WO2017216937A1 - 翼車及び軸流送風機 - Google Patents

翼車及び軸流送風機 Download PDF

Info

Publication number
WO2017216937A1
WO2017216937A1 PCT/JP2016/068002 JP2016068002W WO2017216937A1 WO 2017216937 A1 WO2017216937 A1 WO 2017216937A1 JP 2016068002 W JP2016068002 W JP 2016068002W WO 2017216937 A1 WO2017216937 A1 WO 2017216937A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
impeller
leading edge
rotor
airflow
Prior art date
Application number
PCT/JP2016/068002
Other languages
English (en)
French (fr)
Inventor
新井 俊勝
千景 門井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/068002 priority Critical patent/WO2017216937A1/ja
Priority to CN201680084861.XA priority patent/CN109312758B/zh
Priority to MYPI2018002403A priority patent/MY189574A/en
Priority to EP16905492.1A priority patent/EP3473860B1/en
Priority to JP2018523129A priority patent/JP6656372B2/ja
Priority to US16/081,139 priority patent/US10859095B2/en
Publication of WO2017216937A1 publication Critical patent/WO2017216937A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • F04D29/386Skewed blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade

Definitions

  • the present invention relates to an impeller and an axial blower used for a ventilation fan and an air conditioner.
  • Rotating blades of impellers for axial flow fans have been designed to advance in the rotational direction and to tilt forward to the upstream side of the suction mainly to reduce noise.
  • a shape that can reduce interference caused by blade tip vortices on a rotor blade that is, a shape that bends the outer periphery of the blade toward the upstream side of the airflow has been proposed.
  • the above-mentioned shape is proposed because when the blade rotates, a leakage flow that goes around the blade outer periphery from the pressure surface side to the suction surface side at the blade outer periphery due to the pressure difference between the pressure surface and the suction surface of the rotor blade. This is because blade tip vortices resulting from this leakage flow are generated on the blade suction surface, which causes noise to deteriorate due to interference with the pressure surface, adjacent blades or bellmouth.
  • the chord centerline region is divided into two regions, the boss portion side and the blade outer periphery side, and the forward tilt angle at the boss portion is upstream with an angle greater than 0 °.
  • the forward tilt angle at the boss portion is upstream with an angle greater than 0 °.
  • the blade outer periphery is bent to the upstream side of the airflow, thereby controlling the blade tip vortex and suppressing noise deterioration caused by the blade tip vortex, thereby achieving low noise.
  • the outer peripheral portion of the blade is bent to the upstream portion, thereby increasing airflow leakage.
  • static pressure is reduced when static pressure is applied, fan efficiency tends to decrease.
  • the blade radial cross-sectional shape is divided into an inner circumference side and an outer circumference side, the inner circumference side is distributed so that airflow is less likely to leak, and the outer circumference side is bent upstream so that the blade tip vortex can be controlled.
  • the present invention has been made in view of the above, and an object thereof is to obtain an impeller in which an increase in noise and a decrease in efficiency due to a change in blade tip vortex are reduced.
  • the present invention has a boss portion that is rotationally driven by a motor, and projects radially from the boss portion in the diameter-expanding direction of the rotating shaft of the motor, in the axial direction of the rotating shaft.
  • a plurality of rotor blades that generate an airflow, and the rotor blades have an S-shaped radial cross section in which an inner peripheral side is convex with respect to the airflow and an outer peripheral side is concave with respect to the airflow.
  • the radius of curvature of the concave portion of the rotor blade has a distribution that gradually decreases from the blade leading edge toward the blade trailing edge, and the gradually decreasing rate approaches the blade trailing edge.
  • the impeller according to the present invention has an effect that an increase in noise and a decrease in efficiency due to a change in blade tip vortex can be reduced.
  • FIG. 1 The perspective view which shows the impeller which concerns on Embodiment 1 of this invention.
  • Plan view of rotor blade of impeller according to embodiment 1 Sectional drawing of the rotary blade of the impeller which concerns on Embodiment 1
  • FIG. 1 The perspective view which shows the impeller which concerns on Embodiment 1 of this invention.
  • Plan view of rotor blade of impeller according to embodiment 1 Sectional drawing of the rotary blade of the impeller which concerns on Embodiment 1
  • Cross-sectional schematic diagram of an axial-flow fan using the impeller and the half bell mouth according to Embodiment 1 Sectional schematic diagram of the axial-flow fan using the impeller and the full bell mouth according to Embodiment 1
  • the figure which shows the relationship between the non-dimensional outer periphery average curvature radius of the rotary blade of the axial flow fan which has an impeller which concerns on Embodiment 1, and a half bell mouth, and the specific noise difference in an open point The figure which shows the relationship between the dimension difference of the dimensionless outer peripheral part of the rotor blade of the axial flow fan which has an impeller and half bell mouth which concerns on Embodiment 1, and the point difference of the fan efficiency in an open point
  • the figure which shows the relationship between the dimensionless outer periphery average curvature radius of the rotary blade of the axial flow fan which has the impeller which concerns on Embodiment 1, and a half bell mouth, and the minimum specific noise ratio noise difference The figure which shows the relationship between the dimension-less outer periphery average curvature radius of the axial flow fan which has an impeller which concerns on Embodiment 1, and a half bell mouth, and the point difference of the highest fan efficiency
  • FIG. 1 is a perspective view showing an impeller according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view of the rotor blade of the impeller according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the rotor blade of the impeller according to the first embodiment.
  • the impeller 3 according to the first embodiment includes a cylindrical boss portion 2 that is driven to rotate by a motor (not shown) and rotates about a rotation axis O in the direction of arrow R, and a rotary blade 1 having a three-dimensional solid shape. Have The rotary blades 1 are radially attached to the outer periphery of the boss portion 2.
  • the impeller 3 As the impeller 3 rotates, the rotary blade 1 generates an airflow in the direction of arrow A.
  • the impeller 3 according to the first embodiment is a three-blade, but the number of rotating blades 1 of the impeller 3 may be a plurality of other numbers.
  • one of the plurality of rotor blades 1 will be described as a representative, but the plurality of rotor blades 1 have the same shape.
  • the rotor blade 1 of the impeller 3 has a convex shape with respect to the airflow direction in the radial cross section on the boss portion 2 side, and the radial direction on the outer peripheral portion side.
  • it has a concave shape with respect to the direction of the airflow. Therefore, the cross section of the rotary blade 1 has an S-shape in which the inner peripheral side is convex with respect to the airflow and the outer peripheral side is concave with respect to the airflow.
  • the portion between the blade inner peripheral portion 1e on the inner peripheral side of the rotary blade 1 and the vertex X on the inner periphery side of the S-shape is the inner convex portion P1, and the vertex X and the unevenness on the inner peripheral side of the S-shape.
  • the portion between the point Y and the switching point P is the inner switching portion P2
  • the portion between the point Y where the concavity and convexity switches and the vertex X on the outer periphery side of the S-shape is the outer switching portion P3.
  • a portion between the S-shaped outer peripheral side vertex Z and the blade outer peripheral portion 1d is defined as an outer concave portion P4.
  • the inner convex portion P1 and the outer concave portion P4 are smoothly connected by the inner switching portion P2 and the outer switching portion P3.
  • the curvature radius value R2 of the outer recessed portion P4 of the rotor blade 1 has a distribution that gradually decreases from the blade leading edge portion 1b toward the blade trailing edge portion 1c.
  • FIG. 4 is a diagram showing a change in the radius of curvature of the outer recessed portion of the rotor blade of the impeller according to the first embodiment. As shown in FIG. 4, the radius of curvature R2 of the outer recessed portion P4 of the rotor blade 1 has a distribution that gradually decreases from the blade leading edge portion 1b toward the blade trailing edge portion 1c, and the gradually decreasing rate is the blade trailing edge. The closer to the edge 1c, the smaller.
  • FIG. 5 is a diagram schematically showing a blade shape, a blade tip vortex, and a radial flow in a radial section of the impeller according to the first embodiment.
  • FIG. 5 shows the blade shape at each cross section of O-D1, O-D2, O-D3, and O-D4 in FIG.
  • O-D1 is a line connecting the rotation center O and the rear end Fr of the blade leading edge and a line extending to the blade outer peripheral portion 1d.
  • O-D4 is a line connecting the rotation center O and the front end Rf of the blade trailing edge.
  • the rotor blade 1 of the impeller according to Embodiment 1 also takes into account the lateral suction flow 9 from the blade outer peripheral portion 1d in the OD1 cross section and the OD2 cross section on the blade leading edge 1b side of the blade center C. Therefore, as shown in FIG. 5, the blade leading edge 1b side inclines the entire rotor blade 1 toward the upstream side of the airflow A, and the blade is angled ⁇ ( O-D1) and ⁇ (O-D2). As a result, the rotor blade 1 has a shape that can be adapted to the lateral suction flow 9 on the blade leading edge 1b side of the blade center C.
  • the blade center C is a portion on a bisector of an angle formed by a line connecting the trailing edge Fr of the blade leading edge and the rotation center O and a line connecting the leading edge Rf of the blade trailing edge and the rotation center O.
  • the rotor blade 1 rotates at the OD3 cross section and the OD4 cross section on the blade trailing edge 1c side from the blade center C so as to control the blade tip vortex 5 and not to leak the pressurized flow.
  • the blades are inclined toward the downstream side of the airflow so as to form angles ⁇ (O ⁇ D3) and ⁇ (O ⁇ D4) on the downstream side of the airflow with respect to the diameter increasing direction of the shaft 4.
  • the rotor blade 1 is shaped so as not to leak the flow 14 in the centrifugal direction of the flow of the blade inner peripheral portion 1e on the blade trailing edge portion 1c side of the blade center C, thereby preventing a reduction in efficiency.
  • the impeller according to the first embodiment forms an axial blower by being used together with a bell mouth that surrounds the impeller and boosts and rectifies airflow.
  • FIG. 6 is a schematic cross-sectional view of an axial blower using the impeller and the half bell mouth according to the first embodiment.
  • the half bell mouth 7 surrounds the rotary wing 1 with the wing leading edge 1b being opened.
  • FIG. 7 is a schematic cross-sectional view of an axial blower using the impeller and the full bell mouth according to the first embodiment.
  • the full bell mouth 8 surrounds the rotary wing 1 with the wing leading edge 1b covered from the side.
  • Both the half bell mouth 7 and the full bell mouth 8 have a suction side curved surface Rin, a straight portion ST having a cylindrical shape, and a discharge side curved surface Rout.
  • FIG. 8 is a view showing the airflow distribution of the axial blower using the impeller and the half bell mouth according to the first embodiment.
  • the blade leading edge 1b is largely open, so that the flow flowing into the rotating blade 1 is a blade heading from the blade leading edge 1b to the blade trailing edge 1c.
  • the blade tip vortex 5 develops greatly from the leading edge side of the rotary blade 1 by the lateral suction flow 9 flowing into the rotary blade 1 as well as the internal flow 10. Further, the flow of the blade tip vortex 5 varies greatly in the axial position by changing the flow state of the flow inside the blade from the blade leading edge 1b toward the blade trailing edge 1c.
  • FIG. 9 is a diagram showing an air flow distribution of the axial blower using the impeller and the full bell mouth according to the first embodiment. Since the axial blower having the full bell mouth 8 shown in FIG. 7 has almost no opening of the wing leading edge 1 b, the side suction flow 9 of the wing leading edge 1 b has almost no state compared to the half bell mouth 7. Clearly, the flow to the blade is almost only the flow 10 inside the blade, and the generation of the blade tip vortex 5 does not start from the blade leading edge 1b, but the blade tip vortex 5 starts to be generated from the point where pressure increase starts to some extent.
  • FIG. 10 is a diagram showing the relationship between the dimensionless average outer radius of curvature of the rotor blade of the axial flow fan having the impeller and the half bell mouth according to Embodiment 1 and the specific noise difference at the open point.
  • FIG. 11 is a diagram illustrating the relationship between the dimensionless outer peripheral average radius of curvature of the rotary blade of the axial fan having the impeller and the half bell mouth according to Embodiment 1 and the point difference in fan efficiency at the open point.
  • FIG. 12 is a diagram showing the relationship between the dimensionless outer peripheral average radius of curvature of the rotary blade of the axial flow fan having the impeller and the half bell mouth according to Embodiment 1 and the minimum specific noise ratio noise difference.
  • FIG. 12 is a diagram showing the relationship between the dimensionless outer peripheral average radius of curvature of the rotary blade of the axial flow fan having the impeller and the half bell mouth according to Embodiment 1 and the minimum specific noise ratio noise difference.
  • FIG. 13 is a diagram showing the relationship between the dimensionless outer peripheral average radius of curvature and the maximum fan efficiency point difference of the axial flow fan having the impeller and the half bell mouth according to the first embodiment.
  • FIG. 14 is a diagram illustrating a relationship between a dimensionless outer peripheral average radius of curvature of a rotary blade of an axial flow fan having an impeller and a full bell mouth according to Embodiment 1 and a specific noise difference at an open point.
  • FIG. 15 is a diagram illustrating a relationship between a dimensionless outer peripheral average radius of curvature of a rotor blade of an axial flow fan having an impeller and a full bell mouth according to Embodiment 1 and a point difference in fan efficiency at an open point. .
  • FIG. 16 is a diagram showing the relationship between the dimensionless outer peripheral average radius of curvature and the minimum specific noise ratio noise difference of the rotary blade of the axial flow fan having the impeller and the full bell mouth according to the first embodiment.
  • FIG. 17 is a diagram showing a relationship between a dimensionless outer peripheral average radius of curvature of the axial flow fan having the impeller and the full bell mouth according to Embodiment 1 and a point difference in the maximum fan efficiency.
  • the results shown in FIG. 10 to FIG. 17 are the results of evaluation with the rotor blade 1 having a diameter of 260 mm.
  • the dimensionless outer periphery average radius of curvature is defined by dividing the average value of the radius of curvature from the leading edge to the trailing edge of the blade outer periphery by the blade outer diameter.
  • K T SPL A -10 Log (Q ⁇ P T 2.5 ) Q: Air volume [m 3 / min] P T : Total pressure [Pa] SPL A : Noise characteristics (after A correction) [dB]
  • E T (P T ⁇ Q) / (60 ⁇ P W ) Q: Air volume [m 3 / min]
  • P T Total pressure [Pa]
  • P W Shaft power [W]
  • K S SPL A -10 Log (Q ⁇ P S 2.5 ) Q: Air volume [m 3 / min] P S: static pressure [Pa] SPL A : Noise characteristics (after A correction) [dB]
  • Fan efficiency E S used in FIGS. 13 and 17 is a calculated value defined by the following equation.
  • E S (P S ⁇ Q) / (60 ⁇ P W )
  • Q Air volume [m 3 / min]
  • P S static pressure [Pa]
  • P W Shaft power [W]
  • the A correction is a correction that reduces low-frequency sound in accordance with the characteristics of human hearing.
  • the A correction is a correction based on the A characteristic defined in JIS C 1502-1990.
  • FIG. 18 is a diagram showing the relationship between fan efficiency and air volume to which static pressure is applied, the relationship between specific noise and air volume, and the relationship between static pressure and air volume.
  • a broken line in the air volume static pressure characteristics in FIG. 18 indicates pressure loss. It can be understood that the specific noise is minimized and the fan efficiency is maximized when the flow rate is close to the flow rate at which the static pressure and the pressure loss coincide.
  • the impeller according to the first embodiment has low noise and high efficiency regardless of whether the half bell mouth 7 or the full bell mouth 8 is used. It can be seen that this can be achieved.
  • the impeller according to the first embodiment tends to be lower in noise and higher efficiency as the dimensionless outer peripheral radius of curvature R2 ′ is smaller.
  • the curvature radius value R2 of the outer recessed portion P4 of the rotor blade 1 has a distribution that gradually decreases from the blade leading edge 1b toward the blade trailing edge 1c, and Since the rate of gradual decrease decreases as the blade trailing edge 1c is approached, an increase in noise and a decrease in efficiency due to a change in the blade tip vortex 5 can be reduced.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 翼車(3)は、モータにより回転駆動されるボス部(2)と、ボス部(2)からモータの回転軸(4)の拡径方向に放射状に突出し、回転軸(4)の軸方向に気流を発生させる複数の回転翼(1)とを備え、回転翼(1)は、内周部側が気流の流れに対して凸で外周部側が気流の流れに対して凹のS字形状の半径方向断面を有し、回転翼(1)の凹形状の部分の曲率半径値は、翼前縁部(1b)から翼後縁部(1c)に近づくにしたがって漸減する分布を有し、かつ漸減する割合が翼後縁部(1c)に近づくほど小さくなる。

Description

翼車及び軸流送風機
 本発明は、換気扇及びエアコンディショナに用いられる翼車及び軸流送風機に関する。
 軸流送風機用の翼車の回転翼は、主に低騒音化のために、回転方向への前進と吸込み上流側への前傾化とが図られてきた。近年ではさらなる低騒音化のため、回転翼においては翼端渦による干渉を低減させられる形状、すなわち翼外周部を気流の上流側に屈曲させる形状が提案されている。上記形状が提案されるのは、翼が回転すると、回転翼の圧力面と負圧面との圧力差により、翼外周部において圧力面側から負圧面側へ翼外周部を回り込むような漏れ流れが生じ、翼負圧面ではこの漏れ流れに起因する翼端渦が生成され、圧力面、隣接翼又はベルマウスとの干渉により、騒音を悪化させる原因となっているためである。
 従来の翼端渦の制御方法として、翼弦中心線の領域を、ボス部側と翼外周側との二つの領域に分け、ボス部での前傾角を0°よりも大きい角度で上流側へ傾斜させ、さらに翼外周部での前傾角をボス部領域で定義されている前傾角よりも更に上流側に傾斜させるものがある(例えば、特許文献1参照)。
特許第4680840号公報
 しかしながら、上記従来の技術では、翼外周部を気流の上流側に屈曲させる形状とすることにより、翼端渦を制御し、翼端渦に起因する騒音悪化を抑えることで、低騒音化を達成しているが、翼端渦の制御を行うため、翼外周部が上流部に屈曲する形状となることにより、気流の漏れが多くなる。特に静圧印加時には静圧が低減するため、ファン効率の低下となる傾向にある。
 翼半径方向の断面形状を内周側と外周側とに分け、内周側は気流の漏れが起こりにくいような分布とし、外周側は翼端渦が制御できるように、上流側に屈曲している形状とすることで、低騒音化を達成しつつ静圧低下も防ぐ形状が提案されているが、回転翼の前縁側から後縁側に向かうにつれて翼外周部で生成される翼端渦の状況が変化するため、翼端渦の変化に対しては最適形状となっておらず、さらなる低騒音及び高効率化が可能な余地が残されている。
 本発明は、上記に鑑みてなされたものであって、翼端渦の変化による騒音の増大及び効率の低下を低減した翼車を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、モータにより回転駆動されるボス部と、ボス部からモータの回転軸の拡径方向に放射状に突出し、回転軸の軸方向に気流を発生させる複数の回転翼とを備え、回転翼は、内周部側が気流の流れに対して凸で外周側部側が気流の流れに対して凹のS字形状の半径方向断面を有する。本発明において、回転翼の凹形状の部分の曲率半径値は、翼前縁部から翼後縁部に近づくにしたがって漸減する分布を有し、かつ漸減する割合が翼後縁部に近づくほど小さくなる。
 本発明に係る翼車は、翼端渦の変化による騒音の増大及び効率の低下を低減できるという効果を奏する。
本発明の実施の形態1に係る翼車を示す斜視図 実施の形態1に係る翼車の回転翼の平面図 実施の形態1に係る翼車の回転翼の断面図 実施の形態1に係る翼車の回転翼の外側凹部の曲率半径値の変化を示す図 実施の形態1に係る翼車の半径方向断面の翼形状と、翼端渦と半径方向流れを模式的に示した図 実施の形態1に係る翼車とハーフベルマウスとを用いた軸流送風機の断面模式図 実施の形態1に係る翼車とフルベルマウスとを用いた軸流送風機の断面模式図 実施の形態1に係る翼車とハーフベルマウスとを用いた軸流送風機の気流の分布を示す図 実施の形態1に係る翼車とフルベルマウスとを用いた軸流送風機の気流の分布を示す図 実施の形態1に係る翼車とハーフベルマウスとを有する軸流送風機の回転翼の無次元外周部平均曲率半径と開放点における比騒音差との関係を示す図 実施の形態1に係る翼車とハーフベルマウスとを有する軸流送風機の回転翼の無次元外周部平均曲率半径と開放点におけるファン効率のポイント差との関係を示す図 実施の形態1に係る翼車とハーフベルマウスとを有する軸流送風機の回転翼の無次元外周部平均曲率半径と最小比騒音比騒音差との関係を示す図 実施の形態1に係る翼車とハーフベルマウスとを有する軸流送風機の無次元外周部平均曲率半径と最高ファン効率のポイント差との関係を示す図 実施の形態1に係る翼車とフルベルマウスとを有する軸流送風機の回転翼の無次元外周部平均曲率半径と開放点における比騒音差との関係を示す図 実施の形態1に係る翼車とフルベルマウスとを有する軸流送風機の回転翼の無次元外周部平均曲率半径と開放点におけるファン効率のポイント差との関係を示す図 実施の形態1に係る翼車とフルベルマウスとを有する軸流送風機の回転翼の無次元外周部平均曲率半径と最小比騒音比騒音差との関係を示す図 実施の形態1に係る翼車とフルベルマウスとを有する軸流送風機の無次元外周部平均曲率半径と最高ファン効率のポイント差との関係を示す図 静圧が印加された最高ファン効率、最小比騒音と風量静圧特性との関係を示す図
 以下に、本発明の実施の形態に係る軸流送風機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る翼車を示す斜視図である。図2は、実施の形態1に係る翼車の回転翼の平面図である。図3は、実施の形態1に係る翼車の回転翼の断面図である。実施の形態1に係る翼車3は、不図示のモータにより回転駆動されて回転軸Oを中心に矢印R方向に回転する円柱状のボス部2と、三次元立体形状を有する回転翼1とを有する。回転翼1は、ボス部2の外周に放射状に取り付けられている。翼車3が回転することによって、回転翼1は矢印A方向の気流を発生させる。図1に示すように、実施の形態1に係る翼車3は三枚翼であるが、翼車3の回転翼1の枚数は、他の複数の枚数であってもよい。以下では、複数枚の回転翼1のうちの1枚を代表にして説明するが、複数枚の回転翼1は同一形状である。
 実施の形態1に係る翼車3の回転翼1は、図3に示すように、ボス部2側の半径方向断面では気流の方向に対して凸形状を有し、かつ外周部側の半径方向断面では、気流の方向に対して凹形状を有する。したがって、回転翼1の断面は、内周側が気流に対して凸で、外周側が気流に対して凹のS字形状となっている。ここで、回転翼1の内周側の翼内周部1eとS字形状の内周側の頂点Xとの間の部分を内側凸部P1、S字形状の内周側の頂点Xと凹凸の切り替わる点Yとの間の部分を内側切り替え部P2、凹凸が切り替わる点YとS字形状の外周側の頂点Xとの間の部分を外側切り替え部P3とする。また、S字形状の外周側の頂点Zと翼外周部1dとの間の部分を外側凹部P4とする。内側凸部P1と外側凹部P4とは、内側切り替え部P2及び外側切り替え部P3によって滑らかに接続されている。
 回転翼1の外側凹部P4の曲率半径値R2は、翼前縁部1bから翼後縁部1cに向かうにしたがって漸減する分布を有する。図4は、実施の形態1に係る翼車の回転翼の外側凹部の曲率半径値の変化を示す図である。図4に示すように、回転翼1の外側凹部P4の曲率半径値R2は、翼前縁部1bから翼後縁部1cに向かうにしたがって漸減する分布を有し、かつ漸減する割合が翼後縁部1cに近づくほど小さくなる。
 図5は、実施の形態1に係る翼車の半径方向断面の翼形状と、翼端渦と半径方向流れを模式的に示した図である。図5は、図2中のO-D1、O-D2、O-D3及びO-D4の各断面での翼形状を示している。なお、O-D1は、回転中心Oと翼前縁の後端Frとを結ぶ線と翼外周部1dまで延長した線である。O-D4は、回転中心Oと翼後縁の前端Rfとを結ぶ線である。実施の形態1に係る翼車の回転翼1は、翼中央Cよりも翼前縁部1b側であるO-D1断面及びO-D2断面では、翼外周部1dから横吸込み流れ9も考慮するため、図5に示すように、翼前縁部1b側は回転翼1全体を気流Aの上流側に傾斜させ、回転軸4の拡径方向に対して翼は気流の上流側に角度θ(O-D1)及びθ(O-D2)をなしている。これにより、回転翼1は、翼中央Cよりも翼前縁部1b側では、横吸込み流れ9にも適合できるような形状となっている。なお、翼中央Cは、翼前縁の後端Fr及び回転中心Oを結ぶ線と翼後縁の前端Rf及び回転中心Oを結ぶ線とがなす角の二等分線上の部分である。さらに、回転翼1は、翼中央Cよりも翼後縁部1c側であるO-D3断面及びO-D4断面では、翼端渦5を制御しつつ、昇圧した流れを漏らさないように、回転軸4の拡径方向に対して翼は気流の下流側に角度θ(O-D3)及びθ(O-D4)をなすようにして翼を気流の下流側に傾斜させている。これにより、回転翼1は、翼中央Cよりも翼後縁部1c側では、翼内周部1e流れの遠心方向への流れ14を漏らさないような形状となっており、効率低下が防止される。
 実施の形態1に係る翼車は、翼車を囲んで気流の昇圧及び整流を行うベルマウスとともに用いられることで軸流送風機を形成する。図6は、実施の形態1に係る翼車とハーフベルマウスとを用いた軸流送風機の断面模式図である。ハーフベルマウス7は、翼前縁部1bが開放された状態で回転翼1を囲む。図7は、実施の形態1に係る翼車とフルベルマウスとを用いた軸流送風機の断面模式図である。フルベルマウス8は、翼前縁部1bを側方から覆った状態で回転翼1を囲む。
 ハーフベルマウス7及びフルベルマウス8のいずれも、吸い込み側曲面Rinと、円筒形状を有するストレート部STと、吐出側曲面Routとを有する。
 図8は、実施の形態1に係る翼車とハーフベルマウスとを用いた軸流送風機の気流の分布を示す図である。図6に示すハーフベルマウス7を有する軸流送風機は、翼前縁部1bが大きく開放しているため、回転翼1に流れ込む流れは、翼前縁部1bから翼後縁部1cへ向かう翼内部の流れ10のみならず、回転翼1に横吸込み流れ9が流れ込むことにより、翼端渦5は、回転翼1の前縁側から大きく発達する。また、翼内部の流れは翼前縁部1bから翼後縁部1cに向かうにしたがって、流れの状況が変化することにより、軸方向の位置で翼端渦5の状況は大きく異なることになる。
 図9は、実施の形態1に係る翼車とフルベルマウスとを用いた軸流送風機の気流の分布を示す図である。図7に示すフルベルマウス8を有する軸流送風機は、翼前縁部1bの開放がほとんどないため、翼前縁部1bの横吸込み流れ9は、ハーフベルマウス7と比較するとほとんどない状態となる。したがって、翼への流れはほぼ翼内部の流れ10のみとなり、翼端渦5の生成も、翼前縁部1bから始まらず、ある程度昇圧が始まったポイントから翼端渦5が発生し始める。
 以上のように、同じ回転翼1であっても、翼端渦5の位置は、ベルマウスの形状によって変化する。
 また、同一製品内でハーフベルマウス7とフルベルマウス8との2種類のベルマウスが設定されている場合もあり、それぞれに合った回転翼を専用に設計すると、回転翼にかかるコストが2倍になる。したがって、ベルマウス形式が異なっても同一の回転翼を使用する場合もあり、ベルマウス形式が異なっても低騒音かつ高効率化が達成できる回転翼が求められる。
 図10は、実施の形態1に係る翼車とハーフベルマウスとを有する軸流送風機の回転翼の無次元外周部平均曲率半径と開放点における比騒音差との関係を示す図である。図11は、実施の形態1に係る翼車とハーフベルマウスとを有する軸流送風機の回転翼の無次元外周部平均曲率半径と開放点におけるファン効率のポイント差との関係を示す図である。図12は、実施の形態1に係る翼車とハーフベルマウスとを有する軸流送風機の回転翼の無次元外周部平均曲率半径と最小比騒音比騒音差との関係を示す図である。図13は、実施の形態1に係る翼車とハーフベルマウスとを有する軸流送風機の無次元外周部平均曲率半径と最高ファン効率のポイント差との関係を示す図である。図14は、実施の形態1に係る翼車とフルベルマウスとを有する軸流送風機の回転翼の無次元外周部平均曲率半径と開放点における比騒音差との関係を示す図である。図15は、実施の形態1に係る翼車とフルベルマウスとを有する軸流送風機の回転翼の無次元外周部平均曲率半径と開放点におけるファン効率のポイント差との関係を示す図である。図16は、実施の形態1に係る翼車とフルベルマウスとを有する軸流送風機の回転翼の無次元外周部平均曲率半径と最小比騒音比騒音差との関係を示す図である。図17は、実施の形態1に係る翼車とフルベルマウスとを有する軸流送風機の無次元外周部平均曲率半径と最高ファン効率のポイント差との関係を示す図である。また図10から図17に示した結果は、直径が260mmの回転翼1で評価を行った結果である。
 なお、無次元外周部平均曲率半径は、翼外周部の曲率半径の前縁から後縁までの曲率半径の平均値を羽根外径直径で除して定義される。
 図10及び図14で用いられる比騒音Kは、次の式で定義される計算値である。
   K=SPL-10Log(Q・P 2.5
     Q   :風量[m/min]
     P   :全圧[Pa]
     SPL:騒音特性(A補正後)[dB]
 図11及び図15で用いられるファン効率Eは、次の式で定義される計算値である。   E=(PT・Q)/(60・P
     Q   :風量[m/min]
     P  :全圧[Pa]
     P  :軸動力[W]
 図12及び図16で用いられる比騒音Kは、次の式で定義される計算値である。
   K=SPL-10Log(Q・P 2.5
     Q   :風量[m/min]
     P  :静圧[Pa]
     SPL:騒音特性(A補正後)[dB]
 図13及び図17で用いられるファン効率Eは、次の式で定義される計算値である。
   E=(P・Q)/(60・P
     Q   :風量[m/min]
     P  :静圧[Pa]
     P  :軸動力[W]
 なお、A補正とは、人間の聴覚の特性に合わせて低周波の音を小さくする補正であり、一例を挙げると、JIS C 1502-1990に定められたA特性に基づいた補正である。
 図18は、静圧が印加されたファン効率と風量との関係、比騒音と風量との関係及び静圧と風量との関係を示す図である。図18中の風量静圧特性中の破線は、圧力損失を示している。静圧と圧力損失とが一致する風量に近い風量において、比騒音が最小となり、ファン効率が最大となることが理解できる。
 図10から図17に示すように、実施の形態1に係る翼車は、ハーフベルマウス7及びフルベルマウス8のどちらを用いた場合でも、またいずれの位置においても、低騒音かつ高効率化を図ることが可能となることが分かる。
 特に、実施の形態1に係る翼車は、無次元外周部平均曲率半径R2’が小さいほど、低騒音かつ高効率となる傾向があり、ベルマウスの形態及び比較する位置によりその最適値は若干異なる。図10及び図11に示すように、ハーフベルマウスの開放点では、R2’=0.13よりも小さい領域、図12及び図13に示すように、ハーフベルマウスで静圧印加時には、R2’=0.145よりも小さい領域、図14及び図15に示すように、フルベルマウスの開放点では、R2’=0.145よりも小さい領域、図16及び図17に示すように、フルベルマウスで静圧印加時には、R2’=0.13よりも小さい領域で騒音が-0.5dB以上、ファン効率が+0.5ポイント以上の効果を得られることが分かる。
 実施の形態1に係る翼車3において、回転翼1の外側凹部P4の部分の曲率半径値R2は、翼前縁部1bから翼後縁部1cに近づくにしたがって漸減する分布を有し、かつ漸減する割合が翼後縁部1cに近づくほど小さくなるため、翼端渦5の変化による騒音の増大及び効率の低下を低減することができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 回転翼、1b 翼前縁部、1c 翼後縁部、1d 翼外周部、1e 翼内周部、2 ボス部、3 翼車、4 回転軸、5 翼端渦、7 ハーフベルマウス、8 フルベルマウス、9 横吸込み流れ、10 翼内部の流れ。

Claims (4)

  1.  モータにより回転駆動されるボス部と、
     前記ボス部から前記モータの回転軸の拡径方向に放射状に突出し、前記回転軸の軸方向に気流を発生させる複数の回転翼とを備え、
     前記回転翼は、内周部側が前記気流の流れに対して凸で外周部側が前記気流の流れに対して凹のS字形状の半径方向断面を有し、
     前記回転翼の凹形状の部分の曲率半径値は、翼前縁部から翼後縁部に近づくにしたがって漸減する分布を有し、かつ漸減する割合が前記翼後縁部に近づくほど小さくなることを特徴とする翼車。
  2.  前記回転翼は、前記翼前縁部では前記気流の上流側に傾斜し、前記翼後縁部に近づくにしたがって傾斜角は小さくなり、前記翼後縁部では、前記気流の下流側に傾斜していることを特徴とする請求項1に記載の翼車。
  3.  請求項1又は2に記載の翼車と、前記回転翼を前記翼前縁部が開放された状態で囲んで前記気流の昇圧及び整流を行うハーフベルマウスとを備え、
     前記翼車は、前記回転翼の前記翼前縁部の後端から前記翼後縁部の前端までの翼断面において、翼外周部の平均曲率半径を前記回転翼の直径で除した値が、0.13以下の値を有することを特徴とする軸流送風機。
  4.  請求項1又は2に記載の翼車と、前記翼前縁部を側方から覆った状態で前記回転翼を囲んで前記気流の昇圧及び整流を行うフルベルマウスとを備え、
     前記翼車は、前記回転翼の前記翼前縁部の後端から前記翼後縁部の前端までの翼断面において、翼外周部の平均曲率半径を前記回転翼の直径で除した値が、0.13以下の値を有することを特徴とする軸流送風機。
PCT/JP2016/068002 2016-06-16 2016-06-16 翼車及び軸流送風機 WO2017216937A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2016/068002 WO2017216937A1 (ja) 2016-06-16 2016-06-16 翼車及び軸流送風機
CN201680084861.XA CN109312758B (zh) 2016-06-16 2016-06-16 轴流送风机
MYPI2018002403A MY189574A (en) 2016-06-16 2016-06-16 Impeller and axial flow fan
EP16905492.1A EP3473860B1 (en) 2016-06-16 2016-06-16 Impeller and axial blower
JP2018523129A JP6656372B2 (ja) 2016-06-16 2016-06-16 軸流送風機
US16/081,139 US10859095B2 (en) 2016-06-16 2016-06-16 Impeller and axial flow fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/068002 WO2017216937A1 (ja) 2016-06-16 2016-06-16 翼車及び軸流送風機

Publications (1)

Publication Number Publication Date
WO2017216937A1 true WO2017216937A1 (ja) 2017-12-21

Family

ID=60663064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068002 WO2017216937A1 (ja) 2016-06-16 2016-06-16 翼車及び軸流送風機

Country Status (6)

Country Link
US (1) US10859095B2 (ja)
EP (1) EP3473860B1 (ja)
JP (1) JP6656372B2 (ja)
CN (1) CN109312758B (ja)
MY (1) MY189574A (ja)
WO (1) WO2017216937A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111656019A (zh) * 2018-02-02 2020-09-11 三菱电机株式会社 轴流送风机
JPWO2020110167A1 (ja) * 2018-11-26 2021-05-13 三菱電機株式会社 翼車および軸流送風機

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11965522B2 (en) 2015-12-11 2024-04-23 Delta Electronics, Inc. Impeller
EP3421754B1 (en) * 2016-03-30 2021-12-01 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Variable geometry turbocharger
JP6428833B2 (ja) * 2017-04-14 2018-11-28 ダイキン工業株式会社 プロペラファン
US11519422B2 (en) * 2018-05-09 2022-12-06 York Guangzhou Air Conditioning And Refrigeration Co., Ltd. Blade and axial flow impeller using same
CN110980823B (zh) * 2019-11-22 2022-06-21 江苏大学 一种射流空化搅拌器
CN115280020B (zh) * 2020-03-24 2023-12-05 三菱电机株式会社 轴流风扇、送风装置及制冷循环装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504156A (ja) * 1989-09-15 1992-07-23 シーメンス アクチエンゲゼルシヤフト 静かなクラッチファンブレード
JP2003148395A (ja) * 2001-11-09 2003-05-21 Matsushita Electric Ind Co Ltd 空調用送風機羽根車
JP2006233886A (ja) * 2005-02-25 2006-09-07 Mitsubishi Electric Corp プロペラファン
JP2008255966A (ja) * 2007-04-09 2008-10-23 Mitsubishi Electric Corp プロペラファン
US20150337854A1 (en) * 2010-03-19 2015-11-26 Sp Tech Propeller blade

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660638B2 (ja) * 1987-10-07 1994-08-10 松下電器産業株式会社 斜流羽根車
KR960041754A (ko) * 1995-05-16 1996-12-19 김광호 송풍팬의 구조
ES2283746T3 (es) * 2002-02-28 2007-11-01 Daikin Industries, Ltd. Ventilador.
CN1318765C (zh) * 2003-12-15 2007-05-30 珠海格力电器股份有限公司 风机用叶轮、使用叶轮的风机及使用风机的空调器
JP4501575B2 (ja) * 2004-07-26 2010-07-14 三菱電機株式会社 軸流送風機
JP2008014302A (ja) * 2006-06-09 2008-01-24 Nippon Densan Corp 軸流ファン
JP4680840B2 (ja) 2006-06-26 2011-05-11 三菱電機株式会社 軸流送風機
KR100806149B1 (ko) * 2006-07-04 2008-02-22 김영호 저소음형 송풍팬
JP5210852B2 (ja) * 2008-12-22 2013-06-12 山洋電気株式会社 軸流送風機
JP5263198B2 (ja) 2010-02-26 2013-08-14 パナソニック株式会社 羽根車と送風機及びそれを用いた空気調和機
JP2011236860A (ja) * 2010-05-13 2011-11-24 Panasonic Corp プロペラファンとそのプロペラファンを用いた空気調和機
CN104405679B (zh) * 2012-04-10 2017-05-10 夏普株式会社 螺旋浆式风扇、流体输送装置以及成形用模具
US11236760B2 (en) * 2015-12-11 2022-02-01 Delta Electronics, Inc. Impeller and fan

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504156A (ja) * 1989-09-15 1992-07-23 シーメンス アクチエンゲゼルシヤフト 静かなクラッチファンブレード
JP2003148395A (ja) * 2001-11-09 2003-05-21 Matsushita Electric Ind Co Ltd 空調用送風機羽根車
JP2006233886A (ja) * 2005-02-25 2006-09-07 Mitsubishi Electric Corp プロペラファン
JP2008255966A (ja) * 2007-04-09 2008-10-23 Mitsubishi Electric Corp プロペラファン
US20150337854A1 (en) * 2010-03-19 2015-11-26 Sp Tech Propeller blade

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3473860A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111656019A (zh) * 2018-02-02 2020-09-11 三菱电机株式会社 轴流送风机
JPWO2020110167A1 (ja) * 2018-11-26 2021-05-13 三菱電機株式会社 翼車および軸流送風機

Also Published As

Publication number Publication date
EP3473860A1 (en) 2019-04-24
US20190107118A1 (en) 2019-04-11
CN109312758B (zh) 2021-01-15
US10859095B2 (en) 2020-12-08
JP6656372B2 (ja) 2020-03-04
CN109312758A (zh) 2019-02-05
EP3473860A4 (en) 2019-05-22
MY189574A (en) 2022-02-17
EP3473860B1 (en) 2022-02-16
JPWO2017216937A1 (ja) 2018-10-18

Similar Documents

Publication Publication Date Title
WO2017216937A1 (ja) 翼車及び軸流送風機
JP5549772B2 (ja) プロペラファン及びこれを備える空気調和機
JP6811873B2 (ja) プロペラファンおよび軸流送風機
WO2009087985A1 (ja) プロペラファン
JP4818184B2 (ja) プロペラファン
US20130315737A1 (en) Stall Margin Enhancement of Axial Fan With Rotating Shroud
JP6914371B2 (ja) 軸流送風機
JP2008507652A (ja) 増大した流量を有する軸流インペラ
CN112840128B (zh) 具有经优化的斜流式叶轮的斜流式通风机
CN111577655B (zh) 叶片及使用其的轴流叶轮
JP2003148395A (ja) 空調用送風機羽根車
JP4818310B2 (ja) 軸流送風機
WO2014142225A1 (ja) 羽根車及びこれを用いた軸流送風機
KR20170102097A (ko) 누류 및 와류 억제용 축류팬
JP4569073B2 (ja) 遠心ファン
JP2004197694A (ja) 送風機
JP6048024B2 (ja) プロペラファン
WO2019214632A1 (zh) 叶片及使用其的轴流叶轮
CN118251548A (zh) 螺旋桨式风扇、送风机以及空调机
WO2020110167A1 (ja) 翼車および軸流送風機
KR101626488B1 (ko) 원심팬

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018523129

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016905492

Country of ref document: EP

Effective date: 20190116