WO2017217353A1 - 頭蓋内圧推定方法及び頭蓋内圧推定装置 - Google Patents
頭蓋内圧推定方法及び頭蓋内圧推定装置 Download PDFInfo
- Publication number
- WO2017217353A1 WO2017217353A1 PCT/JP2017/021589 JP2017021589W WO2017217353A1 WO 2017217353 A1 WO2017217353 A1 WO 2017217353A1 JP 2017021589 W JP2017021589 W JP 2017021589W WO 2017217353 A1 WO2017217353 A1 WO 2017217353A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- ear canal
- intracranial pressure
- pulse wave
- intracranial
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/03—Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs
- A61B5/031—Intracranial pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/03—Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs
- A61B5/036—Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs by means introduced into body tracts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6814—Head
- A61B5/6815—Ear
- A61B5/6817—Ear canal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7278—Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7225—Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
Definitions
- the present invention relates to an intracranial pressure estimation method and an intracranial pressure estimation apparatus.
- intracranial pressure ICP
- intracranial pressure is always kept constant due to the homeostasis, and if the intracranial pressure increases or decreases, it may cause serious life-related diseases.
- intracranial pressure is used as an index when treating or diagnosing brain damage, stroke, intracranial hemorrhage, or the like. For this reason, the establishment of a method for measuring intracranial pressure has been found to be particularly important.
- Patent Document 1 Non-Patent Documents 1 and 2
- Patent Document 2 Non-Patent Document 3
- any of the above methods requires drilling into the skull and installing a sensor or tube inside, making it highly invasive to the person being measured and requiring absolute rest during measurement.
- Patent Document 3 As a method for measuring the intracranial pressure that has been reported so far, for example, there is a report on a technique of injecting a contrast medium into the skull of a subject and measuring by NMR measurement (Patent Document 3). In addition, there is a report on a technique for injecting a contrast medium into the skull of a measurement subject, generating fine bubbles at the site, acquiring the low frequency response, and analyzing the resonance frequency (Patent Document 4). There are also reports on techniques for measuring intracranial pressure by applying infrared light to the eyeball of a subject and performing FT-IR analysis of reflected light (Patent Documents 5 to 7).
- Patent Documents 8 to 15 As a technique for non-invasively detecting biological information from a region around the brain, a technique for measuring a pulse wave in the ear canal has been reported (Patent Documents 8 to 15).
- Patent Document 16 there is a report in which intracranial pressure is calculated by measuring acoustic data for arterial blood pressure and middle cerebral artery blood flow and taking a nonlinear correlation between them (Patent Document 16).
- the simultaneous recording of cat ear canal pressure, arterial pressure wave, and intracranial pressure wave indicates that the amplitude of the ear canal pressure increases when the blood pressure rises, and the propagation time from the arterial pressure wave to the ear canal pressure wave when the intracranial pressure rises.
- Non-Patent Document 4 a notch appears on the transfer function from the measurement of the arterial pressure wave and the intracranial pressure wave (which is the main component of the pressure wave in the ear canal) of the dog, and this is the intracerebral pressure (cerebrospinal fluid pressure) It is known that it is affected by changes (Non-Patent Document 5).
- Patent Document 17 In order to cope with the technical problem possessed by the above technique, the inventors measure the carotid pulse wave and the external ear canal pressure pulse wave, and estimate the intracranial pressure based on both amplitude information and waveform information.
- Special table 2008-539811 gazette Japanese Patent Laid-Open No. 5-300880 JP 2001-346767 A JP 2006-230504 A Japanese translation of PCT publication No. 2002-513310 JP 2007-301215 A Special table 2008-543352 gazette JP-A-8-84704 Japanese Unexamined Patent Publication No. 2000-121467 Special table 2004-528104 gazette JP 2006-102163 A Special Table 2006-505300 JP 2008-237847 A JP 2010-17317 A JP 2010-187928 JP-T 2006-526487 JP 2013-102784 A
- Intracranial pressure measurement with a non-invasive and simple configuration is particularly important in emergency medical care and critically ill patient management of patients suffering from consciousness disorders due to brain diseases and the like.
- the device used for the measurement needs to be able to measure non-invasively with the simplest possible configuration.
- the present invention has been made in view of the above problems. According to the present invention, it is possible to provide an intracranial pressure estimation method or the like that makes it possible to estimate the intracranial pressure in real time without burden on the measurement subject by using a noninvasive and simple device. .
- the intracranial pressure estimation method is an intracranial pressure estimation method for estimating the intracranial pressure from time series data of the ear canal pressure pulse wave, and acquiring the time series data of the ear ear pressure pulse wave of the subject; and Analyzing the inner ear pressure pulse wave data obtained by digitizing the time series data of the outer ear canal pressure pulse wave to calculate the first formant frequency of the inner ear pressure pulse wave data, and calculating the first formant frequency as the individual of the subject.
- An intracranial pressure estimation method including a correction step of correcting based on information and calculating a correction value, and an estimation step of calculating an estimated value of intracranial pressure based on the correction value.
- the intracranial pressure can be estimated based on the pulse wave of the ear canal that is non-invasive and can be measured with a simple device, so that it is possible to estimate the intracranial pressure in real time without burdening the subject.
- An intracranial pressure estimation method can be realized.
- the first formant frequency of the pressure wave data in the ear canal pressure is corrected based on the personal information of the subject, and the estimated value of the intracranial pressure is calculated using the obtained correction value, thereby accurately estimating the intracranial pressure.
- An intracranial pressure estimation method that can be realized can be realized.
- the first formant frequency may be calculated by analyzing data obtained by performing high-pass filter processing on the external ear canal pressure pulse wave data.
- the estimated value PICP of the intracranial pressure may be calculated based on the following equation in the estimation step.
- PICP A ⁇ ln (Xf1) + B
- a and B are constants
- Xf1 is the correction value
- the correction value Xf1 may be calculated based on the following equation in the correction step.
- Xf1 f1 + ⁇ 1 ⁇ ln (K / Age) + ⁇ 2 ⁇ FM
- f1 is the first formant frequency
- ⁇ 1 is the first formant frequency
- K and ⁇ 2 are constants
- Age is the age of the subject
- FM is the subject's gender (0 for male, 1 for female). is there.
- the intracranial pressure estimation apparatus includes an ear canal pressure pulse wave sensor that detects a pressure wave of an external auditory canal of a subject, and a calculation unit that estimates an intracranial pressure from time series data of the pressure pulse wave in the ear canal.
- the analysis unit analyzes the internal pressure pulse wave data obtained by digitizing the time series data of the external ear pressure pulse wave, calculates a first formant frequency of the internal ear pressure pulse wave data, and calculates the first formant frequency as an individual of the subject.
- the intracranial pressure can be estimated based on the pulse wave of the ear canal that is non-invasive and can be measured with a simple device, so that it is possible to estimate the intracranial pressure in real time without burdening the subject.
- An intracranial pressure estimation device can be realized.
- the first formant frequency of the pressure wave data in the ear canal pressure is corrected based on the personal information of the subject, and the estimated value of the intracranial pressure is calculated using the obtained correction value, thereby accurately estimating the intracranial pressure.
- An intracranial pressure estimation device that enables this can be realized.
- FIG. 1 is a functional block diagram illustrating a configuration example of the intracranial pressure estimation apparatus according to the present embodiment.
- FIG. 2 is a diagram illustrating a configuration example of an external ear canal pressure pulse wave sensor.
- FIG. 3 is a diagram showing an equivalent circuit model analogizing pulse wave propagation from the carotid artery to the ear canal.
- FIG. 4 is a diagram schematically showing the heart, intracranial, inner ear, and ear canal.
- FIG. 5A is a diagram showing the relationship between the measured value of the intracranial pressure, the first formant frequency, the age and the sex in 19 subjects.
- FIG. 5B is a graph showing measured values of intracranial pressure of 19 subjects.
- FIG. 5C is a graph showing the first formant frequency of 19 subjects.
- FIG. 5A is a diagram showing the relationship between the measured value of the intracranial pressure, the first formant frequency, the age and the sex in 19 subjects.
- FIG. 5B is a graph showing measured values
- FIG. 5D is a graph showing the ages of 19 subjects.
- FIG. 5E is a graph showing the gender of 19 subjects.
- FIG. 6 is a graph showing the relationship between the estimated value of the intracranial pressure calculated using the first formant frequency without correction and the measured value of the intracranial pressure.
- FIG. 7 is a graph showing a relationship between an estimated value of the intracranial pressure calculated using a value obtained by correcting the first formant frequency and an actually measured value of the intracranial pressure.
- FIG. 8 is a flowchart showing a process flow of the intracranial pressure estimation apparatus according to the present embodiment.
- FIG. 1 is a functional block diagram illustrating a configuration example of an intracranial pressure estimation apparatus according to the present embodiment.
- the intracranial pressure estimation apparatus 1 includes an external ear canal pressure pulse wave sensor 10, an amplifier 20 (AC amplifier), an AD converter 30, an arithmetic processing unit (processor), a calculation unit 40 having a storage unit, and a display unit 50. Including.
- the ear canal pressure pulse wave sensor 10 detects the ear canal pressure pulse wave.
- the external ear pressure pulse wave detected by the internal ear pressure pulse wave sensor 10 is amplified by the amplifier 20, converted into digital data by the AD converter 30, and output to the calculation unit 40.
- FIG. 2 is a diagram showing an example of the configuration of the external ear canal pressure pulse wave sensor 10.
- the ear canal pressure pulse wave sensor 10 includes a sealed portion 11 that seals the ear canal to form a sealed space, and a microphone 12 that detects the sound pressure in the sealed space as an ear canal pulse wave sound pressure.
- the sealing part 11 is formed in a substantially hemispherical shape, and is provided with a sound hole 14 that communicates with a sound hole 13 of the microphone 12.
- the sound hole 14 is attached so as to communicate with the ear canal.
- the sealing portion 11 and the microphone 12 are coupled so that the tip of the sound hole 13 of the microphone 12 communicates with the sound hole 14 of the sealing portion 11.
- the sealing part 11 for example, a resin ear tip or a combination of a plastic material with the ear tip may be employed. Moreover, it is good also as a structure which provides an air hole in the sealing part 11 and seals when insertion in an ear canal is completed.
- a condenser electret microphone may be employed as the microphone 12.
- the calculation unit 40 analyzes the pressure wave data in the ear canal pressure (output signal of the AD converter 30) obtained by digitizing the time series data of the pressure pulse wave in the ear canal detected by the pressure pulse wave sensor 10 in the ear canal.
- the first formant frequency of the pressure pulse wave data in the ear canal is calculated, the correction value is calculated by correcting the calculated first formant frequency based on the subject's age and gender (subject's personal information), and based on the calculated correction value To calculate an estimate of intracranial pressure.
- the calculating part 40 may calculate the 1st formant frequency by analyzing the data which performed the high-pass filter process with respect to the said ear canal pressure pulse wave data.
- the display unit 50 displays the ear canal pressure pulse wave data, the calculation result (estimated value of the intracranial pressure) by the calculation unit 40, and the like.
- the display unit 50 for example, a liquid crystal display, a CRT display, or the like can be employed.
- FIG. 3 is a diagram showing an equivalent circuit model inferring pulse wave propagation from the carotid artery to the ear canal
- FIG. 4 is a diagram schematically showing the heart, intracranial, inner ear, and ear canal.
- the blood flow source pulse wave (artery) 11 (t) and the blood flow source pulse wave (vein) 12 (t) are input as currents, and the medium (blood, bone marrow fluid, air) is input.
- Flow is simulated by current and pressure by voltage.
- the compliance is represented by a capacitor
- the channel resistance is represented by a resistance
- the mass is represented by a coil.
- the blood and bone marrow fluid in the cranium and the inner ear and the ear canal (the eardrum) are insulated by transformers, respectively.
- ECP (t) in FIG. 3 represents the external ear canal pressure pulse wave sensor 10.
- fo is given by the following equation (1).
- the intracranial pressure ICP is given by the following formula (3) from a known relational expression with the intracranial compliance Cx.
- ⁇ 1 is a proportionality constant.
- FIG. FIG. 5B is a graph showing the measured value MICP of the intracranial pressure of each subject
- FIG. 5C is a graph showing the first formant frequency f1 of each subject
- FIG. 5D is a graph showing the age of each subject.
- FIG. 5E is a graph showing the sex of each subject.
- the actually measured value MICP of the intracranial pressure was measured using an intracranial pressure sensor (a drainage pressure sensor or a subdural space indwelling sensor).
- the first formant frequency f1 is obtained by performing high-pass filter processing for cutting signal components of 3 Hz or less on the external ear canal pressure pulse wave data, and then performing linear prediction analysis (LPC analysis: 1024 points (5.12 seconds), 20 Next). Note that f1 shown in FIG. 5A is an average value within the measurement time (approximately 10 minutes).
- the estimated value PICP of intracranial pressure was calculated by substituting the first formant frequency f1 shown in FIG. 5A into fo as fo, and compared with the actually measured value MICP of intracranial pressure shown in FIG. 5A.
- L1 in Formula (3) was made into the constant value.
- the comparison results are shown in FIG.
- the determination coefficient R 2 (the square of the correlation coefficient) representing the degree of fit of the estimated value PICP with respect to the actual measurement value MICP when L1 is constant is 0.5046, indicating that the correlation is low. This is considered to be due to the difference in L1 depending on age and sex.
- the first formant frequency f1 is corrected based on the age and sex of the subject. Specifically, the correction value Xf1 is calculated by correcting the first formant frequency f1 by the following equation (4).
- Xf1 f1 + ⁇ 1 ⁇ ln (K / Age) + ⁇ 2 ⁇ FM (4)
- ⁇ 1, K, and ⁇ 2 are constants
- Age is age.
- FM is gender, 0 for men and 1 for women.
- the estimated value PICP of the intracranial pressure is given by the following formula (5).
- PICP A ⁇ ln (Xf1) + B (5)
- a and B are constants.
- the correction value Xf1 is obtained by 4
- linear regression analysis is performed using the obtained correction value Xf1 and the measured value MICP of the intracranial pressure shown in FIG. 5A
- the optimum value of the constant of equation (5) is obtained.
- B -163.83.
- Age the upper limit and the lower limit were provided, and it was set to 30 when it was 30 years old or less, and was set to 65 when 65 years old or more.
- An estimated value PICP of intracranial pressure is calculated by equation (5) using the optimum constant value obtained from each data shown in FIG. 5A and the correction value Xf1, and compared with the actually measured value MICP of intracranial pressure shown in FIG. 5A. did.
- the comparison results are shown in FIG.
- the coefficient of determination R 2 representing a true level for the measured values MICP estimates PICP is 0.7585 Improved.
- the estimation accuracy of the intracranial pressure may be improved by the intracranial pressure estimation method of the present embodiment.
- FIG. 8 is a flowchart showing a process flow of the intracranial pressure estimation apparatus 1.
- the calculation unit 40 acquires external ear pressure pulse wave data obtained by digitizing time series data of the external ear pressure pulse wave detected by the external ear pressure pulse wave sensor 10 (step S10). Moreover, the calculating part 40 acquires the test subject's age Age and sex FM input from the input part which is not shown in figure.
- the calculation unit 40 performs high-pass filter processing on the acquired outer ear pressure pulse wave data (step S11). For example, by applying a high-pass filter that cuts at 3 Hz or less, disturbance elements such as breathing and heartbeat of the subject can be removed.
- the calculation unit 40 analyzes the inner ear pressure pulse wave data subjected to the high-pass filter process (LPC analysis or the like) to calculate the first formant frequency f1 (step S12).
- the calculation unit 40 corrects the calculated first formant frequency f1 based on the age Age and the sex FM of the subject using the equation (4), and calculates a correction value Xf1 (step S13).
- the calculation unit 40 calculates the estimated value PICP of the intracranial pressure using the equation (5) based on the calculated correction value Xf1 (step S14).
- the intracranial pressure can be estimated based on the pulse wave of the external auditory canal that is noninvasive and can be measured with a simple device, so that the intracranial pressure can be estimated in real time without burdening the subject.
- the first formant frequency f1 of the pressure wave data in the ear canal is corrected based on the age and sex of the subject, and the estimated value PICP of the intracranial pressure is calculated using the obtained correction value Xf1.
- the intracranial pressure can be accurately estimated in consideration of the difference in the inertial mass L1 in the skull according to the age and sex of the subject.
- the present invention includes substantially the same configuration (for example, a configuration having the same function, method, and result, or a configuration having the same purpose and effect) as the configuration described in the embodiment.
- the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
- the present invention includes a configuration that exhibits the same operational effects as the configuration described in the embodiment or a configuration that can achieve the same object.
- the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Physiology (AREA)
- Signal Processing (AREA)
- Hematology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Neurosurgery (AREA)
- Cardiology (AREA)
- Otolaryngology (AREA)
- Power Engineering (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
本適用例に係る頭蓋内圧推定方法は、外耳道内圧脈波の時系列データから頭蓋内圧を推定する頭蓋内圧推定方法であって、被験者の外耳道内圧脈波の時系列データを取得する取得工程と、前記外耳道内圧脈波の時系列データをデジタル化した外耳道内圧脈波データを解析して、前記外耳道内圧脈波データの第1フォルマント周波数を算出する解析工程と、前記第1フォルマント周波数を被験者の個人情報に基づき補正して補正値を算出する補正工程と、前記補正値に基づいて頭蓋内圧の推定値を算出する推定工程とを含む、頭蓋内圧推定方法である。
上述の頭蓋内圧推定方法において、前記解析工程において、前記外耳道内圧脈波データに対してハイパスフィルタ処理を施したデータを解析して、前記第1フォルマント周波数を算出してもよい。
上述の頭蓋内圧推定方法において、前記推定工程において、次式に基づいて頭蓋内圧の推定値PICPを算出してもよい。
ここで、A及びBは定数であり、Xf1は前記補正値である。
上述の頭蓋内圧推定方法において、前記補正工程において、次式に基づいて前記補正値Xf1を算出してもよい。
ここで、f1は前記第1フォルマント周波数であり、β1、K及びβ2は定数であり、Ageは被験者の年齢であり、FMは被験者の性別(男性の場合は0、女性の場合は1)である。
本適用例に係る頭蓋内圧推定装置は、被験者の外耳道内圧脈波を検出する外耳道内圧脈波センサーと、前記外耳道内圧脈波の時系列データから頭蓋内圧を推定する演算部とを含み、前記演算部は、前記外耳道内圧脈波の時系列データをデジタル化した外耳道内圧脈波データを解析して、前記外耳道内圧脈波データの第1フォルマント周波数を算出し、前記第1フォルマント周波数を被験者の個人情報に基づき補正して補正値を算出し、前記補正値に基づいて頭蓋内圧の推定値を算出する、頭蓋内圧推定装置である。
図1は、本実施形態に係る頭蓋内圧推定装置の構成例を示す機能ブロック図である。頭蓋内圧推定装置1は、外耳道内圧脈波センサー10と、増幅器20(交流増幅器)と、AD変換器30と、演算処理部(プロセッサー)及び記憶部を有する演算部40と、表示部50とを含む。
図3は、頸動脈から外耳道までの脈波伝搬を類推した等価回路モデルを示す図であり、図4は、心臓、頭蓋内、内耳及び外耳道を模式的に示す図である。図3に示す等価回路モデルでは、血流源脈波(動脈)l1(t)、血流源脈波(静脈)l2(t)を電流として入力し、媒質(血液、骨髄液、空気)の流れを電流、圧力を電圧でシミュレートしている。また、コンプライアンスをコンデンサ、流路抵抗を抵抗、質量をコイルで表している。また、頭蓋内の血液と骨髄液の間、及び内耳と外耳道の間(鼓膜)は、それぞれトランスにより絶縁されている。なお、図3中のECP(t)は、外耳道内圧脈波センサー10を表している。
式(1)より、頭蓋内のコンプライアンスCxは、以下の式(2)で表される。
頭蓋内圧ICPは、頭蓋内のコンプライアンスCxとの既知の関係式より、以下の式(3)で与えられる。
ここで、α1は比例定数である。
ここで、β1、K及びβ2は定数であり、Ageは年齢である。また、FMは性別であり、男性の場合は0、女性の場合は1とする。
ここで、A及びBは定数である。例えば、式(4)の定数を、β1=1.5、β2=-0.4、K=50として、図5Aに示す各データ(第1フォルマント周波数f1、年齢、性別)を用いて式(4)により補正値Xf1を求め、求めた補正値Xf1と図5Aに示す頭蓋内圧の実測値MICPを用いて線形回帰分析を行って式(5)の定数の最適値を求めると、A=124.24、B=-163.83となる。なお、Ageについては、上限値と下限値を設け、30歳以下の場合は30とし、65歳以上の場合は65とした。
図8は、頭蓋内圧推定装置1の処理の流れを示すフローチャートである。
Claims (5)
- 外耳道内圧脈波の時系列データから頭蓋内圧を推定する頭蓋内圧推定方法であって、
被験者の外耳道内圧脈波の時系列データを取得する取得工程と、
前記外耳道内圧脈波の時系列データをデジタル化した外耳道内圧脈波データを解析して、前記外耳道内圧脈波データの第1フォルマント周波数を算出する解析工程と、
前記第1フォルマント周波数を被験者の個人情報に基づき補正して補正値を算出する補正工程と、
前記補正値に基づいて頭蓋内圧の推定値を算出する推定工程とを含む、頭蓋内圧推定方法。 - 請求項1に記載の頭蓋内圧推定方法において、
前記解析工程において、前記外耳道内圧脈波データに対してハイパスフィルタ処理を施したデータを解析して、前記第1フォルマント周波数を算出する、頭蓋内圧推定方法。 - 請求項1又は2に記載の頭蓋内圧推定方法において、
前記推定工程において、次式に基づいて頭蓋内圧の推定値PICPを算出する、頭蓋内圧推定方法。
PICP=A・ln(Xf1)+B
ここで、A及びBは定数であり、Xf1は前記補正値である。 - 請求項3に記載の頭蓋内圧推定方法において、
前記補正工程において、次式に基づいて前記補正値Xf1を算出する、頭蓋内圧推定方法。
Xf1=f1+β1・ln(K/Age)+β2・FM
ここで、f1は前記第1フォルマント周波数であり、β1、K及びβ2は定数であり、Ageは被験者の年齢であり、FMは被験者の性別(男性の場合は0、女性の場合は1)である。 - 被験者の外耳道内圧脈波を検出する外耳道内圧脈波センサーと、
前記外耳道内圧脈波の時系列データから頭蓋内圧を推定する演算部とを含み、
前記演算部は、
前記外耳道内圧脈波の時系列データをデジタル化した外耳道内圧脈波データを解析して、前記外耳道内圧脈波データの第1フォルマント周波数を算出し、前記第1フォルマント周波数を被験者の個人情報に基づき補正して補正値を算出し、前記補正値に基づいて頭蓋内圧の推定値を算出する、頭蓋内圧推定装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/309,424 US11278212B2 (en) | 2016-06-17 | 2017-06-12 | Intracranial pressure estimating method and intracranial pressure estimating device |
EP17813249.4A EP3473164A4 (en) | 2016-06-17 | 2017-06-12 | INTRACRANIAL PRESSURE ESTIMATION METHOD AND INTRACRANIAL PRESSURE ESTIMATION DEVICE |
KR1020187037888A KR102399223B1 (ko) | 2016-06-17 | 2017-06-12 | 두개 내압 추정방법 및 두개 내압 추정장치 |
CN201780037751.2A CN109328030B (zh) | 2016-06-17 | 2017-06-12 | 颅内压推定方法及颅内压推定装置 |
JP2018523886A JP6989826B2 (ja) | 2016-06-17 | 2017-06-12 | 頭蓋内圧推定方法及び頭蓋内圧推定装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016120708 | 2016-06-17 | ||
JP2016-120708 | 2016-06-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017217353A1 true WO2017217353A1 (ja) | 2017-12-21 |
Family
ID=60664182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/021589 WO2017217353A1 (ja) | 2016-06-17 | 2017-06-12 | 頭蓋内圧推定方法及び頭蓋内圧推定装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11278212B2 (ja) |
EP (1) | EP3473164A4 (ja) |
JP (1) | JP6989826B2 (ja) |
KR (1) | KR102399223B1 (ja) |
CN (1) | CN109328030B (ja) |
WO (1) | WO2017217353A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024044832A1 (pt) * | 2022-09-02 | 2024-03-07 | Braincare Desenvolvimento E Inovação Tecnológica S.A. | Método e sistema para a geração de indicador de complacência e pressão intracraniana |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000121467A (ja) * | 1998-10-12 | 2000-04-28 | Yufu Itonaga Co Ltd | 密閉外耳道内圧測定装置 |
JP2013102784A (ja) * | 2011-11-10 | 2013-05-30 | Shinshu Univ | 頭蓋内圧測定装置および測定方法 |
JP2016059755A (ja) * | 2014-09-22 | 2016-04-25 | 国立大学法人信州大学 | 頭蓋内圧測定装置 |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5117835A (en) * | 1990-07-31 | 1992-06-02 | Mick Edwin C | Method and apparatus for the measurement of intracranial pressure |
JPH05300880A (ja) | 1992-04-28 | 1993-11-16 | Japan Medical Dynamic Marketing Inc | 頭蓋内コンプライアンス算出用頭蓋内圧測定方法 |
JPH0884704A (ja) | 1994-09-16 | 1996-04-02 | Hiroshi Oba | 頭蓋内圧検出装置 |
JP2002513310A (ja) | 1997-02-12 | 2002-05-08 | カリフォルニア インスティテュート オブ テクノロジー | 頭蓋内圧の非侵入的測定 |
US7505807B1 (en) | 1997-05-15 | 2009-03-17 | Regents Of The University Of Minnesota | Magnetic resonance apparatus for use with active electrode and drug deliver catheter |
US6537232B1 (en) | 1997-05-15 | 2003-03-25 | Regents Of The University Of Minnesota | Intracranial pressure monitoring device and method for use in MR-guided drug delivery |
US7048716B1 (en) | 1997-05-15 | 2006-05-23 | Stanford University | MR-compatible devices |
US6061587A (en) | 1997-05-15 | 2000-05-09 | Regents Of The University Of Minnesota | Method and apparatus for use with MR imaging |
US6272370B1 (en) | 1998-08-07 | 2001-08-07 | The Regents Of University Of Minnesota | MR-visible medical device for neurological interventions using nonlinear magnetic stereotaxis and a method imaging |
US6026316A (en) | 1997-05-15 | 2000-02-15 | Regents Of The University Of Minnesota | Method and apparatus for use with MR imaging |
US5964705A (en) | 1997-08-22 | 1999-10-12 | Image-Guided Drug Delivery System, Inc. | MR-compatible medical devices |
US6560475B1 (en) | 1997-08-22 | 2003-05-06 | Image-Guided Drug Delivery Systems, Inc. | Microcoil device for local wide field-of-view and large gain magnetic resonance imaging |
US6587706B1 (en) | 1997-08-22 | 2003-07-01 | Image-Guided Drug Delivery Systems, Inc. | Microcoil device with a forward field-of-view for large gain magnetic resonance imaging |
US6487437B1 (en) | 2000-03-21 | 2002-11-26 | Image-Guided Neurologies, Inc. | Device for high gain and uniformly localized magnetic resonance imaging |
US7104958B2 (en) * | 2001-10-01 | 2006-09-12 | New Health Sciences, Inc. | Systems and methods for investigating intracranial pressure |
US20030199784A1 (en) * | 2000-11-27 | 2003-10-23 | Lenhardt Martin L. | Non-invasive cerebral spinal fluid pressure monitor apparatus and method |
US7022077B2 (en) | 2000-11-28 | 2006-04-04 | Allez Physionix Ltd. | Systems and methods for making noninvasive assessments of cardiac tissue and parameters |
US20060100530A1 (en) | 2000-11-28 | 2006-05-11 | Allez Physionix Limited | Systems and methods for non-invasive detection and monitoring of cardiac and blood parameters |
WO2002043564A2 (en) | 2000-11-28 | 2002-06-06 | Allez Physionix Limited | Systems and methods for making non-invasive physiological assessments |
US20100081893A1 (en) | 2008-09-19 | 2010-04-01 | Physiosonics, Inc. | Acoustic palpation using non-invasive ultrasound techniques to identify and localize tissue eliciting biological responses and target treatments |
US7547283B2 (en) * | 2000-11-28 | 2009-06-16 | Physiosonics, Inc. | Methods for determining intracranial pressure non-invasively |
US20060079773A1 (en) | 2000-11-28 | 2006-04-13 | Allez Physionix Limited | Systems and methods for making non-invasive physiological assessments by detecting induced acoustic emissions |
US20100087728A1 (en) | 2000-11-28 | 2010-04-08 | Physiosonics, Inc. | Acoustic palpation using non-invasive ultrasound techniques to identify and localize tissue eliciting biological responses |
US20120108918A1 (en) | 2008-09-19 | 2012-05-03 | Physiosonics, Inc. | Acoustic Palpation Using Non-Invasive Ultrasound Techniques for Identification of Target Sites and Assessment of Chronic Pain Disorders |
US20020161304A1 (en) | 2001-04-30 | 2002-10-31 | Eide Per Kristian | Monitoring pressure in a body cavity |
CN2528392Y (zh) * | 2002-01-30 | 2003-01-01 | 蒋永进 | 一次性简易式两用颅内压监测仪 |
JP2005523066A (ja) | 2002-04-19 | 2005-08-04 | コーリンメディカルテクノロジー株式会社 | 末梢部位の心音信号の記録のための方法と装置 |
EP1633234A4 (en) | 2003-06-03 | 2009-05-13 | Physiosonics Inc | SYSTEMS AND METHODS FOR DETERMINING INTRACRANIAL FA NON-INVASIVE PRESSURE AND ACOUSTIC TRANSDUCER ASSEMBLIES FOR USE THEREIN |
JP4401923B2 (ja) | 2004-10-06 | 2010-01-20 | 日本電信電話株式会社 | 血圧計測装置 |
JP2006230504A (ja) | 2005-02-22 | 2006-09-07 | Micro-Star Internatl Co Ltd | 頭蓋内圧の測定方法及びシステム |
CA2599168A1 (en) | 2005-02-24 | 2006-08-31 | Ernest E. Braxton | Apparatus and method for non-invasive measurement of intracranial pressure |
JP4576624B2 (ja) * | 2005-03-02 | 2010-11-10 | 独立行政法人産業技術総合研究所 | 針一体型バイオセンサー |
KR100698209B1 (ko) | 2005-03-23 | 2007-03-22 | 엘지전자 주식회사 | 영상 기기 및 그를 이용한 광고 방법 |
DE102005020569B4 (de) | 2005-04-30 | 2010-08-05 | Aesculap Ag | Implantierbare Vorrichtung zur Erfassung von intrakorporalen Drücken |
US20070244411A1 (en) * | 2006-04-03 | 2007-10-18 | Mimosa Acoustics, Inc. | Method and system for monitoring intracranial pressure |
JP2007301215A (ja) | 2006-05-12 | 2007-11-22 | Chiba Univ | 頭蓋内圧診断装置 |
WO2008101220A2 (en) * | 2007-02-15 | 2008-08-21 | The Board Of Trustees Of The University Of Illinois | Non-invasive, bedside intra-cranial pressure monitoring system utilizing early on-set auditory evoked responses |
JP2008237847A (ja) | 2007-03-29 | 2008-10-09 | Toyo Univ | 生体情報取得システム |
CA2685119A1 (en) | 2007-04-24 | 2008-10-30 | Renato Bastos Ribeiro | Apparatus and associated methods to generate useable energy |
JP2010017317A (ja) | 2008-07-09 | 2010-01-28 | Parama Tec:Kk | 脳循環機能異常検出装置 |
JP2010187928A (ja) | 2009-02-18 | 2010-09-02 | Gifu Univ | 測定対象血管の力学的機能の評価方法、測定対象血管の力学的機能評価装置、測定対象血管の力学的機能の評価プログラム及び記憶媒体 |
RU2571328C2 (ru) * | 2010-10-08 | 2015-12-20 | Хэдсенс Медикал Лтд. | Система и способ измерения внутричерепного давления |
US20130041271A1 (en) * | 2011-04-12 | 2013-02-14 | Shlomi Ben-Ari | Devices and methods for monitoring intracranial pressure and additional intracranial hemodynamic parameters |
EP2858521B1 (en) * | 2011-10-11 | 2020-04-15 | TBI Innovations, LLC | Device to reduce damaging effects of concussive or blast forces on a subject |
KR101331043B1 (ko) | 2012-03-08 | 2013-11-22 | 관동대학교산학협력단 | 척추측만증 진단 시스템 및 척추측만증 진단방법 |
US9392972B2 (en) * | 2012-11-27 | 2016-07-19 | Neuropace, Inc. | Methods and systems for automatically identifying detection parameters for an implantable medical device |
JP6081278B2 (ja) | 2013-04-15 | 2017-02-15 | 株式会社イチカワ | 頭蓋内圧測定装置及び頭蓋内圧測定方法 |
CZ2014696A3 (cs) * | 2014-10-11 | 2016-04-20 | Linet Spol. S.R.O. | Zařízení a metoda pro měření intrakraniálního tlaku |
CN204684294U (zh) * | 2015-06-04 | 2015-10-07 | 柏基香 | 颅脑测压兼引流调节装置 |
-
2017
- 2017-06-12 WO PCT/JP2017/021589 patent/WO2017217353A1/ja active Application Filing
- 2017-06-12 US US16/309,424 patent/US11278212B2/en active Active
- 2017-06-12 JP JP2018523886A patent/JP6989826B2/ja active Active
- 2017-06-12 CN CN201780037751.2A patent/CN109328030B/zh active Active
- 2017-06-12 EP EP17813249.4A patent/EP3473164A4/en active Pending
- 2017-06-12 KR KR1020187037888A patent/KR102399223B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000121467A (ja) * | 1998-10-12 | 2000-04-28 | Yufu Itonaga Co Ltd | 密閉外耳道内圧測定装置 |
JP2013102784A (ja) * | 2011-11-10 | 2013-05-30 | Shinshu Univ | 頭蓋内圧測定装置および測定方法 |
JP2016059755A (ja) * | 2014-09-22 | 2016-04-25 | 国立大学法人信州大学 | 頭蓋内圧測定装置 |
Non-Patent Citations (3)
Title |
---|
EMILE DE KLEINE ET AL.: "The behavior of spontaneous otoacoustic emissions during and after postural changes", J. ACOUST. SOC. AM., vol. 10 7, no. 6, June 2000 (2000-06-01), pages 3308 - 3316, XP012001739 * |
KENJI OYAMA: "Preface for the special issue on ''Otoacoustic Emissions: OAEs ''. Spontaneous otoacoustic emissions", NIHON ONKYO GAKKAI SHI = JOURNAL OF THE ACOUSTICAL SOCIETY OF JAPAN, vol. 50, no. 9, 1994, pages 739 - 742, XP009514270, ISSN: 0369-4232 * |
See also references of EP3473164A4 * |
Also Published As
Publication number | Publication date |
---|---|
KR102399223B1 (ko) | 2022-05-18 |
EP3473164A4 (en) | 2020-02-19 |
CN109328030B (zh) | 2022-02-25 |
EP3473164A1 (en) | 2019-04-24 |
JPWO2017217353A1 (ja) | 2019-04-11 |
CN109328030A (zh) | 2019-02-12 |
US20190328248A1 (en) | 2019-10-31 |
KR20190019093A (ko) | 2019-02-26 |
JP6989826B2 (ja) | 2022-01-12 |
US11278212B2 (en) | 2022-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Evensen et al. | Measuring intracranial pressure by invasive, less invasive or non-invasive means: limitations and avenues for improvement | |
Zhang et al. | Invasive and noninvasive means of measuring intracranial pressure: a review | |
Khan et al. | Noninvasive monitoring intracranial pressure–a review of available modalities | |
JP5766585B2 (ja) | 頭蓋内圧測定装置および測定方法 | |
CN103598883B (zh) | 一种基于磁感应相位差变化的颅内压监测方法 | |
JPS6382623A (ja) | 頭蓋内圧の測定装置 | |
US20170258344A1 (en) | Device and method for measurement of intracranial pressure | |
EP3302234B1 (en) | Apparatus and method for detecting pulsatile dynamics of the optic nerve sheath. | |
US11690591B2 (en) | Apparatus and methods for detecting increase in brain swelling and/or shifting | |
Imaduddin et al. | Pseudo-Bayesian model-based noninvasive intracranial pressure estimation and tracking | |
Levinsky et al. | Non-invasive estimation of static and pulsatile intracranial pressure from transcranial acoustic signals | |
Bote et al. | Evaluation of blood pressure estimation models based on pulse arrival time | |
JP7287612B2 (ja) | 生体情報取得装置 | |
JP6081278B2 (ja) | 頭蓋内圧測定装置及び頭蓋内圧測定方法 | |
WO2017217353A1 (ja) | 頭蓋内圧推定方法及び頭蓋内圧推定装置 | |
El-Bouri et al. | Quantifying the contribution of intracranial pressure and arterial blood pressure to spontaneous tympanic membrane displacement | |
JP2016059755A (ja) | 頭蓋内圧測定装置 | |
RU2327414C1 (ru) | Способ определения артериального давления по объемной компрессионной осциллограмме | |
Dhar et al. | Non-invasive ICP monitoring by auditory system measurements | |
Félix et al. | Non-Invasive Intracranial Pressure Monitoring and Its Applicability in Spaceflight | |
Choi et al. | Towards microvascular pressure estimation using ultrasound and photoacoustic imaging | |
JP2017213190A (ja) | 頭蓋内圧推定方法 | |
Ji et al. | A multi-parameters fusion model for non-invasive detection of intracranial pressure | |
Zhang | Implantable intracranial pressure sensor to control hydrocephalus | |
US20240268695A1 (en) | Processing method, device, and application of intracranial pressure monitoring and data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018523886 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17813249 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187037888 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017813249 Country of ref document: EP Effective date: 20190117 |