A L3 represents the same meaning, but the hydrogen atoms on A L71 and A L72 may be each independently substituted with a fluorine atom, Z L71 represents the same meaning as Z L2 in formula (L), X L71 and X L72 each independently represent a fluorine atom or a hydrogen atom.
  • R L71 and R L72 are each independently preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and
  • a L71 and A L72 Are each independently preferably a 1,4-cyclohexylene group or a 1,4-phenylene group, the hydrogen atoms on A L71 and A L72 may be each independently substituted with a fluorine atom, and
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, and four kinds.
  • the content of the compound represented by the general formula (L-7) includes solubility at low temperature, transition temperature, electrical reliability, birefringence index, process suitability, dripping marks, It is necessary to adjust appropriately according to required performance such as image sticking and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the general formula (L-7) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% Yes, 7%, 10%, 14%, 16%, 20%.
  • the upper limit of the preferable content of the compound represented by the formula (L-7) with respect to the total amount of the composition of the present invention is 30%, 25%, 23%, and 20%. 18%, 15%, 10%, 5%.
  • the compound represented by the general formula (L-7) is preferably a compound represented by the formula (L-7.1) to the formula (L-7.4), and the formula (L-7. It is preferable that it is a compound represented by 2).
  • the compound represented by the general formula (L-7) is preferably a compound represented by the formula (L-7.11) to the formula (L-7.13). It is preferable that it is a compound represented by 11).
  • the compound represented by the general formula (L-7) is a compound represented by the formula (L-7.21) to the formula (L-7.23).
  • a compound represented by formula (L-7.21) is preferable.
  • the compound represented by the general formula (L-7) is preferably a compound represented by the formula (L-7.31) to the formula (L-7.34), and the formula (L-7. 31) or / and a compound represented by the formula (L-7.32).
  • the compound represented by the general formula (L-7) is preferably a compound represented by the formula (L-7.41) to the formula (L-7.44), and the formula (L-7. 41) or / and a compound represented by formula (L-7.42).
  • the preferred form of the liquid crystal composition according to the present invention is the lower limit of the total amount of the compound represented by the general formula (i) and the compound represented by the general formula (L) in the entire liquid crystal composition (100% by mass). Is 84% by mass, 85% by mass, 86% by mass, 87% by mass, 88% by mass, 89% by mass, 90% by mass, 91% by mass, 92% by mass, 93% by mass, 94% by mass or less, and 95% by mass. 96 mass%, 97 mass%, 98 mass%, 99 mass%, and 100 mass% are preferable.
  • the upper limit of the total amount of the compound represented by the general formula (i) and the compound represented by the general formula (L) in the entire liquid crystal composition (100% by mass) is 100% by mass, 99% by mass, and 98% by mass. 97 mass%, 96 mass%, 95 mass%, 94 mass%, 93 mass%, 92 mass%, 91 mass% or less, and 90 mass% are preferable.
  • a preferred embodiment of the liquid crystal composition according to the present invention is the upper limit value of the content of the component having a negative dielectric anisotropy ( ⁇ ) ( ⁇ 1.5> ⁇ ) in the entire liquid crystal composition (100 mass%).
  • negative dielectric anisotropy
  • the lower limit of the content of the component having a negative dielectric anisotropy ( ⁇ ) ( ⁇ 2> ⁇ ) in the entire liquid crystal composition (100% by mass) is 10% by mass, 12% by mass, and 14% by mass. 16% by mass, 18% by mass, 20% by mass, 21% by mass, 22% by mass or less, 23% by mass, 24% by mass, 25% by mass, 26% by mass, 27% by mass, 28% by mass, 29% by mass, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42% %, 43 mass%, 44 mass%, 47 mass%, 48 mass%, 49 mass%, 50 mass%, 51 mass%, and 52 mass% are preferable.
  • a preferred embodiment of the liquid crystal composition according to the present invention is a component having a negative dielectric anisotropy ( ⁇ ) ( ⁇ 1.5> ⁇ ) in the entire liquid crystal composition (100 mass%). 95 mass% or less is preferable and, as for the upper limit of content, 86 mass% or less is more preferable.
  • a preferred embodiment of the liquid crystal composition according to the present invention contains a component having a neutral dielectric anisotropy (( ⁇ 1.5 ⁇ ⁇ ⁇ 1.5)) in the entire liquid crystal composition (100% by mass).
  • the upper limit of the amount is 90% by mass, 88% by mass, 86% by mass, 84% by mass, 82% by mass, 80% by mass, 78% by mass, 76% by mass, 74% by mass, 72% by mass, 70% by mass, 68%, 66%, 63%, 60%, 58%, 55%, 52%, 50%, 47%, 45%, 43%, 40%, 38% %, 36% by mass, 36% by mass, 34% by mass, 32% by mass, 30% by mass, 28% by mass, and 26% by mass.
  • the lower limit of the content of components having a dielectric anisotropy neutral (( ⁇ 1.5 ⁇ ⁇ ⁇ 1.5)) in the entire liquid crystal composition (100% by mass) is 7% by mass, 8%.
  • the component exhibiting negative ( ⁇ 1.5> ⁇ ) dielectric anisotropy is represented by the general formulas (N-1a) to (N-1e). It is preferably composed of a compound selected from the group consisting of compounds, particularly composed of a compound selected from the group consisting of compounds represented by the general formulas (N-1a) to (N-1c) preferable.
  • the dielectric anisotropy is relatively low. Not only can it be suppressed, but the occurrence of flicker due to flexopolarization can also be reduced.
  • a preferred embodiment of the liquid crystal composition according to the present invention is a compound represented by the general formula (N-1a) among the components exhibiting negative ( ⁇ 1.5> ⁇ ) dielectric anisotropy, and the general formula
  • the total total amount of the compound represented by (N-1b) and the compound represented by general formula (N-1c) is the sum of the compound represented by general formula (N-1d) and the general formula (N-1e). It is preferable that it is more than the total total amount with the compound represented by this.
  • the amount of a compound (eg, general formula (N-1a) to general formula (N-1c)) having a negative ( ⁇ 1.5> ⁇ ) dielectric anisotropy in which the rings are directly connected is in addition, when the amount of the compound is higher than that of a compound having a negative ( ⁇ 2> ⁇ ) dielectric anisotropy containing a linking group in which the rings are linked via a linking group, the dielectric anisotropy can be suppressed relatively low, Generation of flicker due to flexopolarization can also be reduced.
  • a preferred form of the liquid crystal composition according to the present invention is represented by the compound represented by the general formula (N-1a) and the general formula (N-1b) in the entire liquid crystal composition (100% by mass).
  • the lower limit of the total amount (total amount) with the compound represented by the formula is 85 mass%, 86 mass%, 87 mass%, 88 mass%, 89 mass%, 90 mass%, 91 mass%, 92 mass%, 93 It is preferable that they are mass%, 94 mass% or less, 95 mass%, 96 mass%, 97 mass%, 98 mass%, 99 mass%, and 100 mass%.
  • Total amount (total amount) of the compound represented by formula (N-1d), the compound represented by formula (N-1e), and the compound represented by formula (L) ) Is preferably 100% by mass, 99% by mass, 98% by mass, 97% by mass, 96% by mass, 95% by mass, 94% by mass, 93% by mass, 92% by mass, or 91% by mass or less.
  • the liquid crystal composition of the present invention has a dielectric constant anisotropy ( ⁇ ) at 25 ° C. of ⁇ 1.0 to ⁇ 7.0 within an appropriate use range, but from the viewpoint of reducing driving voltage and flicker, ⁇ 1 It is preferably from 0.0 to less than -6.0, more preferably from -2.0 to less than -6.0, and particularly preferably from -2.5 to -5.5.
  • a liquid crystal composition having a large dielectric anisotropy is relatively difficult to reduce flicker from the viewpoint of flexopolarization. Therefore, the preferred liquid crystal composition according to the present invention preferably has a dielectric anisotropy ( ⁇ ) at ⁇ 25 ° C. of ⁇ 1.0 to ⁇ 7.0, preferably ⁇ 2.0 or more and less than ⁇ 6.0. More preferred.
  • the liquid crystal composition of the present invention has a refractive index anisotropy ( ⁇ n) at 25 ° C. of 0.08 to 0.14, more preferably 0.09 to 0.13, and 0.09 to 0.128. Particularly preferred. More specifically, it is preferably 0.10 to 0.13 when dealing with a thin cell gap, and preferably 0.08 to 0.10 when dealing with a thick cell gap.
  • the liquid crystal composition of the present invention has a viscosity ( ⁇ ) at 20 ° C. of 10 to 50 mPa ⁇ s, preferably 10 to 45 mPa ⁇ s, preferably 10 to 40 mPa ⁇ s, and preferably 10 to 35 mPa ⁇ s.
  • ⁇ Is preferably 10 to 30 mPa ⁇ s, more preferably 10 to 25 mPa ⁇ s, and particularly preferably 10 to 22 mPa ⁇ s.
  • the liquid crystal composition of the present invention has a rotational viscosity ( ⁇ 1 ) at 25 ° C. of 50 to 250 mPa ⁇ s, preferably 55 to 170 mPa ⁇ s, and preferably 60 to 160 mPa ⁇ s. To 150 mPa ⁇ s.
  • the liquid crystal composition of the present invention has a nematic phase-isotropic liquid phase transition temperature (T ni ) of 60 ° C. to 120 ° C., more preferably 70 ° C. to 100 ° C., still more preferably 70 ° C. to 85 ° C. 70 ° C. to 84.8 ° C. is particularly preferred.
  • T ni nematic phase-isotropic liquid phase transition temperature
  • Negative liquid crystal compositions used in actual liquid crystal display elements are composed of two compounds: a compound having a negative dielectric anisotropy (polar component) and a compound having a neutral dielectric anisotropy (nonpolar component).
  • the components are mixed, and the liquid crystal composition as a whole contains several to several tens of liquid crystal compounds. For this reason, it is mainly the polarization of the liquid crystal compound of the polar component that is directly involved in the flexoelectric effect (flexo polarization), and therefore driving that reverses the positive / negative polarity for each frame as in the driving method of the present invention.
  • the luminance fluctuation due to the change in the position of the polarization reacted in the step depends on the polarization of the polar component liquid crystal compound and its content.
  • the liquid crystal display element of the present invention performs inversion driving for each frame, if the term of luminance fluctuation due to the change in polarization position is further added, the luminance fluctuation becomes very large and flicker occurs. Display quality deteriorates.
  • liquid crystal compounds having a specific negative dielectric anisotropy are combined, and the content thereof is regulated to uniformly change the polarization position specific to the compound as a whole liquid crystal composition (liquid crystal layer). Therefore, it is considered that flicker can be reduced / suppressed.
  • polar liquid crystal compounds liquid crystal compounds exhibiting negative dielectric anisotropy
  • N-1-1-5 polar liquid crystal compounds
  • a compound comprising one or more selected from the group consisting of compounds represented by the compounds represented by formulas (N-1-10) to (N-1-13): These compounds preferably account for 80% by mass or more and 100% by mass or less of the component (100% by mass) exhibiting negative ( ⁇ 1.5> ⁇ ) dielectric anisotropy.
  • a polar component liquid crystal compound (a liquid crystal compound exhibiting negative dielectric anisotropy) is represented by the general formulas (N-1-1) to (N-1-5): A compound represented by formula (N-1-10) to a compound represented by formula (N-1-13): one or more selected from the group consisting of compounds represented by formula (N-1-13) And these compounds occupy 80% by mass or more and 100% by mass or less of the component (100% by mass) exhibiting negative ( ⁇ 1.5> ⁇ ) dielectric anisotropy, and are represented by the general formula (N-1 -1) to (N-1-5), the total content of the compounds represented by formulas (N-1-10) to (N-1-13) More preferably, it is greater than the total content of the compounds.
  • the display processing unit has a low frequency driving function and an intermittent driving function for reducing driving power in addition to normal driving, and is an LSI for driving a gate bus line of a TFT liquid crystal panel. It has a function of controlling a source driver which is an LSI for driving a certain gate driver and a source bus line of a TFT liquid crystal panel. Further, a function of supplying the common voltage V COM to the common electrode and controlling the operation of the backlight may be provided.
  • low frequency driving means that the driving frequency of the liquid crystal display element is a standard value (for example, 60 Hz, 120 Hz or 240 Hz) itself, 1/2, 1/4, 1/6, 1 / Driving (reducing by a display processing unit) is reduced to 10 or 1/60, and “intermittent driving” is to change the driving frequency of a liquid crystal display element to a standard value (for example, 60 Hz, 120 Hz, or 240 Hz) itself.
  • a period for stopping the control circuit (rest period) is provided (since the period for rewriting the image signal to the pixel electrode becomes longer due to the rest period, The apparent frame frequency is reduced.)
  • the display processing unit can control the frame frequency of the image signal to the pixel electrode to be in the range of more than 0 Hz and less than 59 Hz. Is 60 Hz, 120 Hz, or 240 Hz) and (the frame frequency is greater than 0 Hz and less than or equal to 59 Hz) (low frequency drive or intermittent drive) can be switched reversibly.
  • the liquid crystal display unit described above is driven, and the frame frequency of the image signal to the pixel electrode can be arbitrarily controlled within the range of 59 Hz or less and more than 0 Hz.
  • the frame period which is the time interval for rewriting the image signal, is appropriately controlled within a predetermined time. Therefore, it is preferable that the display processing unit according to the present invention can be controlled with two or more different frame frequencies, and at least one of the two or more different frame frequencies is 59 Hz or less to more than 0 Hz.
  • the frame frequency in the low frequency driving or intermittent driving state according to the present invention is more than 0 to 59 Hz, preferably 0.1 Hz to 59 Hz, preferably 0.2 Hz to 58 Hz, preferably 0.3 Hz to 57 Hz, 0.4 Hz 56 Hz is preferable, and 0.5 Hz to 55 Hz is preferable.
  • it is preferably 0.1 to less than 30 Hz when displaying a still image, and preferably 30 or more and less than 59 Hz when displaying a moving image.
  • the lower limit value of the frame frequency when displaying the former still image is preferably in the order of 0.1 Hz, 0.2 Hz, 0.5 Hz, 0.7 Hz, 0.9 Hz, and 1.0 Hz.
  • the upper limit of the frame frequency when displaying the former still image is 29.5 Hz, 28.0 Hz, 25.0 Hz, 23.0 Hz, 20.0 Hz, 18.0 Hz, 16.0 Hz, 14.0 Hz, 13. It is preferable in the order of 0 Hz, 12.0 Hz, 11.0 Hz, and 10 Hz.
  • the lower limit value of the frame frequency when displaying a moving image is preferable in the order of 30 Hz, 30.2 Hz, 30.5 Hz, and 31.0 Hz.
  • the upper limit of the frame frequency when displaying the latter moving image is 59.0 Hz, 58.0 Hz, 57.0 Hz, 56.0 Hz, 53.0 Hz, 52.0 Hz, 51.0 Hz, 50.0 Hz, 48.0 Hz. 47.0 Hz, 46.0 Hz, 45.0 Hz, 43.0 Hz, 42.0 Hz, and 40.0 Hz are preferable in this order.
  • control the frame frequency it is particularly preferable to control the frame frequency to 30 to 40 Hz when displaying a moving image in a low frequency drive or intermittent drive state. In addition, it is particularly preferable to control the frame frequency when displaying a still image in a low frequency drive or intermittent drive state to 1 to 10 Hz.
  • the first frame frequency is changed from the first drive mode that is driven at the first frame frequency.
  • a third driving mode in which driving is performed at a lower second frame frequency can be given.
  • the frame frequency is in the range of more than 0 to 59 Hz from the first driving mode (for example, the normal driving in which the first frame frequency is more than 60, 120, or 240 Hz) that is driven at the first frame frequency.
  • the display processing unit switches to the low-frequency drive (third drive mode) controlled by the control unit.
  • a first driving mode in which driving is performed at the first frame frequency for example, normal driving in which the first frame frequency exceeds 60, 120, or 240 Hz
  • To an intermittent drive (second drive mode) frame frequency in which a pause period corresponding to more than one frame is provided is switched from 0 to 59 Hz).
  • the display processing unit of the present invention reversibly switches between two or more drive modes having different frame frequencies by controlling the frame frequency of the image signal to the pixel electrode within a range of 59 Hz or less and more than 0 Hz. can do.
  • the driving method of the liquid crystal display element of the present invention can not only reduce power consumption by combining the above driving modes (first to third driving modes), but also the present invention provides a specific liquid crystal composition. Since it is used, flicker at the time of switching to low frequency driving or intermittent driving can be reduced.
  • “Switching between the first drive mode and the second drive mode” switching between normal drive and intermittent drive
  • the frame frequency of the image signal to the pixel electrode in the normal drive is 60 Hz, for example, the entire screen is scanned over (1/60) seconds, so the image signal is rewritten to the pixel electrode. Is performed once every 0.0167 seconds (the rewrite cycle of the image signal is 1/60).
  • the rewriting operation taking 1/60 seconds for example, when a driver or display processing unit corresponding to 2 frames, 10 frames, or 100 frames is provided with a pause period, rewriting of the image signal to the pixel electrode is resumed.
  • the period of the image signal rewrite period (second drive mode) from the last rewrite of the image signal to the pixel electrode to the resumption of rewrite of the image signal to the pixel electrode is 1 / Longer than 60 seconds.
  • the operation of the control circuit stops, so that the circuit power consumption during that period is eliminated and the power consumption can be reduced.
  • the display processing unit can control the rewriting timing of the image signal to the pixel electrode, and the image signal rewriting cycle can be changed.
  • power consumption can be reduced by controlling the frame frequency of the image signal to the pixel electrode within the range of 59 Hz or less and exceeding 0 Hz in the display processing unit, and making the rewrite cycle of the image signal freely extendable. it can.
  • FIG. 11A is a diagram illustrating a change over time in rewriting of an image signal in a pixel electrode of 2m rows and 2n columns.
  • FIG. 11B is a diagram illustrating a change over time in rewriting of an image signal in a pixel electrode of 2m + 1 rows and 2n + 1 columns. Further, the example of FIG. 11 will be described in the case where the frame frequency of the image signal to the pixel electrode in the first drive mode (normal drive) is 60 Hz.
  • FIG. 11 shows an example of column inversion driving as a polarity determination method, but the present invention is not limited to this.
  • FIG. 11A is a diagram showing the change over time in the rewriting of image signals in the pixel electrodes of 2m rows and 2n columns and the pixel electrodes of 2m + 1 rows and 2n + 1 columns, and FIG. It can be sufficient to represent the change over time of the rewriting of the image signal in the pixel electrode of 2m rows and 2n + 1 columns.
  • FIG. 11A when the frame frequency of the first drive mode (normal drive) is 60 Hz, the entire screen is scanned over (1/60) seconds, so rewriting of the image signal to the pixel is 1 / It is performed once every 60 seconds (image signal rewrite cycle 1/60), and the image signal applied to the pixel electrodes arranged in the column direction (2n) is inverted every frame of the same polarity in each frame.
  • the display processing unit controls the operation of the gate driver and the source driver.
  • FIG. 11B shows a state where a voltage having a reverse polarity to that of FIG. 11A is applied, and to the pixel electrode as in FIG. 11A.
  • the image signal is rewritten once every 1/60 seconds (image signal rewrite cycle 1/60), and the image signal applied to the pixel electrodes arranged in the column direction (2n + 1) has the same polarity in each frame.
  • the display processing unit controls the operation of the gate driver and the source driver so as to invert every frame.
  • a second pause period in which the rewriting operation of the display processing unit, the source driver or the gate driver is stopped is provided.
  • the circuit power consumption during the idle period becomes zero, so that the circuit power can be reduced.
  • the image signal rewrite operation to the pixel electrode is executed, so the image signal to the pixel is rewritten before the pause period.
  • Rewrite of the image signal to the pixel after the end of the pause period from when the image signal is rewritten to the pixel immediately before the pause period that is, the cycle of rewriting the image signal in the first driving mode). (That is, the rewrite cycle of the image signal in the second drive mode is different from the rewrite cycle of the image signal in the second drive mode to the pixel electrode in the first drive mode). This is longer than the rewrite period of the image signal.
  • a moving image is displayed (first driving mode), then a still image is displayed (switched to the second driving mode), and the moving image is displayed again ( And a display mode such as switching to the first drive mode.
  • “Switching between the first drive mode and the third drive mode” switching between normal drive and low frequency drive
  • the frame frequency of the image signal to the pixel electrode in the normal drive is 60 Hz
  • the entire screen is scanned over (1/60) seconds, so the image signal is rewritten to the pixel electrode. Is performed once every 0.0167 seconds (image signal rewrite cycle) (similarly, in the case of 120 Hz, the entire screen is scanned over (1/120) seconds, and in the case of 240 Hz, the entire screen is ( 1/240) Scan over 2 seconds).
  • the rewriting cycle of the image signal can be changed by changing the frame frequency itself of the image signal to the pixel electrode by the display processing unit.
  • the display processing unit can control the frame frequency of the image signal to the pixel electrode to be in the range of greater than 0 Hz to less than 59 Hz, and can switch the length of the image signal to be increased or decreased, thereby extending the rewrite cycle of the image signal. Make it shrinkable.
  • FIG. 12A is a diagram illustrating a change over time in rewriting of an image signal in a pixel electrode of 2m rows and 2n columns.
  • FIG. 12B is a diagram showing a change with time of rewriting of the image signal in the pixel electrodes of 2m + 1 rows and 2n + 1 columns.
  • the frame frequency of the image signal to the pixel electrode in the first drive mode is 60 Hz
  • the frame frequency of the image signal to the pixel electrode in the third drive mode low frequency drive
  • FIG. 12 shows an example of column inversion driving.
  • the present invention is not limited to this.
  • FIG. 12 shows an example of dot inversion driving.
  • FIG. 12A is a diagram showing the change over time of image signal rewriting in the pixel electrodes of 2m rows and 2n columns and the pixel electrodes of 2m + 1 rows and 2n + 1 columns, and FIG. It can be sufficient to represent the change over time of the rewriting of the image signal in the pixel electrode of 2m rows and 2n + 1 columns.
  • a third frame frequency lower than the first frame frequency For example, when switching to the third drive mode (low frequency state) driven at 6 Hz), the entire screen is scanned over (1/6) second, so the polarity to be applied is inverted every (1/6) Rewriting of the image signal to the pixel electrode is performed once every (1/6) second.
  • the image signal rewrite cycle in the third drive mode is longer than the image signal rewrite cycle in the first drive mode.
  • the number of rewrites of the image signal is reduced, so that power consumption can be reduced.
  • a moving image is displayed (first driving mode), then a moving image with slow motion is displayed (switched to the third driving mode), and fast moving again.
  • a display mode of displaying a moving image switching to the first drive mode can be mentioned.
  • FIG. 13A is a diagram illustrating a change over time in rewriting of an image signal in a pixel electrode of 2m rows and 2n columns.
  • FIG. 13B is a diagram showing a change over time of rewriting of an image signal in a pixel electrode of 2m + 1 rows and 2n + 1 columns, and polarity inversion and frame frequency are the same as those in FIGS.
  • the first driving mode normal driving
  • the third drive mode low frequency state
  • the entire screen is scanned over (1/6) second. Is inverted every (1/6), and rewriting of the image signal to the pixel electrode is performed once every (1/6) second.
  • the image signal rewrite operation to the pixel electrode is executed, so that the image signal to the pixel before the pause period is changed.
  • the image signal to the pixel after the end of the rest period from the time when the image signal is rewritten to the pixel immediately before the rest period Is different from the time of rewriting (that is, the rewriting cycle of the image signal in the second drive mode). Then, after that, when switching from the low-frequency driving state (third driving mode) to the normal driving (first driving mode), the above-described rewriting of the image signal to the pixel returns to the state of performing 1/60 times.
  • a fast moving video is displayed (first driving mode), then a slow moving video is displayed (switched to the third driving mode), and still A display mode in which an image is displayed (switched to the second drive mode) and a moving image having a fast movement is displayed again (switch to the first drive mode) can be given.
  • the present invention can be applied to a liquid crystal display element including a liquid crystal display unit such as VA, PSVA, FFS and / or IPS.
  • a method for reducing flicker caused by a decrease in the voltage holding ratio is desired in active driving such as VA, PSVA, FFS and / or IPS, particularly in low frequency driving.
  • the FFS and IPS drive formats are more likely to cause flexopolarization and flicker than the so-called VA mode because a strong electric field is applied to the liquid crystal when a voltage is applied. Therefore, a driving method of FFS and IPS is desired to reduce not only flicker caused by a decrease in voltage holding ratio but also flicker caused by flexopolarization as compared with VA and PSVA modes.
  • a preferred embodiment of the liquid crystal display unit of the present invention has a liquid crystal layer and an alignment film layer that induces homogeneous alignment between each of the first substrate and the second substrate, and is provided on the first substrate.
  • a common electrode is arranged.
  • a particularly preferable aspect of the liquid crystal display unit of the present invention is that the inter-electrode distance: R between the pixel electrode and the common electrode is The distance between the first substrate and the second substrate is smaller than G, and a fringe electric field is formed between the pixel electrode and the common electrode.
  • the measured characteristics are as follows.
  • T ni Nematic phase-isotropic liquid phase transition temperature (° C.) ⁇ n: refractive index anisotropy at 25 ° C. ⁇ : viscosity at 20 ° C. (mPa ⁇ s) ⁇ 1: rotational viscosity at 25 ° C. (mPa ⁇ s) ⁇ : Dielectric anisotropy at 25 ° C.
  • the liquid crystal compositions of Examples 1 to 15 and the liquid crystal compositions of Comparative Examples 1 to 4 (Tables 1, 3, 5, and 7) were injected into FFS cells, respectively, to obtain FFS elements. It was.
  • Each liquid crystal element was irradiated with a backlight using a white LED (luminous intensity: 25000 cd) for 1000 hours, then driven at a frame frequency of 1 (HZ), and evaluated according to the following flicker evaluation criteria (Tables 2, 4 and The display flicker after 6 BL irradiation).
  • the ND filter is an abbreviation for Neutral Density filter, and indicates a filter that changes the light transmittance without changing the color development.
  • ND100 indicates a transmittance of 100% (that is, a state where there is no ND filter and 100% of light is transmitted), and ND10 indicates a transmittance of 10%. It can be said that the state in which flicker is visible through an ND filter having a small transmittance indicates a state in which the flicker of light is large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal Substances (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

[課題]本発明は、液晶層に着目して、フリッカーが低減・抑制され、かつ低消費電力で駆動する液晶表示素子を提供することを目的とする。 [解決手段]第1の透明基板と、 前記第1の透明基板と対向配置された第2の透明基板と、 前記第1の透明基板と第2の透明基板との間に設けられた液晶組成物を含有する液晶層と、前記第1の透明基板上に配置される画素電極と、 前記画素電極への画像信号のフレーム周波数を59Hz以下0Hz超の範囲に制御する表示処理部と、を有し、 前記液晶組成物中の特定の液晶化合物を含有することを特徴とする、液晶表示素子。

Description

液晶表示素子
 本発明は液晶表示素子に関する。
 時計、電卓、各種測定機器、自動車用パネル、プリンター、コンピューター、テレビ、時計および広告表示板等に用いられるようになっている液晶表示素子の表示方式としては、代表的なものにTN(ツイステッド・ネマチック)型、STN(スーパー・ツイステッド・ネマチック)型、TFT(薄膜トランジスタ)を用いたVA(以下、垂直配向とも称する)型やIPS(イン・プレーン・スイッチング)型、FFS(フリンジ・フィールド・スイッチング)等がある。PCモニターなどで広く用いられている液晶表示素子としては、TN型、STN型が挙げられ、液晶TVなどで広く用いられる液晶表示素子の表示方式としては、VA型、IPS型が挙げられ、スマートフォンやタブレットなどで広く用いられる液晶表示素子の表示方式としては、IPS型、FFS型が挙げられる。これら全ての駆動方式において低電圧駆動、高速応答、広い動作温度範囲を示す液晶表示素子が求められている。
 なかでも低電圧駆動の一つテーマとして、低消費電力で駆動する液晶表示素子が昨今の省エネルギー推進の社会事情やスマートフォンなどの普及から注目されている。現在のところ、低消費電力化を図る手段として、液晶表示素子の駆動周波数を標準状態より低減する低周波駆動や、1フレーム期間の書き込みを行った後に休止期間を設ける間欠駆動が提案されている。しかしながら、書き込み期間から休止期間への切り替わり時に電圧が大きく変化して画素電位が大きく変動するため、休止期間における表示輝度と次フレーム期間の書き込み期間における表示輝度との差が大きくなることに起因して、特にフレーム期間の切り替わり時にフリッカーが生じ、表示品位が低下する問題が生じることが確認されている。
 このようなフリッカーの原因としては、液晶分子のフレクソ分極に起因するフリッカーやリーク電流に起因するフリッカーなど種々の要因が複雑に関係していると考えられている。
 例えば、フレクソ分極に起因するフリッカーを例に説明すると、液晶表示素子は、液晶層に長時間直流電圧を印加すると、チャージアップにより表示特性に経時的変化が生じるため、1フレーム毎に正負極性を反転させるフレーム駆動が一般的である。画素電極と対向電極との間の電位差にのみ基づいて液晶分子の配向状態を制御することが理想であるが、実際には、画素電極の端部に強電界が作用するため液晶分子が逆分極し、電界の極性を反転したときこの分極(フレクソ分極)が瞬時に反応するため輝度変動によりフリッカーが発生する。
 フレクソ分極に起因したフリッカーを低減する技術として特許文献1がある。当該特許文献1では、液晶表示素子に使用される液晶のフレクソ係数(e11、e33)の絶対値を1.6pC/m以下にすることで対称成分、反対称成分の双方の輝度振幅を低減することでフリッカーを低減できると開示されている。
 また、リーク電流に起因するフリッカーを例に説明すると、液晶表示素子に対する駆動電力を供給する時間が短くなると、外部からの電力の供給が無い期間(休止期間または低周波数の谷の状態)に、画素電極やTFTのチャンネルをリーク電流が流れるため、液晶に印加している画素電圧が経時的に低下する。その結果、液晶分子の配向方向が経時的に変化するため輝度が低下し、1フレームごとに輝度が低下する状態で画像を再生すると、フリッカーが発生する。
 TFTのリーク電流に起因したフリッカーを低減する技術として、特許文献2がある。当該特許文献2では、オフリーク電流の数値範囲、液晶表示素子に使用される液晶や配向膜の抵抗率の数値範囲をそれぞれ規定し、かつ当該数値範囲が所定の関係で成立すると、1フレーム内の輝度変動を低減できると開示されている。
特開2015-31877号 特開2015-75723号
 上記特許文献1では、フリッカーの原因として液晶分子のフレクソ係数(e11、e33)に着目しているが、フリッカーの原因は種々の要因が複雑に関係するだけでなく、一般に液晶層に使用される液晶組成物は、誘電率異方性が負の化合物(ポーラー成分)と、誘電率異方性が中性の化合物(ノンポーラ成分)との2つの成分が混在し、かつ液晶組成物全体として数種類から数十種類の液晶化合物が含まれている。そのため、実際にフレクソ分極に寄与する液晶化合物は、液晶組成物の一部の誘電率異方性が負の化合物(ポーラー成分)であるため、上記特許文献1のように液晶層を構成する液晶分子の分極を理論通り平均化できず、フリッカーの低減・抑制に効果が発揮されないのが現状である。
 また、上記特許文献2では、1フレーム内の輝度変化率の絶対値を0.03以下に低減するとフリッカーが視認されないとして、液晶及び配向膜のインピーダンス不整合による輝度の増加によって補償するとしているがオフリーク電流自体をフリッカーの原因は種々の要因が複雑に関係するだけでなく、上記引用文献2では液晶の抵抗と容量、配向膜の抵抗と容量の関係だけを規定しており、液晶層に使用されている化合物の特性や種類および液晶層の電圧保持率の低下などを考慮していないため、フリッカーの低減・抑制に効果が発揮されない。また、液晶表示装置は、バックライトから常に光が照射されていることから液晶層の経時的な劣化による問題も生じることが確認された。
 そこで、本発明の態様は、特定の負の誘電率異方性を示す液晶化合物を含む液晶組成物を備えた液晶層により、低消費電力駆動とフリッカーの低減・抑制とを両立することを目的とする。
 本発明に係る液晶表示素子は、低消費電力駆動とフリッカーの低減・抑制とを両立する。
本発明の液晶表示素子(液晶表示部)の構成の一例を模式的に示す図である。 液晶表示部の電極層3の構造を模式的に示す図であり、画素部分を等価回路で示した模式図である。 液晶表示部の電極層3の構造を模式的に示す図であり、画素電極の形状の一例を示す模式図である。 液晶表示部の電極層3の構造を模式的に示す図であり、画素電極の形状の一例を示す模式図である。 液晶表示部の電極層3の構造を模式的に示す図であり、画素電極の形状の一例を示す模式図である。 図3または図4におけるIII-III線方向に図1に示す液晶表示素子を切断した断面図の他の例である。 図5におけるIII-III線方向に図1に示すIPS型の液晶表示部を切断した断面図である。 垂直配向型の液晶表示素子の液晶表示部の構成を模式的に示す図である。 図8における基板上に形成された薄膜トランジスタを含む電極層3(または薄膜トランジスタ層3とも称する。)のII線で囲まれた領域を拡大した平面図である。 図10は、図9におけるIII-III線方向に図8に示す液晶表示素子を切断した断面図である。 図11(A)は、2m行2n列の画素電極における画像信号の書き換えの経時的変化を表す図である。図11(B)は、2m+1行2n+1列の画素電極における画像信号の書き換えの経時的変化の一形態を表す図である。 図12(A)は、2m行2n列の画素電極における画像信号の書き換えの経時的変化を表す図である。図12(B)は、2m+1行2n+1列の画素電極における画像信号の書き換えの経時的変化の一形態を表す図である。 図13(A)は、2m行2n列の画素電極における画像信号の書き換えの経時的変化を表す図である。図13(B)は、2m+1行2n+1列の画素電極における画像信号の書き換えの経時的変化の一形態を表す図である。
 本発明の第一は、第一の透明基板と、前記第一の透明基板と対向配置された第二の透明基板と、前記第一の透明基板と第二の透明基板との間に充填された液晶組成物を含有する液晶層と、前記第一の透明基板上に配置される画素電極と、前記画素電極への画像信号のフレーム周波数を0Hz超59Hz以下の範囲に制御する表示処理部と、を有し、前記液晶組成物が、下記一般式(i):
Figure JPOXMLDOC01-appb-C000003
(上記式中、Ri1およびRi2はそれぞれ独立して、炭素原子数1~10のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の-CH-はそれぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換されていてもよく、
 Ai1およびAi2はそれぞれ独立して
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-に置き換えられてもよい。)及び
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
(c) 1,4-シクロヘキセニレン基
からなる群より選ばれる基を表し、上記の基(a)、基(b)及び基(c)はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
 Zi1およびZi2はそれぞれ独立して、単結合、-OCH-、-CHO-、-OCF-、-CFO-、-CHCH-又は-CFCF-を表わし、
 mi1およびmi2はそれぞれ独立して、0~3の整数を表すが、mi1+mi2はそれぞれ独立して1、2又は3であり、Ai1~Ai2、Zi1~Zi2が複数存在する場合は、それらは同一であっても異なっていても良い。)で表される化合物群から選ばれる化合物を1種又は2種以上含有する液晶表示素子である。
 これにより、低周波駆動や間欠駆動を行った際に発生するフリッカーを抑制・防止することができる。
 本発明に係る液晶表示素子は、液晶表示部(いわゆる液晶パネル)と、表示処理部とを有することが好ましい。前記液晶表示部は、後述の図1~10などで説明するように、画素毎に画素電極および薄膜トランジスタを含む駆動回路が配設された駆動基板と、対向基板との間に液晶層を封止したものである。
 また、表示処理部は、映像信号に対してフレームレート変換などの処理を行い、その処理結果に応じてバックライトおよび液晶表示部を制御するものである。
 以下、本発明に係る液晶表示素子の液晶表示部および液晶層の説明を行った後、図面に基づいて表示処理部の動作および作用を説明する。
 本発明に係る液晶表示素子の液晶表示部の一実施形態を説明する。図1は、液晶表示素子の液晶表示部の構成を模式的に示す図である。図1では、説明のために便宜上各構成要素を離間して記載している。本発明に係る液晶表示素子10は、図1に記載するように、対向に配置された第1の(透明絶縁)基板(透明基板とも称する)2と、第2の(透明絶縁)基板7との間に挟持された液晶組成物(または液晶層5)を有する液晶表示素子である。第1の(透明絶縁)基板2は、液晶層5側の面に電極層3が形成されている。また、液晶層5と、第1の(透明絶縁)基板2及び第2の(透明絶縁)基板7のそれぞれの間に、配向膜4が設けられており、当該配向膜4により電圧無印加時に該液晶組成物中の液晶分子が記基板2,7に対して所定方向に配向することができる。さらに図1では、電極層3として画素電極(図示せず)と共通電極(図示せず)とが第1の基板2側に設けられているが、画素電極を第1の基板2に設け、共通電極を第2の基板7に設けてもよい。
 図1では、一対の偏光板1,8により前記第2の基板7および前記第1の基板2を挟持した形態を記載しているが、偏光板1,8を設ける位置はこの図に限定される訳ではない。さらに、図1では、前記第2の基板7と配向膜4との間にカラーフィルタ6が設けられている。なお、本発明に係る液晶表示素子の形態としては、いわゆるカラーフィルタオンアレイ(COA)であってもよく、電極層3と液晶相5の間にカラーフィルタ6を設けても、または当該電極層3と第1の基板2との間にカラーフィルタを設けてもよい。また、必要により、オーバコート層(図示せず)を、カラーフィルタ層6を覆って設けることで、カラーフィルタ層に含まれる物質が液晶層へ流出することを防止してもよい。
 図1~7では説明上、本発明の液晶表示素子の好適な実施形態として、液晶層5と第1の基板2との間および液晶層5と前記第2の基板7との間にそれぞれの第1の基板および第2の基板上に配向膜4が液晶層5と当接するように形成された例を記載しているが、本発明の液晶表示素子は、第1の基板2または第2の基板7上の少なくとも一方に配向膜4が形成されていればよい。例えば、液晶層5と第1の基板2との間に配向膜4が前記第1の基板2上に液晶層5と当接するように形成されている場合、他方の液晶層5と第2の基板7との間には、配向膜を設けなくてもよい。
 すなわち、本発明に係る液晶表示素子10は、第1の基板2と、電極層3と、配向膜4と、液晶組成物を含む液晶層5と、配向膜4と、カラーフィルタ6と、第2の基板7と、が順次積層された構成を含むことが好ましい。
 第1の基板2と第2の基板7はガラス又はプラスチックの如き柔軟性をもつ材料を用いることができ、少なくとも一方は透明な材料であり、他方は透明な材料であっても、金属やシリコン等の不透明な材料でも良い。2枚の基板は、周辺領域に配置されたエポキシ系熱硬化性組成物等のシール材及び封止材によって貼り合わされていて、その間には基板間距離を保持するために、例えば、ガラス粒子、プラスチック粒子、アルミナ粒子等の粒状スペーサーまたはフォトリソグラフィー法により形成された樹脂からなるスペーサー柱が配置されていてもよい。
 図2は、液晶表示部の電極層3の構造図の模式図を表し、より詳細には図2は、画素部分を等価回路で示した模式図であり、図3および4は画素電極の形状の一例を示す模式図である。また、図2~図4では、本実施形態の一例として、網目状に配置された画素を含む液晶表示部を備えるFFS型の液晶表示素子である。当該液晶表示部に対して背面側から照明する照明手段としてバックライトを設けることで液晶表示装置として駆動する。当該バックライトの光源としては、発光ダイオードや冷陰極管を利用したものが挙げられる。
 当該図2において、本発明に係る電極層3は、共通電極および複数の画素電極を備えている。画素電極は、絶縁層(例えば、窒化シリコン(SiN)など)を介して共通電極上に配置されている。画素電極は表示画素毎に配置され、スリット状の開口部が形成されている。共通電極と画素電極とは、例えばITO(Indium Tin Oxide)によって形成された透明電極であり、電極層3は、表示部において、複数の表示画素が配列する行に沿って延びるゲートバスラインGBL(GBL1、GBL2・・・GBLm)と、複数の表示画素が配列する列に沿って延びるソースバスラインSBL(SBL1、SBL2・・・SBLm)と、ゲートバスラインとソースバスラインとが交差する位置近傍に画素スイッチとして薄膜トランジスタを備えている。また、当該薄膜トランジスタのゲート電極は対応するゲートバスラインGBLと電気的に接続されており、当該薄膜トランジスタのソース電極は対応する信号線SBLと電気的に接続されている。さらに、薄膜トランジスタのドレイン電極は、対応する画素電極と電気的に接続されている。
 電極層3は、複数の表示画素を駆動する駆動手段として、ゲートドライバとソースドライバとを備えており、前記ゲートドライバおよび前記ソースドライバは、液晶表示部の周囲に配置されている。また、複数のゲートバスラインはゲートドライバの出力端子と電気的に接続され、複数のソースバスラインはソースドライバの出力端子と電気的に接続されている。
 ゲートドライバは複数のゲートバスラインにオン電圧を順次印加して、選択されたゲートバスラインに電気的に接続された薄膜トランジスタのゲート電極にオン電圧を供給する。ゲート電極にオン電圧が供給された薄膜トランジスタのソース-ドレイン電極間が導通する。ソースドライバは、複数のソースバスラインのそれぞれに対応する出力信号を供給する。ソースバスラインに供給された信号は、ソース-ドレイン電極間が導通した薄膜トランジスタを介して対応する画素電極に印加される。ゲートドライバおよびソースドライバは、液晶表示素子の外部に配置された表示処理部(制御回路とも称する)により動作を制御される。
 本発明に係る表示処理部は、通常駆動のほかに駆動電力低減のために低周波駆動の機能と間欠駆動の機能とを備えており、TFT液晶パネルのゲートバスラインを駆動するためのLSIであるゲートドライバの動作およびTFT液晶パネルのソースバスラインを駆動するためのLSIであるソースドライバの動作を制御するものである。また、共通電極に共通電圧VCOMを供給し、バックライトの動作も制御している。
 図3は、画素電極の形状の一例として櫛形の画素電極を示した図であり、図1における基板2上に形成された電極層3のII線で囲まれた領域を拡大した平面図である。図3に示すように、第1の基板2の表面に形成されている薄膜トランジスタを含む電極層3は、走査信号を供給するための複数のゲートバスライン26と表示信号を供給するための複数のソースバスライン25とが、互いに交差してマトリクス状に配置されている。当該複数のゲートバスライン26と当該複数のソースバスライン25とにより囲まれた領域により、液晶表示装置の単位画素が形成され、該単位画素内には、画素電極21及び共通電極22が形成されている。ゲートバスライン26とソースバスライン25が互いに交差している交差部近傍には、ソース電極27、ドレイン電極24およびゲート電極28を含む薄膜トランジスタが設けられている。この薄膜トランジスタは、画素電極21に表示信号を供給するスイッチ素子として、画素電極21と連結している。また、ゲートバスライン26と並行して、共通ライン29が設けられる。この共通ライン29は、共通電極22に共通信号を供給するために、共通電極22と連結している。
 画素電極21の背面には絶縁層18(図示せず)を介して共通電極22が一面に形成されている。そして、隣接する共通電極と画素電極との最短離間距離は配向層同士の最短離間距離(セルギャップ)より短い。前記画素電極の表面には保護絶縁膜及び配向膜層によって被覆されていることが好ましい。なお、前記複数のゲートバスライン26と複数のソースバスライン25とに囲まれた領域にはソースバスライン25を介して供給される表示信号を保存するストレイジキャパシタ23を設けてもよい。
 また、図4は、図3の変形例であり、画素電極の形状の一例としてスリット状の画素電極を示した図である。当該図4に示す画素電極21は、略長方形の平板体の電極を、当該平板体の中央部および両端部が三角形状の切欠き部でくり抜かれ、その他の部分は略矩形枠状の切欠き部でくり抜かれた形状である。なお、切欠き部の形状は特に制限されるものではなく、楕円、円形、長方形状、菱形、三角形、または平行四辺形など公知の形状の切欠き部を使用できる。
 なお、図3および図4には、一画素における一対のゲートバスライン26及び一対のソースバスライン25のみが示されている。
 図6は、図3または図4におけるIII-III線方向に図1に示す液晶表示素子を切断した断面図の例の一つである。配向層4および薄膜トランジスタを含む電極層3が表面に形成された第1の基板2と、配向層4が表面に形成された第2の基板7とが所定の間隔Gで配向層同士向かい合うよう離間しており、この空間に液晶組成物を含む液晶層5が充填されている。第1の基板2の表面の一部にゲート絶縁膜12、共通電極22、絶縁膜18、画素電極21および配向層4の順で積層されている。
 薄膜トランジスタの構造の好適な一態様は、例えば、図6で示すように、基板2表面に形成されたゲート電極11と、当該ゲート電極11を覆い、且つ前記基板2の略全面を覆うように設けられたゲート絶縁層12と、前記ゲート電極11と対向するよう前記ゲート絶縁層12の表面に形成された半導体層13と、前記半導体層13の表面の一部を覆うように設けられた保護膜14と、前記保護層14および前記半導体層13の一方の側端部を覆い、かつ前記基板2表面に形成された前記ゲート絶縁層12と接触するように設けられたドレイン電極16と、前記保護膜14および前記半導体層13の他方の側端部を覆い、かつ前記基板2表面に形成された前記ゲート絶縁層12と接触するように設けられたソース電極17と、前記ドレイン電極16および前記ソース電極17を覆うように設けられた絶縁保護層18と、を有している。ゲート電極11の表面にゲート電極との段差を無くす等の理由により陽極酸化被膜(図示せず)を形成してもよい。
 図3及び図4に示す実施の形態では、共通電極22はゲート絶縁層12上のほぼ全面に形成された平板状の電極であり、一方、画素電極21は共通電極22を覆う絶縁保護層18上に形成された櫛形の電極である。すなわち、共通電極22は画素電極21よりも第1の基板2に近い位置に配置され、これらの電極は絶縁保護層18を介して互いに重なりあって配置される。画素電極21と共通電極22は、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IZTO(Indium Zinc Tin Oxide)等の透明導電性材料により形成される。画素電極21と共通電極22が透明導電性材料により形成されるため、単位画素面積で開口される面積が大きくなり、開口率及び透過率が増加する。
 また、画素電極21と共通電極22とは、これらの電極間にフリンジ電界を形成するために、画素電極21と共通電極22との間の電極間距離(最小離間距離とも称する)Rが、第1の基板2と第2の基板7との間の液晶層5の厚さGより小さくなるように形成される。ここで、電極間距離Rは各電極間の基板に水平方向の距離を表す。図3では、平板状の共通電極22と櫛形の画素電極21とが重なり合っているため、最小離間距離(または電極間距離):R=0となる例が示されており、最小離間距離Rが第1の基板2と第2の基板7との間の液晶層の厚さ(セルギャップとも称される):Gよりも小さくなるため、フリンジの電界Eが形成される。したがって、FFS型の液晶表示素子は、画素電極21の櫛形を形成するラインに対して垂直な方向に形成される水平方向の電界と、放物線状の電界を利用することができる。画素電極21の櫛状部分の電極幅:l、及び、画素電極21の櫛状部分の間隙の幅:mは、発生する電界により液晶層5内の液晶分子が全て駆動され得る程度の幅に形成することが好ましい。また、画素電極と共通電極との最小離間距離Rは、ゲート絶縁膜12の(平均)膜厚として調整することができる。
 本発明に係る液晶表示素子の液晶表示部のFFS型の変形例であるIPS型の液晶表示素子の例を図1、図5、図7を用いて説明する。IPS型の液晶表示素子の構成は、上記図1のFFS型と同様に片側の基板上に電極層3(共通電極と画素電極とTFTを含む)が設けられた構造であり、第1の偏光板1と、第1の基板2と、電極層3と、配向膜4と、液晶組成物を含む液晶層5と、配向膜4と、カラーフィルタ6と、第2の基板7と、第2の偏光板8と、が順次積層された構成である。
 図5は、IPS型の液晶表示部における図1の第1の基板2上に形成された電極層3のII線で囲まれた領域の一部を拡大した平面図である。図5に示すように、走査信号を供給するための複数のゲートバスライン26と表示信号を供給するための複数のソースバスライン25とにより囲まれた領域内(単位画素内)で、櫛歯形の第1の電極(例えば、画素電極)21と櫛歯型の第2の電極(例えば、共通電極)22とが互いに遊嵌した状態(両電極が一定距離を保った状態で離間して噛合した状態)で設けられている。該単位画素内には、ゲートバスライン26とソースバスライン25が互いに交差している交差部近傍には、ソース電極27、ドレイン電極24およびゲート電極28を含む薄膜トランジスタが設けられている。この薄膜トランジスタは、第1の電極21に表示信号を供給するスイッチ素子として、第1の電極21と連結している。また、ゲートバスライン26と並行して、共通ライン(Vcom)29が設けられる。この共通ライン29は、第2の電極22に共通信号を供給するために、第2の電極22と連結している。
 図7は、図5におけるIII-III線方向に図1に示すIPS型の液晶表示部を切断した断面図である。第1の基板2上には、ゲートバスライン26(図示せず)を覆い、且つ第1の基板2の略全面を覆うように設けられたゲート絶縁層32と、ゲート絶縁層32の表面に形成された絶縁保護層31とが設けられ、絶縁保護膜31上に、第1の電極(画素電極)21及び第2の電極(共通電極)22が離間して設けられる。絶縁保護層31は、絶縁機能を有する層であり、窒化ケイ素、二酸化ケイ素、ケイ素酸窒化膜等で形成される。
 図5及び図7に示す実施の形態では、第1の電極21及び第2の電極22は、絶縁保護層31上に、すなわち同一の層上に形成された櫛形の電極であり、互いに離間して噛合した状態で設けられている。IPS型の液晶表示部では、第1の電極21と第2の電極22との間の電極間距離Gと、第1の基板2と第2の基板7との間の液晶層の厚さ(セルギャップ):Hは、G≧Hの関係を満たす。電極間距離:Gとは、第1の電極21と第2の電極22との間の、基板に水平方向の最短距離を表し、図5及び図7で示す例においては、第1の電極21と第2の電極22とが遊嵌して交互に形成されたラインに対して、垂直方向の距離を表す。第1の基板2と第2の基板7との距離:Hとは、第1の基板2と第2の基板7との間の液晶層の厚さを表し、具体的には、第1の基板2及び第2の基板7のそれぞれに設けられた配向膜4(最表面)間の距離(すなわちセルギャップ)、液晶層の厚みを表す。
 一方、先述のFFS型の液晶表示部では、第1の基板2と第二の基板7との間の液晶層の厚さが、第1の電極21と第2の電極22との間の、基板に水平方向の最短距離未満であり、IPS型の液晶表示部は、第1の基板2と第二の基板7との間の液晶層の厚さが、第1の電極21と第2の電極22との間の、基板に水平方向の最短距離以上である。したがって、IPSとFFSの違いは、第1の電極21及び第2の電極22の厚み方向の位置関係に依存しない。
 IPS型の液晶表示素子は、第1の電極21及び第2の電極22間に形成される基板面に対して水平方向の電界を利用して液晶分子を駆動させる。第1の電極21の電極幅:Q、及び第2の電極22の電極幅:Rは、発生する電界により液晶層5内の液晶分子が全て駆動され得る程度の幅に形成することが好ましい。
 本発明の好ましい他の実施形態は、垂直配向型の液晶表示素子である。図8は、垂直配向型の液晶表示素子の液晶表示部の構成を模式的に示す図である。また、図8では、説明のために便宜上各構成要素を離間して記載している。図9は、当該図8における基板上に形成された薄膜トランジスタを含む電極層3(または薄膜トランジスタ層3とも称する。)のII線で囲まれた領域を拡大した平面図である。図10は、図9におけるIII-III線方向に図1に示す液晶表示素子を切断した断面図である。以下、図8~10を参照して、本発明に係る垂直配向型の液晶表示部を説明する。
 本発明に係る液晶表示素子10の構成は、図8に記載するように透明導電性材料からなる透明電極(層)3’(または共通電極3’とも称する。)を具備した第2の基板7と、画素電極および各画素に具備した前記画素電極を制御する薄膜トランジスタを形成した電極層3を含む第1の基板2と、前記第1の基板2と第2の基板7との間に挟持された液晶組成物(または液晶層5)を有し、該液晶組成物中の液晶分子の電圧無印加時の配向が前記基板2,7に対して略垂直である液晶表示素子であって、該液晶組成物として前記本発明の液晶組成物を用いたことに特徴を有するものである。また図8および図10に示すように、前記第1の基板2および前記第2の基板7は、一対の偏光板1,8により挟持されてもよい。さらに、図8では、前記第2の基板7と共通電極3’との間にカラーフィルタ6が設けられている。またさらに、本発明に係る液晶層5と隣接し、かつ当該液晶層5を構成する液晶組成物と直接当接するよう一対の配向膜4を透明電極(層)3,3’表面に形成してもよい。
 図9は、画素電極21の形状の一例として逆L字型の画素電極を示した図であり、図8における基板2上に形成された電極層3のII線で囲まれた領域を拡大した平面図である。前記画素電極21は、上記図3、4と同様に、ゲートバスライン26とソースバスライン25とに囲まれた領域の略全面に逆L字型に形成されているが、画素電極の形状は限定されるものではない。
 垂直配向型の液晶表示素子の液晶表示部は、上記のIPS型やFFS型とは異なり、共通電極22(図示せず)が画素電極21と対向離間して形成されている。換言すると、画素電極21と、共通電極22とは別の基板上に形成されている。一方、先述のFFSやIPS型の液晶表示素子は、画素電極21および共通電極22が同一基板上に形成されている。
 また、当該カラーフィルタ6は、光の漏れを防止する観点で、薄膜トランジスタおよびストレイジキャパシタ23に対応する部分にブラックマトリックス(図示せず)を形成することが好ましい。
 図10は、図9おけるIII-III線方向に図8に示す液晶表示素子を切断した断面図である。すなわち、本発明に係る液晶表示素子10は、第1の偏光板1と、第1の基板2と、薄膜トランジスタを含む電極層(又は薄膜トランジスタ層とも称する)3と、配向膜4と、液晶組成物を含む層5と、配向膜4と、共通電極3’と、カラーフィルタ6と、第2の基板7と、第1の偏光板8と、が順次積層された構成である。本発明に係る液晶表示素子の薄膜トランジスタの構造(図10のIVの領域)の好適な一態様は、上述した通りであるためここでは省略する。
 次いで、本発明の好適な液晶表示部の液晶層について説明する。本発明に係る液晶層は、一般式(i)で表される化合物を1種類又は2種類以上含有する液晶組成物を含む。また、前記液晶組成物は、ネマチック液晶組成物であることが好ましい。さらに、本発明に係る液晶組成物は、誘電率異方性(Δε)が負(-2>Δε)の成分と、誘電率異方性が中性((-2≦Δε≦2))の成分とを有することが好ましい。
 なお、一般式(i)で表されるは誘電的に負の化合物(Δεの符号が負で、その絶対値が2より大きい。)に該当する。
 本発明に係る液晶組成物の誘電的に負の化合物は、一般式(i)で表される化合物のように、分子内の環構造が6員環から構成され、かつジフルオロベンゼン基を必須としている構造は、縮合環構造等の化合物に比較し長時間のバックライト照射に対して、信頼性が高く初期の特性を維持しやすいため、長時間のバックライト照射後でもフリッカー等の発生が軽減されると考えられる。
Figure JPOXMLDOC01-appb-C000004
(式中、Ri1及びRi2はそれぞれ独立して炭素原子数1~8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の-CH-はそれぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換されていてもよく、 Ai1及びAi2はそれぞれ独立して
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-に置き換えられてもよい。)及び
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
(c) 1,4-シクロヘキセニレン基
からなる群より選ばれる基を表し、上記の基(a)、基(b)および基(c)はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
 Zi1及びZi2はそれぞれ独立して、単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-COO-、-OCO-、-OCF-、-CFO-、-CH=N-N=CH-、-CH=CH-、-CF=CF-又は-C≡C-を表し、
 ni1及びni2はそれぞれ独立して0~3の整数を表すが、ni1+ni2は1、2又は3であり、Ai1~Ai2、Zi1~Zi2が複数存在する場合は、それらは同一であっても異なっていても良い。)
 本発明に係る液晶組成物に縮合環化合物を含むと、長時間のバックライト照射を行うと、低周波駆動時の電圧保持率の低下が大きくため、フリッカーが認識しやすくなる。
 一般式(i)で表される化合物は、Δεが負でその絶対値が3よりも大きな化合物であることが好ましい。
 一般式(i)中、Ri1及びRi2はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数2~8のアルケニル基又は炭素原子数2~8のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、炭素原子数2~5のアルケニル基又は炭素原子数2~5のアルケニルオキシ基が好ましい。
 また、Ri1及びRi2が結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び炭素原子数4~5のアルケニル基が好ましく、Ri1及びRi2が結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。ネマチック相を安定化させるためには炭素原子及び存在する場合酸素原子の合計が5以下であることが好ましく、直鎖状であることが好ましい。
 アルケニル基としては、式(R1)から式(R5)のいずれかで表される基から選ばれることが好ましい。(各式中の黒点は環構造中の炭素原子を表す。)
Figure JPOXMLDOC01-appb-C000005
 Ai1及びAi2はそれぞれ独立してΔnを大きくすることが求められる場合には芳香族であることが好ましく、応答速度を改善するためには脂肪族であることが好ましく、トランス-1,4-シクロへキシレン基、1,4-フェニレン基、2-フルオロ-1,4-フェニレン基、3-フルオロ-1,4-フェニレン基、3,5-ジフルオロ-1,4-フェニレン基、2,3-ジフルオロ-1,4-フェニレン基、1,4-シクロヘキセニレン基、ピペリジン-1,4-ジイル基を表すことが好ましく、下記の構造を表すことがより好ましく、
Figure JPOXMLDOC01-appb-C000006
トランス-1,4-シクロへキシレン基、1,4-シクロヘキセニレン基又は1,4-フェニレン基を表すことがより好ましい。
 Zi1及びZi2はそれぞれ独立して-CHO-、-CFO-、-CHCH-、-CFCF-又は単結合を表すことが好ましく、-CHO-、-CHCH-又は単結合が更に好ましく、-CHO-又は単結合が特に好ましい。
 ni1+ni2は1又は2が好ましく、ni1が1でありni2が0である組み合わせ、ni1が2でありni2が0である組み合わせ、ni1が1でありni2が1である組み合わせ、ni1が2でありni2が1である組み合わせが好ましい。
 本発明の組成物の総量に対しての式(i)で表される化合物の好ましい含有量の下限値は、1%であり、10%であり、20%であり、30%であり、40%であり、50%であり、55%であり、60%であり、65%であり、70%であり、75%であり、80%である。好ましい含有量の上限値は、95%であり、90%であり、85%であり、80%であり、79%であり、75%であり、65%であり、55%であり、45%であり、35%であり、25%であり、20%である。
 特に、一般式(i)で表される化合物として好ましい化合物として、下記の一般式(N-1a)~(N-1f)で表される化合物群を挙げることができる。本発明に係る一般式(i)で表される化合物は、一般式(N-1a)~(N-1f)で表される化合物からなる群から選択される1種又は2種以上の化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
(式中、RN11及びRN12は一般式(i)におけるRN11及びRN12と同じ意味を表し、nNa11は0又は1を表し、nNb11は0又は1を表し、nNc11は0又は1を表し、nNd11は1又は2を表し、nNe11は1又は2を表し、nNf11は0又は1を表しnNf12は0又は1を表すが、nNf11+nNf12は1又は2を表す。)
 本発明の組成物の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値が低く上限値が低いことが好ましい。さらに、本発明の組成物のTniを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値が低く上限値が低いことが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値を高く上限値が高いことが好ましい。
 より具体的には、一般式(i)で表される化合物は、以下の一般式(N-1-1)~(N-1-21)で表される化合物群から選ばれる化合物であることが好ましい。
 一般式(N-1-1)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000008
(式中、RN111及びRN112はそれぞれ独立して、一般式(N)におけるRN11及びRN12と同じ意味を表す。)
 RN111は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、プロピル基又はペンチル基が好ましい。RN112は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましく、エトキシ基又はブトキシ基が好ましい。
 一般式(N-1-1)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量を少なめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 本発明の組成物の総量に対しての式(N-1-1)で表される化合物の好ましい含有量の下限値は、5%であり、10%であり、13%であり、15%であり、17%であり、20%であり、23%であり、25%であり、27%であり、30%であり、33%であり、35%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、50%であり、40%であり、38%であり、35%であり、33%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%であり、10%であり、8%であり、7%であり、6%であり、5%であり、3%である。
 さらに、一般式(N-1-1)で表される化合物は、式(N-1-1.1)から式(N-1-1.14)で表される化合物群から選ばれる化合物であることが好ましく、式(N-1-1.1)~(N-1-1.4)で表される化合物であることが好ましく、式(N-1-1.1)及び式(N-1-1.3)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000009
 式(N-1-1.1)~(N-1-1.4)で表される化合物は単独で使用することも、組み合わせて使用することも可能であるが、本発明の組成物の総量に対しての単独又はこれら化合物の好ましい含有量の下限値は、5%であり、10%であり、13%であり、15%であり、17%であり、20%であり、23%であり、25%であり、27%であり、30%であり、33%であり、35%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、50%であり、40%であり、38%であり、35%であり、33%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%であり、10%であり、8%であり、7%であり、6%であり、5%であり、3%である。
 一般式(N-1-2)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000010
(式中、RN121及びRN122はそれぞれ独立して、一般式(N)におけるRN11及びRN12と同じ意味を表す。)
 RN121は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、エチル基、プロピル基、ブチル基又はペンチル基が好ましい。RN122は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましく、メチル基、プロピル基、メトキシ基、エトキシ基又はプロポキシ基が好ましい。
 一般式(N-1-2)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を少なめに設定すると効果が高く、TNIを重視する場合は含有量を多めに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 本発明の組成物の総量に対しての式(N-1-2)で表される化合物の好ましい含有量の下限値は、5%であり、7%であり、10%であり、13%であり、15%であり、17%であり、20%であり、23%であり、25%であり、27%であり、30%であり、33%であり、35%であり、37%であり、40%であり、42%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、50%であり、48%であり、45%であり、43%であり、40%であり、38%であり、35%であり、33%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%であり、10%であり、8%であり、7%であり、6%であり、5%である。
 さらに、一般式(N-1-2)で表される化合物は、式(N-1-2.1)から式(N-1-2.13)で表される化合物群から選ばれる化合物であることが好ましく、式(N-1-2.3)から式(N-1-2.7)、式(N-1-2.10)、式(N-1-2.11)及び式(N-1-2.13)で表される化合物であることが好ましく、Δεの改良を重視する場合には式(N-1-2.3)から式(N-1-2.7)で表される化合物が好ましく、TNIの改良を重視する場合には式(N-1-2.10)、式(N-1-2.11)及び式(N-1-2.13)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 式(N-1-2.1)から式(N-1-2.13)で表される化合物は単独で使用することも、組み合わせて使用することも可能であるが、本発明の組成物の総量に対しての単独又はこれら化合物の好ましい含有量の下限値は、5%であり、10%であり、13%であり、15%であり、17%であり、20%であり、23%であり、25%であり、27%であり、30%であり、33%であり、35%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、50%であり、40%であり、38%であり、35%であり、33%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%であり、10%であり、8%であり、7%であり、6%であり、5%であり、3%である。
 一般式(N-1-3)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000012
(式中、RN131及びRN132はそれぞれ独立して、一般式(N)におけるRN11及びRN12と同じ意味を表す。)
 RN131は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。RN132は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましく、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
 一般式(N-1-3)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 本発明の組成物の総量に対しての式(N-1-3)で表される化合物の好ましい含有量の下限値は、5%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、35%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%である。
 さらに、一般式(N-1-3)で表される化合物は、式(N-1-3.1)から式(N-1-3.11)で表される化合物群から選ばれる化合物であることが好ましく、式(N-1-3.1)~(N-1-3.7)で表される化合物であることが好ましく、式(N-1-3.1)、式(N-1-3.2)、式(N-1-3.3)、式(N-1-3.4)及び式(N-1-3.6)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000013
 式(N-1-3.1)~式(N-1-3.4)及び式(N-1-3.6)で表される化合物は単独で使用することも、組み合わせて使用することも可能であるが、式(N-1-3.1)及び式(N-1-3.2)の組み合わせ、式(N-1-3.3)、式(N-1-3.4)及び式(N-1-3.6)から選ばれる2種又は3種の組み合わせが好ましい。本発明の組成物の総量に対しての単独又はこれら化合物の好ましい含有量の下限値は、5%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、35%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%である。
 一般式(N-1-4)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000014
(式中、RN141及びRN142はそれぞれ独立して、一般式(N)におけるRN11及びRN12と同じ意味を表す。)
 RN141及びRN142はそれぞれ独立して、炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましく、メチル基、プロピル基、エトキシ基又はブトキシ基が好ましい。
 一般式(N-1-4)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量を少なめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 本発明の組成物の総量に対しての式(N-1-4)で表される化合物の好ましい含有量の下限値は、3%であり、5%であり、7%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、35%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%であり、11%であり、10%であり、8%である。
 さらに、一般式(N-1-4)で表される化合物は、式(N-1-4.1)から式(N-1-4.14)で表される化合物群から選ばれる化合物であることが好ましく、式(N-1-4.1)~(N-1-4.4)で表される化合物であることが好ましく、式(N-1-4.1)及び式(N-1-4.2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000015
 式(N-1-4.1)~(N-1-4.4)で表される化合物は単独で使用することも、組み合わせて使用することも可能であるが、本発明の組成物の総量に対しての単独又はこれら化合物の好ましい含有量の下限値は、3%であり、5%であり、7%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、35%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%であり、11%であり、10%であり、8%である。
 一般式(N-1-5)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000016
(式中、RN151及びRN152はそれぞれ独立して、一般式(N)におけるRN11及びRN12と同じ意味を表す。)
 RN151及びRN152はそれぞれ独立して、炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましくエチル基、プロピル基又はブチル基が好ましい。
 一般式(N-1-5)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を少なめに設定すると効果が高く、TNIを重視する場合は含有量を多めに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 本発明の組成物の総量に対しての式(N-1-5)で表される化合物の好ましい含有量の下限値は、5%であり、8%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、35%であり、33%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%である。
 さらに、一般式(N-1-5)で表される化合物は、式(N-1-5.1)から式(N-1-5.6)で表される化合物群から選ばれる化合物であることが好ましく、式(N-1-3.2及び式(N-1-3.4)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000017
 式(N-1-3.2及び式(N-1-3.4)で表される化合物は単独で使用することも、組み合わせて使用することも可能であるが、本発明の組成物の総量に対しての単独又はこれら化合物の好ましい含有量の下限値は、5%であり、8%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、35%であり、33%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%である。
 一般式(N-1-10)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000018
(式中、RN1101及びRN1102はそれぞれ独立して、一般式(N)におけるRN11及びRN12と同じ意味を表す。)
 RN1101は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。RN1102は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましく、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
 一般式(N-1-10)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 本発明の組成物の総量に対しての式(N-1-10)で表される化合物の好ましい含有量の下限値は、5%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、35%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%である。
 さらに、一般式(N-1-10)で表される化合物は、式(N-1-10.1)から式(N-1-10.11)で表される化合物群から選ばれる化合物であることが好ましく、式(N-1-10.1)~(N-1-10.5)で表される化合物であることが好ましく、式(N-1-10.1)及び式(N-1-10.2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000019
 式(N-1-10.1)及び式(N-1-10.2)で表される化合物は単独で使用することも、組み合わせて使用することも可能であるが、本発明の組成物の総量に対しての単独又はこれら化合物の好ましい含有量の下限値は、5%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、35%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%である。
 一般式(N-1-11)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000020
(式中、RN1111及びRN1112はそれぞれ独立して、一般式(N)におけるRN11及びRN12と同じ意味を表す。)
 RN1111は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。RN1112は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましく、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
 一般式(N-1-11)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 本発明の組成物の総量に対しての式(N-1-11)で表される化合物の好ましい含有量の下限値は、5%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、35%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%である。
 さらに、一般式(N-1-11)で表される化合物は、式(N-1-11.1)から式(N-1-11.15)で表される化合物群から選ばれる化合物であることが好ましく、式(N-1-11.1)~(N-1-11.15)で表される化合物であることが好ましく、式(N-1-11.2及び式(N-1-11.4)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000021
 式(N-1-11.2)及び式(N-1-11.4)で表される化合物は単独で使用することも、組み合わせて使用することも可能であるが、本発明の組成物の総量に対しての単独又はこれら化合物の好ましい含有量の下限値は、5%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、35%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%である。
 一般式(N-1-12)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000022
(式中、RN1121及びRN1122はそれぞれ独立して、一般式(N)におけるRN11及びRN12と同じ意味を表す。)
 RN1121は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。RN1122は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましく、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
 一般式(N-1-12)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 本発明の組成物の総量に対しての式(N-1-12)で表される化合物の好ましい含有量の下限値は、5%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、35%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%である。
 一般式(N-1-13)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000023
(式中、RN1131及びRN1132はそれぞれ独立して、一般式(N)におけるRN11及びRN12と同じ意味を表す。)
 RN1131は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。RN1132は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましく、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
 一般式(N-1-13)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 本発明の組成物の総量に対しての式(N-1-13)で表される化合物の好ましい含有量の下限値は、5%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、35%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%である。
 一般式(N-1-14)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000024
(式中、RN1141及びRN1142はそれぞれ独立して、一般式(N)におけるRN11及びRN12と同じ意味を表す。)
 RN1141は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。RN1142は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましく、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
 一般式(N-1-14)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 本発明の組成物の総量に対しての式(N-1-14)で表される化合物の好ましい含有量の下限値は、5%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、35%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%である。
 一般式(N-1-15)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000025
(式中、RN1151及びRN1152はそれぞれ独立して、一般式(N)におけるRN11及びRN12と同じ意味を表す。)
 RN1151は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。RN1152は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましく、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
 一般式(N-1-15)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 本発明の組成物の総量に対しての式(N-1-15)で表される化合物の好ましい含有量の下限値は、5%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、35%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%である。
 一般式(N-1-16)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000026
(式中、RN1161及びRN1162はそれぞれ独立して、一般式(N)におけるRN11及びRN12と同じ意味を表す。)
 RN1161は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。RN1162は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましく、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
 一般式(N-1-16)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 本発明の組成物の総量に対しての式(N-1-16)で表される化合物の好ましい含有量の下限値は、5%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、35%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%である。
 一般式(N-1-17)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000027
(式中、RN1171及びRN1172はそれぞれ独立して、一般式(N)におけるRN11及びRN12と同じ意味を表す。)
 RN1171は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。RN1172は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましく、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
 一般式(N-1-17)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 本発明の組成物の総量に対しての式(N-1-17)で表される化合物の好ましい含有量の下限値は、5%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、35%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%である。
 一般式(N-1-18)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000028
(式中、RN1181及びRN1182はそれぞれ独立して、一般式(N)におけるRN11及びRN12と同じ意味を表す。)
 RN1181は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。RN1182は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましく、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
 一般式(N-1-18)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 本発明の組成物の総量に対しての式(N-1-18)で表される化合物の好ましい含有量の下限値は、5%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、35%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%である。
 一般式(N-1-20)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000029
(式中、RN1201及びRN1202はそれぞれ独立して、一般式(i)におけるRi1及びRi2と同じ意味を表す。)
 RN1201及びRN1202はそれぞれ独立して、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。
 一般式(N-1-20)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 本発明の組成物の総量に対しての式(N-1-20)で表される化合物の好ましい含有量の下限値は、5%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、35%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%である。
 一般式(N-1-21)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000030
(式中、RN1211及びRN1212はそれぞれ独立して、一般式(i)におけるRi1及びRi2と同じ意味を表す。)
 RN1211及びRN1212はそれぞれ独立して、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。
 一般式(N-1-21)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 本発明の組成物の総量に対しての式(N-1-21)で表される化合物の好ましい含有量の下限値は、5%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、35%であり、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%である。
 本発明の組成物は、一般式(L)で表される化合物を1種類又は2種類以上含有することが好ましい。一般式(L)で表される化合物は誘電的にほぼ中性の化合物(Δεの値が-2~2)に該当する。
Figure JPOXMLDOC01-appb-C000031
(式中、RL1及びRL2はそれぞれ独立して炭素原子数1~8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の-CH-はそれぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換されていてもよく、
 nL1は0、1、2又は3を表し、
 AL1、AL2及びAL3はそれぞれ独立して
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-に置き換えられてもよい。)及び
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)

からなる群より選ばれる基を表し、上記の基(a)および基(b)はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
 ZL1及びZL2はそれぞれ独立して単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-COO-、-OCO-、-OCF-、-CFO-、-CH=N-N=CH-、-CH=CH-、-CF=CF-又は-C≡C-を表し、
 nL1が2又は3であってAL2が複数存在する場合は、それらは同一であっても異なっていても良く、nL1が2又は3であってZL3が複数存在する場合は、それらは同一であっても異なっていても良いが、一般式(i)で表される化合物を除く。)
 一般式(L)で表される化合物は単独で用いてもよいが、組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの所望の性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類である。あるいは本発明の別の実施形態では2種類であり、3種類であり、4種類であり、5種類であり、6種類であり、7種類であり、8種類であり、9種類であり、10種類以上である。
 本発明の組成物において、一般式(L)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
 本発明の組成物の総量に対しての式(L)で表される化合物の好ましい含有量の下限値は、1%であり、10%であり、20%であり、30%であり、40%であり、50%であり、55%であり、60%であり、65%であり、70%であり、75%であり、80%である。好ましい含有量の上限値は、95%であり、85%であり、75%であり、65%であり、55%であり、45%であり、35%であり、25%である。
 本発明の組成物の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値が高く上限値が高いことが好ましい。さらに、本発明の組成物のTniを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値が高く上限値が高いことが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値を低く上限値が低いことが好ましい。
 信頼性を重視する場合にはRL1及びRL2はともにアルキル基であることが好ましく、化合物の揮発性を低減させることを重視する場合にはアルコキシ基であることが好ましく、粘性の低下を重視する場合には少なくとも一方はアルケニル基であることが好ましい。
 分子内に存在するハロゲン原子は0、1、2又は3個が好ましく、0又は1が好ましく、他の液晶分子との相溶性を重視する場合には1が好ましい。
 RL1及びRL2は、それが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び炭素原子数4~5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。ネマチック相を安定化させるためには炭素原子及び存在する場合酸素原子の合計が5以下であることが好ましく、直鎖状であることが好ましい。
 アルケニル基としては、式(R1)から式(R5)のいずれかで表される基から選ばれることが好ましい。(各式中の黒点は環構造中の炭素原子を表す。)
Figure JPOXMLDOC01-appb-C000032
 nL1は応答速度を重視する場合には0が好ましく、ネマチック相の上限温度を改善するためには2又は3が好ましく、これらのバランスをとるためには1が好ましい。また、組成物として求められる特性を満たすためには異なる値の化合物を組み合わせることが好ましい。
 AL1、AL2及びAL3はΔnを大きくすることが求められる場合には芳香族であることが好ましく、応答速度を改善するためには脂肪族であることが好ましく、それぞれ独立してトランス-1,4-シクロへキシレン基、1,4-フェニレン基、2-フルオロ-1,4-フェニレン基、3-フルオロ-1,4-フェニレン基、3,5-ジフルオロ-1,4-フェニレン基、1,4-シクロヘキセニレン基、ピペリジン-1,4-ジイル基を表すことが好ましく、下記の構造を表すことがより好ましく、
Figure JPOXMLDOC01-appb-C000033
トランス-1,4-シクロへキシレン基又は1,4-フェニレン基を表すことがより好ましい。
 ZL1及びZL2は応答速度を重視する場合には単結合であることが好ましい。
 一般式(L)で表される化合物は分子内のハロゲン原子数が0個又は1個であることが好ましい。
 本発明に係る一般式(L)で表される化合物は、一般式(L-1)~(L-7)で表される化合物群から選ばれる1種または2種以上の化合物であることが好ましい。
 上記一般式(L-1)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000034
(式中、RL11及びRL12はそれぞれ独立して、一般式(L)におけるRL1及びRL2と同じ意味を表す。)
 RL11及びRL12は、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。
 一般式(L-1)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 好ましい含有量の下限値は、本発明の組成物の総量に対して、1%であり、2%であり、3%であり、5%であり、7%であり、10%であり、15%であり、20%であり、25%であり、30%であり、35%であり、40%であり、45%であり、50%であり、55%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、95%であり、90%であり、85%であり、80%であり、75%であり、70%であり、65%であり、60%であり、55%であり、50%であり、45%であり、40%であり、35%であり、30%であり、25%である。
 本発明の組成物の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値が高く上限値が高いことが好ましい。さらに、本発明の組成物のTniを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値が中庸で上限値が中庸であることが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値が低く上限値が低いことが好ましい。
 一般式(L-1)で表される化合物は一般式(L-1-1)で表される化合物群から選ばれる化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000035
(式中RL12は一般式(L-1)における意味と同じ意味を表す。)
 一般式(L-1-1)で表される化合物は、式(L-1-1.1)から式(L-1-1.3)で表される化合物群から選ばれる化合物であることが好ましく、式(L-1-1.2)又は式(L-1-1.3)で表される化合物であることが好ましく、特に、式(L-1-1.3)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000036
 本発明の組成物の総量に対しての式(L-1-1.3)で表される化合物の好ましい含有量の下限値は、1%であり、2%であり、3%であり、5%であり、7%であり、10%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、20%であり、15%であり、13%であり、10%であり、8%であり、7%であり、6%であり、5%であり、3%である。
 一般式(L-1)で表される化合物は一般式(L-1-2)で表される化合物群から選ばれる化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000037
(式中RL12は一般式(L-1)における意味と同じ意味を表す。)
 本発明の組成物の総量に対しての式(L-1-2)で表される化合物の好ましい含有量の下限値は、1%であり、5%であり、10%であり、15%であり、17%であり、20%であり、23%であり、25%であり、27%であり、30%であり、35%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、60%であり、55%であり、50%であり、45%であり、42%であり、40%であり、38%であり、35%であり、33%であり、30%である。
 さらに、一般式(L-1-2)で表される化合物は、式(L-1-2.1)から式(L-1-2.4)で表される化合物群から選ばれる化合物であることが好ましく、式(L-1-2.2)から式(L-1-2.4)で表される化合物であることが好ましい。特に、式(L-1-2.2)で表される化合物は本発明の組成物の応答速度を特に改善するため好ましい。また、応答速度よりも高いTniを求めるときは、式(L-1-2.3)又は式(L-1-2.4)で表される化合物を用いることが好ましい。式(L-1-2.3)及び式(L-1-2.4)で表される化合物の含有量は、低温での溶解度を良くするために30%以上にすることは好ましくない。
Figure JPOXMLDOC01-appb-C000038
 本発明の組成物の総量に対しての式(L-1-2.2)で表される化合物の好ましい含有量の下限値は、10%であり、15%であり、18%であり、20%であり、23%であり、25%であり、27%であり、30%であり、33%であり、35%であり、38%であり、40%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、60%であり、55%であり、50%であり、45%であり、43%であり、40%であり、38%であり、35%であり、32%であり、30%であり、27%であり、25%であり、22%である。
 本発明の組成物の総量に対しての式(L-1-1.3)で表される化合物及び式(L-1-2.2)で表される化合物の合計の好ましい含有量の下限値は、10%であり、15%であり、20%であり、25%であり、27%であり、30%であり、35%であり、40%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、60%であり、55%であり、50%であり、45%であり、43%であり、40%であり、38%であり、35%であり、32%であり、30%であり、27%であり、25%であり、22%である。
 一般式(L-1)で表される化合物は一般式(L-1-3)で表される化合物群から選ばれる化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000039
(式中RL13及びRL14はそれぞれ独立して炭素原子数1~8のアルキル基又は炭素原子数1~8のアルコキシ基を表す。)
 RL13及びRL14は、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。
 本発明の組成物の総量に対しての式(L-1-3)で表される化合物の好ましい含有量の下限値は、1%であり、5%であり、10%であり、13%であり、15%であり、17%であり、20%であり、23%であり、25%であり、30%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、60%であり、55%であり、50%であり、45%であり、40%であり、37%であり、35%であり、33%であり、30%であり、27%であり、25%であり、23%であり、20%であり、17%であり、15%であり、13%であり、10%である。
さらに、一般式(L-1-3)で表される化合物は、式(L-1-3.1)から式(L-1-3.12)で表される化合物群から選ばれる化合物であることが好ましく、式(L-1-3.1)、式(L-1-3.3)又は式(L-1-3.4)で表される化合物であることが好ましい。特に、式(L-1-3.1)で表される化合物は本発明の組成物の応答速度を特に改善するため好ましい。また、応答速度よりも高いTniを求めるときは、式(L-1-3.3)、式(L-1-3.4)、式(L-1-3.11)及び式(L-1-3.12)で表される化合物を用いることが好ましい。式(L-1-3.3)、式(L-1-3.4)、式(L-1-3.11)及び式(L-1-3.12)で表される化合物の合計の含有量は、低温での溶解度を良くするために20%以上にすることは好ましくない。
Figure JPOXMLDOC01-appb-C000040
 本発明の組成物の総量に対しての式(L-1-3.1)で表される化合物の好ましい含有量の下限値は、1%であり、2%であり、3%であり、5%であり、7%であり、10%であり、13%であり、15%であり、18%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、20%であり、17%であり、15%であり、13%であり、10%であり、8%であり、7%であり、6%である。
 一般式(L-1)で表される化合物は一般式(L-1-4)及び/又は(L-1-5)で表される化合物群から選ばれる化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000041
(式中RL15及びRL16はそれぞれ独立して炭素原子数1~8のアルキル基又は炭素原子数1~8のアルコキシ基を表す。)
 RL15及びRL16は、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。
 本発明の組成物の総量に対しての式(L-1-4)で表される化合物の好ましい含有量の下限値は、1%であり、5%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、25%であり、23%であり、20%であり、17%であり、15%であり、13%であり、10%である。
 本発明の組成物の総量に対しての式(L-1-5)で表される化合物の好ましい含有量の下限値は、1%であり、5%であり、10%であり、13%であり、15%であり、17%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、25%であり、23%であり、20%であり、17%であり、15%であり、13%であり、10%である。
 さらに、一般式(L-1-4)及び(L-1-5)で表される化合物は、式(L-1-4.1)から式(L-1-5.3)で表される化合物群から選ばれる化合物であることが好ましく、式(L-1-4.2)又は式(L-1-5.2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000042
 本発明の組成物の総量に対しての式(L-1-4.2)で表される化合物の好ましい含有量の下限値は、1%であり、2%であり、3%であり、5%であり、7%であり、10%であり、13%であり、15%であり、18%であり、20%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、20%であり、17%であり、15%であり、13%であり、10%であり、8%であり、7%であり、6%である。
 式(L-1-1.3)、式(L-1-2.2)、式(L-1-3.1)、式(L-1-3.3)、式(L-1-3.4)、式(L-1-3.11)及び式(L-1-3.12)で表される化合物から選ばれる2種以上の化合物を組み合わせることが好ましく、式(L-1-1.3)、式(L-1-2.2)、式(L-1-3.1)、式(L-1-3.3)、式(L-1-3.4)及び式(L-1-4.2)で表される化合物から選ばれる2種以上の化合物を組み合わせることが好ましく、これら化合物の合計の含有量の好ましい含有量の下限値は、本発明の組成物の総量に対して、1%であり、2%であり、3%であり、5%であり、7%であり、10%であり、13%であり、15%であり、18%であり、20%であり、23%であり、25%であり、27%であり、30%であり、33%であり、35%であり、上限値は、本発明の組成物の総量に対して、80%であり、70%であり、60%であり、50%であり、45%であり、40%であり、37%であり、35%であり、33%であり、30%であり、28%であり、25%であり、23%であり、20%である。組成物の信頼性を重視する場合には、式(L-1-3.1)、式(L-1-3.3)及び式(L-1-3.4))で表される化合物から選ばれる2種以上の化合物を組み合わせることが好ましく、組成物の応答速度を重視する場合には、式(L-1-1.3)、式(L-1-2.2)で表される化合物から選ばれる2種以上の化合物を組み合わせることが好ましい。
 一般式(L-2)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000043
(式中、RL21及びRL22はそれぞれ独立して、一般式(L)におけるRL1及びRL2と同じ意味を表す。)
 RL21は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、RL22は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましい。
  一般式(L-1)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、反対に、応答速度を重視する場合は含有量を少なめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 本発明の組成物の総量に対しての式(L-2)で表される化合物の好ましい含有量の下限値は、1%であり、2%であり、3%であり、5%であり、7%であり、10%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、20%であり、15%であり、13%であり、10%であり、8%であり、7%であり、6%であり、5%であり、3%である。
 さらに、一般式(L-2)で表される化合物は、式(L-2.1)から式(L-2.6)で表される化合物群から選ばれる化合物であることが好ましく、式(L-2.1)、式(L-2.3)、式(L-2.4)及び式(L-2.6)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000044
 一般式(L-3)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000045
(式中、RL31及びRL32はそれぞれ独立して、一般式(L)におけるRL1及びRL2と同じ意味を表す。)
 RL31及びRL32はそれぞれ独立して炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましい。
 一般式(L-3)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 本発明の組成物の総量に対しての式(L-3)で表される化合物の好ましい含有量の下限値は、1%であり、2%であり、3%であり、5%であり、7%であり、10%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、20%であり、15%であり、13%であり、10%であり、8%であり、7%であり、6%であり、5%であり、3%である。
 高い複屈折率を得る場合は含有量を多めに設定すると効果が高く、反対に、高いTniを重視する場合は含有量を少なめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 さらに、一般式(L-3)で表される化合物は、式(L-3.1)から式(L-3.4)で表される化合物群から選ばれる化合物であることが好ましく、式(L-3.2)から式(L-3.7)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000046
 一般式(L-4)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000047
(式中、RL41及びRL42はそれぞれ独立して、一般式(L)におけるRL1及びRL2と同じ意味を表す。)
 RL41は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、RL42は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましい。)
 一般式(L-4)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 本発明の組成物において、一般式(L-4)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
 本発明の組成物の総量に対しての式(L-4)で表される化合物の好ましい含有量の下限値は、1%であり、2%であり、3%であり、5%であり、7%であり、10%であり、14%であり、16%であり、20%であり、23%であり、26%であり、30%であり、35%であり、40%である。本発明の組成物の総量に対しての式(L-4)で表される化合物の好ましい含有量の上限値は、50%であり、40%であり、35%であり、30%であり、20%であり、15%であり、10%であり、5%である。
 一般式(L-4)で表される化合物は、例えば式(L-4.1)から式(L-4.3)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000048
 低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて、式(L-4.1)で表される化合物を含有していても、式(L-4.2)で表される化合物を含有していても、式(L-4.1)で表される化合物と式(L-4.2)で表される化合物との両方を含有していても良いし、式(L-4.1)から式(L-4.3)で表される化合物を全て含んでいても良い。本発明の組成物の総量に対しての式(L-4.1)又は式(L-4.2)で表される化合物の好ましい含有量の下限値は、3%であり、5%であり、7%であり、9%であり、11%であり、12%であり、13%であり、18%であり、21%であり、好ましい上限値は、45であり、40%であり、35%であり、30%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%であり、10%であり、8%である。
 式(L-4.1)で表される化合物と式(L-4.2)で表される化合物との両方を含有する場合は、本発明の組成物の総量に対しての両化合物の好ましい含有量の下限値は、5%であり、15%であり、19%であり、24%であり、30%であり、好ましい上限値は、45であり、40%であり、35%であり、30%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%である。
 一般式(L-4)で表される化合物は、例えば式(L-4.4)から式(L-4.6)で表される化合物であることが好ましく、式(L-4.4)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000049
 低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて、式(L-4.4)で表される化合物を含有していても、式(L-4.5)で表される化合物を含有していても、式(L-4.4)で表される化合物と式(L-4.5)で表される化合物との両方を含有していても良い。
 本発明の組成物の総量に対しての式(L-4.4)又は式(L-4.5)で表される化合物の好ましい含有量の下限値は、3%であり、5%であり、7%であり、9%であり、11%であり、12%であり、13%であり、18%であり、21%である。好ましい上限値は、45であり、40%であり、35%であり、30%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%であり、10%であり、8%である。
 式(L-4.4)で表される化合物と式(L-4.5)で表される化合物との両方を含有する場合は、本発明の組成物の総量に対しての両化合物の好ましい含有量の下限値は、5%であり、15%であり、19%であり、24%であり、30%であり、好ましい上限値は、45であり、40%であり、35%であり、30%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%である。
 一般式(L-4)で表される化合物は、式(L-4.7)から式(L-4.10)で表される化合物であることが好ましく、特に、式(L-4.9)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000050
 一般式(L-5)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000051
(式中、RL51及びRL52はそれぞれ独立して、一般式(L)におけるRL1及びRL2と同じ意味を表す。)
 RL51は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、RL52は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましい。
 一般式(L-5)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 本発明の組成物において、一般式(L-5)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
 本発明の組成物の総量に対しての式(L-5)で表される化合物の好ましい含有量の下限値は、1%であり、2%であり、3%であり、5%であり、7%であり、10%であり、14%であり、16%であり、20%であり、23%であり、26%であり、30%であり、35%であり、40%である。本発明の組成物の総量に対しての式(L-5)で表される化合物の好ましい含有量の上限値は、50%であり、40%であり、35%であり、30%であり、20%であり、15%であり、10%であり、5%である
 一般式(L-5)で表される化合物は、式(L-5.1)又は式(L-5.2)で表される化合物であることが好ましく、特に、式(L-5.1)で表される化合物であることが好ましい。
 本発明の組成物の総量に対してのこれら化合物の好ましい含有量の下限値は、1%であり、2%であり、3%であり、5%であり、7%である。これら化合物の好ましい含有量の上限値は、20%であり、15%であり、13%であり、10%であり、9%である。
Figure JPOXMLDOC01-appb-C000052
 一般式(L-5)で表される化合物は、式(L-5.3)又は式(L-5.4)で表される化合物であることが好ましい。
 本発明の組成物の総量に対してのこれら化合物の好ましい含有量の下限値は、1%であり、2%であり、3%であり、5%であり、7%である。これら化合物の好ましい含有量の上限値は、20%であり、15%であり、13%であり、10%であり、9%である。
Figure JPOXMLDOC01-appb-C000053
 一般式(L-5)で表される化合物は、式(L-5.5)から式(L-5.7)で表される化合物群から選ばれる化合物であることが好ましい。
 本発明の組成物の総量に対してのこれら化合物の好ましい含有量の下限値は、1%であり、2%であり、3%であり、5%であり、7%である。これら化合物の好ましい含有量の上限値は、20%であり、15%であり、13%であり、10%であり、9%である。
Figure JPOXMLDOC01-appb-C000054
 一般式(L-6)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000055
(式中、RL61及びRL62はそれぞれ独立して、一般式(L)におけるRL1及びRL2と同じ意味を表し、XL61及びXL62はそれぞれ独立して水素原子又はフッ素原子を表す。)
 RL61及びRL62はそれぞれ独立して炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、XL61及びXL62のうち一方がフッ素原子他方が水素原子であることが好ましい。
 一般式(L-6)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 本発明の組成物の総量に対しての式(L-6)で表される化合物の好ましい含有量の下限値は、1%であり、2%であり、3%であり、5%であり、7%であり、10%であり、14%であり、16%であり、20%であり、23%であり、26%であり、30%であり、35%であり、40%である。本発明の組成物の総量に対しての式(L-6)で表される化合物の好ましい含有量の上限値は、50%であり、40%であり、35%であり、30%であり、20%であり、15%であり、10%であり、5%である。Δnを大きくすることに重点を置く場合には含有量を多くした方が好ましく、低温での析出に重点を置いた場合には含有量は少ない方が好ましい。
 一般式(L-6)で表される化合物は、式(L-6.1)から式(L-6.9)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000056
 組み合わせることができる化合物の種類に特に制限は無いが、これらの化合物の中から1種~3種類含有することが好ましく、1種~4種類含有することがさらに好ましい。また、選ぶ化合物の分子量分布が広いことも溶解性に有効であるため、例えば、式(L-6.1)又は(L-6.2)で表される化合物から1種類、式(L-6.4)又は(L-6.5)で表される化合物から1種類、式(L-6.6)又は式(L-6.7)で表される化合物から1種類、式(L-6.8)又は(L-6.9)で表される化合物から1種類の化合物を選び、これらを適宜組み合わせることが好ましい。その中でも、式(L-6.1)、式(L-6.3)式(L-6.4)、式(L-6.6)及び式(L-6.9)で表される化合物を含むことが好ましい。
 さらに、一般式(L-6)で表される化合物は、例えば式(L-6.10)から式(L-6.17)で表される化合物であることが好ましく、その中でも、式(L-6.11)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000057
 本発明の組成物の総量に対してのこれら化合物の好ましい含有量の下限値は、1%であり、2%であり、3%であり、5%であり、7%である。これら化合物の好ましい含有量の上限値は、20%であり、15%であり、13%であり、10%であり、9%である。
 一般式(L-7)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000058
(式中、RL71及びRL72はそれぞれ独立して一般式(L)におけるRL1及びRL2と同じ意味を表し、AL71及びAL72はそれぞれ独立して一般式(L)におけるAL2及びAL3と同じ意味を表すが、AL71及びAL72上の水素原子はそれぞれ独立してフッ素原子によって置換されていてもよく、ZL71は一般式(L)におけるZL2と同じ意味を表し、XL71及びXL72はそれぞれ独立してフッ素原子又は水素原子を表す。)
 式中、RL71及びRL72はそれぞれ独立して炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましく、AL71及びAL72はそれぞれ独立して1,4-シクロヘキシレン基又は1,4-フェニレン基が好ましく、AL71及びAL72上の水素原子はそれぞれ独立してフッ素原子によって置換されていてもよく、ZL71は単結合又はCOO-が好ましく、単結合が好ましく、XL71及びXL72は水素原子が好ましい。
 組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて組み合わせる。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類である。
 本発明の組成物において、一般式(L-7)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
 本発明の組成物の総量に対しての一般式(L-7)で表される化合物の好ましい含有量の下限値は、1%であり、2%であり、3%であり、5%であり、7%であり、10%であり、14%であり、16%であり、20%である。本発明の組成物の総量に対しての式(L-7)で表される化合物の好ましい含有量の上限値は、30%であり、25%であり、23%であり、20%であり、18%であり、15%であり、10%であり、5%である。
 本発明の組成物が高いTniの実施形態が望まれる場合は一般式(L-7)で表される化合物の含有量を多めにすることが好ましく、低粘度の実施形態が望まれる場合は含有量を少なめにすることが好ましい。
 さらに、一般式(L-7)で表される化合物は、式(L-7.1)から式(L-7.4)で表される化合物であることが好ましく、式(L-7.2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000059
 さらに、一般式(L-7)で表される化合物は、式(L-7.11)から式(L-7.13)で表される化合物であることが好ましく、式(L-7.11)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000060
 さらに、一般式(L-7)で表される化合物は、式(L-7.21)から式(L-7.23)で表される化合物である。式(L-7.21)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000061
 さらに、一般式(L-7)で表される化合物は、式(L-7.31)から式(L-7.34)で表される化合物であることが好ましく、式(L-7.31)又は/及び式(L-7.32)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000062
 さらに、一般式(L-7)で表される化合物は、式(L-7.41)から式(L-7.44)で表される化合物であることが好ましく、式(L-7.41)又は/及び式(L-7.42)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000063
 本発明に係る液晶組成物の好適な形態は、液晶組成物全体(100質量%)のうち一般式(i)で表される化合物と一般式(L)で表される化合物の総量の下限値は、84質量%、85質量%、86質量%、87質量%、88質量%、89質量%、90質量%、91質量%、92質量%、93質量%、94質量%以下、95質量%、96質量%、97質量%、98質量%、99質量%、100質量%であることが好ましい。液晶組成物全体(100質量%)のうち一般式(i)で表される化合物と一般式(L)で表される化合物の総量の上限値は、100質量%、99質量%、98質量%、97質量%、96質量%、95質量%、94質量%、93質量%、92質量%、91質量%以下、90質量%であることが好ましい。
 本発明に係る液晶組成物の好適な態様は、液晶組成物全体(100質量%)のうち誘電率異方性(Δε)が負(-1.5>Δε)の成分の含有量の上限値が、95質量%、94質量%、93質量%、92質量%、91質量%以下、90質量%、89質量%、88質量%、87質量%、86質量%、85質量%、84質量%、83質量%、82質量%、81質量%、80質量%、79質量%、78質量%、77質量%、76質量%、75質量%、74質量%、73質量%、72質量%、71質量%、70質量%、69質量%、68質量%、67質量%、66質量%、65質量%、64質量%、63質量%、62質量%、61質量%、60質量%、59質量%、58質量%、57質量%であることが好ましい。また、液晶組成物全体(100質量%)のうち誘電率異方性(Δε)が負(-2>Δε)の成分の含有量の下限値が、10質量%、12質量%、14質量%、16質量%、18質量%、20質量%、21質量%、22質量%以下、23質量%、24質量%、25質量%、26質量%、27質量%、28質量%、29質量%、30質量%、31質量%、32質量%、33質量%、34質量%、35質量%、36質量%、37質量%、38質量%、39質量%、40質量%、41質量%、42質量%、43質量%、44質量%、47質量%、48質量%、49質量%、50質量%、51質量%、52質量%であることが好ましい。
 組成物内の誘電率異方性(Δε)が負(-1.5>Δε)の成分の含有量が多くなりすぎると、フリッカーが生じやすくなる。そのため、上記観点から本発明に係る液晶組成物の好適な態様は、液晶組成物全体(100質量%)のうち誘電率異方性(Δε)が負(-1.5>Δε)の成分の含有量の上限値は、95質量%以下が好ましく、86質量%以下がより好ましい。
 本発明に係る液晶組成物の好適な態様は、液晶組成物全体(100質量%)のうち誘電率異方性が中性((-1.5≦Δε≦1.5))の成分の含有量の上限値が、90質量%、88質量%、86質量%、84質量%、82質量%、80質量%、78質量%、76質量%、74質量%、72質量%、70質量%、68質量%、66質量%、63質量%、60質量%、58質量%、55質量%、52質量%、50質量%、47質量%、45質量%、43質量%、40質量%、38質量%、36質量%、36質量%、34質量%、32質量%、30質量%、28質量%、26質量%であることが好ましい。また、液晶組成物全体(100質量%)のうち誘電率異方性が中性((-1.5≦Δε≦1.5))の成分の含有量の下限値が、7質量%、8質量%、9質量%、10質量%、11質量%、12質量%、13質量%、14質量%、15質量%、16質量%、17質量%、18質量%、19質量%、20質量%、21質量%、22質量%以下、23質量%、24質量%、25質量%、26質量%、27質量%、28質量%、29質量%、30質量%、31質量%、32質量%、33質量%、34質量%、35質量%、36質量%、37質量%、38質量%、39質量%、40質量%、41質量%、42質量%、43質量%、44質量%、47質量%、48質量%、50質量%であることが好ましい。
 本発明に係る液晶組成物の好適な態様は、負(-1.5>Δε)の誘電率異方性を示す成分は、一般式(N-1a)~(N-1e)で表される化合物からなる群から選択される化合物で構成されることが好ましく、一般式(N-1a)~(N-1c)で表される化合物からなる群から選択される化合物で構成されることが特に好ましい。
 一般式(N-1a)~(N-1c)で表される化合物により負(-1.5>Δε)の誘電率異方性を示す成分を構成すると、比較的誘電率異方性を低く抑えることができるだけでなく、フレクソ分極によるフリッカーの発生も低減することができる。
 本発明に係る液晶組成物の好適な態様は、負(-1.5>Δε)の誘電率異方性を示す成分のうち、一般式(N-1a)で表される化合物と、一般式(N-1b)で表される化合物と、一般式(N-1c)で表される化合物との合計総量が、一般式(N-1d)で表される化合物と、一般式(N-1e)で表される化合物との合計総量より多いことが好ましい。環同士が直接連結した直環型の負(-1.5>Δε)の誘電率異方性を示す化合物(例えば、一般式(N-1a)~一般式(N-1c))の量が、環同士が連結基を介して連結した連結基を含む負(-2>Δε)の誘電率異方性を示す化合物より多いと比較的誘電率異方性を低く抑えることができるだけでなく、フレクソ分極によるフリッカーの発生も低減することができる。
 本発明に係る液晶組成物の好適な形態は、液晶組成物全体(100質量%)のうち、一般式(N-1a)で表される化合物と、一般式(N-1b)で表される化合物と、一般式(N-1c)で表される化合物と、一般式(N-1d)で表される化合物と、一般式(N-1e)で表される化合物と、一般式(L)で表される化合物との総量(合計量)の下限値は、85質量%、86質量%、87質量%、88質量%、89質量%、90質量%、91質量%、92質量%、93質量%、94質量%以下、95質量%、96質量%、97質量%、98質量%、99質量%、100質量%であることが好ましい。また、液晶組成物全体(100質量%)のうち、一般式(N-1a)で表される化合物と、一般式(N-1b)で表される化合物と、一般式(N-1c)で表される化合物と、一般式(N-1d)で表される化合物と、一般式(N-1e)で表される化合物と、一般式(L)で表される化合物との総量(合計量)は、100質量%、99質量%、98質量%、97質量%、96質量%、95質量%、94質量%、93質量%、92質量%、91質量%以下であることが好ましい。
 本発明の液晶組成物は、25℃における誘電率異方性(Δε)が-1.0~-7.0が適正な使用範囲内であるが、駆動電圧およびフリッカーを低減の観点から-1.0以上-6.0未満が好ましく、-2.0以上-6.0未満がより好ましく、-2.5から-5.5が特に好ましい。誘電率異方性が大きい液晶組成物は、フレクソ分極の観点から比較的フリッカーを低減し難い。そのため、本発明に係る好ましい液晶組成物は、25℃における誘電率異方性(Δε)が-1.0~-7.0であることが好ましく、-2.0以上-6.0未満がより好ましい。
 本発明の液晶組成物は、25℃における屈折率異方性(Δn)が0.08から0.14であるが、0.09から0.13がより好ましく、0.09から0.128が特に好ましい。更に詳述すると、薄いセルギャップに対応する場合は0.10から0.13であることが好ましく、厚いセルギャップに対応する場合は0.08から0.10であることが好ましい。
 本発明の液晶組成物は、20℃における粘度(η)が10から50mPa・sであるが、10から45mPa・sであることが好ましく、10から40mPa・sであることが好ましく、10から35mPa・sであることが好ましく、10から30mPa・sであることが好ましく、10から25mPa・sであることが更に好ましく、10から22mPa・sであることが特に好ましい。
 本発明の液晶組成物は、25℃における回転粘性(γ)が50から250mPa・sであるが、55から170mPa・sであることが好ましく、60から160mPa・sであることが好ましく、60から150mPa・sであることが好ましい。
 本発明の液晶組成物は、ネマチック相-等方性液体相転移温度(Tni)が60℃から120℃であるが、70℃から100℃がより好ましく、70℃から85℃がさらに好ましく、70℃から84.8℃が特に好ましい。
 実際の液晶表示素子に使用されている負の液晶組成物は、誘電率異方性が負の化合物(ポーラー成分)と、誘電率異方性が中性の化合物(ノンポーラ成分)との2つの成分が混在し、かつ液晶組成物全体として数種類から数十種類の液晶化合物が含まれている。そのため、フレクソエレクトリック効果(フレクソ分極)に直接的に関与するのは、主にポーラー成分の液晶化合物の分極であるため、本発明の駆動方法のように1フレーム毎に正負極性を反転させる駆動で反応した分極の位置変化による輝度変動もポーラー成分の液晶化合物の分極やその含有量に依存する。
 本発明の液晶表示素子は、上述したように、反転駆動を1フレーム毎に行っているため、分極の位置変化による輝度変動の項もさらに加味すると、非常に輝度変動が大きくなりフリッカーが生じ、表示品位が低下する。
 しかしながら、本発明では、特定の誘電率異方性が負の液晶化合物を組合わせ、かつそれらの含有量を規定することで化合物特有の分極の位置変化を液晶組成物(液晶層)全体として均一化することができるため、フリッカーを低減・抑制することができると考えられる。
 本発明の液晶組成物の形態は、ポーラー成分の液晶化合物(負の誘電率異方性を示す液晶化合物)が、一般式(N-1-1)~(N-1-5)で表される化合物、一般式(N-1-10)~一般式(N-1-13)で表される化合物で表される化合物からなる群から選択される1種または2種以上で構成され、かつこれらの化合物が負(-1.5>Δε)の誘電率異方性を示す成分(100質量%)のうち80質量%以上100質量%以下を占めることが好ましい。
 本発明に係る液晶組成物の好適な形態は、ポーラー成分の液晶化合物(負の誘電率異方性を示す液晶化合物)が、一般式(N-1-1)~(N-1-5)で表される化合物、一般式(N-1-10)~一般式(N-1-13)で表される化合物で表される化合物からなる群から選択される1種または2種以上で構成され、かつこれらの化合物が負(-1.5>Δε)の誘電率異方性を示す成分(100質量%)のうち80質量%以上100質量%以下を占め、かつ一般式(N-1-1)~(N-1-5)で表される化合物の合計含有量が、一般式(N-1-10)~一般式(N-1-13)で表される化合物で表される化合物の合計含有量より多いことがより好ましい。
 続いて、以下本発明の好適な液晶表示素子の表示処理部の動作および作用に関して以下説明する。
 本発明に係る表示処理部は、通常駆動の他に駆動電力低減のために低周波駆動の機能と間欠駆動の機能とを備えており、TFT液晶パネルのゲートバスラインを駆動するためのLSIであるゲートドライバおよびTFT液晶パネルのソースバスラインを駆動するためのLSIであるソースドライバを制御する機能を備える。また、共通電極に共通電圧VCOMを供給し、バックライトの動作を制御する機能を備えてもよい。
 なお、本明細書の「低周波駆動」とは、液晶表示素子の駆動周波数を標準値((例えば、60Hz、120Hzまたは240Hz)自体を、1/2、1/4、1/6、1/10または1/60などに低下させる駆動(表示処理部で行う)ことをいい、「間欠駆動」とは、液晶表示素子の駆動周波数を標準値(例えば、60Hz、120Hzまたは240Hz)自体は変えることなく、液晶表示素子の1表示期間の書き込みを行った後、制御回路を停止する期間(休止期間)を設けることをいう(休止期間により、画素電極への画像信号を書き換える周期が長くなるため、見かけのフレーム周波数が低下する。)。
 本発明では、表示処理部により画素電極への画像信号のフレーム周波数を0Hz超59Hz以下の範囲に制御することができるため、表示するコンテンツに適宜連動して、通常駆動の状態(例えば、フレーム周波数が60Hz、120Hzまたは240Hz)と(フレーム周波数が0Hz超59Hz以下の状態(低周波駆動または間欠駆動)とを可逆的に切り替えすることができる。
 また、本発明に係る表示処理部において、上記で説明した液晶表示部の駆動を行っており、画素電極への画像信号のフレーム周波数を59Hz以下0Hz超の範囲内に任意で制御できるため、換言すると、前記画素電極への画像信号を書き換える周期(=書き換え周期)を延縮自在に制御することができる。すなわち、画素電極に画像信号(電圧)を印加した時から、次に当該画素電極に画像信号(電圧)を印加する時までの時間を当該表示処理部により延縮自在に制御することができる。そのため、単位秒あたり一画面を走査する(書き換える)回数であるフレーム周波数が表示処理部により延縮自在に制御されうる。
 画素電極に画像信号(電圧)を印加した時から、次に当該画素電極に画像信号(電圧)を印加する時までの時間を当該表示処理部により延縮自在に制御することで、画素電極の画像信号の書き換えを行う時間間隔であるフレーム周期を、所定の時間内に適宜制御する。そのため、本発明に係る表示処理部は、異なるフレーム周波数を2つ以上備えて制御できることが好ましく、前記異なるフレーム周波数の2つ以上の中の少なくとも一つは、59Hz以下~0Hz超である。
 本発明に係る低周波駆動または間欠駆動状態におけるフレーム周波数は、0超~59Hzであり、0.1Hz~59Hzが好ましく、0.2Hz~58Hzが好ましく、0.3Hz~57Hzが好ましく、0.4Hz~56Hzが好ましく、0.5Hz~55Hzが好ましい。
 例えば、静止画を表示する場合は0.1~30Hz未満であることが好ましく、動画を表示する場合は30以上59Hz未満であることが好ましい。
 また、前者の静止画を表示する場合のフレーム周波数の下限値は、0.1Hz、0.2Hz、0.5Hz、0.7Hz、0.9Hz、1.0Hzの順に好ましい。前者の静止画を表示する場合のフレーム周波数の上限値は、29.5Hz、28.0Hz、25.0Hz、23.0Hz、20.0Hz、18.0Hz、16.0Hz、14.0Hz、13.0Hz、12.0Hz、11.0Hz、10Hzの順に好ましい。
 一方、動画を表示する場合のフレーム周波数の下限値は、30Hz、30.2Hz、30.5Hz、31.0Hzの順に好ましい。後者の動画を表示する場合のフレーム周波数の上限値は、59.0Hz、58.0Hz、57.0Hz、56.0Hz、53.0Hz、52.0Hz、51.0Hz、50.0Hz、48.0Hz、47.0Hz、46.0Hz、45.0Hz、43.0Hz、42.0Hz、40.0Hzの順に好ましい。
 低周波駆動または間欠駆動状態において動画を表示する場合のフレーム周波数は、30~40Hzに制御することが特に好ましい。また低周波駆動または間欠駆動状態において静止画を表示する場合のフレーム周波数は、1~10Hzに制御することが特に好ましい。
 上述したように、本願発明の表示処理部は、画素電極への画像信号を書き換える周期(=書き換え周期)を延縮自在に制御することができ、かつ画素電極への画像信号のフレーム周波数を59Hz以下0Hz超の範囲に制御することができる。画素電極への画像信号を書き換を行う周期を長くする態様(=画像信号のフレーム周波数を長くする)としては、第1のフレーム周波数で駆動する第1の駆動モードから前記第1のフレーム周波数より低い第2のフレーム周波数で駆動する第3の駆動モードが挙げられる。より詳細には、例えば、第1のフレーム周波数で駆動する第1の駆動モード(例えば、第1のフレーム周波数が60、120または240Hz超の通常駆動)から、フレーム周波数が0超~59Hzの範囲に制御される低周波駆動(第3の駆動モード)へ表示処理部で切り替えする例が挙げられる。画像信号を書き換を行う周期を長くする他の態様としては、例えば、第1のフレーム周波数で駆動する第1の駆動モード(例えば、第1のフレーム周波数が60、120または240Hz超の通常駆動)から、1フレーム超に相当する休止期間を設ける間欠駆動(第2の駆動モード)フレーム周波数が0超~59Hz)へ切り替えする例が挙げられる。
 次に、画像信号の書き換え周期を短くする態様(=画像信号のフレーム周波数を短くする)としては、上記第2または第3の駆動モードである低周波駆動または間欠駆動から上記の通常駆動へ切り替えする例が挙げられる。
 これらの態様により、本願発明の表示処理部は、画素電極への画像信号のフレーム周波数を59Hz以下0Hz超の範囲に制御することで、フレーム周波数が異なる2つ以上の駆動モードに可逆的に切り替えすることができる。
 本発明の液晶表示素子の駆動方法は、上記の駆動モード(第1~第3の駆動モード)を組み合わせることで消費電力を低減することができるだけでなく、さらに本発明では特定の液晶組成物を使用していることから、低周波駆動や間欠駆動への切り替えの際のフリッカーを低減することができる。
 以下、本発明の画素の駆動方法について詳細に説明する。
 「第1の駆動モードと第2の駆動モードとの切り替え」
 (通常駆動と間欠駆動との切り替え)
 通常駆動(第1の駆動モード)の画素電極への画像信号のフレーム周波数が、例えば60Hzの場合は、全画面を(1/60)秒かけて走査するため、画素電極への画像信号の書き換えは0.0167秒ごとに1回行っている(画像信号の書き換え周期は1/60)。この1/60秒をかけた書き換え動作の後、例えば、2フレーム、10フレームまたは100フレーム相当のドライバまたは表示処理部が動作しない休止期間を設けて、画素電極への画像信号の書き換えを再開すると、最後に画素電極への画像信号の書き換えたときから画素電極への画像信号の書き換えを再開するまでの間の画素電極への画像信号の書き換え期間(第2の駆動モード)の周期は、1/60秒より長くなる。
 ドライバまたは表示処理部が動作しない休止期間の間は、制御回路などの動作が停止するため、その間の回路消費電力が無くなり消費電力を低減することができる。
 したがって、ドライバまたは表示処理部が動作しない休止期間を設けることで、画素電極への画像信号の書き換えタイミングを表示処理部がコントロールして、画像信号の書き換え周期を変えることができる。換言すると、表示処理部において画素電極への画像信号のフレーム周波数を59Hz以下0Hz超の範囲に制御し、かつ前記画像信号の書き換え周期を延縮自在にすることで、消費電力を低減することができる。
 本発明に係る液晶表示素子の駆動方法の一例を、図11を参照して以下説明する。
図11(A)は、2m行2n列の画素電極における画像信号の書き換えの経時的変化を表す図である。また、図11(B)は、2m+1行2n+1列の画素電極における画像信号の書き換えの経時的変化を表す図である。さらに、図11の例を、第1の駆動モード(通常駆動)の画素電極への画像信号のフレーム周波数を60Hzとした場合について説明する。
 液晶表示素子の標準的なフレーム周波数が60Hzにおいて、1フレーム(1/60秒)ごとに液晶に印加する電圧の極性が反転する。図11では、極性判定方法として、カラム反転駆動の一例を示すが、本発明はこれに限定されることはない。例えば、ドット反転駆動の場合は、図11(A)を、2m行2n列の画素電極および2m+1行2n+1列の画素電極における画像信号の書き換えの経時的変化を表す図とし、図11(B)を、2m行2n+1列の画素電極における画像信号の書き換えの経時的変化を表す図とすれば足りうる。
 図11(A)において、第1の駆動モード(通常駆動)のフレーム周波数が60Hzであると、全画面を(1/60)秒かけて走査するため、画素への画像信号の書き換えは1/60秒ごとに1回行っており(画像信号の書き換え周期 1/60)、列方向(2n)に並んだ画素電極へ印加する画像信号が各フレームで同じ極性の1フレーム毎に反転するよう、ゲートドライバおよびソースドライバの動作を表示処理部が制御する。またカラム反転駆動の一例を示すため、図11(B)は、図11(A)とは逆極性の電圧が印加された状態を示すものであり、図11(A)と同様に画素電極への画像信号の書き換えは1/60秒ごとに1回行っており(画像信号の書き換え周期 1/60)、列方向(2n+1)に並んだ画素電極へ印加する画像信号が各フレームで同じ極性の1フレーム毎に反転するよう、ゲートドライバおよびソースドライバの動作を表示処理部が制御する。
 図11(A)、(B)において、1/60秒をかけた書き換え動作の後、表示処理部、ソースドライバまたはゲートドライバの書き換え動作が停止する所定時間の休止期間が設けられた第2の駆動モード(間欠駆動状態)に切り替えると、休止期間中の回路消費電力が0になるため、回路電力を低減することができる。その後、前記休止期間を終了させて通常駆動(第1の駆動モード)に切り替えると、画素電極への画像信号の書き換え動作が実行されるため、休止期間より前に画素への画像信号の書き換えた後次の書き換える時までの間(すなわち第1の駆動モードの画像信号の書き換え周期)と、休止期間直前に画素への画像信号の書き換えた時から休止期間の終了後に画素への画像信号の書き換えた時までの間(すなわち第2の駆動モードの画像信号の書き換え周期)と、は異なる(第2の駆動モードの画素電極への画像信号の書き換え周期は、第1の駆動モードの画素電極への画像信号の書き換え期間より長くなる。)。
 なお、画素電極には休止期間直前に書き込まれた画像信号(電圧信号)は次の画像信号(電圧信号)が書き込まれるまでこの画像信号は保持されている。
 図11では、液晶表示素子に表示されるコンテンツと連動し、動画を表示した(第1の駆動モード)後、静止画を表示し(第2の駆動モードに切り替え)、再度動画を表示する(第1の駆動モードに切り替え)といった表示態様が挙げられる。
 「第1の駆動モードと第3の駆動モードとの切り替え」
 (通常駆動と低周波駆動との切り替え)
 通常駆動(第1の駆動モード)の画素電極への画像信号のフレーム周波数が、例えば60Hzの場合は、全画面を(1/60)秒かけて走査するため、画素電極への画像信号の書き換えは0.0167秒ごとに1回行っている(画像信号の書き換え周期)(同様に、120Hzの場合は、全画面を(1/120)秒かけて走査、240Hzの場合は、全画面を(1/240)秒かけて走査)。この状態から、第1の駆動モードより低いフレーム周波数で画素への画像信号の書き換えを行う第3の駆動モードへ切り替えた場合、すなわち、例えば、画像信号のフレーム周波数が1Hzの低周波駆動状態へ切り替えると、全画面を(1/1)秒かけて走査するため、画素への画像信号の書き換えは1秒ごとに1回行う(画像信号の書き換え周期は1/1)ため、回路の消費電力を低減することができる。また、低周波駆動状態(第3の駆動モード)から通常駆動(第1の駆動モード)へ切り替えると、前述の画素への画像信号の書き換えは0.0167秒ごとに1回行う状態に戻る。
 したがって、画素電極への画像信号のフレーム周波数自体を表示処理部で変えることで、画像信号の書き換え周期を変えることができる。換言すると、表示処理部において画素電極への画像信号のフレーム周波数を0Hz超59Hz以下の範囲に制御し、画像信号の波長を伸ばしたり縮めたりする切り替えができることで、前記画像信号の書き換え周期を延縮自在にする。
 例えば、図12を参照して本発明に係る好ましい駆動方法の一例を説明する。図12(A)は、2m行2n列の画素電極における画像信号の書き換えの経時的変化を表す図である。また、図12(B)は、2m+1行2n+1列の画素電極における画像信号の書き換えの経時的変化を表す図である。
 また、図12の例を、第1の駆動モード(通常駆動)の画素電極への画像信号のフレーム周波数を60Hz、第3の駆動モード(低周波駆動)の画素電極への画像信号のフレーム周波数を6Hzとした場合について説明する。さらに、液晶表示素子の標準的なフレーム周波数が60Hzにおいて、1フレーム(1/60秒)ごとに、液晶に印加する電圧の極性が反転するため、図12では、カラム反転駆動の一例を示すが、本発明はこれに限定されることはない。例えば、ドット反転駆動の場合は、図12(A)を、2m行2n列の画素電極および2m+1行2n+1列の画素電極における画像信号の書き換えの経時的変化を表す図とし、図12(B)を、2m行2n+1列の画素電極における画像信号の書き換えの経時的変化を表す図とすれば足りうる。
 図12(A)において、第1の駆動モード(通常駆動)のフレーム周波数が60Hzであると、全画面を(1/60)秒かけて走査するため、画素への画像信号の書き換えは1/60秒ごとに1回行っており(画像信号の書き換え周期)、列方向(2n)に並んだ画素電極へ印加する画像信号が各フレームで同じ極性の1フレーム毎に反転するよう、ゲートドライバおよびソースドライバの動作を表示処理部が制御する。
 印加する極性を反転しながら画素電極への画像信号の書き換えを1/60秒ごとに1回行う第1の駆動モード(通常駆動)から、前記第1のフレーム周波数より低い第3のフレーム周波数(例えば、6Hz)で駆動する第3の駆動モード(低周波状態)に切り替えると、全画面を(1/6)秒かけて走査するため、印加する極性は(1/6)ごとに反転され、画素電極への画像信号の書き換えは(1/6)秒ごとに1回行う。
 そのため、第3の駆動モードにおける画像信号の書き換え周期が、第1の駆動モードにおける画像信号の書き換え周期より長くなる。これにより、画像信号の書き換え回数が低減するため消費電力を低減することができる。
 例えば、静止画像を表示する場合や動画であっても視認性が乏しい画像などを表示する場合は、表示処理部が低周波駆動または間欠駆動を実行することで消費電力を低減することができる。
 図12では、液晶表示素子に表示されるコンテンツと連動し、動画を表示した(第1の駆動モード)後、動きの遅い動画を表示し(第3の駆動モードに切り替え)、再度動きの速い動画を表示する(第1の駆動モードに切り替え)といった表示態様が挙げられる。
 本発明に係る好ましい駆動方法の他の一例として、図13を参照して説明する。図13(A)は、2m行2n列の画素電極における画像信号の書き換えの経時的変化を表す図である。また、図13(B)は、2m+1行2n+1列の画素電極における画像信号の書き換えの経時的変化を表す図であり、極性反転やフレーム周波数は上記の図7および8と同じである。
 図13(A)、(B)において、印加する極性を反転しながら画素電極への画像信号の書き換えを1/60秒ごとに1回行う第1の駆動モード(通常駆動)から、前記第1のフレーム周波数より低い第3のフレーム周波数(例えば、6Hz)で駆動する第3の駆動モード(低周波状態)に切り替えると、全画面を(1/6)秒かけて走査するため、印加する極性は(1/6)ごとに反転され、画素電極への画像信号の書き換えは(1/6)秒ごとに1回行う。その後、書き換え動作の後、表示処理部、ソースドライバまたはゲートドライバの書き換え動作が停止する所定時間の休止期間が設けられた第2の駆動モード(間欠駆動状態)に切り替えると、休止期間中の回路消費電力が0になるため、回路電力を低減することができる。さらにその後、前記休止期間を終了させて低周波状態(第3の駆動モード)に切り替えると、画素電極への画像信号の書き換え動作が実行されるため、休止期間より前に画素への画像信号の書き換えた後次の書き換える時までの間(すなわち第3の駆動モードの画像信号の書き換え周期)と、休止期間直前に画素への画像信号の書き換えた時から休止期間の終了後に画素への画像信号の書き換えた時までの間(すなわち第2の駆動モードの画像信号の書き換え周期)と、が相違する。そしてさらにその後、低周波駆動状態(第3の駆動モード)から通常駆動(第1の駆動モード)へ切り替えると、前述の画素への画像信号の書き換えは1/60回行う状態に戻る。
 なお、画素電極には休止期間直前に書き込まれた画像信号(電圧信号)は次の画像信号(電圧信号)が書き込まれるまでこの画像信号は保持されている。
 図13など実施形態のように低周波駆動と間欠駆動とを組み合わせることでさらなる消費電力を低減することができる。
 図13では、液晶表示素子に表示されるコンテンツと連動し、動きの速い動画を表示した(第1の駆動モード)後、動きの遅い動画を表示し(第3の駆動モードに切り替え)、静止画を表示し(第2の駆動モードに切り替え)、再度動きの速い動画を表示する(第1の駆動モードに切り替え)といった表示態様が挙げられる。
 本発明は、VA、PSVA、FFSおよび/またはIPS等の液晶表示部を備えている液晶表示素子に適用できる。電圧保持率の低下に起因するフリッカーを低減する方法は、VA、PSVA、FFSおよび/またはIPS等のアクティブ駆動、特に低周波駆動において望まれている。さらにFFSやIPSの駆動形式は、通称のVAモードに比較し、電圧印加時に液晶へ強電場がかかるため、フレクソ分極が起こりやすく、フリッカーが発生しやすい。そのため、FFSやIPSの駆動形式は、VAやPSVAモードに比較し、電圧保持率の低下に起因するフリッカーのみならず、フレクソ分極に起因するフリッカーも低減する方法が望まれている。
 したがって、本発明の液晶表示部の好ましい態様は、液晶層と、第1の基板と第2の基板のそれぞれの間にホモジニアス配向を誘起する配向膜層を有し、前記第1の基板上に共通電極が配置されるものである。
 特に、FFS型の表示素子は、電極のエッジ部分近傍でフリンジ電界を発生するため、本発明の液晶表示部の特に好ましい態様は、画素電極と共通電極との間の電極間距離:Rが前記第1の基板と第2の基板との距離:Gより小さく、前記画素電極と共通電極との電極間にフリンジ電界を形成するものである。
 以下に実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は『質量%』を意味する。
 実施例において化合物の記載について以下の略号を用いる。
(側鎖)
 -n    -C2n+1 炭素数nの直鎖状のアルキル基
 n-    C2n+1- 炭素数nの直鎖状のアルキル基
 -On   -OC2n+1 炭素数nの直鎖状のアルコキシル基
 nO-   C2n+1O- 炭素数nの直鎖状のアルコキシル基
 -nO-  -C2nO-
 -On-  -OC2n
 -n-   -C2n
 -V    -CH=CH
 V-    CH=CH-
 -V1   -CH=CH-CH
 1V-   CH-CH=CH-
(環構造)
Figure JPOXMLDOC01-appb-C000064
 実施例中、測定した特性は以下の通りである。
 Tni :ネマチック相-等方性液体相転移温度(℃)
 Δn :25℃における屈折率異方性
 η  :20℃における粘度(mPa・s)
 γ1 :25℃における回転粘性(mPa・s)
 Δε :25℃における誘電率異方性
 実施例1~15の液晶組成物および比較例1~4の液晶組成物(表1、3、5および7)それぞれFFSセルへ注入し、FFS素子を得た。各液晶素子へ、白色LEDを使用したバックライト(光度:25000cd)を、1000時間照射した後、フレーム周波数1(HZ)で駆動を行い、以下のちらつき評価基準により評価した(表2、4および6のBL照射後の表示のちらつき)。
 各種のNDフィルターを通したパネルで目視により評価した。評価基準は、◎、〇、△、×の4段階で評価した。◎が最もちらつきが良好である。以下に、実施例1~15の液晶組成物および比較例1~4の液晶組成物の組成表と物性値およびそのちらつき評価結果を以下の表2、4および6に示す。
◎:ND100フィルターを介して観察したパネルにおいてフリッカー(ちらつき)が目視で確認できない。
〇:ND50フィルターを介して観察したパネルにおいてフリッカー(ちらつき)が目視で確認できない。
△:ND30フィルターを介して観察したパネルにおいてフリッカー(ちらつき)が目視で確認できない。
×:ND10フィルターを介して観察したパネルにおいてフリッカー(ちらつき)が目視で確認できない。
 ここでNDフィルターとは、Neutral Densityフィルターの略称であり、発色を変えることなく光の透過率を可変させるフィルターのことを示している。ND100とは、透過率100%(つまりNDフィルターが無く、光を100%透過する状態)を示しており、ND10とは、透過率10%を示している。透過率が小さなNDフィルターを介してフリッカーが目視できる状態は、光のちらつきが大きな状態を示していると言える。
 また、VHRの評価は、東陽テクニカ製LCM-2を用いて、1V、0.6Hz、25℃の条件で、白色LEDを使用したバックライト(光度:25000cd)を、1000時間照射する前および照射した後のそれぞれについて、実施例1~15の液晶組成物および比較例1~4の液晶組成物の測定を行った。
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
 上記の実施例1~15と比較例1~4を対比すると、縮合環が含まれていない液晶組成物を用いた液晶表示素子では、表示のちらつきがND50フィルターまたはND100フィルターを介して確認できなかった。
 1,8  偏光板
 2  第1の基板
 3  電極層(第1の電極)
 3’ 共通電極(第2の電極)
 4  配向膜
 5  液晶層
 6  カラーフィルタ
 7  第2の基板
 11  ゲート電極
 12  ゲート絶縁膜
 13  半導体層
 14  絶縁層
 15  オーミック接触層
 16  ドレイン電極
 17  ソース電極
 18  絶縁保護層
 19b ソース電極
 21  画素電極
 22  共通電極
 23  ストレイジキャパシタ
 24  ドレイン電極
 25  ソースバスライン
 26  ゲートバスライン
 27  ソース電極
 28  ゲート電極
 29  共通ライン

Claims (7)

  1.  第一の透明基板と、
    前記第一の透明基板と対向配置された第二の透明基板と、
    前記第一の透明基板と第二の透明基板との間に充填された液晶組成物を含有する液晶層と、
    前記第一の透明基板上に配置される画素電極と、
    前記画素電極への画像信号のフレーム周波数を0Hz超59Hz以下の範囲に制御する表示処理部と、を有し
    前記液晶組成物が、下記一般式(i):
    Figure JPOXMLDOC01-appb-C000001
    (上記式中、Ri1およびRi2はそれぞれ独立して、炭素原子数1~10のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の-CH-はそれぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換されていてもよく、
     Ai1およびAi2はそれぞれ独立して
    (a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-に置き換えられてもよい。)及び
    (b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
    (c)1,4-シクロヘキセニレン基
    からなる群より選ばれる基を表し、上記の基(a)、基(b)及び基(c)はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
     Zi1およびZi2はそれぞれ独立して、単結合、-OCH-、-CHO-、-OCF-、-CFO-、-CHCH-又は-CFCF-を表わし、
     mi1およびmi2はそれぞれ独立して、0~3の整数を表すが、mi1+mi2はそれぞれ独立して1、2又は3であり、Ai1~Ai2、Zi1~Zi2が複数存在する場合は、それらは同一であっても異なっていても良い。)で表される化合物群から選ばれる化合物を1種又は2種以上含有する液晶表示素子。
  2.  第1のフレーム周波数で駆動する第1の駆動モードと、
    間欠駆動による休止期間が設けられた第2の駆動モードと、を有し、前記第1の駆動モードと第2の駆動モードとを前記表示処理部で切り替える、請求項1に記載の液晶表示素子。
  3.  第1のフレーム周波数で駆動する第1の駆動モードと、
    前記第1のフレーム周波数より低い第2のフレーム周波数で駆動する第3の駆動モードと、を有し、前記第1の駆動モードと第3の駆動モードとを前記表示処理部で切り替える、請求項1に記載の液晶表示素子。
  4.  前記液晶層と、前記第一の透明基板と前記第二の透明基板のそれぞれの間にホモジニアス配向を誘起する配向膜層を有し、各配向膜の配向方向は第一のまたは第二の透明基板に対して平行であり、前記第1の基板上に共通電極が配置されることを特徴とする、請求項1~3のいずれか1項に記載の液晶表示素子。
  5.  前記画素電極と共通電極との間の電極間距離:Rが前記第一の基板と第二の基板との距離:Gより小さく、前記画素電極と共通電極との電極間にフリンジ電界を形成することを特徴とする、請求項1~4のいずれか1項に記載の液晶表示素子。
  6.  前記液晶層と、前記第一の透明基板と前記第二の透明基板のそれぞれの間に配向膜層を有し、前記第2の基板上に共通電極が配置されることを特徴とする、請求項1に記載の液晶表示素子。
  7.  更に、一般式(iii)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Riii1及びRiii2はそれぞれ独立して炭素原子数1~8のアルキル基を表し、該基中の1つ又は2つ以上の-CH-は、酸素原子が直接隣接しないように、-O-、-CH=CH-、-CO-、-OCO-、-COO-、-C≡C-、-CFO-又は-OCF-で置換されてよく、該基中の1つ又は2つ以上の水素原子はそれぞれ独立してフッ素原子又は塩素原子に置換されても良く、Aiii1~Aiii3はそれぞれ独立して
    (a)1,4-シクロへキシレン基(該基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-又は-S-に置換されても良い。)
    (b)1,4-フェニレン基(該基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置換されても良く、該基中に存在する水素原子はフッ素原子又は塩素原子に置換されても良いが、隣接する-CH=の少なくともいずれか一方は水素原子を表す。)
    からなる群より選ばれる基を表し、Ziii1及びZiii2はそれぞれ独立して単結合、-CH=CH-、-C≡C-、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-又は-CFO-を表し、miii1は0~2の整数を表し、Aiii1及びZiii1が複数存在する場合、それらは同一であっても、異なっていてもよい。但し、一般式(i)で表される化合物は除く。)で表される化合物を1種又は2種以上含有する請求項1~4記載の液晶表示素子。
PCT/JP2017/021279 2016-06-23 2017-06-08 液晶表示素子 WO2017221724A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018516594A JP6414723B2 (ja) 2016-06-23 2017-06-08 液晶表示素子
KR1020187032430A KR102009616B1 (ko) 2016-06-23 2017-06-08 액정 표시 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-124573 2016-06-23
JP2016124573 2016-06-23

Publications (1)

Publication Number Publication Date
WO2017221724A1 true WO2017221724A1 (ja) 2017-12-28

Family

ID=60784196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021279 WO2017221724A1 (ja) 2016-06-23 2017-06-08 液晶表示素子

Country Status (3)

Country Link
JP (1) JP6414723B2 (ja)
KR (1) KR102009616B1 (ja)
WO (1) WO2017221724A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132925A (ja) * 2018-01-30 2019-08-08 大日本印刷株式会社 液晶調光装置およびその駆動方法
JP2019199491A (ja) * 2018-05-14 2019-11-21 Jnc株式会社 液晶組成物および液晶表示素子
CN114196421A (zh) * 2020-09-17 2022-03-18 江苏和成显示科技有限公司 液晶组合物及其液晶显示器件
US11466212B2 (en) * 2019-09-30 2022-10-11 Jiangsu Hecheng Display Technology Co., Ltd. Liquid crystal composition and photoelectric display device thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112574756B (zh) * 2019-09-30 2022-11-08 江苏和成显示科技有限公司 一种液晶组合物及光电显示器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077201A (ja) * 2010-10-01 2012-04-19 Dic Corp ネマチック液晶組成物及びこれを用いた液晶表示素子
JP2014142551A (ja) * 2013-01-25 2014-08-07 Stanley Electric Co Ltd 液晶表示装置、及び、液晶表示装置搭載機器
JP2014215612A (ja) * 2013-04-22 2014-11-17 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置及びその駆動方法
WO2015163255A1 (ja) * 2014-04-25 2015-10-29 シャープ株式会社 液晶表示装置
WO2016017569A1 (ja) * 2014-07-28 2016-02-04 Dic株式会社 液晶表示素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294388A (ja) * 1989-04-07 1990-12-05 Merck Patent Gmbh 液晶混合物
DE19521483B4 (de) * 1994-06-28 2005-07-07 Merck Patent Gmbh Flüssigkristallines Medium
JP5497249B2 (ja) * 2000-12-20 2014-05-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶媒体およびそれを含む電気光学ディスプレイ
KR101326507B1 (ko) * 2012-03-29 2013-11-07 엘지디스플레이 주식회사 액정표시장치
JP6266916B2 (ja) 2013-08-05 2018-01-24 株式会社ジャパンディスプレイ 液晶表示装置
JP6294629B2 (ja) 2013-10-11 2018-03-14 株式会社ジャパンディスプレイ 液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077201A (ja) * 2010-10-01 2012-04-19 Dic Corp ネマチック液晶組成物及びこれを用いた液晶表示素子
JP2014142551A (ja) * 2013-01-25 2014-08-07 Stanley Electric Co Ltd 液晶表示装置、及び、液晶表示装置搭載機器
JP2014215612A (ja) * 2013-04-22 2014-11-17 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置及びその駆動方法
WO2015163255A1 (ja) * 2014-04-25 2015-10-29 シャープ株式会社 液晶表示装置
WO2016017569A1 (ja) * 2014-07-28 2016-02-04 Dic株式会社 液晶表示素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132925A (ja) * 2018-01-30 2019-08-08 大日本印刷株式会社 液晶調光装置およびその駆動方法
JP7169528B2 (ja) 2018-01-30 2022-11-11 大日本印刷株式会社 液晶調光装置およびその駆動方法
JP2019199491A (ja) * 2018-05-14 2019-11-21 Jnc株式会社 液晶組成物および液晶表示素子
US11466212B2 (en) * 2019-09-30 2022-10-11 Jiangsu Hecheng Display Technology Co., Ltd. Liquid crystal composition and photoelectric display device thereof
CN114196421A (zh) * 2020-09-17 2022-03-18 江苏和成显示科技有限公司 液晶组合物及其液晶显示器件

Also Published As

Publication number Publication date
JP6414723B2 (ja) 2018-10-31
JPWO2017221724A1 (ja) 2018-09-06
KR102009616B1 (ko) 2019-08-09
KR20180125030A (ko) 2018-11-21

Similar Documents

Publication Publication Date Title
JP6414723B2 (ja) 液晶表示素子
JP6143146B2 (ja) 液晶表示素子
KR101522951B1 (ko) 액정 표시 소자
JP6164716B2 (ja) 液晶表示素子
WO2015072369A1 (ja) 液晶表示素子
KR101522952B1 (ko) 액정 표시 소자
JP6338018B2 (ja) 液晶組成物及びそれを使用した液晶表示素子
WO2015072368A1 (ja) 液晶表示素子
JP6670458B1 (ja) 液晶表示素子
WO2018105376A1 (ja) 液晶組成物、液晶表示素子及び液晶ディスプレイ
JP6252707B2 (ja) 液晶組成物及びそれを使用した液晶表示素子
JP2017105915A (ja) 液晶組成物及びそれを使用した液晶表示素子
WO2017010346A1 (ja) 液晶組成物及びそれを使用した液晶表示素子
WO2018105378A1 (ja) 液晶組成物、液晶表示素子及び液晶ディスプレイ
WO2018105379A1 (ja) 液晶組成物、液晶表示素子及び液晶ディスプレイ
WO2018105377A1 (ja) 液晶組成物、液晶表示素子及び液晶ディスプレイ
JP5561448B1 (ja) 液晶表示素子
JP6197983B1 (ja) 液晶表示素子
JP2022016318A (ja) 液晶組成物及び液晶表示素子
JP5561449B1 (ja) 液晶表示素子
JP2002357801A (ja) アクティブマトリクス型液晶表示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018516594

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187032430

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815193

Country of ref document: EP

Kind code of ref document: A1