WO2017216882A1 - 太陽電池モジュール梱包体および梱包材 - Google Patents
太陽電池モジュール梱包体および梱包材 Download PDFInfo
- Publication number
- WO2017216882A1 WO2017216882A1 PCT/JP2016/067700 JP2016067700W WO2017216882A1 WO 2017216882 A1 WO2017216882 A1 WO 2017216882A1 JP 2016067700 W JP2016067700 W JP 2016067700W WO 2017216882 A1 WO2017216882 A1 WO 2017216882A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wall
- solar cell
- cell module
- height
- side wall
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D57/00—Internal frames or supports for flexible articles, e.g. stiffeners; Separators for articles packaged in stacks or groups, e.g. for preventing adhesion of sticky articles
- B65D57/002—Separators for articles packaged in stacks or groups, e.g. stacked or nested
- B65D57/003—Separators for articles packaged in stacks or groups, e.g. stacked or nested for horizontally placed articles, i.e. for stacked or nested articles
- B65D57/004—Separators for articles packaged in stacks or groups, e.g. stacked or nested for horizontally placed articles, i.e. for stacked or nested articles the articles being substantially flat panels, e.g. wooden planks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D59/00—Plugs, sleeves, caps, or like rigid or semi-rigid elements for protecting parts of articles or for bundling articles, e.g. protectors for screw-threads, end caps for tubes or for bundling rod-shaped articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D85/00—Containers, packaging elements or packages, specially adapted for particular articles or materials
- B65D85/30—Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
- B65D85/48—Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for glass sheets
Definitions
- the present invention relates to a solar cell module package and a packing material in which solar cell modules are packed for transportation.
- a solar cell module is generally shipped in a state where two solar cell modules are stacked to form one package, and a plurality of packages are stacked.
- Patent Documents 1 and 2 disclose packing technology for solar cell modules in which a support member is sandwiched between solar cell modules.
- Patent Documents 1 and 2 have an effect of preventing displacement and scratches between the solar cell modules being transported by being disposed between the stacked solar cell modules.
- the solar cell module when the solar cell module is displaced, the upper and lower solar cell modules are rubbed, so that the frame of the solar cell module is likely to be damaged.
- the present invention has been made in view of the above, and obtains a solar cell module package that is easy to manufacture, prevents the solar cell module from being displaced during transportation, and can prevent the solar cell module from being displaced. With the goal.
- the present invention is a solar cell module package in which a plurality of solar cell modules are packed with a packing material.
- the solar cell module package includes a rectangular bottom surface portion having a first bottom side and a second bottom side orthogonal to the first bottom side, a first solar cell module placed on the bottom surface portion, and a first bottom side.
- a rectangular first side wall portion that is elongated and bent 90 degrees vertically in the upper part, a first inner wall that is elongated from the side of the first side wall portion and is bent 90 degrees inward, and extends from the lower side of the first inner wall
- the inner buffer part bent 90 degrees inward, the second solar cell module placed on the first solar cell module across the inner buffer part, and extended from the upper side of the first inner wall to the outside.
- a second inner wall that is bent 180 degrees; and a second side wall that extends upward from the second base and is bent 90 degrees in the vertical direction.
- the present invention it is possible to obtain a solar cell module package that is easy to manufacture, prevents the solar cell module from being displaced during transportation, and can prevent the solar cell module from being displaced.
- Sectional drawing which showed typically the solar cell module package of Embodiment 2 Exploded view of the packing material of the solar cell module package of Embodiment 3
- deployment figure of the packing material of the solar cell module package of Embodiment 3 The figure which shows the packing process of the solar cell module package of Embodiment 3.
- FIG. 1 is a development view of the packing material 1 of the solar cell module package according to the first embodiment.
- the packaging material 1 includes a bottom surface portion 2 that is a bottom surface portion of the packaging material and a pair of packaging material long side surfaces that are formed along the second bottom sides 2 c and 2 d that are long sides of the bottom surface portion 2.
- a second side surface 3 that is a portion, a second top surface 4 that is a pair of packing material long side top surfaces formed along the long side of the second side wall 3, and a short side of the bottom surface 2
- a pair of packing materials formed along the long side of the first side wall 5 and the first side wall 5 which is a pair of packing materials short side surfaces formed along the first bases 2a and 2b.
- the 1st top surface part 6 which is a short side top surface part is provided.
- the packaging material 1 can be formed by cutting and folding a single cardboard board.
- the corrugated board is formed by laminating the four layers of liners and the cores alternately and applying them to a corrugator.
- ruled lines are formed in advance at appropriate positions on the mountain side and the valley side so that they can be neatly folded at the folding position.
- a plate-like body such as cardboard can be used in addition to cardboard.
- the bottom surface 2 is the bottom surface forming portion
- the second side wall portion 3 is the second side wall forming portion
- the second top surface portion 4 is the second top surface forming portion
- the first side wall is the first side wall.
- Portion 5 is a first side surface forming portion
- first top surface portion 6 is a top surface forming portion
- first inner wall 7 is a first inner wall forming portion
- second inner wall 8 is a second inner wall forming portion
- inner buffer portion 9 is an inner buffer portion.
- FIG. 2 is an enlarged view of a portion II in FIG.
- the packaging material 1 includes a first inner wall 7 formed along the first side wall portion 5 and a second side 7 ⁇ / b> S 1 formed along one long side 7 ⁇ / b> S 1 of the first inner wall 7.
- An inner wall 8, an inner buffer portion 9 formed along the longer side 7 ⁇ / b > S 2 on the other side of the first inner wall 7, and an insertion portion 10 formed along the shorter side 4 ⁇ / b> S of the second top surface portion 4 are provided. .
- FIG. 3-10 is explanatory drawing which shows the packaging process of the solar cell module package 100 of Embodiment 1
- FIG. 11 is the cross section which showed the solar cell module package 100 of Embodiment 1 typically.
- FIG. The solar cell module package 100 covers the bottom, side, and upper surface holding frames of the two solar cell modules including the first solar cell module 11 and the second solar cell module 12, and the two solar cell modules.
- the inner buffer part 9 is sandwiched between them.
- the bottom surface portion 2 has a pair of left and right first bases 2a and 2b in FIG. 1, and a pair of upper and lower second bases 2c and 2d in FIG.
- the size of the bottom surface portion 2 is equal to the sizes of the first and second solar cell modules 11 and 12.
- the first side wall portion 5 is formed by valley folding from the first bases 2a and 2b, that is, bent 90 degrees vertically in the upper part.
- the width of the first side wall 5 is equal to the width of the first bases 2a and 2b, and the height of the first side wall 5 is the sum of the heights of the two first and second solar cell modules 11 and 12. equal.
- the first inner wall 7 is formed by valley-folding from the short side 7 ⁇ / b> S 3 that is the side of the first side wall portion 5, that is, by bending 90 degrees inward.
- the width 7W of the first inner wall 7 is equal to the height h0 of the second side wall 3. Since the height h0 of the second side wall 3 is equal to the height h1 of the first side wall 5, the width 7W of the first inner wall 7 is equal to the height h1 of the first side wall 5.
- the short side 7S 3 which is one side of the first inner wall 7 is connected to the first side wall 5 from the upper end of the side of the first side wall 5 to the center position.
- the inner buffer portion 9 is arranged in the horizontal direction by being folded at a valley fold, that is, 90 degrees inward from the long side 7S 2 which is the lower side of the first inner wall 7.
- the height of the long side 7S 2 from the first bottom side is equal to the height of one solar cell module.
- the inner buffer portion 9 is sandwiched between the upper surface of the holding frame 11F of the first solar cell module 11 at the lower stage and the lower surface of the holding frame 12F of the second solar cell module 12 at the upper stage.
- the second inner wall 8 is formed by being bent 180 degrees outward from the long side 7S 1 which is the upper side of the first inner wall 7.
- the width 8w of the second inner wall 8 is equal to the height h0 of the second side wall 3.
- the bending position of the second inner wall 8 is provided at a position lower than the height h ⁇ b> 1 of the first side wall portion 5 by the plate thickness of the packaging material 1. Since the lower end of the second inner wall 8 comes into contact with the bottom surface portion 2 by being provided at a low position by the plate thickness of the packing material 1, the end surface of the second inner wall 8 abuts against the bottom surface portion 2 and is fixed. The assembly strength of the battery module package 100 is improved.
- the height 8h of the second inner wall 8 is equal to the folding position of the second inner wall 8, that is, the height h8 from the first bottom side 2a of the folding line T1.
- the upper limit of the folding position of the second inner wall 8, that is, the height of the folding line T1 from the first bottom 2a is a position lower than the height h1 of the first side wall 5 by the plate thickness of the packaging material.
- the second top surface portion 4 cushions the bent portion of the second inner wall 8. .
- the second top surface 4 is assembled without being buffered with the bent portion of the second inner wall 8 by making the folding position of the second inner wall 8 lower than the height h1 of the first side wall 5 by the thickness of the packaging material. Can do.
- the bending position of the second inner wall 8 when the bending position of the second inner wall 8 is lowered, the holding force for holding the second solar cell module 12 as the upper stage from the side wall is reduced.
- the lower limit of the bending position of the second inner wall 8 may be 2/3 or more of the height of the second solar cell module 12 that is the upper stage. Since the height of the two solar cell modules is equal to the height of the first side wall 5, the height of the bent position of the second inner wall 8 is ⁇ (height of the first solar cell module 11 at the lower level) + (the height at the upper level). It is sufficient that it is larger than 2/3) ⁇ of the height of the second solar cell module 12.
- the heights of the first and second solar cell modules are the same, it may be larger than ⁇ 5/3 of the height of the solar cell module ⁇ .
- the bending position height h8 of the second inner wall 8 only needs to be larger than 5/6 of the height h1 of the first side wall 5.
- the folding position of the second inner wall 8 that is, the height h8 of the folding line T1 from the first base 2a is set to a position lower than the height h1 of the first side wall portion 5 by about two sheet thicknesses of the packaging material 1. It is desirable.
- the second side wall 3 is raised from the second bottoms 2c and 2d by a valley fold, that is, vertically bent upward by 90 degrees, and is formed outside the first inner wall 7 and the second inner wall 8.
- the width of the second side wall 3 is equal to the width of the second base 2c, and the height h1 of the first side wall 5 is equal to the height of two solar cell modules.
- the height h0 of the second side wall 3 is equal to the height h1 of the first side wall 5.
- the second top surface portion 4 is raised up from the upper side of the second side wall portion 3 by valley folding, that is, bent inward by 90 degrees.
- the width of the second top surface portion 4 in the direction parallel to the second bottom side 2 c is equal to the width of the second bottom side 2 c, and the width of the second top surface portion 4 in the direction perpendicular to the second bottom side 2 c is the width of the second side wall portion 3.
- the second top surface portion 4 is formed above the first inner wall 7 and the second inner wall 8 by trough fold, that is, outside the first inner wall 7 and the second inner wall 8. Since it is provided at a position lower than the thickness, the second top surface portion 4 can be assembled without buffering with the bent portion of the second inner wall 8.
- FIG. 3 is a diagram in which the lower first solar cell module 11 is arranged on the bottom surface 2 of the packing material 1.
- the first solar cell module 11 has second bases 2c and 2d that are long sides of the bottom surface portion 2 of the packing material 1, and first bases 2a and 2b that are short sides and long and short sides of the solar cell module.
- second bases 2c and 2d that are long sides of the bottom surface portion 2 of the packing material 1
- first bases 2a and 2b that are short sides and long and short sides of the solar cell module.
- FIG. 4 is a diagram showing an assembly procedure 1 of the packaging material. After arranging the first solar cell module 11 on the packing material 1, the connecting side between the first side wall 5 and the first inner wall 7 is valley-folded, and the long side 7 ⁇ / b> S that is the connecting side between the first inner wall 7 and the inner buffer 9. Fold 2 up.
- FIG. 5 is a diagram showing a procedure 2 for assembling the packaging material. After assembling to the state shown in FIG. 4, the long side 7 ⁇ / b> S 1 that is the connecting side between the first inner wall 7 and the second inner wall 8 is folded in a mountain.
- FIG. 6 is a diagram showing an assembling procedure 3 of the packaging material. After assembling to the state shown in FIG. 5, the connecting side between the bottom surface portion 2 of the packing material 1 and the first side wall portion 5 is folded in a mountain, and the first side wall portion 5 is raised with respect to the bottom surface portion 2.
- FIG. 7 is an overall view in the middle of assembling the packing material at the time of assembling to the state shown in FIG.
- the inner buffer portions 9 are arranged at the four corners of the first solar cell module 11 at the lower stage.
- FIG. 8 is a diagram showing the assembly procedure 4 of the packaging material. After assembling to the state shown in FIG. 6, the upper second solar cell module 12 is arranged on the packing material 1 so that the inner buffer portion 9 is sandwiched between the first solar cell module 11 and the second solar cell module 12. To do.
- FIG. 9 is a diagram showing an assembling procedure 5 of the packaging material. After assembling to the state shown in FIG. 8, the connection side between the bottom surface part 2 and the second side wall part 3 is valley-folded, the connection side between the second side wall part 3 and the second top surface part 4 is valley-folded, and the second top surface part The connection side between 4 and the insertion part 10 is folded in a valley.
- FIG. 10 is a diagram showing an assembling procedure 6 of the packaging material. After assembling to the state shown in FIG. 9, the connection side between the second side wall 3 and the second top surface 4 is valley-folded, and the insertion portion 10 is connected to the first side wall 5 and the lower first solar cell module 11 and the upper stage. Is inserted into the gap between the second solar cell module 12 and the inner buffer portion 9, and the assembly of the packing material 1 is completed, so that the solar cell module package 100 is obtained.
- FIG. 11 shows a solar cell module package 100 in which two solar cell modules, that is, the first and second solar cell modules 11 and 12 are packed using the packing material of the first embodiment formed by the above-described steps. Is a cross-sectional view schematically showing a portion where the inner buffer portion 9 is sandwiched between the first and second solar cell modules 11 and 12.
- the first solar cell module 11 includes a solar cell panel 11P having a power generation function and a holding frame 11F that holds the periphery of the solar cell panel 11P.
- the holding frame 11F includes a panel holding portion 11FP that holds the solar cell panel 11P, a lower side support portion 11FU that places the solar cell module on a gantry, and a side surface portion 11FS that connects the panel holding portion 11FP and the lower side support portion 11FU.
- the second solar cell module 12 includes a solar cell panel 12P having a power generation function and a holding frame 12F that holds the periphery of the solar cell panel 12P.
- the holding frame 12F includes a panel holding portion 12FP that holds the solar cell panel 12P, a lower side support portion 12FU that places the solar cell module on the gantry, and a side surface portion 12FS that connects the panel holding portion 12FP and the lower side support portion 12FU.
- the width of the holding frames 11F and 12F is smaller than the height of the holding frames 11F and 12F.
- the holding frame 11F has a function of holding the solar cell panel 11P and suppressing the bending of the solar cell panel 11P when a surface pressure is applied to the solar cell panel 11P.
- the holding frame 11F is required to have a structure that obtains strong strength with as little material as possible. By making the height of the holding frame larger than the width of the holding frame, it is possible to obtain the holding frame 11F that shows a strong strength against bending with a small amount of material.
- the first and second solar cell modules 11 and 12 have an upper surface of the panel holding portion 11FP of the lower first solar cell module 11 and a lower surface of the lower side support portion 12FU of the upper second solar cell module 12. Between which the inner buffer portion 9 is sandwiched.
- the inner buffer portion 9 is bent 90 degrees and connected to the first inner wall 7.
- the first inner wall 7 is connected to the first side wall 5 at the end.
- the first inner wall 7 is bent 180 degrees and connected to the second inner wall 8.
- a second side wall portion 3 connected to the bottom surface portion 2 covers the outside of the second inner wall 8.
- the second side wall portion 3 is bent 90 degrees on the upper surface of the panel holding portion of the holding frame of the upper solar cell module to form the second top surface portion 4.
- the side surface of the upper second solar cell module 12 is held by the first inner wall 7, the second inner wall 8, and the second side wall portion 3.
- the side surface of the lower first solar cell module 11 is held by the second inner wall 8 and the second side wall portion 3. That is, the upper second solar cell module 12 holds the side surface with three packing materials, and the lower first solar cell module 11 holds the side surfaces with two packing materials 1. That is, when the first inner wall 7 holds only the second solar cell module 12 on the upper stage side and is transported in a state where two solar cell modules are stacked, the second inner wall 7 is affected by an impact generated during transportation. A large acceleration is applied to the solar cell module 12 and the second solar cell module 12 on the upper stage side is likely to be displaced.
- the solar cell module package 100 of the first embodiment only the second solar cell module 12 on the upper stage side is provided with the first inner wall 7 on the side surface to increase the number of packaging materials to be held, and the first solar cell module package on the lower stage side. By holding it more firmly than the solar cell module 11, it is possible to reduce the deviation of the second solar cell module 12 on the upper stage side.
- the inner buffer portion 9 can be sandwiched between the two solar cell modules, the damage to the holding frames 11F and 12F can be reduced.
- the first top surface portion 6 is formed by being bent 90 degrees inward from the upper side of the first side wall portion 5.
- the width of the first top surface 6 in the direction parallel to the first base is equal to the width of the first base, and the width of the first top surface 6 in the direction perpendicular to the first base 2a is the height 8h of the second inner wall 8. equal. Therefore, the width of the first top surface portion 6 in the direction perpendicular to the first base 2a is equal to the height h1 of the first side wall portion 5.
- the outer periphery of the second inner wall 8 is on the inner side of the outer periphery of the first top surface part 6 in the planar state before assembly, and therefore, when the packing material is cut out from the packing material, it is cut without waste. be able to.
- upper surface part 6 is equal to the height 8h of the 2nd inner wall 8, and is equal to the height of two solar cell modules. Since the width of the holding frame of the solar cell module is smaller than the height of one solar cell module, the first top surface portion 6 can cover the upper surface of the upper holding frame.
- the solar cell module In the structure of the four corners after packing the solar cell module, it has a plurality of walls in the plane direction of the solar cell module, and has a buffer body between the upper and lower solar cell modules in the packing material. Since it is composed of a single packaging material, it is possible to obtain a packaging body that is low in cost, easy to assemble, and highly cushioning.
- Embodiment 1 Since the packaging material of Embodiment 1 is composed of a single cardboard, it is possible to easily describe information including the model name, and the number of solar cell modules is divided in the distribution process. Information such as model names can be displayed individually as you go.
- FIG. FIG. 12 is a development view of the packing material 1S of the solar cell module package according to the second embodiment.
- FIG. 13 is an enlarged view of the XIII portion in FIG. 12, which is a development view of the packing material 1S of the solar cell module package 100S of the second embodiment.
- the insertion portion 13 having a width W 1 formed along one long side of the second inner wall 8, and the bottom portion at the corners, that is, the four corners of the bottom portion 2. 2 and a slit 14 having a width W 2 is provided along the connecting side of the second side wall 3.
- the insertion portion 13, which is a connecting piece, is formed to have the same width w 1 and the width W 2 of the slit 14.
- FIG. 13 to FIG. 15 are explanatory diagrams showing an assembly process of the solar cell module package according to the second embodiment.
- FIG. 16 is a cross-sectional view schematically showing a solar cell module package 100S according to Embodiment 2 of the present invention.
- the difference between the solar cell module package 100S of the second embodiment and the solar cell module package 100 of the first embodiment is that the second inner wall 8 has the insertion portion 13.
- the second inner wall 8 has the insertion portion 13.
- FIG. 14 and FIG. 15 are diagrams showing a packing process of the solar cell module package 100S of the second embodiment. Assembling is performed based on the same assembling method until FIG. 5 shown in the first embodiment. After assembling to the state shown in FIG. 5, the connecting side between the bottom surface portion 2 and the first side wall portion 5 is folded in a mountain, and the insertion portion 13 is inserted into the slit 14. The assembling procedure after inserting the insertion portion 13 into the slit 14 is the same as the procedure after FIG. 7 shown in the first embodiment. The same parts are denoted by the same reference numerals and description thereof is omitted.
- the insertion member 13 is inserted into the slit 14 provided on the connection side between the bottom surface 2 and the second side wall portion 3, as shown in FIGS. 14 and 15.
- the shape of 1S can be maintained, and the operation of placing the upper second solar cell module 12 becomes easy.
- 14 is a view from the outside
- FIG. 15 is a view from the opposite side, that is, from the inside of FIG.
- the assembly of the solar cell module package 100S is performed. Strength is improved.
- FIG. 17 is a development view of the packaging material 1T of the solar cell module packaging body according to the third embodiment.
- FIG. 18 is an enlarged view of the XVIII portion in FIG. 17, which is a development view of the packing material 1 ⁇ / b> T of the solar cell module package according to the second embodiment.
- the packing materials 1 and 1S for packing two solar cell modules have been described.
- the third solar cell is added to the first and second solar cell modules 11 and 12.
- a packing material 1T for packing three solar cell modules composed of the battery modules 21 will be described.
- FIG. 18 is an enlarged view of the XVIII portion in FIG. 17, which is a development view of the packing material 1 ⁇ / b> T of the solar cell module package according to the second embodiment.
- the second inner buffer portion 19 is formed along one long side of the second inner wall 8, and the second inner wall 8 and the second inner buffer portion 19 are further formed.
- a third inner wall 15 extending from the second inner wall 8 and the second inner buffer portion 19 perpendicular to the direction of connection with the inner buffer portion, and a two-stage inner buffer portion comprising the inner buffer portion 9 and the second inner buffer portion 19.
- the insertion part 20 provided in one side of the 3rd inner wall, and the slit 14 are provided in the corner
- the width of the insertion portion 20 which is a connection piece and the width of the slit 14 are formed to be equal.
- 19-20 is explanatory drawing which shows the assembly process of the solar cell module package 100T of Embodiment 3.
- FIG. 21 is a cross-sectional view schematically showing a solar cell module package 100T according to Embodiment 2 of the present invention.
- the difference between the solar cell module package 100T of the third embodiment and the solar cell module package 100 of the first embodiment is that a two-stage inner buffer portion is provided, and the third inner wall 15 in addition to the second inner wall 8. And a point where the third inner wall 15 has the insertion portion 20.
- the outer periphery of the second inner buffer portion 19 is on the inner side of the outer periphery of the first top surface portion 6 in the planar state before assembly, and the insertion portion 20 is also configured to be on the inner side of the outer periphery of the first top surface portion 6.
- FIG. 19 and 20 are diagrams showing an assembling procedure of the packing material 1T. Assembling is performed based on the same assembling method shown in the first embodiment. First, the third solar cell module 21 is placed on the bottom surface 2 and assembled to the state shown in FIG. Subsequently, as shown in FIG. 19, the second inner buffer portion 19 connected to the second inner wall 8 is folded in a mountain and bent by 90 degrees to form the second inner buffer portion 19 parallel to the inner buffer portion 9. .
- the third inner wall 15 extending from the second inner wall 8 and the second inner buffer portion 19 is folded in a mountain to form an overlapping portion with the first inner wall 7 and the second inner wall 8.
- the connection side between the bottom surface portion 2 and the first side wall portion 5 is folded in a mountain, and the insertion portion 20 is inserted into the slit 14.
- the 1st solar cell module 11 is mounted on the 2nd inner buffer part 19, and the same assembly is performed.
- the assembling procedure after inserting the insertion part 20 into the slit 14 is the same as the procedure after FIG. 7 shown in the first embodiment.
- the same parts are denoted by the same reference numerals and description thereof is omitted.
- the shape of the packing material can be maintained by inserting the insertion portion 20 into the slit 14 provided on the connection side of the bottom surface portion 2 and the second side wall portion 3.
- the assembly strength of the solar cell module package 100T Will improve.
- the side surface of the upper second solar cell module 12 is held by four layers of the first inner wall 7, the second inner wall 8, the third inner wall 15, and the second side wall portion 3.
- the side surface of the middle first solar cell module 11 is held by three layers of the second inner wall 8, the third inner wall 15, and the second side wall portion 3.
- the side surface of the lower third solar cell module 21 is held by two layers of the third inner wall 15 and the second side wall portion 3. That is, the upper second solar cell module 12 holds the side surface with four packaging materials 1T, the middle first solar cell module 11 holds the side surfaces with three packaging materials 1T, and the lower third The solar cell module 21 holds the side surface with three packaging materials 1T.
- the second solar cell module on the upper stage is used.
- the second solar cell module on the upper stage is used.
- Embodiments 1 to 3 the packing material for packing two or three solar cell modules has been described. However, the present invention can also be applied to a packing material for packing more than four solar cell modules. is there.
- the bending angle is 90 degrees and 180 degrees, but the angle is an example and can be adjusted as appropriate.
- 1,1S, 1T packing material 2 bottom surface portion, 2a, 2b first bottom side, 2c, 2d second bottom side, 3rd side wall portion, 4 second top surface portion, 4S short side, 5 first side wall portion, 6 first 1 top surface portion, 7 first inner wall, 7S 1 , 7S 2 long side, 7S 3 short side, 7h first inner wall height, 7W first inner wall width, 8 second inner wall, 9 inner buffer portion, 10 insertion portion , 11 1st solar cell module, 12 2nd solar cell module, 13 plug part, 14 slit, 15 3rd inner wall, 19 2nd buffer part, 20 plug part, 21 3rd solar cell module, 100, 100S, 100T solar cell module package, h0 height of second side wall, h1 height of first side wall, h8 folding position of second inner wall, T1 folding line.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Packaging Frangible Articles (AREA)
- Buffer Packaging (AREA)
Abstract
複数の太陽電池モジュールを梱包材で梱包した太陽電池モジュール梱包体である。太陽電池モジュール梱包体(100)は、第1底辺と第1底辺と直交する第2底辺とを備えた矩形状の底面部(2)と、底面部(2)に載置された第1の太陽電池モジュールと、第1底辺から伸長され上部に垂直方向に90度折り曲げられた矩形状の第1側壁部と、第1側壁部の側辺から伸長され内側に90度折り曲げられた第1内壁(7)と、第1内壁(7)の下辺から伸長され内側に90度折り曲げられた内緩衝部(9)と、内緩衝部(9)を挟んで第1の太陽電池モジュールの上に載置された第2の太陽電池モジュールと、第1内壁(7)の上辺から伸長され外側に180度折り曲げられた第2内壁(8)と、第2底辺から上部に伸長され垂直方向に90度折り曲げられた第2側壁部(3)と、を有する。
Description
本発明は、太陽電池モジュールを輸送のために梱包した太陽電池モジュール梱包体および梱包材に関する。
太陽電池モジュールは、一般的に2枚の太陽電池モジュールを重ね、1つの梱包体とし、複数の梱包体が積み重ねられた状態で出荷される。
特許文献1、2には、太陽電池モジュール間に支持部材を挟み込む太陽電池モジュールの梱包技術が開示されている。
特許文献1、2に開示される支持部材は、積み重ねられた太陽電池モジュール間に配置されることにより、輸送中の太陽電池モジュール間のズレ、キズを防止する効果がある。
しかしながら、特許文献1および2の梱包体では、梱包材の支持部を別部材で構成しているため、材料コストの高騰を招くうえ、製造作業性が悪い上、耐衝撃性が十分でないという問題があった。
太陽電池モジュールが積み重ねられた状態で輸送された場合、輸送中に発生する衝撃にて、太陽電池モジュール間に大きなズレが発生する。
また太陽電池モジュールにズレが生じた際に上下の太陽電池モジュールが擦れることにより太陽電池モジュールのフレームにキズが発生し易い。
本発明は、上記に鑑みてなされたもので、製造が容易でかつ、輸送中の太陽電池モジュールのズレを防止し、太陽電池モジュールのズレを防止することのできる太陽電池モジュール梱包体を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、複数の太陽電池モジュールを梱包材で梱包した太陽電池モジュール梱包体である。太陽電池モジュール梱包体は、第1底辺と第1底辺と直交する第2底辺とを備えた矩形状の底面部と、底面部に載置された第1の太陽電池モジュールと、第1底辺から伸長され上部に垂直方向に90度折り曲げられた矩形状の第1側壁部と、第1側壁部の側辺から伸長され内側に90度折り曲げられた第1内壁と、第1内壁の下辺から伸長され内側に90度折り曲げられた内緩衝部と、内緩衝部を挟んで第1の太陽電池モジュールの上に載置された第2の太陽電池モジュールと、第1内壁の上辺から伸長され外側に180度折り曲げられた第2内壁と、第2底辺から上部に伸長され垂直方向に90度折り曲げられた第2側壁部と、を有する。
本発明によれば、製造が容易でかつ、輸送中の太陽電池モジュールのズレを防止し、太陽電池モジュールのズレを防止することのできる太陽電池モジュール梱包体を得ることという効果を奏する。
以下に、本発明にかかる太陽電池モジュール梱包体および梱包材の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、実施の形態1の太陽電池モジュール梱包体の梱包材1の展開図である。図1に示すように梱包材1は、梱包材底面部である底面部2と、底面部2の長辺である第2底辺2c,2dに沿うように形成される一対の梱包材長辺側面部である第2側壁部3と、第2側壁部3の長辺に沿うように形成される一対の梱包材長辺天面部である第2天面部4と、底面部2の短辺である第1底辺2a,2bに沿うように形成される一対の梱包材短辺側面部である第1側壁部5と、第1側壁部5の長辺に沿うように形成される、一対の梱包材短辺天面部である第1天面部6を備える。梱包材1は、1枚の段ボール板を切断し折り込むことで形成することができる。段ボール板は、4層のライナーと中芯とを交互に重ね合わせてコルゲータにかけることによって両者を貼り合わせ、形成される。また、折り込み位置で、きれいに折り込めるように、山側と谷側とで、適切な位置にあらかじめ、罫線を形成している。梱包材1の材料には、段ボールの他、厚紙をはじめとする板状体を用いることができる。組み立て前の展開図における梱包材では正式には、底面部2は底面形成部、第2側壁部3は第2側壁形成部、第2天面部4は、第2天面形成部、第1側壁部5は第1側面形成部、第1天面部6は天面形成部、第1内壁7は第1内壁形成部、第2内壁8は第2内壁形成部、内緩衝部9は内緩衝部形成部であるが、簡略化して、底面部2、第2側壁部3、第2天面部4、第1側壁部5、第1天面部6、第1内壁7、第2内壁8、内緩衝部9と呼ぶこととする。
図1は、実施の形態1の太陽電池モジュール梱包体の梱包材1の展開図である。図1に示すように梱包材1は、梱包材底面部である底面部2と、底面部2の長辺である第2底辺2c,2dに沿うように形成される一対の梱包材長辺側面部である第2側壁部3と、第2側壁部3の長辺に沿うように形成される一対の梱包材長辺天面部である第2天面部4と、底面部2の短辺である第1底辺2a,2bに沿うように形成される一対の梱包材短辺側面部である第1側壁部5と、第1側壁部5の長辺に沿うように形成される、一対の梱包材短辺天面部である第1天面部6を備える。梱包材1は、1枚の段ボール板を切断し折り込むことで形成することができる。段ボール板は、4層のライナーと中芯とを交互に重ね合わせてコルゲータにかけることによって両者を貼り合わせ、形成される。また、折り込み位置で、きれいに折り込めるように、山側と谷側とで、適切な位置にあらかじめ、罫線を形成している。梱包材1の材料には、段ボールの他、厚紙をはじめとする板状体を用いることができる。組み立て前の展開図における梱包材では正式には、底面部2は底面形成部、第2側壁部3は第2側壁形成部、第2天面部4は、第2天面形成部、第1側壁部5は第1側面形成部、第1天面部6は天面形成部、第1内壁7は第1内壁形成部、第2内壁8は第2内壁形成部、内緩衝部9は内緩衝部形成部であるが、簡略化して、底面部2、第2側壁部3、第2天面部4、第1側壁部5、第1天面部6、第1内壁7、第2内壁8、内緩衝部9と呼ぶこととする。
図2は、図1におけるII部の拡大図である。図2に示すように、梱包材1は、第1側壁部5に沿うように形成される第1内壁7と、第1内壁7の片側の長辺7S1に沿うように形成される第2内壁8と、第1内壁7のもう片側の長辺7S2に沿うように形成される内緩衝部9と、第2天面部4の短辺4Sに沿うように形成される差込み部10を備える。
図3から図10は、実施の形態1の太陽電池モジュール梱包体100の梱包工程を示す説明図であり、図11は、実施の形態1の太陽電池モジュール梱包体100を模式的に示した断面図である。太陽電池モジュール梱包体100は、第1の太陽電池モジュール11、第2の太陽電池モジュール12からなる計2枚の太陽電池モジュールの底面、側面及び上面の保持フレームを覆い、2枚の太陽電池モジュールの間に内緩衝部9を挟んで構成される。底面部2は、図1における左右1対の第1底辺2a,2bと、図1における上下1対の第2底辺2c,2dを有する。底面部2の大きさは、第1および第2の太陽電池モジュール11,12の大きさと等しい。
第1側壁部5は、第1底辺2a、2bから谷折りすなわち上部に垂直方向に90度折り曲げられて形成される。第1側壁部5の幅は第1底辺2a,2bの幅と等しく、第1側壁部5の高さは第1および第2の太陽電池モジュール11,12の2枚の高さの合計値と等しい。
第1内壁7は、第1側壁部5の側辺である短辺7S3から谷折りすなわち内側に90度折り曲げられて形成される。第1内壁7の幅7Wは第2側壁部3の高さh0と等しい。第2側壁部3の高さh0は第1側壁部5の高さh1と等しいので、第1内壁7の幅7Wは第1側壁部5の高さh1と等しい。第1内壁7の一方の側辺である短辺7S3は、第1側壁部5の側辺の上端から中央の位置まで第1側壁部5に繋がっている。
内緩衝部9は、第1内壁7の下辺である長辺7S2から谷折りすなわち内側に90度折り曲げられて水平方向に配される。長辺7S2の第一底辺からの高さは太陽電池モジュール1枚の高さと等しい。内緩衝部9は、下段である第1の太陽電池モジュール11の保持フレーム11Fの上面と、上段である第2の太陽電池モジュール12の保持フレーム12Fの下面の間に挟み込まれる。
第2内壁8は、第1内壁7の上辺である長辺7S1から外側に180度折り曲げられて形成される。第2内壁8の幅8wは第2側壁部3の高さh0と等しい。第2内壁8の折り曲げ位置は、第1側壁部5の高さh1よりも梱包材1の板厚分、低い位置に設けられている。梱包材1の板厚分、低い位置に設けることで、第2内壁8の下端が底面部2に接することになり、第2内壁8の端面が底面部2に当接し固定されるため、太陽電池モジュール梱包体100の組み立て強度が向上する。なお第2内壁8の高さ8hは第2内壁8の折り曲げ位置すなわち折り曲げ線T1の第1底辺2aからの高さh8と等しい。
第2内壁8の折り曲げ位置すなわち折り曲げ線T1の第1底辺2aからの高さの上限は、第1側壁部5の高さh1よりも梱包材の板厚分、低い位置である。第2内壁8の折り曲げ線T1の第1底辺2aからの高さh8が、第1側壁部5の高さh1よりも高くなると、第2天面部4が第2内壁8の折り曲げ部と緩衝する。第2内壁8の折り曲げ位置を第1側壁部5の高さh1よりも梱包材の板厚分低くすることで、第2天面部4が第2内壁8の折り曲げ部と緩衝することなく組み立てることができる。
一方、第2内壁8の折り曲げ位置が低くなると、上段である第2の太陽電池モジュール12を側壁から保持する保持力が低下する。第2内壁8の折り曲げ位置の下限は、上段である第2の太陽電池モジュール12の高さの2/3以上を保持すれば良い。太陽電池モジュール2枚の高さと第1側壁部5の高さが等しいので、第2内壁8の折り曲げ位置高さは、{(下段の第1の太陽電池モジュール11の高さ)+(上段の第2の太陽電池モジュール12の高さの2/3)}よりも大きければよい。すなわち第1および第2の太陽電池モジュールの高さが同一である場合には{太陽電池モジュールの高さの5/3}よりも大きければよい。第1側壁部5の高さh1を基準とすると、第2内壁8の折り曲げ位置高さh8は、第1側壁部5の高さh1の5/6よりも大きければ良い。
上段である第2の太陽電池モジュール12の保持力を向上させるためには、第2内壁8の折り曲げ位置をなるべく高くすることが望ましいが、上限ぎりぎりの第1側壁部5の高さよりも梱包材1の板厚分だけ低い位置を狙うのは加工精度の問題を考慮すると困難である。従って、第2内壁8の折り曲げ位置すなわち折り曲げ線T1の第1底辺2aからの高さh8は、第1側壁部5の高さh1よりも梱包材1の板厚2枚分程度低い位置とすることが望ましい。
第2側壁部3は、第2底辺2c,2dから谷折りすなわち上部に垂直方向に90度折り曲げられて起立され、第1内壁7および第2内壁8の外側に形成される。第2側壁部3の幅は第2底辺2cの幅と等しく、第1側壁部5の高さh1は太陽電池モジュール2枚の高さと等しい。また、第2側壁部3の高さh0は第1側壁部5の高さh1と等しい。
第2天面部4は、第2側壁部3の上辺から谷折りすなわち内側に90度折り曲げられて起立される。第2天面部4の、第2底辺2cと平行な方向の幅は第2底辺2cの幅と等しく、第2天面部4の第2底辺2cと垂直な方向の幅は第2側壁部3の高さh0と等しい。第2天面部4は谷折りにより第1内壁7および第2内壁8の上側すなわち外側に形成されるが、第2内壁8の折り曲げ位置は、第1側壁部5の高さよりも梱包材の板厚分より低い位置に設けられているので、第2天面部4が第2内壁8の折り曲げ部と緩衝することなく組み立てることができる。
以下、図面を参照しつつ梱包材の組立て手順を説明する。
図3は、梱包材1の底面部2に下段側の第1の太陽電池モジュール11を配置した図である。第1の太陽電池モジュール11は、梱包材1の底面部2の長辺である第2底辺2c,2d、短辺である第1底辺2a,2bと太陽電池モジュールの長辺、短辺が沿うように配置される。
図4は、梱包材の組立て手順1を示す図である。梱包材1に第1の太陽電池モジュール11を配置後、第1側壁部5と第1内壁7の接続辺を谷折りし、第1内壁7と内緩衝部9の接続辺である長辺7S2を谷折りする。
図5は、梱包材の組立て手順2を示す図である。図4に示す状態まで組立て後、第1内壁7と第2内壁8の接続辺である長辺7S1を山折りする。
図6は、梱包材の組立て手順3を示す図である。図5に示す状態まで組立て後、梱包材1の底面部2と第1側壁部5の接続辺を山折りし、底面部2に対し第1側壁部5を起立させる。
図7は、図6に示す状態まで組立てた時点での梱包材組立て途中の全体図である。図6に示す状態まで組立てると、図7に示すように内緩衝部9が下段である第1の太陽電池モジュール11の四隅に配置される。
図8は、梱包材の組立て手順4を示す図である。図6に示す状態まで組立て後、内緩衝部9が第1の太陽電池モジュール11と第2の太陽電池モジュール12に挟まれるように、上段の第2の太陽電池モジュール12を梱包材1に配置する。
図9は、梱包材の組立て手順5を示す図である。図8に示す状態まで組立てた後、底面部2と第2側壁部3の接続辺を谷折りし、第2側壁部3と第2天面部4の接続辺を谷折りし、第2天面部4と差込み部10との接続辺を谷折りする。
図10は、梱包材の組立て手順6を示す図である。図9に示す状態まで組立て後、第2側壁部3と第2天面部4の接続辺を谷折りし、差込み部10を第1側壁部5と下段の第1の太陽電池モジュール11及び、上段の第2の太陽電池モジュール12及び、内緩衝部9の隙間に差込み、梱包材1の組立ては完了し、太陽電池モジュール梱包体100となる。
図11は、以上の工程により形成された実施の形態1の梱包材を用いて2枚の太陽電池モジュール、すなわち第1および第2の太陽電池モジュール11,12を梱包した太陽電池モジュール梱包体100を模式的に示した断面図であり、第1および第2の太陽電池モジュール11,12の間に内緩衝部9を挟んだ箇所の断面図である。第1の太陽電池モジュール11は、発電機能を有する太陽電池パネル11Pと、太陽電池パネル11Pの周囲を保持する保持フレーム11Fとを有する。保持フレーム11Fは、太陽電池パネル11Pを保持するパネル保持部11FPと、太陽電池モジュールを架台に乗せる下辺支持部11FUと、パネル保持部11FPと下辺支持部11FUとをつなぐ側面部11FSとを有する。第2の太陽電池モジュール12についても同様であり、第2の太陽電池モジュール12は、発電機能を有する太陽電池パネル12Pと、太陽電池パネル12Pの周囲を保持する保持フレーム12Fとを有する。保持フレーム12Fは、太陽電池パネル12Pを保持するパネル保持部12FPと、太陽電池モジュールを架台に乗せる下辺支持部12FUと、パネル保持部12FPと下辺支持部12FUとをつなぐ側面部12FSとを有する。保持フレーム11F,12Fの幅は保持フレーム11F,12Fの高さよりも小さい。保持フレーム11Fは、太陽電池パネル11Pを保持し、太陽電池パネル11Pに面圧がかかった時に、太陽電池パネル11Pの曲がりを抑制する機能を有する。保持フレーム11Fは、なるべく少ない材料で強い強度を得る構成が求められる。保持フレームの高さを、保持フレームの幅よりも大きくすることで、少ない材料で曲げに対して強い強度を示す保持フレーム11Fを得ることができる。
第1および第2の太陽電池モジュール11,12は、下段である第1の太陽電池モジュール11のパネル保持部11FPの上面と、上段である第2の太陽電池モジュール12の下辺支持部12FUの下面との間に内緩衝部9を挟んで積載される。内緩衝部9は、90度折り曲げられて第1内壁7に繋がる。第1内壁7は、端部で第1側壁部5につながる。第1内壁7は、180度折り曲げられて第2内壁8につながる。第2内壁8の外側を、底面部2に繋がった第2側壁部3が覆う。第2側壁部3は上側太陽電池モジュールの保持フレームのパネル保持部の上面で90度折り曲げられて第2天面部4を形成する。
以上の工程を経て組み立てることにより、上段の第2の太陽電池モジュール12の側面は第1内壁7と第2内壁8と第2側壁部3とで保持される。一方、下段の第1の太陽電池モジュール11の側面は第2内壁8と第2側壁部3とで保持される。即ち、上段の第2の太陽電池モジュール12は3枚の梱包材で側面を保持し、下段の第1の太陽電池モジュール11は2枚の梱包材1で側面を保持することになる。即ち、第1内壁7は上段側の第2の太陽電池モジュール12のみを保持し、2枚の太陽電池モジュールを積み重ねた状態で輸送した場合、輸送中に発生する衝撃で、上段側の第2の太陽電池モジュール12に大きな加速度がかかり、上段側の第2の太陽電池モジュール12にズレが発生し易い。実施の形態1の太陽電池モジュール梱包体100によれば、上段側の第2の太陽電池モジュール12のみに側面に第1内壁7を設けて保持する梱包材の枚数を増やし、下段側の第1の太陽電池モジュール11よりも強固に保持することにより、上段側の第2の太陽電池モジュール12のズレを低減することができる。
また、2枚の太陽電池モジュールの間に内緩衝部9を挟んで積載することができるので、保持フレーム11F,12Fの傷付を低減することができる。
第1天面部6は、第1側壁部5の上辺から内側に90度折り曲げられて形成される。第1天面部6の第1底辺と平行な方向の幅は第1底辺の幅と等しく、第1天面部6の第1底辺2aと垂直な方向の幅は第2内壁8の高さ8hと等しい。従って、第1天面部6の第1底辺2aと垂直な方向の幅は第1側壁部5の高さh1と等しい。
以上の構成により、組み立て前の平面状態での第1天面部6の外周よりも第2内壁8の外周が内側となるので、梱包材用の素材から梱包材を切り出した時に、無駄なく裁断することができる。また、第1天面部6の第1底辺2aと垂直な方向の幅は第2内壁8の高さ8hと等しく、太陽電池モジュール2枚の高さと等しい。太陽電池モジュールの保持フレームの幅は太陽電池モジュール1枚の高さよりも小さいので、第1天面部6は上段の保持フレームの上面を覆う事ができる。
太陽電池モジュール梱包後の四隅の構造にて、太陽電池モジュール平面方向に複数の壁を有し、梱包材内の上下太陽電池モジュール間に緩衝体を有し、複数の壁、緩衝体は全て一枚の梱包材にて構成されるため、低コストでかつ組み立てが容易で緩衝性の高い梱包体を得ることが可能となる。
また、太陽電池モジュールがメーカ出荷時の状態でエンドユーザーへ納品されることは少なく、太陽電池モジュールの物流上、物流過程にて徐々に枚数が分割されることが多い。実施の形態1の梱包材では、1枚の段ボールで構成されているため、型名をはじめとする情報を記載することも容易に可能であり、物流過程で太陽電池モジュールの枚数を分割していく際に型名などの情報を個々に表示することができる。
実施の形態2.
図12は、実施の形態2の太陽電池モジュール梱包体の梱包材1Sの展開図である。図13は、実施の形態2の太陽電池モジュール梱包体100Sの梱包材1Sの展開図である図12におけるXIII部拡大図である。図2に示した実施の形態1の構成に加え、第2内壁8の片方の長辺に沿うように形成される幅W1の差込み部13と、底面部2の角部すなわち四隅に底面部2と第2側壁部3の接続辺に沿うように幅W2のスリット14を備える。接続片である差込み部13の幅w1とスリット14の幅W2は等しくなるように形成される。図13から図15は、実施の形態2の太陽電池モジュール梱包体の組み立て工程を示す説明図である。
図12は、実施の形態2の太陽電池モジュール梱包体の梱包材1Sの展開図である。図13は、実施の形態2の太陽電池モジュール梱包体100Sの梱包材1Sの展開図である図12におけるXIII部拡大図である。図2に示した実施の形態1の構成に加え、第2内壁8の片方の長辺に沿うように形成される幅W1の差込み部13と、底面部2の角部すなわち四隅に底面部2と第2側壁部3の接続辺に沿うように幅W2のスリット14を備える。接続片である差込み部13の幅w1とスリット14の幅W2は等しくなるように形成される。図13から図15は、実施の形態2の太陽電池モジュール梱包体の組み立て工程を示す説明図である。
図16は、本発明の実施の形態2の太陽電池モジュール梱包体100Sを模式的に示した断面図である。実施の形態2の太陽電池モジュール梱包体100Sの実施の形態1の太陽電池モジュール梱包体100との違いは、第2内壁8が差込み部13を有する点である。実施の形態2の梱包材1Sでは、第2内壁8が差込み部13を有する。組み立て前の平面状態での第1天面部6の外周よりも第2内壁8の外周が内側にあり、差込み部13においても第1天面部6の外周よりも内側にあるように構成することにより、梱包材用の素材から梱包材1Sを切り出した時に、無駄なく裁断することができる。
他部については実施の形態1の太陽電池モジュール梱包体100と同様であるため、詳細な説明は省略する。同一部位には同一符号を付した。
図14および図15は、実施の形態2の太陽電池モジュール梱包体100Sの梱包工程を示す図である。実施の形態1で示した図5までは同様の組立て方法に基づき組み立てを実施する。図5に示す状態まで組立て後、底面部2と第1側壁部5との接続辺を山折りし、差込み部13をスリット14に挿入する。差込み部13をスリット14に挿入した後の組立て手順は実施の形態1で示す図7以降の手順と同様である。同一部位には同一符号を付し、説明は省略する。
実施の形態2の梱包材1Sでは、差込み部13を、底面部2と第2側壁部3の接続辺に設けられたスリット14に差し込むことで、図14および図15に示すように、梱包材1Sの形状を保持することが出来、上段の第2の太陽電池モジュール12を載せる作業が容易となる。図14は外側から見た図であり、図15は図14の反対側すなわち内側から見た図である。
実施の形態2の太陽電池モジュール梱包体100Sによれば、第2内壁8を差込み部13に差し込むことで、第2内壁8が底面部2に固定されるので、太陽電池モジュール梱包体100Sの組み立て強度が向上する。
実施の形態3.
図17は、実施の形態3の太陽電池モジュール梱包体の梱包材1Tの展開図である。図18は、実施の形態2の太陽電池モジュール梱包体の梱包材1Tの展開図である図17におけるXVIII部拡大図である。実施の形態1,2では2枚の太陽電池モジュールを梱包する梱包材1,1Sについて説明したが、実施の形態3では、第1および第2の太陽電池モジュール11,12に加え第3の太陽電池モジュール21からなる3枚の太陽電池モジュールを梱包する梱包材1Tについて説明する。図2に示した実施の形態1の構成に加え、第2内緩衝部19を第2内壁8の片方の長辺に沿うように形成するとともに、さらに第2内壁8と第2内緩衝部19との連接方向に直交して第2内壁8と第2内緩衝部19とから伸長する第3内壁15を設け、内緩衝部9と第2内緩衝部19とからなる2段の内緩衝部を設けたものである。また、第3内壁の1辺に設けられた差込み部20と、底面部2の角部に底面部2と第2側壁部3の接続辺に沿うようにスリット14を備える。実施の形態2と同様、接続片である差込み部20の幅とスリット14の幅は等しくなるように形成される。図19から図20は、実施の形態3の太陽電池モジュール梱包体100Tの組み立て工程を示す説明図である。
図17は、実施の形態3の太陽電池モジュール梱包体の梱包材1Tの展開図である。図18は、実施の形態2の太陽電池モジュール梱包体の梱包材1Tの展開図である図17におけるXVIII部拡大図である。実施の形態1,2では2枚の太陽電池モジュールを梱包する梱包材1,1Sについて説明したが、実施の形態3では、第1および第2の太陽電池モジュール11,12に加え第3の太陽電池モジュール21からなる3枚の太陽電池モジュールを梱包する梱包材1Tについて説明する。図2に示した実施の形態1の構成に加え、第2内緩衝部19を第2内壁8の片方の長辺に沿うように形成するとともに、さらに第2内壁8と第2内緩衝部19との連接方向に直交して第2内壁8と第2内緩衝部19とから伸長する第3内壁15を設け、内緩衝部9と第2内緩衝部19とからなる2段の内緩衝部を設けたものである。また、第3内壁の1辺に設けられた差込み部20と、底面部2の角部に底面部2と第2側壁部3の接続辺に沿うようにスリット14を備える。実施の形態2と同様、接続片である差込み部20の幅とスリット14の幅は等しくなるように形成される。図19から図20は、実施の形態3の太陽電池モジュール梱包体100Tの組み立て工程を示す説明図である。
図21は、本発明の実施の形態2の太陽電池モジュール梱包体100Tを模式的に示した断面図である。実施の形態3の太陽電池モジュール梱包体100Tの実施の形態1の太陽電池モジュール梱包体100との違いは、2段の内緩衝部を設けた点と、第2内壁8に加え第3内壁15を設けた点と、第3内壁15が差込み部20を有する点である。組み立て前の平面状態での第1天面部6の外周よりも第2内緩衝部19の外周が内側にあり、差込み部20においても第1天面部6の外周よりも内側にあるように構成することにより、梱包材用の素材から梱包材1Tを切り出した時に、無駄なく裁断することができる。
他部については実施の形態1の太陽電池モジュール梱包体100と同様であるため、詳細な説明は省略する。同一部位には同一符号を付した。
図19および図20は梱包材1Tの組立て手順を示す図である。実施の形態1で示したのと同様の組立て方法に基づき組み立てを実施する。まず底面部2に第3の太陽電池モジュール21を載置し、実施の形態1と同様に図5に示す状態まで組立てを行う。続いて、図19に示すように第2内壁8に連接された第2内緩衝部19を山折りし、90度折り曲げることで、内緩衝部9に平行な第2内緩衝部19を形成する。
続いて図20に示すように第2内壁8と第2内緩衝部19とから伸長する第3内壁15を山折りし、第1内壁7および第2内壁8と重なり部を形成する。続いて、底面部2と第1側壁部5との接続辺を山折りし、差込み部20をスリット14に挿入する。第2内緩衝部19上に第1の太陽電池モジュール11を載置し、同様の組み立てを行う。差込み部20をスリット14に挿入した後の組立て手順は実施の形態1で示す図7以降の手順と同様である。同一部位には同一符号を付し、説明は省略する。
実施の形態3の梱包材1Tでは、差込み部20を、底面部2と第2側壁部3の接続辺に設けられたスリット14に差し込むことで、梱包材の形状を保持することが出来、上段の第2の太陽電池モジュール12を載せる作業が容易となる。
実施の形態3の太陽電池モジュール梱包体100Tによれば、第3内壁15を差込み部に差し込むことで、第3内壁15が底面部2に固定されるので、太陽電池モジュール梱包体100Tの組み立て強度が向上する。
上段の第2の太陽電池モジュール12の側面は第1内壁7と第2内壁8と第3内壁15と第2側壁部3との4層で保持される。一方、中段の第1の太陽電池モジュール11の側面は第2内壁8と第3内壁15と第2側壁部3との3層で保持される。一方、下段の第3の太陽電池モジュール21の側面は第3内壁15と第2側壁部3との2層で保持される。即ち、上段の第2の太陽電池モジュール12は4枚の梱包材1Tで側面を保持し、中段の第1の太陽電池モジュール11は3枚の梱包材1Tで側面を保持し、下段の第3の太陽電池モジュール21は3枚の梱包材1Tで側面を保持することになる。従って、3枚の太陽電池モジュールを積み重ねた状態で輸送した場合、輸送中に発生する衝撃で、上段側の第2の太陽電池モジュール12に大きな加速度がかかっても、上段側の第2の太陽電池モジュールほど、保持する梱包材の枚数を増やし、下段側の太陽電池モジュールよりも強固に保持することにより、すべての太陽電池モジュールを確実に保護し、搬送することができる。
なお、実施の形態1から3では、2枚あるいは3枚の太陽電池モジュールを梱包する梱包材について説明したが、4枚以上をはじめさらに多数の太陽電池モジュールを梱包する梱包材にも適用可能である。また、折り曲げ角については、90度、180度としたが、角度については一例であり、適宜調整可能である。
本発明のいくつかの実施の形態を説明したが、これらの実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態およびその変形は、発明の範囲に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1,1S,1T 梱包材、2 底面部、2a,2b 第1底辺、2c,2d 第2底辺、3 第2側壁部、4 第2天面部、4S 短辺、5 第1側壁部、6 第1天面部、7 第1内壁、7S1,7S2 長辺、7S3 短辺、7h 第1内壁の高さ、7W 第1内壁の幅、8 第2内壁、9 内緩衝部、10 差込み部、11 第1の太陽電池モジュール、12 第2の太陽電池モジュール、13 差込み部、14スリット、15 第3内壁、19 第2内緩衝部、20 差込み部、21 第3の太陽電池モジュール、100,100S,100T 太陽電池モジュール梱包体、h0 第2側壁部の高さ、h1 第1側壁部の高さ、h8 第2内壁の折り曲げ位置、T1 折り曲げ線。
Claims (11)
- 梱包材で複数の太陽電池モジュールが梱包された太陽電池モジュール梱包体であって、
第1底辺と前記第1底辺と直交する第2底辺とを備えた矩形状の底面部と、
前記底面部に載置された第1の太陽電池モジュールと、
前記第1底辺から伸長され上部に垂直方向に90度折り曲げられた矩形状の第1側壁部と、
前記第1側壁部の側辺から伸長され内側に90度折り曲げられた第1内壁と、
前記第1内壁の下辺から伸長され内側に90度折り曲げられた内緩衝部と、
前記内緩衝部を挟んで前記第1の太陽電池モジュールの上に載置された第2の太陽電池モジュールと、
前記第1内壁の上辺から伸長され外側に180度折り曲げられた第2内壁と、
前記第2底辺から上部に伸長され垂直方向に90度折り曲げられた第2側壁部と、
を有することを特徴とする太陽電池モジュール梱包体。 - 前記第2内壁の高さは、前記第2内壁の折り曲げ位置の高さと等しいことを特徴とする請求項1に記載の太陽電池モジュール梱包体。
- 前記第2内壁の折り曲げ位置の高さは、前記第2側壁部の高さよりも梱包材の板厚2枚分程度低いことを特徴とする請求項1に記載の太陽電池モジュール梱包体。
- 前記第2内壁から伸長された差込み部を有し、
前記底面部は、前記差込み部に符合する位置にスリットを有し、
前記差込み部が前記スリットに差込まれていることを特徴とする請求項1から3のいずれか1項に記載の太陽電池モジュール梱包体。 - 前記第2内壁の前記第1内壁と対向する辺側に伸長され、前記内緩衝部に平行に配された第2内緩衝部と、前記第2内壁と前記第2内緩衝部とから前記第2内壁と第2内緩衝部との連接方向に直交する方向に伸長された第3内壁とを備え、
前記内緩衝部と前記第2内緩衝部との間に前記第1の太陽電池モジュールを備えるとともに、
前記底面部と前記第2内緩衝部との間に第3の太陽電池モジュールを備えたことを特徴とする請求項1から3のいずれか1項に記載の太陽電池モジュール梱包体。 - 複数の太陽電池モジュールを梱包する梱包材であって、
第1底辺と、前記第1底辺と直交する第2底辺とを備えた矩形状の底面形成部と、
前記第1底辺から折り曲げ可能に伸長された第1側壁形成部と、
前記第1側壁形成部の側辺から折り曲げ可能に伸長された第1内壁と、
前記第1内壁の下辺から折り曲げ可能に伸長された内緩衝部と、
前記第1内壁の上辺から折り曲げ可能に伸長された第2内壁と、
前記第2底辺から折り曲げ可能に伸長された第2側壁形成部と、
を有することを特徴とする梱包材。 - 全てが1枚の梱包材で構成され、
前記第1側壁形成部および前記第2側壁形成部は、2枚以上の太陽電池モジュールを重ねて梱包可能な高さを有し、
前記内緩衝部は、前記太陽電池モジュールの角部で、前記太陽電池モジュールの間に間装されることを特徴とする請求項6に記載の梱包材。 - 前記第2内壁の高さは、前記第2内壁の折り曲げ位置の高さと等しいことを特徴とする請求項6または7に記載の梱包材。
- 前記第2内壁の折り曲げ位置の高さは、前記第2側壁形成部の高さよりも梱包材の板厚2枚分程度低いことを特徴とする請求項6または7に記載の梱包材。
- 前記第2内壁から伸長された差込み部を有し、
前記底面形成部は、前記差込み部に符合する位置にスリットを有し、
前記差込み部が前記スリットに差込まれていることを特徴とする請求項6から9のいずれか1項に記載の梱包材。 - 前記第2内壁の前記第1内壁と対向する辺側に伸長され、前記内緩衝部に平行に配された第2内緩衝部と、前記第2内壁と前記第2内緩衝部とから前記第2内壁と第2内緩衝部との連接方向に直交する方向に伸長する第3内壁とを備えたことを特徴とする請求項6から9のいずれか1項に記載の梱包材。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018523084A JP6599003B2 (ja) | 2016-06-14 | 2016-06-14 | 太陽電池モジュール梱包体および梱包材 |
PCT/JP2016/067700 WO2017216882A1 (ja) | 2016-06-14 | 2016-06-14 | 太陽電池モジュール梱包体および梱包材 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/067700 WO2017216882A1 (ja) | 2016-06-14 | 2016-06-14 | 太陽電池モジュール梱包体および梱包材 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017216882A1 true WO2017216882A1 (ja) | 2017-12-21 |
Family
ID=60663973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/067700 WO2017216882A1 (ja) | 2016-06-14 | 2016-06-14 | 太陽電池モジュール梱包体および梱包材 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6599003B2 (ja) |
WO (1) | WO2017216882A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012035854A (ja) * | 2010-08-04 | 2012-02-23 | U-Tec Corp | 板状体の梱包材 |
JP2012035853A (ja) * | 2010-08-04 | 2012-02-23 | U-Tec Corp | 板状体の梱包材 |
JP2013154929A (ja) * | 2012-01-31 | 2013-08-15 | Sharp Corp | 梱包体及び太陽電池モジュールの梱包方法 |
-
2016
- 2016-06-14 JP JP2018523084A patent/JP6599003B2/ja not_active Expired - Fee Related
- 2016-06-14 WO PCT/JP2016/067700 patent/WO2017216882A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012035854A (ja) * | 2010-08-04 | 2012-02-23 | U-Tec Corp | 板状体の梱包材 |
JP2012035853A (ja) * | 2010-08-04 | 2012-02-23 | U-Tec Corp | 板状体の梱包材 |
JP2013154929A (ja) * | 2012-01-31 | 2013-08-15 | Sharp Corp | 梱包体及び太陽電池モジュールの梱包方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017216882A1 (ja) | 2018-09-27 |
JP6599003B2 (ja) | 2019-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6599003B2 (ja) | 太陽電池モジュール梱包体および梱包材 | |
US11661256B2 (en) | Packaging system for an appliance | |
JP2013154929A (ja) | 梱包体及び太陽電池モジュールの梱包方法 | |
TWI379797B (en) | Packing box structure | |
WO2016103767A1 (ja) | 太陽電池モジュールの支持体 | |
JP2015054707A (ja) | フィルムロールの端面保護具及びフィルムロール包装体 | |
TWI499540B (zh) | 紙箱結構 | |
JP4813114B2 (ja) | 段ボール製緩衝材 | |
CN209956583U (zh) | 一种缓冲包装盒 | |
JP3223212U (ja) | 箱用シート | |
JP5206841B2 (ja) | 梱包装置 | |
JP6535426B1 (ja) | 箱用シート | |
CN215362356U (zh) | 纸木重载包装箱 | |
JP6508106B2 (ja) | 梱包材 | |
JP6739371B2 (ja) | 太陽電池モジュール梱包体および梱包材 | |
TWI415773B (zh) | 緩衝結構 | |
JP5579977B2 (ja) | 梱包箱、梱包箱の梱包構造、及び、梱包箱の段積み構造 | |
JP2017137075A (ja) | 構造体 | |
JP7145460B2 (ja) | 包装箱 | |
JP6078454B2 (ja) | フィルムロールの端面保護具及びフィルムロール包装体 | |
US20070138051A1 (en) | Packing apparatus having integrated internal buffer | |
JP2005324800A (ja) | 包装装置 | |
JP2005280801A (ja) | 物品包装体及びその止め具 | |
JP5357567B2 (ja) | 段ボール箱 | |
JP2021075301A (ja) | 多角形仕切付き包装箱 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018523084 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16905437 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16905437 Country of ref document: EP Kind code of ref document: A1 |