WO2017219467A1 - 无人船电子器件的在线监测方法 - Google Patents

无人船电子器件的在线监测方法 Download PDF

Info

Publication number
WO2017219467A1
WO2017219467A1 PCT/CN2016/095094 CN2016095094W WO2017219467A1 WO 2017219467 A1 WO2017219467 A1 WO 2017219467A1 CN 2016095094 W CN2016095094 W CN 2016095094W WO 2017219467 A1 WO2017219467 A1 WO 2017219467A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
line monitoring
unmanned ship
temperature
computer
Prior art date
Application number
PCT/CN2016/095094
Other languages
English (en)
French (fr)
Inventor
杨越
Original Assignee
杨越
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨越 filed Critical 杨越
Publication of WO2017219467A1 publication Critical patent/WO2017219467A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance

Definitions

  • the invention relates to an online monitoring component and method for an electronic device on an unmanned ship, in particular to an online monitoring component and method for an electronic device under a temperature stress test on an unmanned ship.
  • lead-free solders require a peak temperature of approximately 30K, which is higher than the temperature of any conventional solder.
  • a comparison with typical solder is shown in Figure 1.
  • the use of lead-containing solders is prohibited by the new European Directive 2002/95/EG. Therefore, the electronics industry requires the use of lead-free solder.
  • Figure 1 clearly shows a comparison of two conventional solders and one lead-free solder in the process.
  • the main object of the present invention is to provide an on-line monitoring component for an electronic device on an unmanned ship under temperature stress testing conditions.
  • the online monitoring component consists of a compatible climate chamber on the unmanned ship, several test PCBs, selected components and on-line monitoring equipment with measurement circuitry, computers, multiplexers and communication connections, with the climate chamber having two independent
  • the chamber has a temperature sensor on each test PCB, the selected device is placed on the test PCB, and the measurement circuit operates in parasitic power mode.
  • the online monitoring device is controlled by a computer via an RS232 connection.
  • the selected devices are four different types of devices to be monitored: capacitors, resistors, inductors, and LEDs.
  • the selected device is periodically exposed to a temperature shock of -40 ° Cto + 125 ° C with a time interval of 30 minutes.
  • the temperature sensor is the Maxim integrated product DS18B20U, each temperature sensor has a unique 64-bit address and can be accessed separately.
  • the communication connection is completed through a single wire interface or a four wire measurement interface.
  • the measuring circuit is composed of four parts: a power supply, a multiplexer, a discharge circuit and a measurement circuit.
  • the power supply includes two current sources and one voltage source.
  • the selected device and the temperature sensor share a steering line.
  • test PCBs are installed in the climate chamber.
  • the device is periodically exposed to a temperature impact of -40 ° C to + 125 ° C, with a time interval of 30 minutes;
  • the online monitoring device communicates with the computer using the RS232 communication connection, and the computer uses the LabView program to control the test setup and the Internet communication remote monitoring experiment process.
  • hardware devices are designed, constructed, and tested.
  • the current test PCB is installed in a climate chamber.
  • the present invention expects a negative correlation between the solder temperature and the life cycle of the device being monitored, while also expecting to find information about the temperature distribution within the two chambers.
  • the device disclosed in the present invention is a test condition such as pressure, constant frequency, etc., which is the same as normal actual working conditions.
  • the working condition of the conventional product is to directly heat the test device on the board by a heater.
  • the test is only a test of the unmanned ship's individual test device, and each pin of the chip needs to be tested in the presence of a bandwidth channel. Therefore, this test reflects the test device problem will be more accurate, when needed It is also shorter than the prior art.
  • the heater of the device is smaller than the prior art, so that the test energy cost is reduced.
  • FIG. 1 A typical solder comparison map according to the prior art.
  • Fig. 2 is a structural view of a measuring apparatus according to an embodiment of the present invention.
  • FIG. 3 A test PCB circuit in accordance with various embodiments of the present invention.
  • FIG. 4 is a schematic diagram of the operation of a circuit developed in accordance with various embodiments of the present invention.
  • the test device is connected to the motherboard and the stress module is connected to the test device.
  • the stress module can provide reliable stress to the test device to perform the test.
  • the stress module can be a heater and the reliable stress is a temperature stress such that the heater provides the test device with thermal or temperature stress at the desired or target test temperature.
  • the online monitoring device is controlled by the computer via the RS232 communication protocol.
  • the device consists of a climate chamber 1 with two independent chambers 1-1, 1-2, a number of test PCBs 2 each having a temperature sensor 3, a selected device 4 placed on the test PCB 2, with a measuring circuit 6.
  • the online monitoring device 5 is operated in a parasitic power mode, a computer 7, a multiplexer 8 and a communication connection 9.
  • the selected device 4 is placed on several test PCBs 2 and then placed in a climate chamber 1 having two independent chamber potentials 1-1, 1-2.
  • the sample moves periodically between chambers 1-1, 1-2.
  • the sample is in the process of testing, and the distribution of temperature on the sample is not known.
  • the temperature sensor 3 is an integrated product of Maxim, model number DS18B20U.
  • the temperature is read vertically by the online monitoring device 5 and operates in a parasitic power mode. Each sensor has a unique 64-bit address and can therefore be accessed separately. Communication is done through a single-wire interface.
  • Figure 3 shows the circuit on the test PCB. There are six sets of devices, four devices per group 4 plus one temperature sensor 3. All of the devices 4 together with the temperature sensor 3 share a steering line, thereby minimizing the number of cables that the climate box 1 extends. A total of 84 test PCBs were installed in Climate Box 1.
  • Figure 4 shows the operation of the circuit developed in this publication.
  • the glaze consists of four parts: a power supply, a multiplexer 8, a discharge circuit and a measurement circuit 6.
  • the power supply includes two current sources and one voltage element.
  • One current source is adjustable and used as an LED power supply, while the other current source is fixed at 80 ⁇ A and is used to measure DC resistance.
  • the circuit can be switched between device 4 and measurement circuit 6, the basis for which is the type of device 4.
  • the circuit is characterized by the ability to measure resistance, capacitance, inductance, and forward voltage of the LED.
  • Inductance and capacitance are determined by device 4 charging at a specific resistance value and measuring the time constant of the process. This method is very simple, requiring only a very simple circuit to provide very accurate results that reflect changes in physical quantities. In this test case, K3 needs to be shut down. The microprocessor then activates the corresponding decoder and selects a channel by giving the address to the decoder. The decoder starts T2, which in turn drives the p-channel MOSFET device T1. The circuit can then be turned off by either starting T3 for capacitance measurements or starting T5 for inductive measurements.
  • the device is charged by a known resistor, and by waiting until the voltage ADC1 reaches 36.8% of 5V under capacitive load or 63.2% of 5V under inductive load, the microcontroller measures the time constant ⁇ of the system, using the time constant, corresponding pass, etc. Equations (1) and (2) make it easy to calculate the inductance or capacitance:
  • the residual DC current of the device under the temperature stress test was measured. This provides leakage current to the capacitor and DC resistance to the inductor. After the measurement, the device must be discharged. For capacitors, this is done by turning off T3 and starting K4. The inductor is automatically discharged through the protection diode V1.
  • Measuring resistance value For this measurement, a fixed current of 80 ⁇ A is supplied to the device under test by starting K3 and T6, the microprocessor obtains the combined voltage from the differential A/D converter ADC2, calculates the resistance value and transmits the value to the RS232 connection.
  • the LEDs are supplied with an adjustable constant current between 1 and 500 mA by starting K1 and T6.
  • the current is selected to be 100 mA in this embodiment.
  • the phase-of-phase voltage is then measured using ADC2. Due to the high DC resistance of the connection cable between the device and the climate chamber, the measurement result has a great influence, so the measured voltage is not the true forward voltage of the LED and is incomparable with the value in the data sheet. Sex.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

无人船上温度应力测试条件下的在线监测方法,无人船上温度应力测试下电子器件的方法,由如下步骤构成:1.将选定器件(4)放置在若干个测试PCB(2)上,然后放入具有两个独立腔室(1-1,1-2)的所述气候箱(1)中;2.在两个腔室(1-1,1-2)之间周期性的移动选定器件(4);3.所述选定器件(4)周期性的暴露在-40℃ to +125℃的温度冲击下,时间间隔为30分钟;4.由在线监测设备(5)读出温度传感器(3)的数据;5.由所使用的A/D转换器分辨率推导出分辨率数值,并且与标准数值进行比较;6.在线监测设备(5)使用RS232通讯连接(9)与计算机(7)进行通讯,计算机(7)使用LabView程序控制试验设置,互联网通讯远程监测实验过程。所述方法反映测试器件问题会更加精准,所需要的时间比现有技术也更短。

Description

无人船电子器件的在线监测方法 技术领域
本发明涉及无人船上电子器件的在线监测组件和方法,特别涉及无人船上温度应力测试下的电子器件的在线监测组件和方法。
背景技术
对于制造无人船上的集成电路芯片(IC),2002年欧洲提出一种新的作为指导性原则,即2002/95/EG(RoHS),该原则使得电子工业改变其生产线从而能够引导无铅焊接工艺。对电子器件进行周期性温度应力测试要求测试资源很大的消耗,特别是测试时间上的消耗,只有这样才能提供具有统计意义的有效生命周期数据。另外一些情况下,仍然会使用相同的一些电子器件,对于相当高温度的无铅焊接工艺这些器件并不具备承受能力。因此,这会引起器件的丢弃,只能通过将其与关键的器件单独防止才能降低发生概率。因为主要通过手工完成,因此生产成本非常高。因此有必要找到所有的关键部件并且识别每个部件的失效概率。通常,无铅焊料要求峰值温度大约为30K,这比任何一种传统焊料的温度都要高。与典型焊料的比较图示如图1所示。采用新的欧洲指导标准2002/95/EG,禁止使用含铅焊料。因此,电子工业要求使用无铅焊料。附图1明确表示两种传统焊料和一种无铅焊料在工艺中的比较。
然而,并不是所有相应的器件都可以用其他更高焊接温度的适当器件所替代。尤其是在无人船领域,其器件大多为专用定制化器件,因此存在一种需求, 避免出现额外的选择焊料,并且在流动工艺过程中焊接所有器件作为替代的过程。并且周期性停止测试的时间成本过高。因此,开发一种无人船器件的在线监测组件和方法。其测量所测元件在气候箱内的选定特征。
发明内容
因此本发明所要求的主要目标在于提供一种无人船上电子器件在温度应力测试条件下的在线监测组件。在线监测组件由无人船上的相适应的气候箱,若干个测试PCB,选定组件以及具有测量电路的在线监测设备,计算机,多路复用器和通讯连接组成,其中气候箱具有两个独立的腔室,每个测试PCB上具有一个温度传感器,选定器件放置在测试PCB上,测量电路工作在寄生电源模式下。
优选的,在线监测设备由计算机通过RS232连接控制。
优选的,选定器件为四种不同类型的待监测器件:电容器,电阻器,电感和LED。
优选的,选定器件周期性暴露在-40℃to+125℃的温度冲击下,时间间隔为30分钟。
优选的,温度传感器为马克西姆集成产品DS18B20U,每个温度传感器都具有独特的64位地址,并且可以被单独访问。
优选的,通讯连接通过单线接口或四线测量接口完成。
优选的,测量电路由四部分构成:电源,多路复用器,放电电路和测量电路。其中电源包括两个电流源和一个电压源。
优选的,选定器件和温度传感器共享一条转向线。
优选的,共有六组器件,每组四个器件和一个温度传感器,在气候箱内安装84个测试PCB。
因此,本发明的另一个目的为提供一种在线监测无人船上温度应力测试下电子器件的方法,其由如下步骤构成:
(1)将选定器件放置在若干个测试PCB上,然后放入具有两个独立腔室的气候箱中;
(2)在两个腔室之间周期性的移动样品;
(3)器件周期性的暴露在-40℃to+125℃的温度冲击下,时间间隔为30分钟;
(4)由在线监测设备读出温度传感器的数据;
(5)由所使用的A/D转换器分辨率推导出分辨率数值,并且与标准数值进行比较;
(6)在线监测设备使用RS232通讯连接与计算机进行通讯,计算机使用LabView程序控制试验设置,互联网通讯远程监测实验过程。
本发明的实施例中,设计,构建和测试硬件设备。当前的测试PCB安装在气候箱内。
作为实验结果,本发明期望周到焊料温度和被监测设备生命周期之间的负相关性,同时还期望找到关于两个腔室内温度分布的信息。
本发明公开的装置是的测试条件,例如压力,始终频率等与正常的实际工作条件相同,传统的产品的工作条件是通过加热器直接加热木板上的测试器件。并且该测试仅仅是无人船单独测试器件的测试,芯片的每个管脚需要在带宽通道存在情况下被测试。因此该测试反映测试器件问题会更加精准,所需要的时 间比现有技术也更短。另外,装置的加热器比现有技术更小,从而测试能量成本降低。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
【图1】根据现有技术的典型焊料比较图。
【图2】根据本发明一个实施例的测量装置结构图。
【图3】根据本发明多个实施例的测试PCB电路。
【图4】根据本发明多个实施例开发的电路工作原理图。
具体实施方式
本发明的如下详细说明描述了对提供本发明理解必要的测试装置和方法,但是并没有覆盖完整的结构组成和操作理论。与传统技术相关的部分仅仅简要说明,并且附图并不是一定按比例绘制的。尽管讨论了多个实施例,其目的并不是用于限制本发明的范围。除非特意说明器件的数量,应当理解所使用的器件数量比所公开的可能要多。
实施里中,测试器件连接到母板上,并且应力模块与测试器件连接。应力模块可以为测试器件提供可靠应力从而实施该测试。应力模块可以为加热器,并且可靠的应力为温度应力,从而加热器为测试器件提供所要求或者目标测试温度处的热量或温度应力。
附图2为根据本发明一个实施例的测量设备。在线监测设备通过RS232通讯协议被计算机控制。有四种不同的器件需要被监测:电容器,电阻器,电感和LED。设备由具有两个独立腔室1-1,1-2的气候箱1,若干个每个上面具有一个温度传感器3的测试PCB2,放置在测试PCB2上的选定器件4,具有测量电路6的在线监测设备5,工作在寄生电源模式下,一台计算机7,多路复用器8以及通讯连接9组成。
选定的器件4放置在若干个测试PCB2上,然后被放入具有两个独立腔势1-1,1-2的气候箱1中。样品在腔室1-1,1-2之间周期性移动。此时样品处于测试过程中,并不能知道温度在样品上的分布变化,为了更好的理解样品真正暴露在哪个温度下,每个测试PCB上都有一个温度传感器3。温度传感器3为马克西姆公司的集成产品,型号为DS18B20U。由在线监测设备5读取温度竖直并且工作在寄生电源模式下。每个传感器有一个独特的64位地址,因此可以被单独访问。通讯是通过单线接口完成的。
附图3表示测试PCB上的电路。具有六组器件,每组四个器件4加上一个温度传感器3。所有的器件4连同温度传感器3公用一个转向线,从而使得气候箱1伸出的线缆数量最少。在气候箱1内共安装84块测试PCB。
附图4表示该公开中所开发电路的工作原理。其釉四部分组成:电源,夺路复用器8,放电电路和测量电路6。电源包括两个电流源和一个电压元。一个电流源可调整并且用于作为LED电源,而另一个电流源固定在80μA并且用于测量直流阻值。电路可以在器件4和测量电路6之间转换,转换的依据是器件4的类型。电路特征在于可以测量电阻,电容量,电感量和LED的正向电压。
实施例1
测量电感和电容:电感和电容量由器件4在一个特定电阻值下充电并测量该过程的时间常数所确定的。这种方法非常简单,仅需要一个非常简单的电路就能提供很精确的可以反映物理量变化的结果。这种测试情况下,K3需要被关闭。然后微处理器启动相应的解码器,并且通过将地址给解码器选择一个通道。解码器启动T2,这样反过来就能驱动p道MOSFET器件T1。然后通过针对电容测量启动T3或者针对电感测量启动T5就能关闭该电路。通过已知电阻对器件充电,并且通过等待直到电压ADC1达到电容负荷下5V的36.8%或者电感负荷下5V的63.2%,微控制器测量系统的时间常数τ,采用该时间常数,相应的通过等式(1)和(2)就可以容易的计算出电感或电容:
Figure PCTCN2016095094-appb-000001
L=τ·R       (2)
另外,时间10τ之后,测量通过温度应力测试下的器件的剩余直流电流。这可以分别为电容器提供泄漏电流,为电感器提供直流电阻。测量后,器件必须被放电。对于电容器,这是通过关断T3并且启动K4完成的。通过保护二极管V1电感被自动放电。
实施例2
测量电阻值:对于该测量,通过启动K3和T6为待测器件提供固定电流80μA,微处理器从差动A/D转换器ADC2处获得合成电压,计算电阻值并且将数值发送给RS232连接。
实施例3
通过启动K1和T6,为LED提供1到500mA之间的可调整常量电流。该实施例中选定电流100mA。然后采用ADC2测量争相电压。由于设备和气候箱之间连接线缆的直流电阻较高,对测量结果有很大的影响,因此所测量的电压并不是LED的真实的正向电压,并且与数据表中的数值具有不可比性。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (1)

  1. 无人船电子器件的在线监测方法,其特征在于:由如下步骤构成:
    (1)将所述选定器件(4)放置在若干个测试PCB(2)上,然后放入具有两个独立腔室(1-1,1-2)的所述气候箱(1)中;
    (2)在两个腔室(1-1,1-2)之间周期性的移动选定器件(4);
    (3)所述选定器件(4)周期性的暴露在-40℃to+125℃的温度冲击下,时间间隔为30分钟;
    (4)由在线监测设备(5)读出温度传感器(3)的数据;
    (5)由所使用的A/D转换器分辨率推导出分辨率数值,并且与标准数值进行比较;
    (6)在线监测设备(5)使用RS232通讯连接(9)与计算机进行通讯,计算机(7)使用LabView程序控制试验设置,互联网通讯远程监测实验过程。
PCT/CN2016/095094 2016-06-22 2016-08-14 无人船电子器件的在线监测方法 WO2017219467A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610460151.4A CN106197793A (zh) 2016-06-22 2016-06-22 无人船电子器件的在线监测方法
CN201610460151.4 2016-06-22

Publications (1)

Publication Number Publication Date
WO2017219467A1 true WO2017219467A1 (zh) 2017-12-28

Family

ID=57460879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095094 WO2017219467A1 (zh) 2016-06-22 2016-08-14 无人船电子器件的在线监测方法

Country Status (2)

Country Link
CN (1) CN106197793A (zh)
WO (1) WO2017219467A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112510821A (zh) * 2020-11-11 2021-03-16 北京航天控制仪器研究所 一种无人船实时监控智能配电系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215324B1 (en) * 1999-01-07 2001-04-10 Nippon Scientific Co., Ltd. Dynamic burn-in test equipment
CN1828308A (zh) * 2006-04-07 2006-09-06 东南大学 微机电系统器件材料参数在线测试分析装置及方法
CN102043119A (zh) * 2009-10-26 2011-05-04 中芯国际集成电路制造(上海)有限公司 崩应测试方法
CN102539984A (zh) * 2012-01-13 2012-07-04 深圳市江波龙电子有限公司 一种量产测试仪及量产老化测试系统
CN103777662A (zh) * 2014-01-18 2014-05-07 浙江大学 一种应用于梯度温度控制的装置和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110928A (zh) * 2009-12-23 2011-06-29 沈阳兴华航空电器有限责任公司 地面综合自动测试系统电连接装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215324B1 (en) * 1999-01-07 2001-04-10 Nippon Scientific Co., Ltd. Dynamic burn-in test equipment
CN1828308A (zh) * 2006-04-07 2006-09-06 东南大学 微机电系统器件材料参数在线测试分析装置及方法
CN102043119A (zh) * 2009-10-26 2011-05-04 中芯国际集成电路制造(上海)有限公司 崩应测试方法
CN102539984A (zh) * 2012-01-13 2012-07-04 深圳市江波龙电子有限公司 一种量产测试仪及量产老化测试系统
CN103777662A (zh) * 2014-01-18 2014-05-07 浙江大学 一种应用于梯度温度控制的装置和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112510821A (zh) * 2020-11-11 2021-03-16 北京航天控制仪器研究所 一种无人船实时监控智能配电系统及方法
CN112510821B (zh) * 2020-11-11 2022-07-29 航天时代(青岛)海洋装备科技发展有限公司 一种无人船实时监控智能配电系统及方法

Also Published As

Publication number Publication date
CN106197793A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
CN203132741U (zh) 热电阻温度变送器检定装置
US20170243797A1 (en) Display driving device
CN103777111A (zh) 工程自动化短路和/或开路测试方法
WO2017219467A1 (zh) 无人船电子器件的在线监测方法
WO2017219466A1 (zh) 无人船电子器件的在线监测组件
CN102799168A (zh) 非接触式加热的温控器性能测试装置
TWI608225B (zh) 智能試紙檢測裝置及方法
CN103149923A (zh) 电力变压器油面温控器校验装置
Hanss et al. Failure identification in LED packages by transient thermal analysis and calibrated FE models
JPS58220438A (ja) 半導体ウエハ測定載置台
CN206223317U (zh) 温度检测装置
CN104820449A (zh) 一种发热模拟装置
CN109061524B (zh) 电源测试电路及方法
CN105572568A (zh) Ict在线测试系统
CN111640684A (zh) 用于多点热路径评估的系统和方法
CN205103370U (zh) 一种通用集成电路测试装置
CN207600622U (zh) 一种动车车载温感装置
ATE553361T1 (de) Hochtemperatursensor und verfahren zu dessen überprüfung
CN103455400A (zh) 一种测试内存smi2信号的方法
CN219045996U (zh) 一种ic芯片温度测量夹具
CN218628709U (zh) 一种温度检测装置及核酸提纯扩增系统
CN113391192B (zh) 低电压电容测试系统及方法
CN101915626B (zh) 一种实时检测晶片温度的方法及器件温度特性测量方法
CN103674933A (zh) 一种化学发光测量仪器的温育模块
CN210775572U (zh) 一种过温保护测试夹具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906007

Country of ref document: EP

Kind code of ref document: A1