WO2017217380A1 - 糖化反応液、糖化酵素組成物、糖の製造方法及びエタノールの製造方法 - Google Patents

糖化反応液、糖化酵素組成物、糖の製造方法及びエタノールの製造方法 Download PDF

Info

Publication number
WO2017217380A1
WO2017217380A1 PCT/JP2017/021689 JP2017021689W WO2017217380A1 WO 2017217380 A1 WO2017217380 A1 WO 2017217380A1 JP 2017021689 W JP2017021689 W JP 2017021689W WO 2017217380 A1 WO2017217380 A1 WO 2017217380A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
group
compound
saccharification reaction
thiourea
Prior art date
Application number
PCT/JP2017/021689
Other languages
English (en)
French (fr)
Inventor
一利 小高
和敏 関口
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CA3027333A priority Critical patent/CA3027333A1/en
Priority to EP17813276.7A priority patent/EP3473710B1/en
Priority to DK17813276.7T priority patent/DK3473710T3/da
Priority to US16/307,086 priority patent/US11001867B2/en
Priority to CN201780037098.XA priority patent/CN109312318B/zh
Priority to JP2018523905A priority patent/JP7001053B2/ja
Priority to FIEP17813276.7T priority patent/FI3473710T3/fi
Priority to BR112018075819-1A priority patent/BR112018075819B1/pt
Publication of WO2017217380A1 publication Critical patent/WO2017217380A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a saccharification reaction solution, a saccharifying enzyme composition, a method for producing sugar, and a method for producing ethanol.
  • Such a method includes a hydrothermal treatment step of treating a raw material with pressurized hot water, a mechanical pulverization treatment step of mechanically pulverizing the hydrothermal treated product, and a saccharification treatment step of saccharifying the mechanically pulverized product with an enzyme. including.
  • a method has a problem that the reaction rate when saccharifying with an enzyme is slow, and the concentration of the resulting saccharified solution is not sufficient.
  • the present invention has been made in view of the above circumstances, and provides a saccharification reaction solution, a saccharification enzyme composition, a saccharide production method, and an ethanol production method capable of improving the saccharification reaction efficiency by an enzyme in a simple process.
  • the purpose is to provide.
  • a first aspect of the present invention that achieves the above object is a saccharification reaction solution for saccharifying at least one of cellulose and hemicellulose, wherein at least one of the cellulose and hemicellulose, a saccharifying enzyme, silica, or a silica-containing substance,
  • the saccharification reaction solution contains at least one compound (A) selected from the group consisting of a compound represented by the following general formula (1) or (2) and a salt thereof.
  • R 1 to R 5 in the general formulas (1) and (2) represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and a part of the hydrogen atoms in the alkyl group are allyl group, hydroxyl group It may be substituted with a group, ester group, amino group, carboxyl group, cyano group, nitro group, sulfo group, phosphono group or halogen atom.
  • the second aspect of the present invention that achieves the above object is the saccharification reaction solution according to the first aspect, wherein the silica-containing substance is diatomaceous earth or silica sand.
  • the mass ratio of the silica or the compound (A) in the silica or the silica-containing substance (compound (A) / silica) is 0.00001 or more, 0.0.
  • the saccharification reaction solution according to the first aspect or the second aspect is characterized by being 1 or less.
  • the compound (A) is thiourea, N-methylthiourea, 1,3-dimethylthiourea, trimethylthiourea, tetramethylthiourea, 1-allyl-3- (3-hydroxyethyl) -2-thiourea, ethylenethiourea, guanylthiourea, S-methylisothiourea, S-ethylisothiourea, S- [2- (dimethylamino) ethyl] isothiourea, S-benzylisothiourea, and
  • the saccharification reaction solution according to any one of the first to third aspects is characterized by containing at least one selected from the group consisting of S- (2-aminoethyl) isothiourea.
  • a fifth aspect of the present invention that achieves the above object is a saccharifying enzyme composition that saccharifies at least one of cellulose and hemicellulose, wherein the saccharifying enzyme, silica or a silica-containing substance, and the following general formula (1) or ( 2) containing at least one compound (A) selected from the group consisting of the compound represented by 2) and a salt thereof, and the mass ratio of the silica and the compound (A) in the silica or the silica-containing substance (compound) (A) / Silica) is 0.00001 or more and 0.1 or less.
  • R 1 to R 5 in the general formulas (1) and (2) represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and a part of the hydrogen atoms in the alkyl group are allyl group, hydroxyl group It may be substituted with a group, ester group, amino group, carboxyl group, cyano group, nitro group, sulfo group, phosphono group or halogen atom.
  • the sixth aspect of the present invention that achieves the above object is the saccharifying enzyme composition according to the fifth aspect, wherein the silica-containing substance is diatomaceous earth or silica sand.
  • the compound (A) is thiourea, N-methylthiourea, 1,3-dimethylthiourea, trimethylthiourea, tetramethylthiourea, 1-allyl-3- (3-hydroxyethyl) -2-thiourea, ethylenethiourea, guanylthiourea, S-methylisothiourea, S-ethylisothiourea, S- [2- (dimethylamino) ethyl] isothiourea, S-benzylisothiourea, and
  • the saccharifying enzyme composition according to the fifth aspect or the sixth aspect is characterized in that it contains at least one selected from the group consisting of S- (2-aminoethyl) isothiourea.
  • An eighth aspect of the present invention that achieves the above object is a method for producing sugar by using a saccharification reaction solution for saccharifying at least one of cellulose and hemicellulose, wherein the sugar and the hemicellulose are combined with each other.
  • a saccharification reaction comprising a saccharifying enzyme, silica or a silica-containing substance, and at least one compound (A) selected from the group consisting of a compound represented by the following general formula (1) or (2) and a salt thereof:
  • a sugar production method is characterized in that a sugar is produced using a liquid.
  • R 1 to R 5 in the general formulas (1) and (2) represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and a part of the hydrogen atoms in the alkyl group are allyl group, hydroxyl group It may be substituted with a group, ester group, amino group, carboxyl group, cyano group, nitro group, sulfo group, phosphono group or halogen atom.
  • a ninth aspect of the present invention that achieves the above object is the method for producing sugar according to the eighth aspect, wherein the silica-containing substance is diatomaceous earth or silica sand.
  • the mass ratio of the silica or the compound (A) in the silica or the silica-containing material (compound (A) / silica) is 0.00001 or more, 0.0.
  • the sugar production method according to the eighth aspect or the ninth aspect is characterized by being 1 or less.
  • the compound (A) is thiourea, N-methylthiourea, 1,3-dimethylthiourea, trimethylthiourea, tetramethylthiourea, 1-allyl-3- (3-hydroxyethyl) -2-thiourea, ethylenethiourea, guanylthiourea, S-methylisothiourea, S-ethylisothiourea, S- [2- (dimethylamino) ethyl] isothiourea, S-benzylisothiourea, and
  • the twelfth aspect of the present invention that achieves the above object is to produce ethanol by performing ethanol fermentation with a fermenting microorganism using the sugar obtained by the production method of any of the eighth to eleventh aspects. This is a method for producing ethanol.
  • the thirteenth aspect of the present invention that achieves the above object is the production of ethanol according to the twelfth aspect, wherein a fermentation microorganism is added to the step of producing sugar, and the production of sugar and ethanol fermentation are simultaneously performed. Is in the way.
  • a fourteenth aspect of the present invention for achieving the above object is the ethanol production method according to the twelfth aspect or the thirteenth aspect, wherein the fermenting microorganism is yeast, mold or bacteria.
  • the fifteenth aspect of the present invention that achieves the above object is characterized in that the fermenting microorganism is selected from the genus Saccharomyces, Zymomonas, Pichia, Candida, Zymobacter,
  • the microorganism belongs to the genus Corynebacterium, the genus Kluyveromyces, or the genus Escherichia.
  • a sixteenth aspect of the present invention that achieves the above object is the ethanol production method according to any one of the twelfth to fifteenth aspects, wherein ethanol fermentation is performed at 15 ° C. or higher and 35 ° C. or lower. .
  • a saccharification reaction solution a saccharification enzyme composition, a saccharide production method and an ethanol production method capable of improving the saccharification reaction efficiency by an enzyme in a simple process.
  • 6 is a graph showing measurement results of the effect of improving the efficiency of saccharification reaction by adding thiourea in Examples 4, 7, and 8 and Comparative Examples 1 to 3, 7, and 10 to 14.
  • 6 is a graph showing measurement results of the effect of improving saccharification reaction efficiency by thiourea concentration in Examples 1 to 6 and Comparative Examples 1, 4 to 9, and 12.
  • 6 is a graph showing the measurement results of the effect of improving the saccharification reaction efficiency by the addition of the thiourea derivative or the isothiourea derivative of Examples 9 to 18 and Comparative Examples 1 and 12. It is the graph which showed the measurement result of the improvement effect of saccharification reaction efficiency by addition of the thiourea of Example 19 and Comparative Examples 1, 7, and 15.
  • 6 is a graph showing measurement results of the effect of improving ethanol fermentation efficiency by thiourea concentration in Examples 20 and 21 and Comparative Examples 16 to 19.
  • At least one of cellulose and hemicellulose is used as a raw material for producing a sugar such as glucose.
  • Such cellulose or hemicellulose is contained, for example, in cellulosic biomass such as agricultural, forestry and fishery resources such as broad-leaved trees and conifers, or waste of the agricultural, forestry and fishery resources. More specifically, bagasse, rice straw, corn stover, oil palm empty fruit bunch, wood fiber, wood chip, veneer waste, wood flour, pulp, waste paper, cotton, sea squirt, acetic acid bacteria and the like can be mentioned. These raw materials are not particularly limited as long as they are derived from cellulosic biomass, and one kind may be used alone or two or more kinds may be mixed and used.
  • cellulose or hemicellulose contained in eucalyptus wood flour (broadleaf tree), cedar wood flour (coniferous tree), bagasse, rice straw, corn stover, oil palm empty fruit bunch, cotton and the like is preferable. In these cases, the reason is not clear, but it is easy to defibrate and sugar can be obtained in a relatively high yield.
  • cellulose refers to a polymer in which glucose is polymerized by ⁇ -1,4 glucoside bonds.
  • Hemicellulose is a polymer in which glucose, xylose, mannose, galactose and the like are polymerized by a glucoside bond, and refers to a water-insoluble polysaccharide other than cellulose.
  • cellulose may contain cellooligosaccharides, cellobiose and the like, which are partially decomposed products, and may be crystalline or non-crystalline. Further, it may be a carboxymethylated, aldehyded or esterified derivative.
  • cellulose or hemicellulose is not particularly limited as long as it is derived from biomass, and may be derived from plants, fungi, bacteria, or the like.
  • Such cellulase means an enzyme that decomposes cellulose or hemicellulose into a sugar such as glucose.
  • the microorganism that produces such a saccharifying enzyme is not particularly limited.
  • Genus, irpex, phanerochaet, penicillium, schizophyllum, sporotrichum, tramet derma tramet examples include bacteria.
  • bacteria such as Clostridium, Pseudomonas, Cellulomonas, Ruminococcus, Bacillus, and the like;
  • Sulfolobus Examples include actinomycetes such as bacteria, Streptomyces, Thermoactinomyces, Thermomonospora, and the like.
  • These saccharifying enzymes may be artificially modified.
  • these saccharifying enzymes may be used individually by 1 type, or may mix and use 2 or more types.
  • saccharifying enzymes derived from the genus Aspergillus and saccharifying enzymes derived from the genus Trichoderma are particularly preferable. This is because these saccharifying enzymes are highly active against crystalline cellulose.
  • the cellulase may be a series of enzymes.
  • Such enzyme groups include endoglucanase (EC 3.2.1.74), cellobiohydrolase (EC 3.2.1.91), ⁇ -glucosidase (EC 23.2.4.1, EC 3.2). 1.21) and the like.
  • the cellulases described above are generally those having optimal enzyme activity in the range of pH 3 to pH 6, but are called alkaline cellulases having optimal enzyme activity in the range of pH 6 to pH 10. May be.
  • many of the above cellulases have optimal enzyme activity in the reaction temperature range of 25 ° C. or higher and 50 ° C. or lower, but have optimal enzyme activity in the range of 70 ° C. or higher and 100 ° C. or lower. What is called thermostable cellulase may be used.
  • silica, diatomaceous earth, or silica sand can be used as the silica or silica-containing substance.
  • Silica-containing materials, diatomaceous earth and silica sand are natural products mainly composed of silica.
  • Silica is a general term for compounds containing at least silicon dioxide, and generally a silanol group is present on a part of the surface.
  • This silica may have a spherical or non-spherical particle shape, and may have a solid or porous particle structure, and may be amorphous or crystalline, and may be in the form of powder, suspension, or dispersion.
  • silica surface may be modified with another functional group other than the silanol group.
  • a silica layer may be present by reacting the surface of a compound other than silica with a silane coupling agent, silicon alkoxide, or silicate ions.
  • a silane coupling agent silicon alkoxide, or silicate ions.
  • application of colloidal silica, diatomaceous earth, and silica sand is particularly preferable.
  • colloidal silica has an average primary particle size of 1 nm or more and 400 nm or less, preferably 5 nm or more and 350 nm or less, and is used by being present in a saccharification reaction solution.
  • Colloidal silica is used as a dispersion liquid dispersed in a dispersion medium such as water, methanol, ethanol, acetone, methyl ethyl ketone, and ethylene glycol.
  • the dispersion liquid is called a colloidal liquid, a sol, or the like.
  • a dispersion medium may be selected as long as the enzyme activity is not inhibited, but application of a dispersion medium such as water or ethanol is preferred.
  • colloidal silica As a method for producing colloidal silica, there are a water glass method using water glass as a raw material, an alkoxide method using metal alkoxide as a raw material, and a gas phase method using a silicon chloride compound as a raw material. Although colloidal silica obtained by any manufacturing method may be used, application of colloidal silica obtained by the water glass method is preferred.
  • R 1 to R 5 in the formula represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • a part of the hydrogen atoms may be substituted with an allyl group, a hydroxyl group, an ester group, an amino group, a carboxyl group, a cyano group, a nitro group, a sulfo group, a phosphono group, or a halogen atom.
  • the number of these substituents is preferably 1 to 4, more preferably 1 to 3.
  • thiourea As at least one compound (A) selected from the group consisting of the compound represented by the above general formula (1) or (2) and a salt thereof, specifically, thiourea, thiourea derivatives and isothiourea derivatives are Can be mentioned.
  • thiourea derivatives include N-methylthiourea, 1,3-dimethylthiourea, trimethylthiourea, tetramethylthiourea, 1,3-diethyl-2-thiourea, 1,3-diisopropylthiourea, 1-allyl-2.
  • -Thiourea 1-allyl-3- (3-hydroxyethyl) -2-thiourea, 1-acetyl-2-thiourea, (2-methoxyethyl) thiourea, ethylenethiourea, guanylthiourea and the like.
  • isothiourea derivatives include S-methylisothiourea, S-ethylisothiourea, S-benzylisothiourea, S- [2- (dimethylamino) ethyl] isothiourea, S- (2-aminoethyl) isothiourea, S- And [4-[(4-nitrobenzyl) oxy] phenethyl] isothiourea.
  • the salt of the compound represented by the general formula (1) or (2) include a salt of S-methylisothiourea.
  • the salt include hydrochloride, sulfate, hydrobromide, etc.
  • S- (2-aminoethyl) isothiouronium bromide can be used. If necessary, one type may be used alone, or two or more types may be mixed and used. Among these, thiourea, N-methylthiourea, 1,3-dimethylthiourea, trimethylthiourea, tetramethylthiourea, 1-allyl-3- (3-hydroxyethyl) -2-thiourea, ethylenethiourea, guanylthio Urea, S-methylisothiourea, S-ethylisothiourea, and S- [2- (dimethylamino) ethyl] isothiourea are preferred, especially thiourea, N-methylthiourea, 1,3-dimethylthiourea, trimethylthiourea, Tetramethylthiourea, ethylenethiourea, guanylthiourea, S-methylisothiourea, S-ethyl
  • the saccharification reaction solution of the present invention is a saccharification enzyme composition, a saccharification enzyme, silica or a silica-containing substance and a compound represented by the above general formula (1) or (2), using at least one of cellulose and hemicellulose as a raw material. It contains at least one compound (A) selected from the group consisting of the salts. Although details will be described later, it is preferable to use silica or a silica-containing substance and the compound (A) in the saccharification reaction solution from the viewpoint of enjoying the effect of improving the saccharification reaction efficiency (also simply referred to as reaction efficiency).
  • the concentration of the saccharifying enzyme is 0.001% by mass or more and 3.0% by mass or less, preferably in terms of the protein concentration of BSA (Bovine serum albumin). It is 0.001 mass% or more and 1.0 mass% or less. If the concentration of the saccharifying enzyme is lower than this range, the reaction efficiency decreases, which is not preferable. On the other hand, if the saccharifying enzyme concentration is higher than this range, not only does the saccharifying enzyme hardly dissolve in the solution, but it is economically unsuitable.
  • BSA Bovine serum albumin
  • the concentration of silica in the silica or the silica-containing substance is 0.001% by mass or more and 40% by mass or less, preferably 0.005% by mass or more and 10% by mass or less. If the concentration of silica or silica in the silica-containing material is lower than this range, the reaction efficiency is unfavorably lowered. On the other hand, if it is higher than this range, not only the dispersibility is deteriorated, but also economically unsuitable.
  • the mass ratio of saccharification enzyme to silica or silica in the silica-containing substance is 0.0002 or more and 300 or less, preferably 0.002 or more and 30 or less. . When the mass ratio of both is out of this range, the improvement in reaction efficiency is not significant.
  • the concentration of the compound (A) is 0.00001% by mass or more and 10% by mass or less, preferably 0.0001% by mass or more and 1% by mass or less.
  • concentration of the compound (A) is lower than this range, the reaction efficiency is lowered, which is not preferable.
  • concentration is higher than this range, not only the dispersibility is deteriorated but also economically unsuitable.
  • the mass ratio of the silica or the silica-containing material to the compound (A) is 0.00001 or more and 0.1 or less, preferably 0.0001. Above, it is 0.01 or less. When the mass ratio of both is out of this range, the improvement in reaction efficiency is not significant.
  • the pH of the saccharification reaction solution is 3 or more and 11 or less, preferably 3 or more and 6 or less.
  • the pH of the saccharification reaction solution is 3 or more and 11 or less, preferably 3 or more and 6 or less.
  • silica or silica-containing material is aggregated and the reaction efficiency of the saccharifying enzyme is lowered.
  • the pH is higher than 11, silica or the silica-containing material is easily dissolved.
  • pH adjuster of a saccharification reaction solution mineral acids such as sulfuric acid, hydrochloric acid and nitric acid; carboxylic acids such as acetic acid and oxalic acid; hydroxy acids such as citric acid, tartaric acid and malic acid; hydroxide salts such as sodium hydroxide and potassium hydroxide; Ammonia, urea, etc. are mentioned. If it is a range which does not inhibit the effect of this invention, there will be no restriction
  • the saccharification reaction solution of the present invention preferably has a reaction temperature of 5 ° C. or higher and 100 ° C. or lower, particularly 20 ° C. or higher and 55 ° C. or lower. It is preferable to set the reaction temperature according to the optimum temperature of the saccharifying enzyme. In general, if the reaction temperature is lower than 5 ° C, the efficiency of the saccharification reaction is remarkably reduced, and if it is higher than 100 ° C, the saccharifying enzyme may be inactivated, such being undesirable.
  • the raw material for saccharification reaction may be obtained by chemically destroying the structure of lignin, cellulose and hemicellulose by physical pulverization with a cutter mill or the like, and acid or alkali treatment.
  • silica or silica-containing substance and compound (A) may be added to the reaction solution in which the saccharifying enzyme is dispersed, and the silica or silica-containing substance and compound (A) are dispersed.
  • a saccharifying enzyme may be added to the reaction solution.
  • Silica or silica-containing substance and compound (A) may be added simultaneously or separately, and the order of addition is not limited as long as the saccharification reaction efficiency does not decrease.
  • the compound (A) may be added in a powder state or in a solution state.
  • other additives such as a pH adjuster, can be added in arbitrary orders.
  • the saccharification reaction solution of the present invention is a saccharification enzyme composition, saccharification enzyme, silica or silica-containing substance, and general formula (1) or (2), using at least one of cellulose and hemicellulose as a raw material. It is obtained by containing at least one compound (A) selected from the group consisting of the compound represented by and a salt thereof.
  • the mechanism is not clear in this saccharification reaction solution, saccharification of cellulose or hemicellulose can be further promoted by using silica or a silica-containing substance and compound (A) in combination.
  • the saccharification reaction solution of the present invention is excellent in cost because the amount of saccharifying enzyme used can be reduced by the combined use of silica or a silica-containing substance and the compound (A).
  • ethanol by subjecting the sugar obtained in the present invention to ethanol fermentation by a fermentation microorganism that performs ethanol fermentation.
  • a fermentation microorganism that performs ethanol fermentation may be added, and ethanol fermentation may be performed to obtain ethanol, or a fermentation microorganism that performs ethanol fermentation may be added to the step of obtaining sugar using the saccharification reaction solution.
  • ethanol may be obtained by simultaneously performing sugar production and ethanol fermentation.
  • Examples of the fermenting microorganism of the present invention include yeast, mold and bacteria. Among these, yeast or bacteria is particularly preferable. Moreover, these fermentation microorganisms may be used individually by 1 type, or may be used in mixture of 2 or more types. Examples of fermenting microorganisms used include, for example, the genus Saccharomyces, the genus Zymomonas, the genus Pichia, the genus Candida, the genus Zymobacter, the genus Corynebacterium, Examples include microorganisms belonging to the genus Kiesyveromyces, the genus Escherichia, and the like.
  • the preferable fermentation temperature when performing ethanol fermentation is 15 ° C. or more and 35 ° C. or less, and more preferably 28 ° C. or more and 32 ° C. or less.
  • the preferable fermentation temperature when performing ethanol fermentation is 15 ° C. or more and 35 ° C. or less, and more preferably 28 ° C. or more and 32 ° C. or less.
  • the fermentation temperature is lower than 15 ° C, the activity of the fermentation microorganisms becomes inactive, and thus the efficiency of ethanol fermentation is remarkably reduced.
  • it is higher than 35 ° C the fermentation microorganisms may die, which is not preferable.
  • a sugar such as glucose is used as a carbon source for cell growth, and a nitrogen source and other nutrients are also used.
  • the sugar (glucose) obtained by the saccharification reaction as described above becomes the carbon source.
  • the nitrogen source include urea, ammonia, amino acids, and the like, and examples of other nutrients include vitamins, minerals, and the like, which are added as necessary.
  • urea was used as a nitrogen source.
  • the method for producing ethanol by a fermentation microorganism that performs ethanol fermentation of the present invention uses a combination of silica or a silica-containing substance and compound (A) to efficiently produce sugar by a saccharifying enzyme even at a preferable fermentation temperature when ethanol fermentation is performed. Therefore, ethanol fermentation using the resulting sugar can also be performed efficiently.
  • the reaction temperature for obtaining sugar is higher than the fermentation temperature for obtaining ethanol, it is necessary to cool the reaction solution before the ethanol fermentation step, resulting in waste of energy. According to the method of the present invention, Since the reaction temperature for obtaining sugar and the fermentation temperature for obtaining ethanol can be set within the same temperature range, energy waste can be avoided, which is efficient.
  • a cellulase aqueous solution was prepared by the following procedure. A predetermined amount of mixed cellulase powder was added to deionized water and dissolved while rotating at room temperature for 30 minutes with a rotor at room temperature to obtain a cellulase aqueous solution.
  • Cellulases that are saccharifying enzymes include cellulases (manufactured by Sigma Aldrich) and Aspergillus niger (manufactured by Trichoderma reesei; T. reesei) having optimal enzyme activity in the range of pH 3 or more and pH 6 or less.
  • saccharifying enzyme aqueous solution A saccharifying enzyme aqueous solution was prepared by the following procedure. In deionized water, add 1M acetate buffer (pH 5.0) and the above-mentioned cellulase aqueous solution so that the final pH is 0.05M, and mix at room temperature with a rotor at 100rpm for 30 minutes. Thus, saccharifying enzyme aqueous solutions having saccharifying enzyme concentrations (cellulase concentration in this example) shown in Table 1 below were obtained. These aqueous saccharifying enzyme solutions were designated as Comparative Sample 1 to Comparative Sample 3. The saccharifying enzyme concentration of each comparative sample was calculated using the Bradford method (CBB method) and converted to the protein concentration of BSA (trade name: protein standard substance, manufactured by Sigma Aldrich). The specific procedure for calculating the saccharifying enzyme concentration is as follows.
  • a saccharifying enzyme composition was prepared by the following procedure. In deionized water, 1M acetate buffer (pH 5.0) is finally adjusted to 0.05M as pH adjustment, and solid, spherical colloidal silica (average primary particle diameter: manufactured by water glass method as silica) 35 nm), an acidic silica sol (pH 2.1, silica concentration 40% by mass) dispersed in water, thiourea as the compound (A), and the above-mentioned cellulase aqueous solution are added, and the mixture is rotated at 100 rpm with a rotor at room temperature for 30 minutes.
  • the saccharifying enzyme compositions shown in Table 2 below (cellulase concentration in this example), silica concentration and compound (A) concentration were obtained. These saccharifying enzyme compositions were designated as Sample 1 to Sample 8.
  • saccharifying enzyme concentrations shown in Table 2 below are the same as those in Samples 1 to 8, except that a thiourea derivative or an isothiourea derivative is used as the compound (A) instead of thiourea. Then, saccharifying enzyme compositions having cellulase concentration), silica concentration and compound (A) concentration were obtained. These saccharifying enzyme compositions were designated as Sample 9 to Sample 18.
  • silica-containing saccharifying enzyme aqueous solution A silica-containing saccharifying enzyme aqueous solution was prepared by the following procedure. In deionized water, 1M acetate buffer (pH 5.0) is finally adjusted to 0.05M as pH adjustment, and solid, spherical colloidal silica (average primary particle size particle) produced by the water glass method as silica. Acidic silica sol (diameter: 35 nm) dispersed in water (pH 2.1, silica concentration 40% by mass) and the above-mentioned cellulase aqueous solution were added, mixed at room temperature while rotating with a rotor at 100 rpm for 30 minutes.
  • a saccharifying enzyme aqueous solution having a saccharifying enzyme concentration (cellulase concentration in this example) and a silica concentration shown in Table 4 was obtained. These silica-containing saccharifying enzyme aqueous solutions were used as Comparative Sample 12 to Comparative Sample 14.
  • microcrystalline cellulose powder (crystal type: I type, trade name: Avicel PH-101, manufactured by Sigma Aldrich) was 0 with stirring with a 10 mm stirrer at 4 mm ⁇ . After adding .05 g (equivalent to 5 mg / mL), the cap was sealed.
  • Example 1 For the saccharification reaction solution obtained from the saccharification enzyme composition of Sample 1 (hereinafter referred to as the saccharification reaction solution of Example 1) using the enzyme method (GOD method), the amount of glucose produced after 2 days of the above enzyme reaction is calculated. did.
  • a 3.0 mL coloring reagent was added to a disposable cell having a cell length of 10 mm, and then 0.02 mL of the above filtrate was added and sealed. Next, this mixed solution was mixed evenly by repeating upside down. Then, it stood for 15 minutes at 24 degreeC, and the light absorbency of wavelength 505nm was measured using the spectrophotometer, and it was set as Es. Next, 3.0 mL of the coloring reagent is added to a disposable cell having a cell length of 10 mm, 0.02 mL of glucose standard solution II (500 mg / dL) is added, and the mixture is turned upside down and mixed uniformly.
  • Example 2 to Example 18 In the same manner as in Example 1, for each saccharification reaction solution obtained from the saccharification enzyme compositions of Sample 2 to Sample 18 (hereinafter referred to as saccharification reaction solutions of Example 2 to Example 18), glucose after 2 days from the enzyme reaction The amount produced was calculated and the results are shown in Table 5 below.
  • FIG. 1 is a graph showing the measurement results of the effect of improving the saccharification reaction efficiency by the addition of thiourea in Examples 4, 7, and 8 and Comparative Examples 1 to 3, 7, and 10 to 14.
  • the saccharification reaction liquids of Comparative Examples 1 to 3 and the saccharification reaction liquids of Comparative Examples 12 to 14 were compared, the saccharification reaction liquids of Comparative Examples 12 to 14 in which silica was added to the cellulase aqueous solution were compared.
  • the amount of glucose produced was increased, and the saccharification reaction efficiency was improved.
  • the amount of glucose produced was increased, and the saccharification reaction efficiency was further improved.
  • the saccharification reaction liquids of Comparative Examples 1 to 3 and the saccharification reaction liquids of Comparative Example 7, Comparative Example 10, and Comparative Example 11 are compared, the saccharification reaction efficiency is improved even when thiourea is added to the cellulase aqueous solution. I didn't. Therefore, in the saccharification reaction of cellulose, it was confirmed that the saccharification reaction efficiency was improved by using silica and thiourea in combination.
  • Example 4 Example 7 and Example 8, a reduction of about 30% of the amount used can be expected, and the amount of cellulase used in the saccharification reaction is further reduced by about 10% than when silica is added to the cellulase aqueous solution. It is thought that you can.
  • FIG. 2 is a graph showing the measurement results of the effect of improving the saccharification reaction efficiency by the thiourea concentration in Examples 1 and 6 and Comparative Examples 1, 4 to 9, and 12.
  • FIG. 3 is a graph showing the measurement results of the effect of improving the saccharification reaction efficiency by the addition of the thiourea derivative or isothiourea derivative of Examples 9 to 18 and Comparative Examples 1 and 12.
  • a saccharifying enzyme composition was prepared by the following procedure. 1M acetic acid buffer (pH 5.0) so that the final pH is 0.05M in deionized water, and diatomaceous earth (silica # 600S, manufactured by Chuo Silica Co., Ltd., silica content: 90% by mass) The average secondary particle size: 30 ⁇ m), thiourea as the compound (A), and the above-mentioned cellulase aqueous solution were added, mixed at room temperature while rotating at 100 rpm for 30 minutes with a rotor, and saccharified as shown in Table 7 below. A saccharifying enzyme composition having an enzyme concentration (cellulase concentration in this example), diatomaceous earth concentration, and thiourea concentration was obtained. This saccharifying enzyme composition was used as Sample 19.
  • a diatomaceous earth-containing saccharifying enzyme aqueous solution was prepared by the following procedure. 1M acetic acid buffer (pH 5.0) so that the final pH is 0.05M in deionized water, and diatomaceous earth (silica # 600S, manufactured by Chuo Silica Co., Ltd., silica content: 90% by mass) , Average particle size: 30 ⁇ m), and the above-mentioned cellulase aqueous solution was added, mixed at room temperature while rotating with a rotor at 100 rpm for 30 minutes, and the saccharifying enzyme concentration shown in Table 7 below (cellulase concentration in this example) A diatomaceous earth-containing saccharifying enzyme aqueous solution having a diatomaceous earth concentration was obtained. This diatomaceous earth-containing saccharifying enzyme aqueous solution was used as Comparative Sample 15.
  • Example 19 (2-5. Calculation of glucose production)
  • the saccharification reaction solution obtained from the saccharification enzyme composition of Sample 19 hereinafter referred to as the saccharification reaction solution of Example 19
  • the amount of glucose produced after 2 days of the enzyme reaction was calculated. Is shown in Table 8 below.
  • Comparative Example 15 In the same manner as in Example 1, for the saccharification reaction solution obtained from the saccharification enzyme composition of Comparative Sample 15 (hereinafter referred to as the saccharification reaction solution of Comparative Example 15), the amount of glucose produced after 2 days of the enzyme reaction was calculated, The results are shown in Table 8 below.
  • FIG. 4 is a graph showing the measurement results of the effect of improving the efficiency of saccharification reaction by the addition of thiourea in Example 19 and Comparative Examples 1, 7, and 15.
  • the saccharification reaction solution of Comparative Example 1 As shown in FIG. 4, the saccharification reaction solution of Comparative Example 1, the saccharification reaction solution of Comparative Example 7 in which thiourea is added to the cellulase aqueous solution, and the saccharification reaction of Comparative Example 15 in which diatomaceous earth is added as a silica-containing substance to the cellulase aqueous solution.
  • the saccharification reaction solution of Example 19 in which diatomaceous earth and thiourea were added to the solution and the cellulase aqueous solution were compared the amount of glucose produced was increased in Example 19 in which diatomaceous earth and thiourea were added to the cellulase aqueous solution. Increased efficiency was seen. Therefore, in the saccharification reaction of cellulose, it was confirmed that saccharification reaction efficiency was improved by using diatomaceous earth as a silica-containing substance and further using thiourea in combination.
  • yeast aqueous solution A yeast aqueous solution was prepared by the following procedure. 0.2 g of yeast powder was added to 40 g of deionized water previously adjusted to 35 ° C. and dissolved while stirring for 20 minutes using a magnetic stirrer while maintaining the temperature at 35 ° C. A yeast aqueous solution of yeast powder 0.2 g / deionized water 40 g) was obtained.
  • Saccharomyces cerevisiae Saccharomyces cerevisiae (S. cerevisiae) YP2 (manufactured by Sigma Aldrich) belonging to the genus Saccharomyces (Saccharomyces) was used.
  • An ethanol fermentation aqueous solution was prepared by the following procedure. In deionized water, sulfuric acid is added to adjust the pH to about pH 5 as a final pH, urea is added to a final nitrogen source of 0.21 mg / mL, the cellulase aqueous solution and the yeast aqueous solution are added at room temperature. The mixture was mixed with a magnetic stirrer while rotating for 10 minutes to obtain an ethanol fermentation aqueous solution having a saccharifying enzyme concentration (cellulase concentration in this example) and a yeast concentration shown in Table 9 below. This ethanol fermentation aqueous solution was used as Comparative Sample 16.
  • the ethanol enzyme composition was prepared by the following procedure. Solid and spherically produced in deionized water with sulfuric acid so that the final pH is around 5 as a pH adjustment, urea as a nitrogen source and finally 0.21 mg / mL, and a silica-containing material produced by the water glass method.
  • Alkaline silica sol (pH 9.5, silica concentration 40% by mass) in which colloidal silica (average primary particle size: 85 nm) is dispersed in water, thiourea, the above-mentioned cellulase aqueous solution and the above-mentioned yeast aqueous solution are added as compound (A) Then, the mixture was mixed while rotating for 10 minutes with a magnetic stirrer at room temperature, and the ethanol fermentation composition of saccharifying enzyme concentration (cellulase concentration in this example), silica concentration, thiourea concentration, and yeast concentration shown in Table 9 below. Each thing was obtained. These ethanol fermentation compositions were designated as Sample 20 and Sample 21.
  • a thiourea-containing ethanol fermentation aqueous solution was prepared by the following procedure. In deionized water, sulfuric acid is finally adjusted to pH around 5 as pH adjustment, urea is finally adjusted to 0.21 mg / mL as nitrogen source, thiourea as compound (A), the above-mentioned cellulase aqueous solution, and the above-mentioned A yeast aqueous solution was added and mixed at room temperature with a magnetic stirrer while rotating for 10 minutes to obtain a thiourea-containing ethanol fermentation aqueous solution having a saccharifying enzyme concentration, a thiourea concentration, and a yeast concentration shown in Table 9 below. This thiourea-containing ethanol fermentation aqueous solution was used as Comparative Sample 17 and Comparative Sample 18.
  • silica-containing ethanol fermentation aqueous solution was prepared by the following procedure. Solid and spherical colloids produced by the water glass method in deionized water with sulfuric acid so that the final pH is adjusted to around pH 5, urea as the nitrogen source and finally 0.21 mg / mL, silica.
  • An alkaline silica sol (pH 9.5, silica concentration 40% by mass) in which silica (average primary particle size particle size 85 nm) is dispersed in water, the above cellulase aqueous solution and the above yeast aqueous solution are added, and at room temperature, 100 rpm with a rotor.
  • silica-containing ethanol fermentation aqueous solution having a saccharifying enzyme concentration (cellulase concentration in this example), silica concentration, and yeast concentration shown in Table 9 below was obtained.
  • This silica-containing ethanol fermentation aqueous solution was used as Comparative Sample 19.
  • the ethanol fermentation aqueous solution of comparative sample 16 the thiourea-containing ethanol fermentation aqueous solution of comparative sample 17 and comparative sample 18, and the silica-containing substance-containing ethanol fermentation aqueous solution of comparative sample 19 Obtained each saccharification reaction and ethanol fermentation liquid like the ethanol fermentation composition of the sample 20.
  • Example 20 Using gas chromatography (GC), the saccharification reaction and ethanol fermentation liquid obtained from the ethanol fermentation composition of sample 20 (hereinafter referred to as the saccharification reaction and ethanol fermentation liquid of Example 20) and ethanol after ethanol fermentation The amount produced was calculated.
  • GC gas chromatography
  • Example 20 In a 2 mL microtube, 0.5 mL of a sample of the saccharification reaction and ethanol fermentation liquid of Example 20 was collected, and the enzyme and yeast were inactivated at 105 ° C. for 15 minutes. Next, in order to remove unreacted cellulose, silica-containing substances and yeast, the mixture is centrifuged at 15,000 G for 30 minutes with a high-speed cooling centrifuge SRX-201 (manufactured by Tommy Seiko Co., Ltd.), and then the supernatant liquid was recovered.
  • SRX-201 manufactured by Tommy Seiko Co., Ltd.
  • gas chromatograph GC-2014s manufactured by Shimadzu Corporation was used to measure the amount of ethanol produced by the one-inspection curve method, and the measurement result of the amount of ethanol produced (mg / mL) is shown in Table 10 below. Specific analysis conditions are as follows.
  • Example 21 In the same manner as in Example 20, the saccharification reaction and the ethanol fermentation liquid obtained from the ethanol fermentation composition of Sample 21 (hereinafter referred to as the saccharification reaction and the ethanol fermentation liquid in Example 21) were subjected to enzyme reaction and ethanol fermentation after 2 days. The amount of ethanol produced was calculated and the results are shown in Table 10 below.
  • FIG. 5 is a graph showing measurement results of the effect of improving ethanol fermentation efficiency by the thiourea concentration in Examples 20 and 21 and Comparative Examples 16 to 19.
  • the present invention can be used in an industrial field to which a saccharification technique for producing a sugar such as glucose from cellulose-based biomass containing cellulose or hemicellulose is applied, for example, production of cellulose-based bioethanol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Emergency Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

簡便な工程で酵素による糖化反応効率を向上させることが可能な糖化反応液、糖化酵素組成物、糖の製造方法及びエタノールの製造方法を提供する。セルロース及びヘミセルロースの少なくとも一方を糖化する糖化反応液であって、セルロース及びヘミセルロースの少なくとも一方と、糖化酵素と、シリカ又はシリカ含有物質と、チオ尿素、チオ尿素誘導体及びイソチオ尿素誘導体又は並びにこれらの塩からなる群より選ばれる少なくとも1種の化合物(A)とを含有する。

Description

糖化反応液、糖化酵素組成物、糖の製造方法及びエタノールの製造方法
 本発明は、糖化反応液、糖化酵素組成物、糖の製造方法及びエタノールの製造方法に関する。
 従来、セルロース又はヘミセルロースを含むセルロース系バイオマスを原料に、エタノールを製造するセルロース系バイオエタノールが知られている。
 セルロース又はヘミセルロースを含むセルロース系バイオマスからグルコースといった糖を生成する方法(糖化技術)としては、セルロース系バイオマスに硫酸を加えて加水分解する方法が知られているが、反応器の腐食や廃液処理の問題がある。また、例えば、カーボンやゼオライト等にスルホ基を担持させた固体酸触媒を用いてセルロース系バイオマスを糖化する方法も提案されているが、固体同士の反応であるが故に、反応速度が極めて遅い上、未反応残渣と固体酸触媒との分離が困難という問題がある。更に、上述のどの方法も加水分解の制御が難しく、反応が進行し過ぎた結果、糖自体が分解し、糖の収率が低下してしまう問題もある。
 一方、酵素を用いて糖化を行う方法も知られている(特許文献1参照)。かかる方法は、原料を加圧熱水で処理する熱水処理工程、その熱水処理物を機械的粉砕処理する機械的粉砕処理工程、及びその機械的粉砕物を酵素で糖化処理する糖化処理工程を含む。しかしながら、かかる方法では、酵素で糖化する際の反応速度が遅く、得られる糖化液の濃度が十分とはいえないという問題があった。
 そこで、酵素をシリカ系メソ多孔体に担持させて用いることにより、酵素を溶解した状態よりも高濃度に反応系中に存在させることができ、酵素反応をより効率的に進めるという方法が提案されている(特許文献2参照)。しかしながら、かかる方法では、酵素を担体に吸着固定化する工程が必要であるという問題があり、また、固定化された酵素は、固定化されていないものと比較して、反応効率が40%~50%程度に低下する虞があるという問題がある。更に、固体同士の反応であるが故に、未反応残渣と酵素が固定された担体との分離が困難という問題もある。
 また、シリカゾルと酵素を混合し、シリカゲルとした後、粉末化した固定化酵素も知られている(特許文献3,4参照)。このような固定化酵素でも酵素の回収はできるものの、反応効率自体は低いものであった。他にも、0.5μm~100μmのシリカ粉末と酵素を混合してセルロースを含む植物繊維を加水分解する方法も知られているが、シリカ粉末を混合した効果が明確ではなく、未反応残渣と懸濁したシリカ粉末との分離が困難という問題がある(特許文献5参照)。
 更に、酵素とグアニジンや尿素等を含んだ糖化反応促進剤を用いてセルロース系バイオマスを糖化する方法も提案されている(特許文献6参照)。しかしながら、この糖化反応促進剤は、糖化反応を促進させるものではなく、一定期間保管した後でもバイオマスの分解性能を低下させることがない、保存安定性に優れたものである。
特開2006-136263号公報 特開2009-125006号公報 特公昭63-2595号公報 特公昭63-21475号公報 特開平10-66594号公報 特開2011-234715号公報
 本発明は、上記事情に鑑みてなされたものであり、簡便な工程で酵素による糖化反応効率を向上させることが可能な糖化反応液、糖化酵素組成物、糖の製造方法及びエタノールの製造方法を提供することを目的とする。
 上記目的を達成する本発明の第1の態様は、セルロース及びヘミセルロースの少なくとも一方を糖化する糖化反応液であって、前記セルロース及び前記ヘミセルロースの少なくとも一方と、糖化酵素と、シリカ又はシリカ含有物質と、下記一般式(1)又は(2)で表される化合物及びその塩からなる群より選ばれる少なくとも1種の化合物(A)とを含有することを特徴とする糖化反応液にある。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
[前記一般式(1)及び(2)中のR~Rは、水素原子又は炭素数1~4のアルキル基を表し、前記アルキル基中の水素原子の一部は、アリル基、ヒドロキシル基、エステル基、アミノ基、カルボキシル基、シアノ基、ニトロ基、スルホ基、ホスホノ基又はハロゲン原子によって置換されていてもよい。]
 上記目的を達成する本発明の第2の態様は、前記シリカ含有物質が、珪藻土又は珪砂であることを特徴とする第1の態様の糖化反応液にある。
 上記目的を達成する本発明の第3の態様は、前記シリカ又はシリカ含有物質中のシリカと前記化合物(A)との質量比率(化合物(A)/シリカ)が、0.00001以上、0.1以下であることを特徴とする第1の態様又は第2の態様の糖化反応液にある。
 上記目的を達成する本発明の第4の態様は、前記化合物(A)が、チオ尿素、N-メチルチオ尿素、1,3-ジメチルチオ尿素、トリメチルチオ尿素、テトラメチルチオ尿素、1-アリル-3-(3-ヒドロキシエチル)-2-チオ尿素、エチレンチオ尿素、グアニルチオ尿素、S-メチルイソチオ尿素、S-エチルイソチオ尿素、S-[2-(ジメチルアミノ)エチル]イソチオ尿素、S-ベンジルイソチオ尿素、及びS-(2-アミノエチル)イソチオ尿素からなる群から選ばれる少なくとも1種を含有することを特徴とする第1の態様乃至第3の態様のいずれかの糖化反応液にある。
 上記目的を達成する本発明の第5の態様は、セルロース及びヘミセルロースの少なくとも一方を糖化する糖化酵素組成物であって、糖化酵素と、シリカ又はシリカ含有物質と、下記一般式(1)又は(2)で表される化合物及びその塩からなる群より選ばれる少なくとも1種の化合物(A)とを含有し、前記シリカ又はシリカ含有物質中のシリカと前記化合物(A)との質量比率(化合物(A)/シリカ)が、0.00001以上、0.1以下であることを特徴とする糖化酵素組成物にある。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
[前記一般式(1)及び(2)中のR~Rは、水素原子又は炭素数1~4のアルキル基を表し、前記アルキル基中の水素原子の一部は、アリル基、ヒドロキシル基、エステル基、アミノ基、カルボキシル基、シアノ基、ニトロ基、スルホ基、ホスホノ基又はハロゲン原子によって置換されていてもよい。]
 上記目的を達成する本発明の第6の態様は、前記シリカ含有物質が、珪藻土又は珪砂であることを特徴とする第5の態様の糖化酵素組成物にある。
 上記目的を達成する本発明の第7の態様は、前記化合物(A)が、チオ尿素、N-メチルチオ尿素、1,3-ジメチルチオ尿素、トリメチルチオ尿素、テトラメチルチオ尿素、1-アリル-3-(3-ヒドロキシエチル)-2-チオ尿素、エチレンチオ尿素、グアニルチオ尿素、S-メチルイソチオ尿素、S-エチルイソチオ尿素、S-[2-(ジメチルアミノ)エチル]イソチオ尿素、S-ベンジルイソチオ尿素、及びS-(2-アミノエチル)イソチオ尿素からなる群から選ばれる少なくとも1種を含有することを特徴とする第5の態様又は第6の態様の糖化酵素組成物にある。
 上記目的を達成する本発明の第8の態様は、セルロース及びヘミセルロースの少なくとも一方を糖化する糖化反応液を用いて糖を製造する糖の製造方法であって、前記セルロース及び前記ヘミセルロースの少なくとも一方と、糖化酵素と、シリカ又はシリカ含有物質と、下記一般式(1)又は(2)で表される化合物及びその塩からなる群より選ばれる少なくとも1種の化合物(A)とを含有する糖化反応液を用いて糖を製造することを特徴とする糖の製造方法にある。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
[前記一般式(1)及び(2)中のR~Rは、水素原子又は炭素数1~4のアルキル基を表し、前記アルキル基中の水素原子の一部は、アリル基、ヒドロキシル基、エステル基、アミノ基、カルボキシル基、シアノ基、ニトロ基、スルホ基、ホスホノ基又はハロゲン原子によって置換されていてもよい。]
 上記目的を達成する本発明の第9の態様は、前記シリカ含有物質が、珪藻土又は珪砂であることを特徴とする第8の態様の糖の製造方法にある。
 上記目的を達成する本発明の第10の態様は、前記シリカ又はシリカ含有物質中のシリカと前記化合物(A)との質量比率(化合物(A)/シリカ)が、0.00001以上、0.1以下であることを特徴とする第8の態様又は第9の態様の糖の製造方法にある。
 上記目的を達成する本発明の第11の態様は、前記化合物(A)が、チオ尿素、N-メチルチオ尿素、1,3-ジメチルチオ尿素、トリメチルチオ尿素、テトラメチルチオ尿素、1-アリル-3-(3-ヒドロキシエチル)-2-チオ尿素、エチレンチオ尿素、グアニルチオ尿素、S-メチルイソチオ尿素、S-エチルイソチオ尿素、S-[2-(ジメチルアミノ)エチル]イソチオ尿素、S-ベンジルイソチオ尿素、及びS-(2-アミノエチル)イソチオ尿素からなる群から選ばれる少なくとも1種を含有することを特徴とする第8の態様乃至第10の態様のいずれかの糖の製造方法にある。
 上記目的を達成する本発明の第12の態様は、第8の態様乃至第11の態様のいずれかの製造方法により得られた糖を用いて、発酵微生物によるエタノール発酵を行い、エタノールを製造することを特徴とするエタノールの製造方法にある。
 上記目的を達成する本発明の第13の態様は、糖を製造する工程に発酵微生物を添加して、糖の製造とエタノール発酵とを同時に行うことを特徴とする第12の態様のエタノールの製造方法にある。
 上記目的を達成する本発明の第14の態様は、前記発酵微生物が、酵母、カビ又は細菌であることを特徴とする第12の態様又は第13の態様のエタノールの製造方法にある。
 上記目的を達成する本発明の第15の態様は、前記発酵微生物が、サッカロマイセス(Saccharomyces)属、ザイモモナス(Zymomonas)属、ピチア(Pichia)属、カンジダ(Candida)属、ザイモバクター(Zymobacter)属、コリネバクテリウム(Corynebacterium)属、クルイウェロマイセス(Kluyveromyces)属又はエシェリキア(Escherichia)属に属する微生物であることを特徴とする第14の態様のエタノールの製造方法にある。
 上記目的を達成する本発明の第16の態様は、エタノール発酵を15℃以上、35℃以下で行うことを特徴とする第12の態様乃至第15の態様のいずれかのエタノールの製造方法にある。
 本発明によれば、簡便な工程で酵素による糖化反応効率を向上させることが可能な糖化反応液、糖化酵素組成物、糖の製造方法及びエタノールの製造方法を提供することができる。
実施例4,7,8及び比較例1~3,7,10~14のチオ尿素の添加による糖化反応効率の向上効果の測定結果を示したグラフである。 実施例1~6及び比較例1,4~9,12のチオ尿素濃度による糖化反応効率の向上効果の測定結果を示したグラフである。 実施例9~18及び比較例1,12のチオ尿素誘導体又はイソチオ尿素誘導体の添加による糖化反応効率の向上効果の測定結果を示したグラフである。 実施例19及び比較例1,7,15のチオ尿素の添加による糖化反応効率の向上効果の測定結果を示したグラフである。 実施例20,21及び比較例16~19のチオ尿素濃度によるエタノール発酵効率の向上効果の測定結果を示したグラフである。
 本発明においては、グルコースといった糖を生成するための原料として、セルロース及びヘミセルロースの少なくとも一方が用いられる。
 かかるセルロース又はヘミセルロースは、例えば、広葉樹、針葉樹等の農林水産物資源、又は当該農林水産物資源の廃棄物といったセルロース系バイオマスに含有されている。より具体的には、バガス、稲ワラ、コーンストーバー、アブラヤシ空果房、木材繊維、木材チップ、単板くず、木粉、パルプ類、古紙類、綿、ホヤ、酢酸菌等が挙げられる。また、これらの原料は、セルロース系バイオマス由来のものであれば特に限定されず、1種類を単独で用いても、2種類以上を混合して用いてもよい。
 これらの中でも、ユーカリ木粉(広葉樹)、スギ木粉(針葉樹)、バガス、稲ワラ、コーンストーバー、アブラヤシ空果房、綿等に含有されるセルロース又はヘミセルロースであることが好ましい。これらの場合、理由は定かではないが、解繊しやすく、比較的高収率で糖を得ることができる。
 ここで、セルロースとは、グルコースがβ-1,4グルコシド結合により重合した重合体をいう。ヘミセルロースは、グルコース、キシロース、マンノース、ガラクトース等がグルコシド結合により重合した重合体で、セルロース以外の水不溶性の多糖類をいう。
 また、セルロースは、その部分分解物であるセロオリゴ糖、セロビオース等を含んでいてもよく、結晶性であっても非結晶性であってもよい。また、カルボキシメチル化、アルデヒド化又はエステル化した誘導体であってもよい。なお、セルロース又はヘミセルロースは、上述した通り、バイオマス由来のものであれば特に限定されず、植物由来、真菌由来、細菌由来等であってもよい。
 本発明の糖化酵素としては、セルラーゼを主体としたものが用いられる。かかるセルラーゼは、セルロース又はヘミセルロースをグルコース等の糖にまで分解する酵素を意味している。
 かかる糖化酵素を生産する微生物としては、特に限定されないが、例えば、アクレモニウム(Acremonium)属菌、アスペルギルス(Aspergillus)属菌、ケトミウム(Chaetomium)属菌、フザリウム(Fusarium)属菌、フミコーラ(Humicola)属菌、イルペックス(Irpex)属菌、ファネロケーテ(Phanerochaete)属菌、ペニシリウム(Penicillium)属菌、シゾフィラム(Schizophyllum)属菌、スポロトリクム(Sporotrichum)属菌、トレメテス(Trametes)属菌、トリコデルマ(Trichoderma)属菌等が挙げられる。これらの他にも、クロストリジウム(Clostridium)属菌、シュードモナス(Pseudomonas)属菌、セルロモナス(Cellulomonas)属菌、ルミノコッカス(Ruminococcus)属菌、バチルス(Bacillus)属菌等の細菌;スルフォロバス(Sulfolobus)属菌、ストレプトマイセス(Streptomyces)属菌、サーモアクチノマイセス(Thermoactinomyces)属菌、サーモモノスポラ(Thermomonospora)属菌等の放線菌が挙げられる。なお、これらの糖化酵素は、人工的に改変されていてもよい。また、これらの糖化酵素は、1種類を単独で用いても、2種類以上を混合して用いてもよい。
 これらの中でも、特に、アスペルギルス(Aspergillus)属由来の糖化酵素及びトリコデルマ(Trichoderma)属由来の糖化酵素が好ましい。これらの糖化酵素は、結晶性セルロースに対して活性が高いからである。
 また、セルラーゼは、一連の酵素群であってもよい。かかる酵素群としては、エンドグルカナーゼ(EC 3.2.1.74)、セロビオヒドロラーゼ(EC 3.2.1.91)、β-グルコシダーゼ(EC 23.2.4.1,EC 3.2.1.21)等が挙げられる。本発明は、異なった微生物由来のセルラーゼを混合して用いることが好ましい。この場合、それらの相乗効果により、セルロース又はヘミセルロースの糖化をより促進させることができる。
 上述のセルラーゼは、多くはpH3以上、pH6以下の範囲で至適な酵素活性を有するものが一般的であるが、pH6~pH10の範囲で至適な酵素活性を有するアルカリセルラーゼと呼ばれるものであってもよい。また、上述のセルラーゼは、多くは反応温度25℃以上、50℃以下の範囲で至適な酵素活性を有するものが多いが、70℃以上、100℃以下の範囲で至適な酵素活性を有する耐熱性セルラーゼと呼ばれるものであってもよい。
 本発明ではシリカ又はシリカ含有物質として、シリカ、珪藻土又は珪砂を用いることができる。シリカ含有物質である珪藻土及び珪砂は、シリカが主成分の天然物である。シリカは少なくとも二酸化ケイ素を含有する化合物の総称であり、表面の一部にシラノール基が存在しているのが一般的である。このシリカは、粒子形状が球状でも非球状でも良く、粒子構造が中実構造でも多孔質構造でも良く、結晶性が非晶質でも結晶質でも良く、粉末状、懸濁液、分散液どの状態で使用しても良い。シリカ表面の一部がシラノール基以外の別の官能基で修飾されていても良い。また、シランカップリング剤やシリコンアルコキシド、又はケイ酸イオン等でシリカ以外の化合物の表面に反応させてシリカの層が存在する形でも良い。その中でも特にコロイダルシリカ、珪藻土及び珪砂の適用が好ましい。
 本発明で、コロイダルシリカは、平均一次粒子径が1nm以上、400nm以下、好ましくは、5nm以上、350nm以下であり、糖化反応液中に存在させて用いられる。平均一次粒子径は、窒素吸着法(BET法)により測定される比表面積S(m/g)から換算式(D(nm)=2720/S)により算出されたものである。なお、コロイダルシリカは、水、メタノール、エタノール、アセトン、メチルエチルケトン、エチレングリコール等の分散媒に分散させた分散液として用いられ、分散液は、コロイド液、ゾル等と呼ばれる。本発明では、酵素の活性を阻害しない範囲で、分散媒を選択してよいが、水、エタノール等の分散媒の適用が好ましい。
 コロイダルシリカの製造方法として、水ガラスを原料とする水ガラス法、金属アルコキシドを原料とするアルコキシド法、塩化珪素化合物を原料とする気相法等がある。どの製造法で得られたコロイダルシリカを用いてもよいが、水ガラス法により得られたコロイダルシリカの適用が好ましい。
 本発明の下記一般式(1)及び(2)で表される化合物において、式中のR~Rは、水素原子、又は炭素数1~4のアルキル基を表し、このアルキル基中の水素原子の一部は、アリル基、ヒドロキシル基、エステル基、アミノ基、カルボキシル基、シアノ基、ニトロ基、スルホ基、ホスホノ基又はハロゲン原子によって置換されていても良い。これらの置換基の数は、1~4が好ましく、さらに好ましくは1~3である。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 上記一般式(1)又は(2)で表される化合物及びその塩からなる群より選ばれる少なくとも1種の化合物(A)として、具体的には、チオ尿素、チオ尿素誘導体及びイソチオ尿素誘導体が挙げられる。チオ尿素誘導体としては、N-メチルチオ尿素、1,3-ジメチルチオ尿素、トリメチルチオ尿素、テトラメチルチオ尿素、1,3-ジエチル-2-チオ尿素、1,3-ジイソプロピルチオ尿素、1-アリル-2-チオ尿素、1-アリル-3-(3-ヒドロキシエチル)-2-チオ尿素、1-アセチル-2-チオ尿素、(2-メトキシエチル)チオ尿素、エチレンチオ尿素、グアニルチオ尿素等が挙げられる。イソチオ尿素誘導体としては、S-メチルイソチオ尿素、S-エチルイソチオ尿素、S-ベンジルイソチオ尿素、S-[2-(ジメチルアミノ)エチル]イソチオ尿素、S-(2-アミノエチル)イソチオ尿素、S-[4-[(4-ニトロベンジル)オキシ]フェネチル]イソチオ尿素等が挙げられる。一般式(1)又は(2)で表される化合物の塩としては、S-メチルイソチオ尿素の塩が挙げられる。塩としては塩酸塩、硫酸塩及び臭化水素酸塩等が挙げられ、例えばS-(2-アミノエチル)イソチオウロニウムブロミド等を用いることができる。必要に応じて1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。これらの中では、チオ尿素、N-メチルチオ尿素、1,3-ジメチルチオ尿素、トリメチルチオ尿素、テトラメチルチオ尿素、1-アリル-3-(3-ヒドロキシエチル)-2-チオ尿素、エチレンチオ尿素、グアニルチオ尿素、S-メチルイソチオ尿素、S-エチルイソチオ尿素、及びS-[2-(ジメチルアミノ)エチル]イソチオ尿素が好ましく、特に、チオ尿素、N-メチルチオ尿素、1,3-ジメチルチオ尿素、トリメチルチオ尿素、テトラメチルチオ尿素、エチレンチオ尿素、グアニルチオ尿素、S-メチルイソチオ尿素、S-エチルイソチオ尿素、及びS-[2-(ジメチルアミノ)エチル]イソチオ尿素が好ましい。
 本発明の糖化反応液は、セルロース及びヘミセルロースの少なくとも一方を原料に、糖化酵素組成物である、糖化酵素、シリカ又はシリカ含有物質及び上記一般式(1)又は(2)で表される化合物及びその塩からなる群より選ばれる少なくとも1種の化合物(A)を含有するものである。詳細は後述するが、糖化反応効率(単に反応効率ともいう)の向上効果を享受する観点から、糖化反応液において、シリカ又はシリカ含有物質及び化合物(A)を併用させることが好ましい。
 ここで、糖化反応液において、糖化酵素の濃度は、BSA(Bovine serum albumin;ウシ血清由来アルブミン)のタンパク質濃度に換算して、0.001質量%以上、3.0質量%以下、好ましくは、0.001質量%以上、1.0質量%以下である。糖化酵素の濃度がこの範囲より低いと反応効率が低下して好ましくなく、一方、これより高いと糖化酵素が溶液に溶解しにくくなるだけでなく、経済的に不適である。
 また、糖化反応液において、シリカ又はシリカ含有物質中のシリカの濃度は、0.001質量%以上、40質量%以下、好ましくは、0.005質量%以上、10質量%以下である。シリカ又はシリカ含有物質中のシリカの濃度がこの範囲より低いと反応効率が低下して好ましくなく、一方、これより高いと分散性が悪化するだけでなく、経済的に不適である。
 また、糖化反応液において、糖化酵素とシリカ又はシリカ含有物質中のシリカとの質量比率(糖化酵素/シリカ)は、0.0002以上、300以下、好ましくは、0.002以上、30以下である。両者の質量比率がこの範囲を外れると反応効率の向上が顕著ではなくなる。
 また、糖化反応液において、化合物(A)の濃度は、0.00001質量%以上、10質量%以下、好ましくは、0.0001質量%以上、1質量%以下である。化合物(A)の濃度がこの範囲より低いと反応効率が低下して好ましくなく、一方、これより高いと分散性が悪化するだけでなく、経済的に不適である。
 また、糖化反応液において、シリカ又はシリカ含有物質中のシリカと化合物(A)との質量比率(化合物(A)/シリカ)が、0.00001以上、0.1以下、好ましくは、0.0001以上、0.01以下である。両者の質量比率がこの範囲を外れると反応効率の向上が顕著ではなくなる。
 また、糖化反応液のpHは、3以上、11以下、好ましくは、3以上、6以下である。pHが3より低いと、シリカ又はシリカ含有物質の凝集が生じて糖化酵素の反応効率が低下し、一方、pHが11より高いと、シリカ又はシリカ含有物質が溶解しやすくなるため、好ましくない。
 糖化反応液のpH調整剤として、硫酸、塩酸、硝酸といった鉱酸;酢酸、シュウ酸といったカルボン酸;クエン酸、酒石酸、リンゴ酸といったヒドロキシ酸;水酸化ナトリウムや水酸化カリウムといった水酸化物塩;アンモニア、尿素等が挙げられる。本発明の効果を阻害しない範囲であれば使用に特にその種類や濃度に制限はない。また、これらのpH調整剤は、1種類を単独で用いても、2種類以上を混合して用いてもよい。更に緩衝作用を有する緩衝液の状態で使用してもよい。
 また、本発明の糖化反応液は、反応温度を、5℃以上、100℃以下、特に、20℃以上、55℃以下とするのが好ましい。糖化酵素の至適温度に合わせて反応温度を設定することが好ましい。一般的に、反応温度が5℃より低いと糖化反応の効率が著しく低下し、100℃より高いと糖化酵素が失活する虞があり、好ましくない。
 なお、セルロース又はヘミセルロースを含有するセルロース系バイオマスの前処理は、公知の範囲により行えばよい。一般には、カッターミル等による物理的な粉砕、及び酸又はアルカリ処理によってリグニンとセルロース及びヘミセルロースとの構造を化学的に破壊することにより、糖化反応用原料とすればよい。
 糖化反応液を作製する際に、糖化酵素が分散している反応液にシリカ又はシリカ含有物質及び化合物(A)を添加してもよく、シリカ又はシリカ含有物質及び化合物(A)が分散している反応液に糖化酵素を添加してもよい。シリカ又はシリカ含有物質及び化合物(A)を同時に添加してもよいし、別々に添加してもよく、糖化反応効率が低下しなければ添加順序は問わない。その際、化合物(A)を粉末状態で添加してもよいし、溶液状態で添加してもよい。また、本発明の効果を阻害しない範囲であれば、pH調整剤等のその他の添加剤は任意の順序で添加することができる。
 以上で説明した通り、本発明の糖化反応液は、セルロース及びヘミセルロースの少なくとも一方を原料に、糖化酵素組成物である、糖化酵素、シリカ又はシリカ含有物質及び一般式(1)又は(2)で表される化合物及びその塩からなる群より選ばれる少なくとも1種の化合物(A)を含有することで得られる。この糖化反応液において、メカニズムは明らかでないが、シリカ又はシリカ含有物質及び化合物(A)を併用させることで、セルロース又はヘミセルロースの糖化をより促進させることができる。
 また、本発明の糖化反応液は、シリカ又はシリカ含有物質及び化合物(A)の併用により、糖化酵素の使用量を減少させることができるので、コスト性にも優れている。
 本発明で得られた糖を使用して、エタノール発酵を行う発酵微生物によりエタノール発酵させてエタノールを得ることもできる。糖を得た後に、エタノール発酵を行う発酵微生物を添加し、エタノール発酵させてエタノールを得ても良いし、前記糖化反応液を用いて糖を得る工程にエタノール発酵を行う発酵微生物を添加して、糖の製造とエタノール発酵とを同時に行い、エタノールを得ても良い。
 本発明の発酵微生物は、酵母、カビ、細菌等が挙げられる。この中でも特に、酵母又は細菌であることが好ましい。また、これらの発酵微生物は、1種類を単独で用いても、2種類以上を混合して用いてもよい。用いられる発酵微生物としては、例えば、サッカロマイセス(Saccharomyces)属、ザイモモナス(Zymomonas)属、ピチア(Pichia)属、カンジダ(Candida)属、ザイモバクター(Zymobacter)属、コリネバクテリウム(Corynebacterium)属、クルイウェロマイセス(Kluyveromyces)属、エシェリキア(Escherichia)属等に属する微生物が挙げられる。
 エタノール発酵を行う際の好ましい発酵温度は15℃以上、35℃以下であり、28℃以上、32℃以下とするのがより好ましい。一般的に、発酵温度が15℃より低いと発酵微生物の活動が活発でなくなるためエタノール発酵の効率が著しく低下し、また、35℃より高いと発酵微生物が死滅する虞があり、好ましくない。
 一般的に、微生物を用いてエタノール発酵を行う際には、グルコース等の糖が細胞増殖のための炭素源として用いられるほか、窒素源や他の栄養素も用いられる。本発明のエタノール発酵では、上述の通り糖化反応により得られた糖(グルコース)が炭素源となる。また、窒素源としては、尿素、アンモニア、アミノ酸等が挙げられ、他の栄養素としては、ビタミン、ミネラル等が挙げられ、これらは必要に応じて添加される。なお、本発明のエタノール発酵では、窒素源として尿素を用いた。
 また、本発明のエタノール発酵を行う発酵微生物によるエタノールの製造方法は、シリカ又はシリカ含有物質及び化合物(A)の併用により、エタノール発酵を行う際の好ましい発酵温度でも効率的に糖化酵素により糖を得ることができるため、得られる糖を利用したエタノール発酵も効率的に行うことが出来る。一般的には、糖を得る反応温度がエタノールを得る発酵温度よりも高いため、エタノール発酵工程の前に反応液を冷却する必要があり、エネルギーの浪費が生じるが、本発明の方法によれば、糖を得る反応温度とエタノールを得る発酵温度を同じ温度範囲とすることができ、エネルギーの浪費を避けることが出来るため、効率的である。
 以下、実施例に基づいて更に詳述するが、本発明はこの実施例により何ら限定されるものではない。
 [1.シリカ又はシリカ含有物質としてシリカを用いた糖の製造]
 (1-1.平均一次粒子径)
 シリカの平均一次粒子径は、以下の測定装置を用いて測定した。
  窒素吸着法測定装置:Monosorb MS-16(カンタクローム・インスツルメンツ・ジャパン合同会社製)
 (1-2.セルラーゼ水溶液)
 以下の手順で、セルラーゼ水溶液を作製した。脱イオン交換水中に、所定量の混合セルラーゼの粉末を添加し、室温下、ローターで100rpm、30分間回転させながら溶解してセルラーゼ水溶液を得た。なお、糖化酵素であるセルラーゼとしては、pH3以上、pH6以下の範囲で至適な酵素活性を有するトリコデルマ・リーゼイ(Trichoderma reesei;T. reesei)属由来のセルラーゼ(Sigma Aldrich製)及びアスペルギルス・ニガー(Aspergillus niger;A. niger)属由来のセルラーゼ(MP biomedicals製)を7:3(w/w)の割合で混合した混合セルラーゼを用いた。
 (1-3.糖化酵素水溶液)
 以下の手順で、糖化酵素水溶液を作製した。脱イオン交換水中に、pH調整として最終的に0.05Mになるよう1M酢酸緩衝液(pH5.0)、及び上述のセルラーゼ水溶液を添加し、室温下、ローターで100rpm、30分間回転させながら混合して、下記表1に示した糖化酵素濃度(本実施例ではセルラーゼ濃度)の糖化酵素水溶液をそれぞれ得た。これらの糖化酵素水溶液を、比較サンプル1~比較サンプル3とした。各比較サンプルの糖化酵素濃度は、Bradford法(CBB法)を用い、BSA(商品名:タンパク質標準物質、Sigma Aldrich製)のタンパク質濃度に換算して算出した。糖化酵素濃度算出の具体的な手順は以下の通りである。
 セル長10mmのディスポーザブルセルに、プロテインアッセイCBB溶液(5倍濃縮)(ナカライテスク製)を脱イオン交換水で5倍に希釈したものを2.5mL添加し、次いで、各比較サンプルを0.05mL添加し、密栓した。この混合溶液を、上下反転を繰り返し均一に混合した。その後、30分間静定し、分光光度計UV-3150(島津製作所製)を用い、波長595nmの吸光度を測定した。既知のBSAのタンパク質濃度の試料を作製し、同様に吸光度を測定して検量線を作成した。得られた検量線から各比較サンプルの糖化酵素濃度を算出した。なお、トリコデルマ・リーゼイ属由来のセルラーゼの粉末1g中には0.27gのタンパク質が含有していた。アスペルギルス・ニガー属由来のセルラーゼの粉末1g中には0.06gのタンパク質が含有していた。
Figure JPOXMLDOC01-appb-T000015
 (1-4.糖化酵素組成物)
 以下の手順で、糖化酵素組成物を作製した。脱イオン交換水中に、pH調整として最終的に0.05Mになるよう1M酢酸緩衝液(pH5.0)、シリカとして水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:35nm)が水に分散された酸性シリカゾル(pH2.1、シリカ濃度40質量%)、化合物(A)としてチオ尿素、及び上述のセルラーゼ水溶液を添加し、室温下、ローターで100rpm、30分間回転させながら混合して、下記表2に示した糖化酵素濃度(本実施例ではセルラーゼ濃度)、シリカ濃度及び化合物(A)濃度の糖化酵素組成物をそれぞれ得た。これらの糖化酵素組成物を、サンプル1~サンプル8とした。
 また、化合物(A)としてチオ尿素の替わりに、チオ尿素誘導体又はイソチオ尿素誘導体を用いたこと以外は、サンプル1~サンプル8と同様にして、下記表2に示した糖化酵素濃度(本実施例ではセルラーゼ濃度)、シリカ濃度及び化合物(A)濃度の糖化酵素組成物をそれぞれ得た。これらの糖化酵素組成物を、サンプル9~サンプル18とした。
 なお、下記表2に示した化合物(A)の種類は以下に示した通りである。
  A:チオ尿素
  B:N-メチルチオ尿素
  C:1,3-ジメチルチオ尿素
  D:トリメチルチオ尿素
  E:テトラメチルチオ尿素
  F:1-アリル-3-(3-ヒドロキシエチル)-2-チオ尿素
  G:エチレンチオ尿素
  H:グアニルチオ尿素
  I:S-メチルイソチオ尿素硫酸塩
  J:S-ベンジルイソチオ尿素塩酸塩
  K:S-(2-アミノエチル)イソチオウロニウムブロミド臭化水素酸塩
Figure JPOXMLDOC01-appb-T000016
 (1-5.チオ尿素含有糖化酵素水溶液)
 以下の手順で、化合物(A)としてチオ尿素を用いたチオ尿素含有糖化酵素水溶液を作製した。脱イオン交換水中に、pH調整として最終的に0.05Mになるよう1M酢酸緩衝液(pH5.0)、チオ尿素、及び上述のセルラーゼ水溶液を添加し、室温下、ローターで100rpm、30分間回転させながら混合して、下記表3に示した糖化酵素濃度(本実施例ではセルラーゼ濃度)、及びチオ尿素濃度のチオ尿素含有糖化酵素水溶液をそれぞれ得た。これらのチオ尿素含有糖化酵素水溶液を、比較サンプル4~比較サンプル11とした。
Figure JPOXMLDOC01-appb-T000017
 (1-6.シリカ含有糖化酵素水溶液)
 以下の手順で、シリカ含有糖化酵素水溶液を作製した。脱イオン交換水中に、pH調整として最終的に0.05Mになるよう1M酢酸緩衝液(pH5.0)、シリカとして水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径粒子径:35nm)が水に分散された酸性シリカゾル(pH2.1、シリカ濃度40質量%)、及び上述のセルラーゼ水溶液を添加し、室温下、ローターで100rpm、30分間回転させながら混合して、下記表4に示した糖化酵素濃度(本実施例ではセルラーゼ濃度)、及びシリカ濃度のシリカ含有糖化酵素水溶液をそれぞれ得た。これらのシリカ含有糖化酵素水溶液を、比較サンプル12~比較サンプル14とした。
Figure JPOXMLDOC01-appb-T000018
 (1-7.糖化反応液)
 サンプル1~サンプル18の糖化酵素組成物に、微結晶セルロース粉末を添加し、分散させて各サンプルを用いた糖化反応液とした。具体的な手順は以下の通りである。
 まず、13.5mLのガラス瓶に各サンプルを10mL入れ、4mmφで10mmのスターラーで撹拌した状態で、微結晶セルロース粉末(結晶型:I型、商品名:Avicel PH-101、Sigma Aldrich製)を0.05g(5mg/mL相当)添加した後に密栓した。
 また、比較サンプル1~比較サンプル3の糖化酵素水溶液、比較サンプル4~比較サンプル11のチオ尿素含有糖化酵素水溶液、及び比較サンプル12~比較サンプル14のシリカ含有糖化酵素水溶液を用いたこと以外は、サンプル1~サンプル18の糖化酵素組成物と同様にして、各比較サンプルの糖化反応液を得た。
 (1-8.糖の製造)
 上述の各サンプル及び各比較サンプルを用いた糖化反応液を、25℃の恒温槽中で、撹拌下で2日間それぞれ酵素反応させた。この酵素反応により、糖(グルコース)を得た。
 (1-9.グルコース生成量の算出)
  (実施例1)
 酵素法(GOD法)を用いて、サンプル1の糖化酵素組成物から得られた糖化反応液(以下、実施例1の糖化反応液という)について、上述の酵素反応2日後のグルコース生成量を算出した。
 2mLマイクロチューブに、サンプル1の糖化反応液の試料を0.5mL採取し、105℃、15分で酵素を失活させた。次に、未反応のセルロース、シリカを除去するため、絶対孔径0.1μmのフィルターが付いた2mLのマイクロチューブに試料を移し、高速冷却遠心分離機SRX-201(トミー精工社製)で10,000G、5分の条件で遠心分離し、その後、ろ液を回収した。酵素法には、グルコースCII-テストワコー(和光純薬工業製)を使用した。分光光度計UV-3150を用いて波長505nmの吸光度(セル長10mm)を測定した。具体的な手順は以下の通りである。
 セル長10mmのディスポーザブルセルに発色試液を3.0mL添加し、次いで、上述のろ液を0.02mL添加し、密栓した。次に、この混合溶液を、上下反転を繰り返し均一に混合した。その後、24℃で15分間静定し、波長505nmの吸光度を、分光光度計を用いて測定し、Esとした。次に、セル長10mmのディスポーザブルセルに発色試液を3.0mL添加し、次いで、ブドウ糖標準液II(500mg/dL)を0.02mL添加し、上下反転を繰り返し均一に混合した後、24℃で15分間静定し、波長505nmの吸光度を、分光光度計を用いて測定し、Estdとした。ここでは、発色試液3.0mLの吸光度を対照として、実施例1の糖化反応液の吸光度Es、及びブドウ糖標準液Iの吸光度Estdを測定した。
 次に、実施例1の糖化反応液のグルコース生成量(mg/mL)を、下記式(3)から求めた。その結果を下記表5に示した。
Figure JPOXMLDOC01-appb-M000019
  (実施例2~実施例18)
 実施例1と同様にして、サンプル2~サンプル18の糖化酵素組成物から得られた各糖化反応液(以下、実施例2~実施例18の糖化反応液という)について、酵素反応2日後のグルコース生成量を算出し、その結果を下記表5に示した。
Figure JPOXMLDOC01-appb-T000020
  (比較例1~比較例14)
 実施例1と同様にして、比較サンプル1~比較サンプル3の糖化酵素水溶液、比較サンプル4~比較サンプル11のチオ尿素含有糖化酵素水溶液、及び比較サンプル12~比較サンプル14のシリカ含有糖化酵素水溶液から得られた各糖化反応液(以下、比較例1~比較例14の糖化反応液という)について、酵素反応2日後のグルコース生成量を算出し、その結果を下記表6に示した。
Figure JPOXMLDOC01-appb-T000021
 (1-10.糖化反応効率)
 上記表5及び表6のグルコース生成量に基づき、各実施例及び各比較例の糖化反応効率について検討した。まず、実施例4、実施例7、実施例8、比較例1~比較例3、比較例7、及び比較例10~比較例14におけるグルコース生成量から、チオ尿素の添加による糖化反応効率の向上効果について検討した。
 図1は、実施例4,7,8及び比較例1~3,7,10~14のチオ尿素の添加による糖化反応効率の向上効果の測定結果を示したグラフである。図1に示した通り、比較例1~比較例3の糖化反応液と、比較例12~比較例14の糖化反応液を比較すると、セルラーゼ水溶液にシリカを添加した比較例12~比較例14の方がグルコース生成量が増加しており、糖化反応効率の向上が見られた。また、比較例12~比較例14の糖化反応液と、実施例4、実施例7及び実施例8の糖化反応液を比較すると、セルラーゼ水溶液にシリカ及びチオ尿素を添加した実施例4、実施例7及び実施例8の方がグルコース生成量が増加しており、更なる糖化反応効率の向上が見られた。一方、比較例1~比較例3の糖化反応液と、比較例7、比較例10、比較例11の糖化反応液を比較すると、セルラーゼ水溶液にチオ尿素を添加しても糖化反応効率の向上はしなかった。従って、セルロースの糖化反応において、シリカとチオ尿素を併用することによって、糖化反応効率が向上することが確認できた。
 また、この結果より、比較例1~比較例3の糖化反応液と、セルラーゼ水溶液にシリカを添加した比較例12~比較例14の糖化反応液において、セルラーゼの使用量を比較すると、比較例12~比較例14では、20%程度の使用量を削減することができる。一方、比較例1~比較例3の糖化反応液と、セルラーゼ水溶液にシリカ及びチオ尿素を添加した実施例4、実施例7及び実施例8の糖化反応液において、セルラーゼの使用量を比較すると、実施例4、実施例7及び実施例8では、30%程度の使用量の削減が期待でき、セルラーゼ水溶液にシリカを添加した場合より、糖化反応におけるセルラーゼの使用量を更に10%程度削減することができると考えられる。
 次に、実施例1~実施例6、比較例1、比較例4~9及び比較例12におけるグルコースの生成量から、チオ尿素の添加量(チオ尿素濃度)による糖化反応効率の向上効果について検討した。図2は、実施例1,6及び比較例1,4~9,12のチオ尿素濃度による糖化反応効率の向上効果の測定結果を示したグラフである。
 図2に示した通り、シリカとチオ尿素の質量比率(チオ尿素/シリカ)が概ね0.00001~0.1の範囲において、糖化反応効率が大幅に向上し、両者の併用効果を確認することができた。従って、この結果より、グルコース生成量は、特にチオ尿素の添加量に依存することが示唆された。なお、糖化酵素(セルラーゼ)にチオ尿素だけを組み合わせても、糖化反応効率の向上効果は見られなかった。
 また、実施例9~実施例18、比較例1及び比較例12におけるグルコースの生成量から、チオ尿素以外の化合物(A)であるチオ尿素誘導体又はイソチオ尿素誘導体の添加による糖化反応効率の向上効果について検討した。図3は、実施例9~18及び比較例1,12のチオ尿素誘導体又はイソチオ尿素誘導体の添加による糖化反応効率の向上効果の測定結果を示したグラフである。
 図3に示した通り、実施例9~実施例18の糖化反応液と、比較例1及び比較例12の糖化反応液を比較すると、セルラーゼ水溶液にシリカ及びチオ尿素誘導体又はイソチオ尿素誘導体を添加した実施例9~実施例18に糖化反応効率の向上効果が見られた。従って、セルロースの糖化反応において、シリカと化合物(A)としてチオ尿素誘導体又はイソチオ尿素誘導体を併用することによって、糖化反応効率が向上することが確認できた。
 [2.シリカ又はシリカ含有物質として珪藻土を用いた糖の製造]
 (2-1.平均二次粒子径)
 珪藻土の平均二次粒子径は、以下の測定装置を用いて測定した。
  レーザ回折/散乱式粒子径分布測定装置:LA-300(株式会社堀場製作所社製)
 (2-2.糖化酵素組成物)
 以下の手順で、糖化酵素組成物を作製した。脱イオン交換水中にpH調整として最終的に0.05Mになるよう1M酢酸緩衝液(pH5.0)、シリカ含有物質として珪藻土(シリカ#600S、中央シリカ株式会社製、シリカ含有率:90質量%、平均二次粒子径:30μm)、化合物(A)としてチオ尿素、及び上述のセルラーゼ水溶液を添加し、室温下、ローターで100rpm、30分間回転させながら混合して、下記表7に示した糖化酵素濃度(本実施例ではセルラーゼ濃度)、珪藻土濃度及びチオ尿素濃度の糖化酵素組成物を得た。この糖化酵素組成物をサンプル19とした。
 (2-3.珪藻土含有糖化酵素水溶液)
 以下の手順で、珪藻土含有糖化酵素水溶液を作製した。脱イオン交換水中にpH調整として最終的に0.05Mになるよう1M酢酸緩衝液(pH5.0)、シリカ含有物質として珪藻土(シリカ#600S、中央シリカ株式会社製、シリカ含有率:90質量%、平均粒子径:30μm)、及び上述のセルラーゼ水溶液を添加し、室温下、ローターで100rpm、30分間回転させながら混合して、下記表7に示した糖化酵素濃度(本実施例ではセルラーゼ濃度)、及び珪藻土濃度の珪藻土含有糖化酵素水溶液を得た。この珪藻土含有糖化酵素水溶液を、比較サンプル15とした。
Figure JPOXMLDOC01-appb-T000022
 (2-4.糖化反応液)
 サンプル19の糖化酵素組成物及び比較サンプル15の珪藻土含有糖化酵素水溶液を用いたこと以外はサンプル1~サンプル18の糖化酵素組成物と同様にして、サンプル19及び比較サンプル15の糖化反応液を得た。
 (2-5.グルコース生成量の算出)
  (実施例19)
 実施例1と同様にして、サンプル19の糖化酵素組成物から得られた糖化反応液(以下、実施例19の糖化反応液という)について、酵素反応2日後のグルコース生成量を算出し、その結果を下記表8に示した。
  (比較例15)
 実施例1と同様にして、比較サンプル15の糖化酵素組成物から得られた糖化反応液(以下、比較例15の糖化反応液という)について、酵素反応2日後のグルコース生成量を算出し、その結果を下記表8に示した。
Figure JPOXMLDOC01-appb-T000023
 (2-6.糖化反応効率)
 上記表6及び表8のグルコース生成量に基づき、各サンプル及び各比較サンプルの糖化反応効率について検討した。まず、実施例19、比較例1、比較例7、及び比較例15におけるグルコース生成量から、チオ尿素の添加による糖化反応効率の向上効果について検討した。図4は、実施例19及び比較例1,7,15のチオ尿素の添加による糖化反応効率の向上効果の測定結果を示したグラフである。
 図4に示した通り、比較例1の糖化反応液と、セルラーゼ水溶液にチオ尿素を添加した比較例7の糖化反応液と、セルラーゼ水溶液にシリカ含有物質として珪藻土を添加した比較例15の糖化反応液、セルラーゼ水溶液に珪藻土及びチオ尿素を添加した実施例19の糖化反応液を比較すると、セルラーゼ水溶液に珪藻土及びチオ尿素を添加した実施例19の方がグルコース生成量が増加しており、糖化反応効率の向上が見られた。従って、セルロースの糖化反応において、シリカ含有物質として珪藻土を用い、更にチオ尿素を併用することによって、糖化反応効率が向上することが確認できた。
 [3.糖を用いたエタノールの製造]
 (3-1.酵母水溶液)
 以下の手順で、酵母水溶液を作製した。予め35℃に調整した脱イオン交換水40g中に酵母の粉末0.2gを添加し、35℃に保持したままマグネティックスターラーを用いて、20分間撹拌させながら溶解して0.5質量%(=酵母粉末0.2g/脱イオン交換水40g)の酵母水溶液を得た。なお、酵母としては、サッカロマイセス(Saccharomyces)属のサッカロマイセス・セレビシエ(Saccharomyces cerevisiae;S. cerevisiae) YP2(Sigma Aldrich製)を用いた。
 (3-2.エタノール発酵水溶液)
 以下の手順で、エタノール発酵水溶液を作製した。脱イオン交換水中に、pH調整として最終的にpH5前後になるよう硫酸、窒素源として最終的に0.21mg/mLとなるよう尿素、上述のセルラーゼ水溶液及び上述の酵母水溶液を添加し、室温下、マグネティックスターラーで、10分間回転させながら混合して、下記表9に示した糖化酵素濃度(本実施例ではセルラーゼ濃度)、及び酵母濃度のエタノール発酵水溶液を得た。このエタノール発酵水溶液を比較サンプル16とした。
 (3-3.エタノール発酵組成物)
 以下の手順で、エタノール酵素組成物を作製した。脱イオン交換水中に、pH調整として最終的にpH5前後になるよう硫酸、窒素源として最終的に0.21mg/mLとなるよう尿素、シリカ含有物質として水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:85nm)が水に分散されたアルカリ性シリカゾル(pH9.5、シリカ濃度40質量%)、化合物(A)としてチオ尿素、上述のセルラーゼ水溶液及び上述の酵母水溶液を添加し、室温下、マグネティックスターラーで、10分間回転させながら混合して、下記表9に示した糖化酵素濃度(本実施例ではセルラーゼ濃度)、シリカ濃度、チオ尿素濃度、及び酵母濃度のエタノール発酵組成物をそれぞれ得た。これらのエタノール発酵組成物をサンプル20及びサンプル21とした。
 (3-4.チオ尿素含有エタノール発酵水溶液)
 以下の手順で、チオ尿素含有エタノール発酵水溶液を作製した。脱イオン交換水中に、pH調整として最終的にpH5前後になるよう硫酸、窒素源として最終的に0.21mg/mLとなるよう尿素、化合物(A)としてチオ尿素、上述のセルラーゼ水溶液及び上述の酵母水溶液を添加し、室温下、マグネティックスターラーで、10分間回転させながら混合して、下記表9に示した糖化酵素濃度、チオ尿素濃度、及び酵母濃度のチオ尿素含有エタノール発酵水溶液を得た。このチオ尿素含有エタノール発酵水溶液を比較サンプル17及び比較サンプル18とした。
 (3-5.シリカ含有エタノール発酵水溶液)
 以下の手順で、シリカ含有エタノール発酵水溶液を作製した。脱イオン交換水中に、pH調整として最終的にpH5前後になるよう硫酸、窒素源として最終的に0.21mg/mLとなるよう尿素、シリカとして水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径粒子径85nm)が水に分散されたアルカリ性シリカゾル(pH9.5、シリカ濃度40質量%)、上述のセルラーゼ水溶液及び上述の酵母水溶液を添加し、室温下、ローターで100rpm、30分間回転させながら混合して、下記表9に示した糖化酵素濃度(本実施例ではセルラーゼ濃度)、シリカ濃度、及び酵母濃度のシリカ含有エタノール発酵水溶液を得た。このシリカ含有エタノール発酵水溶液を、比較サンプル19とした。
Figure JPOXMLDOC01-appb-T000024
 (3-6.糖化反応及びエタノール発酵液)
 サンプル20のエタノール発酵組成物に、微結晶セルロース粉末を添加し、分散させて各サンプルを用いた糖化反応及びエタノール発酵液とした。具体的な手順は以下の通りである。
 まず、13.5mLのガラス瓶に各サンプルを10mL入れ、4mmφで10mmのスターラーで撹拌した状態で、微結晶セルロース粉末(結晶型:I型、商品名:Avicel PH-101、Sigma Aldrich製)を0.20g(20mg/mL相当)添加した後に、絶対孔径0.22μmの疎水性PTEF製メンブレンフィルターを付けたシリコン栓で栓をした。
 また、サンプル21のエタノール発酵組成物、比較サンプル16のエタノール発酵水溶液、比較サンプル17及び比較サンプル18のチオ尿素含有エタノール発酵水溶液、及び比較サンプル19のシリカ含有物質含有エタノール発酵水溶液を用いたこと以外は、サンプル20のエタノール発酵組成物と同様にして、各糖化反応及びエタノール発酵液を得た。
 (3-7.エタノールの製造)
 上述の各サンプル及び各比較サンプルを用いた糖化反応及びエタノール発酵液を、31℃の恒温槽中で、撹拌下で2日間それぞれ酵素反応及びエタノール発酵を同時にさせた。この酵素反応により得られた糖(グルコース)を用いてエタノール発酵させ、エタノールを得た。
 (3-8.エタノール生成量の算出)
  (実施例20)
 ガスクロマトグラフィ(GC)を用いて、サンプル20のエタノール発酵組成物から得られた糖化反応及びエタノール発酵液(以下、実施例20の糖化反応及びエタノール発酵液という)の酵素反応及びエタノール発酵後のエタノール生成量を算出した。
 2mLマイクロチューブに、実施例20の糖化反応及びエタノール発酵液の試料を0.5mL採取し、105℃、15分で酵素及び酵母を失活させた。次に、未反応のセルロース、シリカ含有物質及び酵母を除去するため、高速冷却遠心分離機SRX-201(トミー精工社製)で15,000G、30分の条件で遠心分離し、その後、上澄み液を回収した。エタノール生成量の定量には、ガスクロマトグラフGC-2014s(島津製作所社製)を用いて1点検量線法で測定し、エタノール生成量(mg/mL)の測定結果を下記表10に示した。具体的な分析条件は以下の通りである。
  <分析条件>
   カラム:ポーラパックQ、長さ1m、内径3.2mm(ジーエルサイエンス社製)
   検出器:FID
   カラム温度:150℃
   流量:40mL/min
   サンプル量:2μL
   検量線用標品:エタノール10mg/mL水溶液
  (実施例21)
 実施例20と同様にして、サンプル21のエタノール発酵組成物から得られた糖化反応及びエタノール発酵液(以下、実施例21の糖化反応及びエタノール発酵液という)について、酵素反応及びエタノール発酵2日後のエタノール生成量を算出し、その結果を下記表10に示した。
  (比較例16~比較例19)
 実施例20と同様にして、比較サンプル16のエタノール発酵水溶液、比較サンプル17及び比較サンプル18のチオ尿素含有エタノール発酵水溶液、及び比較サンプル19のシリカ含有物質含有エタノール発酵水溶液から得られた各糖化反応及び各エタノール発酵液(以下、比較例16~比較例19の糖化反応及びエタノール発酵液という)について、糖化反応及びエタノール発酵2日後のエタノール生成量を算出し、その結果を下記表10に示した。
Figure JPOXMLDOC01-appb-T000025
 (3-9.エタノール発酵効率)
 上記表10のエタノール生成量に基づき、各実施例及び各比較例のエタノール発酵効率について検討した。まず、実施例20、実施例21及び比較例16~比較例19におけるエタノール生成量から、チオ尿素の添加量(チオ尿素濃度)による糖化反応効率の向上効果について検討した。図5は、実施例20,21及び比較例16~19のチオ尿素濃度によるエタノール発酵効率の向上効果の測定結果を示したグラフである。
 図5に示した通り、比較例16、比較例19の糖化反応及びエタノール発酵液を比較すると、セルラーゼ水溶液及び酵母水溶液にシリカを添加した比較例19の方がエタノール生成量は増加しており、エタノール生成効率の向上が見られた。また、実施例20、実施例21及び比較例19の糖化反応及びエタノール発酵液を比較すると、セルラーゼ水溶液及び酵母水溶液にシリカ及びチオ尿素を添加した実施例20、実施例21の方がエタノール生成量が増加しており、更なるエタノール生成効率の向上が見られた。一方、比較例16、比較例17、比較例18の糖化反応及びエタノール発酵液を比較すると、セルラーゼ水溶液及び酵母水溶液にチオ尿素を添加してもエタノール生成効率の向上はしなかった。従って、セルロースの糖化反応及びエタノール発酵において、シリカ含有物質とチオ尿素を併用することによって、エタノール生成効率が向上することが確認できた。
 本発明は、セルロース又はヘミセルロースを含むセルロース系バイオマスからグルコースといった糖を生成する糖化技術が適用される産業分野、例えば、セルロース系バイオエタノールの製造等で利用することができる。

Claims (16)

  1.  セルロース及びヘミセルロースの少なくとも一方を糖化する糖化反応液であって、前記セルロース及び前記ヘミセルロースの少なくとも一方と、糖化酵素と、シリカ又はシリカ含有物質と、下記一般式(1)又は(2)で表される化合物及びその塩からなる群より選ばれる少なくとも1種の化合物(A)とを含有することを特徴とする糖化反応液。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    [前記一般式(1)及び(2)中のR~Rは、水素原子、又は炭素数1~4のアルキル基を表し、前記アルキル基中の水素原子の一部は、アリル基、ヒドロキシル基、エステル基、アミノ基、カルボキシル基、シアノ基、ニトロ基、スルホ基、ホスホノ基又はハロゲン原子によって置換されていてもよい。]
  2.  前記シリカ含有物質は、珪藻土又は珪砂であることを特徴とする請求項1に記載の糖化反応液。
  3.  前記シリカ又はシリカ含有物質中のシリカと前記化合物(A)との質量比率(化合物(A)/シリカ)が、0.00001以上、0.1以下であることを特徴とする請求項1又は請求項2に記載の糖化反応液。
  4.  前記化合物(A)は、チオ尿素、N-メチルチオ尿素、1,3-ジメチルチオ尿素、トリメチルチオ尿素、テトラメチルチオ尿素、1-アリル-3-(3-ヒドロキシエチル)-2-チオ尿素、エチレンチオ尿素、グアニルチオ尿素、S-メチルイソチオ尿素、S-エチルイソチオ尿素、S-[2-(ジメチルアミノ)エチル]イソチオ尿素、S-ベンジルイソチオ尿素、及びS-(2-アミノエチル)イソチオ尿素からなる群から選ばれる少なくとも1種を含有することを特徴とする請求項1乃至請求項3のいずれか一項に記載の糖化反応液。
  5.  セルロース及びヘミセルロースの少なくとも一方を糖化する糖化酵素組成物であって、糖化酵素と、シリカ又はシリカ含有物質と、下記一般式(1)又は(2)で表される化合物及びその塩からなる群より選ばれる少なくとも1種の化合物(A)とを含有し、前記シリカ又はシリカ含有物質のシリカと前記化合物(A)との質量比率(化合物(A)/シリカ)が、0.00001以上、0.1以下であることを特徴とする糖化酵素組成物。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    [前記一般式(1)及び(2)中のR~Rは、水素原子、又は炭素数1~4のアルキル基を表し、前記アルキル基中の水素原子の一部は、アリル基、ヒドロキシル基、エステル基、アミノ基、カルボキシル基、シアノ基、ニトロ基、スルホ基、ホスホノ基又はハロゲン原子によって置換されていてもよい。]
  6.  前記シリカ含有物質は、珪藻土又は珪砂であることを特徴とする請求項5に記載の糖化酵素組成物。
  7.  前記化合物(A)は、チオ尿素、N-メチルチオ尿素、1,3-ジメチルチオ尿素、トリメチルチオ尿素、テトラメチルチオ尿素、1-アリル-3-(3-ヒドロキシエチル)-2-チオ尿素、エチレンチオ尿素、グアニルチオ尿素、S-メチルイソチオ尿素、S-エチルイソチオ尿素、S-[2-(ジメチルアミノ)エチル]イソチオ尿素、S-ベンジルイソチオ尿素、及びS-(2-アミノエチル)イソチオ尿素からなる群から選ばれる少なくとも1種を含有することを特徴とする請求項5又は請求項6に記載の糖化酵素組成物。
  8.  セルロース及びヘミセルロースの少なくとも一方を糖化する糖化反応液を用いて糖を製造する糖の製造方法であって、前記セルロース及び前記ヘミセルロースの少なくとも一方と、糖化酵素と、シリカ又はシリカ含有物質と、下記一般式(1)又は(2)で表される化合物及びその塩からなる群より選ばれる少なくとも1種の化合物(A)とを含有する糖化反応液を用いて糖を製造することを特徴とする糖の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    [前記一般式(1)及び(2)中のR~Rは、水素原子、又は炭素数1~4のアルキル基を表し、前記アルキル基中の水素原子の一部は、アリル基、ヒドロキシル基、エステル基、アミノ基、カルボキシル基、シアノ基、ニトロ基、スルホ基、ホスホノ基又はハロゲン原子によって置換されていてもよい。]
  9.  前記シリカ含有物質は、珪藻土又は珪砂であることを特徴とする請求項8に記載の糖の製造方法。
  10.  前記シリカ又はシリカ含有物質のシリカと前記化合物(A)との質量比率(化合物(A)/シリカ)が、0.00001以上、0.1以下であることを特徴とする請求項8又は請求項9に記載の糖の製造方法。
  11.  前記化合物(A)は、チオ尿素、N-メチルチオ尿素、1,3-ジメチルチオ尿素、トリメチルチオ尿素、テトラメチルチオ尿素、1-アリル-3-(3-ヒドロキシエチル)-2-チオ尿素、エチレンチオ尿素、グアニルチオ尿素、S-メチルイソチオ尿素、S-エチルイソチオ尿素、S-[2-(ジメチルアミノ)エチル]イソチオ尿素、S-ベンジルイソチオ尿素、及びS-(2-アミノエチル)イソチオ尿素からなる群から選ばれる少なくとも1種を含有することを特徴とする請求項8乃至請求項10のいずれか一項に記載の糖の製造方法。
  12.  請求項8乃至請求項11のいずれか一項に記載の糖の製造方法により得られた糖を用いて、発酵微生物によるエタノール発酵を行い、エタノールを製造することを特徴とするエタノールの製造方法。
  13.  糖を製造する工程に発酵微生物を添加して、糖の製造とエタノール発酵とを同時に行うことを特徴とする請求項12に記載のエタノールの製造方法。
  14.  前記発酵微生物は、酵母、カビ又は細菌であることを特徴とする請求項12又は請求項13に記載のエタノールの製造方法。
  15.  前記発酵微生物は、サッカロマイセス(Saccharomyces)属、ザイモモナス(Zymomonas)属、ピチア(Pichia)属、カンジダ(Candida)属、ザイモバクター(Zymobacter)属、コリネバクテリウム(Corynebacterium)属、クルイウェロマイセス(Kluyveromyces)属又はエシェリキア(Escherichia)属に属する微生物であることを特徴とする請求項14に記載のエタノールの製造方法。
  16.  エタノール発酵を15℃以上、35℃以下で行うことを特徴とする請求項12乃至請求項15のいずれか一項に記載のエタノールの製造方法。
PCT/JP2017/021689 2016-06-17 2017-06-12 糖化反応液、糖化酵素組成物、糖の製造方法及びエタノールの製造方法 WO2017217380A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA3027333A CA3027333A1 (en) 2016-06-17 2017-06-12 Saccharification reaction mixture, saccharification enzyme composition, sugar production method, and ethanol production method
EP17813276.7A EP3473710B1 (en) 2016-06-17 2017-06-12 Saccharification reaction solution, saccharifying enzyme composition, sugar production method, and ethanol production method
DK17813276.7T DK3473710T3 (da) 2016-06-17 2017-06-12 Forsukringsreaktionsopløsning, forsukringsenzymsammensætning, fremgangsmåde til fremstilling af sukker og fremgangsmåde til fremstilling af ethanol
US16/307,086 US11001867B2 (en) 2016-06-17 2017-06-12 Saccharification reaction mixture, saccharification enzyme composition, sugar production method, and ethanol production method
CN201780037098.XA CN109312318B (zh) 2016-06-17 2017-06-12 糖化反应液、糖化酶组合物、糖的制造方法及乙醇的制造方法
JP2018523905A JP7001053B2 (ja) 2016-06-17 2017-06-12 糖化反応液、糖化酵素組成物、糖の製造方法及びエタノールの製造方法
FIEP17813276.7T FI3473710T3 (fi) 2016-06-17 2017-06-12 Sakkarointireaktioliuos, sakkaroiva entsyymikoostumus, sokerin valmistusmenetelmä sekä etanolin valmistusmenetelmä
BR112018075819-1A BR112018075819B1 (pt) 2016-06-17 2017-06-12 Mistura de reação de sacarificação, composição de enzimas de sacarificação, método para produção de açúcar e método para produção de etanol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-121206 2016-06-17
JP2016121206 2016-06-17

Publications (1)

Publication Number Publication Date
WO2017217380A1 true WO2017217380A1 (ja) 2017-12-21

Family

ID=60664381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021689 WO2017217380A1 (ja) 2016-06-17 2017-06-12 糖化反応液、糖化酵素組成物、糖の製造方法及びエタノールの製造方法

Country Status (9)

Country Link
US (1) US11001867B2 (ja)
EP (1) EP3473710B1 (ja)
JP (1) JP7001053B2 (ja)
CN (1) CN109312318B (ja)
CA (1) CA3027333A1 (ja)
DK (1) DK3473710T3 (ja)
FI (1) FI3473710T3 (ja)
TW (1) TWI727057B (ja)
WO (1) WO2017217380A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53145981A (en) * 1977-05-11 1978-12-19 Chevron Res Accerelation of celluose fermentation
JPS553798A (en) * 1978-06-19 1980-01-11 Chevron Res Promoting of cellulose fermenting speed
JPH1066594A (ja) * 1996-08-27 1998-03-10 Bio Star:Kk 植物繊維を用いたグルコースの製造方法
JP2011074522A (ja) * 2009-09-30 2011-04-14 Toyobo Co Ltd エアバッグ用コート布
WO2011078225A1 (ja) * 2009-12-22 2011-06-30 Jnc株式会社 ポリシリコンの製造方法および四塩化ケイ素の製造方法
JP2011234715A (ja) * 2010-04-15 2011-11-24 Sanyo Chem Ind Ltd 糖化反応促進剤及び糖の製造方法
JP2015019633A (ja) * 2013-07-22 2015-02-02 国立大学法人 東京大学 酵素糖化用原料及びその製造方法、糖の製造方法、エタノールの製造方法、並びに乳酸の製造方法
JP2016000826A (ja) * 2015-08-26 2016-01-07 東洋インキScホールディングス株式会社 オフセット印刷インキ組成物および印刷物
JP2016501937A (ja) * 2012-11-30 2016-01-21 エイピーアイ インテレクチュアル プロパティー ホールディングス,リミテッド ライアビリティー カンパニーAPI Intellectual Property Holdings,LLC ナノセルロースを製造するプロセス及び装置並びにそれから製造される組成物及び製品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874991A (en) * 1968-08-23 1975-04-01 Westvaco Corp Polysulfide impregnation of lignocellulosic materials in a continuous digester
JPS536232B2 (ja) * 1974-01-11 1978-03-06
US4110475A (en) 1977-05-11 1978-08-29 Chevron Research Company Cellulose fermentation process
US4202939A (en) 1977-09-01 1980-05-13 Cpc International Inc. Glucoamylase immobilized on cationic colloidal silica
JPS6098985A (ja) 1983-11-02 1985-06-01 Kikkoman Corp 固定化された微生物菌体もしくは酵素の製造法
JP5126728B2 (ja) 2004-11-12 2013-01-23 独立行政法人産業技術総合研究所 リグノセルロース系バイオマス処理方法
EP2209901B1 (en) * 2007-10-12 2016-02-17 Danisco US Inc. Methods and compositions for enhanced production of organic sustances from fermenting microorganisms
JP2009125006A (ja) 2007-11-24 2009-06-11 National Institute Of Advanced Industrial & Technology シリカ系メソ多孔体−セルロース、ヘミセルロースの加水分解酵素複合体
CN102776595B (zh) * 2012-08-16 2013-12-11 泰安市奇能化工科技有限公司 植物纤维液化制造人造棉纤维的方法
EP3178939B1 (en) * 2014-08-07 2020-02-26 Nissan Chemical Corporation Saccharifying enzyme composition, saccharifying reaction solution, and sugar production method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53145981A (en) * 1977-05-11 1978-12-19 Chevron Res Accerelation of celluose fermentation
JPS553798A (en) * 1978-06-19 1980-01-11 Chevron Res Promoting of cellulose fermenting speed
JPH1066594A (ja) * 1996-08-27 1998-03-10 Bio Star:Kk 植物繊維を用いたグルコースの製造方法
JP2011074522A (ja) * 2009-09-30 2011-04-14 Toyobo Co Ltd エアバッグ用コート布
WO2011078225A1 (ja) * 2009-12-22 2011-06-30 Jnc株式会社 ポリシリコンの製造方法および四塩化ケイ素の製造方法
JP2011234715A (ja) * 2010-04-15 2011-11-24 Sanyo Chem Ind Ltd 糖化反応促進剤及び糖の製造方法
JP2016501937A (ja) * 2012-11-30 2016-01-21 エイピーアイ インテレクチュアル プロパティー ホールディングス,リミテッド ライアビリティー カンパニーAPI Intellectual Property Holdings,LLC ナノセルロースを製造するプロセス及び装置並びにそれから製造される組成物及び製品
JP2015019633A (ja) * 2013-07-22 2015-02-02 国立大学法人 東京大学 酵素糖化用原料及びその製造方法、糖の製造方法、エタノールの製造方法、並びに乳酸の製造方法
JP2016000826A (ja) * 2015-08-26 2016-01-07 東洋インキScホールディングス株式会社 オフセット印刷インキ組成物および印刷物

Also Published As

Publication number Publication date
FI3473710T3 (fi) 2023-10-31
JPWO2017217380A1 (ja) 2019-04-04
US11001867B2 (en) 2021-05-11
CN109312318B (zh) 2022-06-03
EP3473710A1 (en) 2019-04-24
BR112018075819A2 (pt) 2019-03-26
TW201812006A (zh) 2018-04-01
CA3027333A1 (en) 2017-12-21
EP3473710B1 (en) 2023-09-27
CN109312318A (zh) 2019-02-05
US20190300921A1 (en) 2019-10-03
JP7001053B2 (ja) 2022-01-19
TWI727057B (zh) 2021-05-11
DK3473710T3 (da) 2023-10-23
EP3473710A4 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
Nascimento et al. Purification and biochemical properties of a glucose-stimulated β-D-glucosidase produced by Humicola grisea var. thermoidea grown on sugarcane bagasse
CN105473729B (zh) 糖液的制造方法
US10696957B2 (en) Saccharification enzyme composition, saccharification reaction solution, and sugar production method
Kwon et al. Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa
CN102994481A (zh) 一种高效降解木质纤维素的复合酶系的制备方法及其应用
JP7001053B2 (ja) 糖化反応液、糖化酵素組成物、糖の製造方法及びエタノールの製造方法
US11959115B2 (en) Saccharification reaction mixture, saccharification enzyme composition, sugar production method, and ethanol production method
KR20140076140A (ko) 실리카 나노입자에 고정화된 정제되지 않은 셀룰라아제를 이용한 바이오매스의 당화율을 증진시키는 방법
BR112018075819B1 (pt) Mistura de reação de sacarificação, composição de enzimas de sacarificação, método para produção de açúcar e método para produção de etanol
JP2012139144A (ja) グルコースを主成分とする糖類の製造方法
CN102329835B (zh) 纳米材料促进木质纤维生物质水解方法
KR101593614B1 (ko) 당화 촉진 조성물을 이용한 바이오 에탄올의 생산방법
KR101408972B1 (ko) 발효 촉진 조성물을 이용한 바이오 에탄올의 생산방법
Mu et al. Study on Saccharification and Hydrolysis in Cellulose of Bagasse

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018523905

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3027333

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018075819

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017813276

Country of ref document: EP

Effective date: 20190117

ENP Entry into the national phase

Ref document number: 112018075819

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181212