WO2017215675A1 - 能源自给的高浓度污水处理系统及方法 - Google Patents

能源自给的高浓度污水处理系统及方法 Download PDF

Info

Publication number
WO2017215675A1
WO2017215675A1 PCT/CN2017/092596 CN2017092596W WO2017215675A1 WO 2017215675 A1 WO2017215675 A1 WO 2017215675A1 CN 2017092596 W CN2017092596 W CN 2017092596W WO 2017215675 A1 WO2017215675 A1 WO 2017215675A1
Authority
WO
WIPO (PCT)
Prior art keywords
sedimentation
tank
sewage treatment
pipe
disposed
Prior art date
Application number
PCT/CN2017/092596
Other languages
English (en)
French (fr)
Inventor
刘川
刘晓川
Original Assignee
武汉东川自来水科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉东川自来水科技开发有限公司 filed Critical 武汉东川自来水科技开发有限公司
Publication of WO2017215675A1 publication Critical patent/WO2017215675A1/zh
Priority to US16/215,794 priority Critical patent/US11254596B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/286Anaerobic digestion processes including two or more steps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2866Particular arrangements for anaerobic reactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/002Apparatus and plants for the biological treatment of water, waste water or sewage comprising an initial buffer container
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2866Particular arrangements for anaerobic reactors
    • C02F3/2873Particular arrangements for anaerobic reactors with internal draft tube circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Definitions

  • the invention relates to the technical field of sewage treatment, in particular to a high-concentration sewage treatment system and method for self-sufficiency of energy.
  • the conventional anaerobic sludge reactor has UASB, EGSB, IC, etc.
  • the principle of wastewater treatment is basically that the sewage to be treated is introduced into the reactor as uniformly as possible, and the sewage entering the reactor and the granular or flocculent sludge The contact reacts, and part of the biogas produced by the reaction (mainly methane and carbon dioxide) adheres to the sludge, and moves upwards with the biogas, and strikes the three-phase separator to realize three-phase separation of solid, liquid and gas.
  • Anaerobic sludge reactors are also widely used in wastewater treatment in different fields due to their different specificity.
  • the above anaerobic sludge reactor still has the following disadvantages: on the one hand, the sewage needs to be subjected to hydrolysis acidification treatment before entering the anaerobic sludge reactor, and the hydrolysis acidification treatment tends to cause the sewage to have higher acidity, thereby suppressing the anaerobic sludge reactor.
  • the growth of methanogens is not conducive to the improvement of the treatment efficiency of sewage in the anaerobic sludge reactor, which in turn leads to a decrease in the overall treatment efficiency.
  • the acidity can be reduced by pH adjustment during the hydrolysis acidification process, it is easy to cause production costs. The increase is not conducive to the reduction of sewage treatment costs; on the other hand, the anaerobic sludge reactor sewage treatment energy consumption is large, which is not conducive to energy conservation.
  • the object of the present invention is to overcome the above technical deficiencies, and to provide a high-concentration sewage treatment system and method for self-sufficiency of energy, which can realize methanation, ammonia nitriding and oxidation treatment of sewage on the one hand, and nitrite formed by oxidation treatment.
  • the pre-treatment of the sewage before hydrolysis and acidification avoids the acidity of the acidified sewage, and on the other hand, the biogas generated by the anaerobic reaction can be utilized for energy consumption in the sewage treatment process to achieve energy self-sufficiency.
  • the technical solution of the present invention provides an energy self-sufficient high-concentration sewage treatment system, including,
  • a hydrolysis acidification device comprising a hydrolysis acidification tank, a first sedimentation tank disposed at an upper end opening of the hydrolysis acidification tank, a first overflow water tank disposed in the first sedimentation tank, and a first overflow water and Hydrolysis acidification tank Overflow pipe
  • An anaerobic reactor comprising a cylinder connected to the hydrolysis acidification tank, a three-phase separator disposed at the top of the cylinder, and an internal circulation device for driving a circulating liquid in the cylinder;
  • a sludge treatment device comprising a second sedimentation tank, a second overflow weir disposed in the second sedimentation tank, an inlet pipe connecting the second sedimentation tank and the cylinder, and a a dissolved oxygen meter for the amount of dissolved oxygen in the second sedimentation tank;
  • biogas power generation device connected to the desulfurization tower, wherein the biogas power generation device is configured to supply power to the high concentration sewage treatment system;
  • the second overflow weir is connected to the hydrolysis acidification tank through a return pipe, and the inlet pipe is provided with a jet hole and a regulating valve for controlling the mixed liquid injection speed and the injection height in the jet hole.
  • the inlet pipe comprises a jet pipe vertically disposed in the sedimentation tank and a connecting pipe connecting the jet pipe and the cylinder, and the jet hole is disposed on the jet pipe.
  • the three-phase separator comprises a gas collecting hood, a sedimentation chamber, a drain pipe, an exhaust chamber and a reflector, and the outer edge of the gas collecting cover is coupled with the open end of the top of the cylinder, and the upper end of the sedimentation chamber Coaxially connected to the lower surface of the gas collecting cover, the lower end is connected to the reflecting plate through a plurality of fixing columns, and a sedimentation space is formed between the sedimentation inner wall and the gas collecting cover, the precipitation outdoor wall and the set A gas collecting space is formed between the gas hoods, one end of the drain pipe communicates with the sedimentation space, and the other end extends to the outside of the cylinder and is connected to the inlet pipe, and one end of the exhaust chamber is connected to the gas collecting space. The other end is connected to the desulfurization tower.
  • the inner circulation device includes an inner circulation water inlet pipe disposed near a top end of the cylinder body, an inner circulation water outlet pipe disposed near a bottom end of the cylinder body, and a driving water flow from the inner circulation water inlet pipe to the inner circulation water outlet pipe A moving inner circulation pipeline pump, and a controller for controlling the inner circulation pipeline pump for intermittent driving.
  • a water inlet water distributor is disposed in the cylinder body, and one end of the water inlet water distributor is disposed near the bottom of the cylinder body, and the other end passes through the side wall of the cylinder body and passes through a riser tube and the hydrolysis Acidification tank connection.
  • the jet hole is located 20 to 50 cm below the plane of the end surface of the second sedimentation tank.
  • a first slanting plate and a second slanting plate are respectively disposed in the first sedimentation tank and the second sedimentation tank, and the first slanting plate and the second slanting plate are respectively formed with a first sedimentation zone And a second precipitation zone, the second precipitation zone is square and the cross section gradually increases from bottom to top.
  • the gas collecting hood has an umbrella shape
  • the sedimentation chamber has a cylindrical shape
  • the reflecting plate has a conical shape
  • the gas collecting hood, the precipitation chamber and the reflecting plate are coaxially disposed.
  • Another aspect of the present invention provides a high-concentration sewage treatment method for self-sufficiency of energy, comprising the following steps:
  • biogas formed by the anaerobic fermentation treatment is subjected to desulfurization and drying treatment, and then biogas power generation is performed for the electric energy consumption in the high-concentration sewage treatment method.
  • the oxygen content of the liquid surface in the step (3) is 0.4 to 0.5 mg/L.
  • the present invention provides a sludge treatment device which adjusts the dissolved oxygen amount of the reaction liquid surface by providing a jet orifice to ensure the reaction to produce nitrite and reflux the formed nitrite to the hydrolysis acidification.
  • the acidity of the acidified sewage is avoided, and the overall treatment efficiency of the sewage treatment is improved.
  • the biogas generated in the anaerobic reaction stage is set up to generate electricity for the sewage treatment energy demand by setting a biogas power generation device. Conducive to reducing energy consumption.
  • FIG. 1 is a schematic view showing the connection structure of a self-sufficient high-concentration sewage treatment system of the present invention.
  • an embodiment of the present invention provides a high-concentration sewage treatment system for self-sufficiency of energy, including a hydrolysis acidification device, an anaerobic reactor 2, a sludge treatment device 3, a desulfurization tower 4, and a biogas power generation device 5 . among them,
  • the hydrolysis acidification device 1 includes a hydrolysis acidification tank 11, a first sedimentation tank 12 that is open to the upper end of the hydrolysis acidification tank 11, a first overflow water tank 13 disposed in the first sedimentation tank 12, and the first An overflow weir 13 and an overflow pipe 14 of the hydrolysis acidification tank 11.
  • an inlet channel 15 is arranged on the side of the first sedimentation tank 12, and a grid 16 is arranged in the inlet channel 15. When the sewage is treated, the sewage enters the inlet channel 15, and the sewage is larger through the grid 16.
  • the solid impurities are filtered, and the filtered sewage enters the first sedimentation tank 12, and after the first sedimentation tank 12 is subjected to precipitation treatment, the supernatant in the first sedimentation tank 12 enters the first overflow weir 13 and passes through the overflow.
  • Tube 14 enters the hydrolysis acidification tank 11 for hydrolysis and acidification treatment.
  • the first sedimentation tank 12 is disposed above the hydrolysis acidification tank 11 to facilitate direct overflow of the sewage into the hydrolysis acidification tank 11, thereby avoiding the use of a water pump to increase energy consumption.
  • its inclination angle with respect to the horizontal plane is generally set to 60 to 75°, preferably 70°, to enhance the filtration effect of solid impurities.
  • a first slanting plate 17 is disposed, and a plurality of first slanting plates 17 are formed to form a first sedimentation zone, and a cross-sectional area of the first sedimentation zone is gradually increased from bottom to top to increase the sedimentation effect.
  • the angle of inclination of the swash plate 17 with respect to the horizontal plane may be set to 30 to 60 degrees, preferably 45 degrees.
  • the anaerobic reactor 2 of the present embodiment includes a cylinder 21 connected to the hydrolysis acidification tank 11, a three-phase separator 22 disposed at the top of the cylinder 21, and a circulating fluid flowing in the cylinder 21. Internal circulation device 23.
  • a water inlet water distributor 24 may be disposed in the cylinder body 21, and one end of the water inlet water distributor 24 is disposed near the bottom of the cylinder body 21, and the other end passes through the side wall of the cylinder body 21 and Connected to the hydrolysis acidification tank 11 through a riser 25, a lift pump 18 can be disposed in the hydrolysis acidification tank 11, and the lift pump 18 is connected to the riser 25.
  • a first drain pipe 26 is disposed at the bottom of the cylinder 21 for discharging the anaerobic sludge after the anaerobic reaction.
  • the three-phase separator 22 includes a gas collecting hood 221, a sedimentation chamber 222, a drain pipe 223, an exhaust chamber 224, and a reflecting plate 225, and an outer edge of the gas collecting cover 221 is coupled to the top open end of the cylindrical body 21,
  • the upper end of the precipitating chamber 222 is coaxially connected to the lower surface of the gas collecting cover 221, and the lower end is connected to the reflecting plate 225 through a plurality of fixing posts 226, and a sedimentation space is formed between the inner wall of the precipitating chamber 222 and the gas collecting cover 221,
  • a gas collecting space is formed between the outer wall of the precipitating chamber 222 and the gas collecting hood 221, one end of the drain pipe 223 communicates with the sedimentation space, and the other end extends to the outside of the cylinder body 221 and the inlet pipe 223 Connected, one end of the exhaust chamber 224 is in communication with the gas collection space, and the other end is connected to the desulfurization tower 4.
  • the separated biogas After the three-phase separator 22 separates the solid, liquid, and gas, the separated biogas enters the exhaust chamber 224, and then enters the desulfurization tower 4 for desulfurization treatment.
  • the biogas power generation device 5 After the desulfurization treatment, the biogas power generation device 5 is introduced to perform biogas power generation, and the electric energy generated by the power generation can be
  • the equipment or device in the sewage treatment process of the present embodiment is powered to achieve energy self-sufficiency. Since the biogas contains a large amount of water vapor after desulfurization by the desulfurization tower 4, it can be dried after desulfurization, and then dried to generate electricity.
  • the air collecting cover 221 has an umbrella shape, so as to cover the upper end of the entire cylinder 21, which is advantageous for increasing the gas collecting efficiency.
  • the exhaust chamber 224 may be disposed at the top of the air collection hood 221 . Because the air hood 221 has a large area, in order to ensure sufficient strength, the upper surface of the air hood 221 of the embodiment is provided with a plurality of support rods 227 along which the plurality of support rods 227 are collected. The top end of the cover 221 is uniformly arranged in a radiation.
  • the sedimentation chamber 222 of the embodiment has a cylindrical shape and the inner diameter gradually decreases from top to bottom, so that the inner wall of the precipitation chamber 222 forms a conical settlement surface, and the settlement surface of the embodiment is used to increase the solid-liquid separation effect.
  • the angle between the two is set to 30 to 60, preferably 45.
  • the reflection plate 225 is tapered and disposed coaxially with the deposition chamber 222 and the air collection cover 221, and each of the plurality of fixing posts 226 is connected to the precipitation chamber 222 at one end and to the reflection plate 225 at the other end.
  • an inlet of a solid-liquid mixture communicating with the sedimentation space is formed between two adjacent fixed columns 226.
  • the specific gravity thereof is large, so that it can be deposited along the precipitate.
  • the conical precipitate of the chamber 222 flows downward and flows out from the inlet of the solid-liquid mixture, and then settles to the bottom of the cylinder 21.
  • the fact that the reflecting plate 225 is tapered makes it possible to prevent sludge from accumulating on the reflecting plate 225, so that the sludge can smoothly flow out of the inlet and outlet of the solid-liquid mixture.
  • the fixing column 226 of the present embodiment is uniformly arranged along the circumferential direction of the precipitation chamber 222, and the plurality of fixing columns 226 are connected at one end to the inner wall of the precipitation chamber 22, because the fixing column 226 is easy to hinder the entry and exit of the solid-liquid mixture. Therefore, the fixing post 226 of the present embodiment is preferably provided in three.
  • the inner circulation device 23 of the present embodiment includes an inner circulation inlet pipe 231 disposed near the top end of the cylinder 21, an inner circulation outlet pipe 232 disposed near the bottom end of the cylinder 21, and a driving water flow from the inner circulation inlet pipe 231 to the An inner circulation pipe pump 233 that moves the inner circulation water pipe 232, and a controller 234 that controls the inner circulation pipe pump 233 to intermittently drive.
  • the specific working process is as follows: the inner circulation pipeline pump 233 drives the sewage at the upper end of the cylinder 21 to move from the inner circulation inlet pipe 231 to the inner circulation outlet pipe 232, and the sewage in the inner circulation outlet pipe 232 has a certain action under the action of the inner circulation pipeline pump 233.
  • the flow rate enters the bottom of the cylinder 1 to further agitate the sludge settled at the bottom of the cylinder 21 to expand the sludge and improve the efficiency of the anaerobic reaction.
  • the inner circulation water pipe 232 can also be controlled by controlling the inner circulation pipeline pump 233.
  • the flow rate of the water that is, the flow rate of the water at the bottom of the cylinder 21, controls the degree of sludge expansion.
  • the inner circulation pipeline pump 233 stops driving, the anaerobic reaction is sufficiently generated, and the generated bubbles rise and are separated by the three-phase separator 22; after standing for a certain period of time, the inside is started again.
  • the circulating pipeline pump 233 the sludge expands again, and promotes the anaerobic reaction again.
  • the anaerobic reaction is accelerated in the cylinder 21 intermittently, which is beneficial to ensure the stability of the operation of the whole equipment, and is also advantageous for the water discharge and gas outlet stability of the three-phase separator 22.
  • the sludge treatment device 3 of the present embodiment includes a second sedimentation tank 31, a second overflow weir 32 disposed in the second sedimentation tank 31, and an inlet pipe 33 connecting the second sedimentation tank 31 and the cylinder 21. And a dissolved oxygen meter 34 for detecting the dissolved oxygen content in the second settling tank 31, wherein the second overflow weir 32 is in communication with the hydrolysis acidification tank 11 through a return pipe 35; wherein The inlet pipe 33 is provided with a jet hole 332a and a regulating valve 36 that controls the mixed liquid injection speed and the injection height in the jet hole 332a.
  • the anaerobic reactor 2 can adopt an intermittent reactor.
  • the intermittent anaerobic reactor 2 is in the water inlet state, the anaerobic sludge-containing sewage after the anaerobic reaction is in the effluent state, and the anaerobic sludge , sewage and a small amount of methane gas
  • the mixture of the body enters the inlet pipe 33, and the solid-liquid mixture containing the larger specific gravity of the sludge flows from the outlet end of the inlet pipe 33 to the bottom of the second sedimentation tank 31, and is discharged through the second discharge pipe 37; and the portion containing the methane gas
  • the sludge and the sewage are ejected from the jet hole 332a, so that the injected solid liquid falls into the second sedimentation tank 31, and a solid-liquid gas three-phase reaction interface is formed in the second sedimentation tank 31, and the three-phase reaction
  • the interface is the liquid level in the second sedimentation tank 31, and a regulating valve 36 is
  • the liquid in the second sedimentation tank 31 can be detected by the dissolved oxygen meter 34.
  • the dissolved oxygen amount of the surface, the amount of dissolved oxygen of the liquid surface detected by the control valve 36 to the dissolved oxygen meter 34 is 0 to 0.5 mg/L, preferably 0.4 to 0.5 mg/L, so that the reaction interface is enriched with nitrite red.
  • the bacteria further form ammonia nitrite in the solid-liquid mixture after the injection, and the methane in the solid-liquid mixture is oxidized, and the upper layer liquid containing the nitrite after the reaction can be repeatedly used, specifically, the part is passed through the reflux.
  • Tube 35 is refluxed to the hydrolysis acidification tank 11 Line denitrification. Another portion of the supernatant is discharged through the overflow water pipe 30 to the next step for processing.
  • the inlet pipe 33 includes a jet pipe 332 vertically disposed in the second sedimentation tank 31 and a connecting pipe 331 connecting the jet pipe 332 and the cylinder 21, the jet A hole 332a is provided in the jet tube 332.
  • the connecting pipe 33 is specifically connected to the drain pipe 223 passing through the side wall of the cylinder 21. The nitrite produced by the reaction can enter the hydrolysis acidification tank 11 through the return pipe 35, thereby avoiding the acidity of the acidified sewage being too high, and improving the overall treatment efficiency of the sewage treatment.
  • the jet hole 332a is disposed higher than the liquid level in the second sedimentation tank 31, so that the jet hole 332a in the present embodiment is close to the second sedimentation tank 31.
  • the plane of the end of the pool is set.
  • the jet hole 332a may be disposed 20 to 50 cm below the plane of the end surface of the second sedimentation tank 31, and may be generally disposed slightly above the second overflow weir 32. Upper end.
  • the anaerobic sludge treatment device 3 of the present embodiment further includes a cross-shaped fixing bracket 38, and the four free ends of the fixing bracket 38 are fixed. In the overflow weir 32, the middle of the fixing bracket 38 is connected to the jet tube 332.
  • a second slanting plate 39 is disposed in the second sedimentation tank 31, and a plurality of second slanting plates 39 are formed, and a plurality of second inclined plates 39 are formed to form a second sedimentation zone, and the second sedimentation zone is square and horizontal.
  • the cross section gradually increases from bottom to top, which is beneficial to increase the sedimentation effect of the sludge.
  • the specific working process of the self-sufficient high-concentration sewage treatment system of the present embodiment is as follows: the sewage enters first through the inlet channel and is initially filtered through the grid to enter the first sedimentation tank, and the supernatant of the sewage in the first sedimentation tank enters the first overflow In the rogue, and through the first overflow pipe into the hydrolysis acidification tank for hydrolysis and acidification treatment, hydrolysis and acidification treatment The water enters the anaerobic reactor for anaerobic reaction.
  • the water is fed from the bottom of the anaerobic reactor, and the anaerobic reactor is close to the top effluent, because the effluent contains anaerobic sludge after anaerobic reaction.
  • the sewage is injected through the jet orifice, and the reacted sludge can be subsequently treated by the existing method, and the liquid formed by the reaction can partially enter the hydrolysis acidification treatment step to reduce the acidity after the acidification reaction, and A part can be processed by other processes; wherein the biogas formed by the anaerobic reaction is desulfurized by the desulfurization tower, dried, and then sent to the biogas power generation device for power generation, and supplies power to the equipment in the sewage treatment process of the present embodiment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

一种能源自给的高浓度污水处理系统,其包括水解酸化装置(1)、厌氧反应器(2)、污泥处理装置(3)、脱硫塔(4)和沼气发电装置(5)。水解酸化装置(1)包括水解酸化池(11)等;污泥处理装置(3)包括第二沉淀池(31)、第二溢水堰(32)、进水管(33)、溶氧仪(34)。第二溢水堰(32)通过回流管(35)与水解酸化池(11)连通,进水管(33)上设有射流孔(332a)和调节阀(36)。还公开了一种能源自给的高浓度污水处理方法,其包括依次进行的水解酸化、厌氧发酵、污泥处理、脱硫发电。

Description

能源自给的高浓度污水处理系统及方法 技术领域
本发明涉及污水处理技术领域,尤其是涉及一种能源自给的高浓度污水处理系统及方法。
背景技术
常规的厌氧污泥反应器有UASB、EGSB、IC等,其废水处理原理基本为,待处理的污水被尽可能均匀的引入反应器,进入反应器内的污水与颗粒状或絮状污泥接触发生反应,反应产生的部分沼气(主要为甲烷和二氧化碳)附着于污泥上,随着沼气向上运动,并撞击三相分离器实现固、液、气的三相分离。厌氧污泥反应器也因其针对性不同而在不同领域的污水处理中得到广泛应用。
但是,上述厌氧污泥反应器依然存在以下缺点:一方面污水进入厌氧污泥反应器之前需要通过水解酸化处理,而水解酸化处理易导致污水酸性较高,从而抑制厌氧污泥反应器甲烷菌的生长,不利于厌氧污泥反应器中污水的处理效率的提高,继而导致整体处理效率降低,虽然可通过在水解酸化处理过程中进行pH值调节降低酸性解决,但是易导致生产成本的增加,不利于污水处理成本的降低;另一方面厌氧污泥反应器污水处理能耗大,不利于节省能源。
发明内容
本发明的目的在于克服上述技术不足,提出一种能源自给的高浓度污水处理系统及方法,其一方面可实现对污水的甲烷化、氨氮化和氧化处理,通过氧化处理形成的亚硝酸盐进行水解酸化前的污水进行预处理,从而避免了酸化处理的污水酸性过高,另一方面可将厌氧反应产生的沼气进行利用,以供污水处理过程中的能源消耗,实现能源自给。
为达到上述技术目的,本发明的技术方案一方面提供一种能源自给的高浓度污水处理系统,包括,
一水解酸化装置,其包括水解酸化池、盖设于所述水解酸化池上端开口的第一沉淀池、设置于所述第一沉淀池内的第一溢水堰、及连通所述第一溢水堰和所述水解酸化池 的溢水管;
一厌氧反应器,其包括一与所述水解酸化池连接的筒体、设于所述筒体顶部的三相分离器、及驱动所述筒体内混合液循环流动的内循环装置;
一污泥处理装置,其包括第二沉淀池、设于所述第二沉淀池内的第二溢水堰、连接所述第二沉淀池和所述筒体的进水管、及一用于检测所述第二沉淀池内液面溶氧量的溶氧仪;
一与所述三相分离器连接的脱硫塔;及
一与所述脱硫塔连接的沼气发电装置,所述沼气发电装置配置用于为所述高浓度污水处理系统供电;
其中,所述第二溢水堰通过一回流管与所述水解酸化池连通,所述进水管上设置有射流孔和控制所述射流孔内混合液喷射速度和喷射高度的调节阀。
优选的,所述进水管包括竖直设置于所述沉淀池内的射流管及连接所述射流管与所述筒体的连接管,所述射流孔设置于所述射流管上。
优选的,所述三相分离器包括集气罩、沉淀室、排水管、排气室和反射板,所述集气罩外缘与所述筒体顶部开口端配合连接,所述沉淀室上端同轴连接于所述集气罩下表面、下端通过多个固定柱与所述反射板连接,且所述沉淀室内壁与集气罩之间形成沉淀空间、所述沉淀室外壁与所述集气罩之间形成集气空间,所述排水管一端与所述沉淀空间连通、另一端延伸至所述筒体外并与所述进水管连接,所述排气室一端与所述集气空间连通另一端与脱硫塔连接。
优选的,所述内循环装置包括靠近筒体顶端设置的内循环进水管、靠近所述筒体底端设置的内循环出水管、驱动水流由所述内循环进水管向所述内循环出水管运动的内循环管道泵、及一控制所述内循环管道泵作间歇性驱动的控制器。
优选的,所述筒体内设置有一进水布水器,所述进水布水器一端靠近所述筒体底部设置、另一端穿过所述筒体侧壁并通过一提升管与所述水解酸化池连接。
优选的,所述射流孔位于所述第二沉淀池池口端面所在平面下方20~50cm。
优选的,所述第一沉淀池和所述第二沉淀池内分别设置有第一斜板和第二斜板,所述第一斜板和所述第二斜板分别合围形成有第一沉淀区和第二沉淀区,所述第二沉淀区呈方形且横截面由下至上逐渐增加。
优选的,所述集气罩呈伞状、沉淀室呈筒状、反射板呈锥形且所述集气罩、沉淀室、反射板同轴设置。
本发明另一方面还提供一种能源自给的高浓度污水处理方法,包括如下步骤,
(1)将污水过滤沉淀后进行水解酸化处理;
(2)将水解酸化处理后的污水进行厌氧发酵处理;
(3)将厌氧发酵处理后的含有甲烷的厌氧污泥与污水的混合物通过射流孔喷射出来,调节喷射的速度及高度使反应液面的含氧量为0~0.5mg/L,收集喷射后的固液混合物、沉淀,并将沉淀后的上清液部分加入步骤(1)的水解酸化处理工艺中;
(4)将厌氧发酵处理形成的沼气进行脱硫、干燥处理,然后进行沼气发电供所述高浓度污水处理方法中电能消耗。
优选的,所述步骤(3)中液面的含氧量为0.4~0.5mg/L。
与现有技术相比,本发明通过设置一污泥处理装置,其通过设置一射流孔调节反应液面的溶氧量,保证反应产生亚硝酸盐,并将形成的亚硝酸盐回流至水解酸化池内,从而避免了酸化处理的污水酸性过高,提高了污水处理的整体处理效率,另一方面通过设置一沼气发电装置将厌氧反应阶段形成的沼气进行发电,供污水处理能耗需求,有利于降低能源消耗。
附图说明
图1是本发明的能源自给的高浓度污水处理系统的连接结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,本发明的实施例提供了一种能源自给的高浓度污水处理系统,包括水解酸化装,1、厌氧反应器2、污泥处理装置3、脱硫塔4和沼气发电装置5。其中,
水解酸化装置1包括水解酸化池11、盖设于所述水解酸化池11上端开口的第一沉淀池12、设置于所述第一沉淀池12内的第一溢水堰13、及连通所述第一溢水堰13和所述水解酸化池11的溢水管14。具体设置时,一般在第一沉淀池12一侧设置一进水渠15,进水渠15内设置一格栅16,进行污水处理时,污水进入进水渠15内,通过格栅16将污水中较大固体杂质过滤,过滤后的污水进入第一沉淀池12内,经过第一沉淀池12进行沉淀处理后,第一沉淀池12内的上清液进入第一溢流堰13内,并通过溢流管 14进入水解酸化池11内进行水解酸化处理。将第一沉淀池12设置于水解酸化池11上方有利于污水直接溢流至水解酸化池11内,避免采用水泵增加了能源消耗。
格栅16设置时,其相对水平面的倾斜角度一般设置为60~75°,优选为70°,以增强其固体杂质过滤效果。
本实施例第一沉淀池12内设置有第一斜板17,多个第一斜板17合围形成第一沉淀区,第一沉淀区的横截面积由下至上逐渐增加,以增加沉淀效果。其中,所述斜板17相对水平面的倾斜角度可设置为30~60°,优选为45°。
本实施例厌氧反应器2包括一与所述水解酸化池11连接的筒体21、设于所述筒体21顶部的三相分离器22、及驱动所述筒体21内混合液循环流动的内循环装置23。
具体的,可在所述筒体21内设置一进水布水器24,所述进水布水器24一端靠近所述筒体21底部设置、另一端穿过所述筒体21侧壁并通过一提升管25与所述水解酸化池11连接,水解酸化池11内可设置一提升泵18,该提升泵18与提升管25连接。
对应的,筒体21底部设置有一第一排泥管26,用于排放厌氧反应后的厌氧污泥。
三相分离器22包括集气罩221、沉淀室222、排水管223、排气室224和反射板225,所述集气罩221外缘与所述筒体21顶部开口端配合连接,所述沉淀室222上端同轴连接于所述集气罩221下表面、下端通过多个固定柱226与所述反射板225连接,且所述沉淀室222内壁与集气罩221之间形成沉淀空间、所述沉淀室222外壁与所述集气罩221之间形成集气空间,所述排水管223一端与所述沉淀空间连通、另一端延伸至所述筒体221外并与所述进水管223连接,所述排气室224一端与所述集气空间连通、另一端与脱硫塔4连接。
三相分离器22将固、液、气分离后,分离后的沼气进入排气室224,然后进入脱硫塔4进行脱硫处理,脱硫处理后进入沼气发电装置5进行沼气发电,发电产生的电能可为本实施例污水处理过程中的设备或装置供电,实现能源自给。由于经过脱硫塔4脱硫后,沼气中含有较多水蒸气,故脱硫后可进行干燥处理,干燥后再进行发电。
其中,所述集气罩221呈伞状,从而罩住整个筒体21上端,有利于增加集气效率。排气室224可设置于集气罩221顶端。由于集气罩221具有面积大的特点,为了保证其具有足够的强度,本实施例所述集气罩221上表面设置有多个支撑杆227,多个所述支撑杆227沿所述集气罩221顶端呈放射线均匀布置。
本实施例所述沉淀室222呈筒状且内径由上至下逐渐减小,从而使得所述沉淀室222内壁形成一锥形沉降面,为了增加固液分离效果,本实施例所述沉降面与水平面之 间的夹角设置为30~60°,优选为45°。
反射板225呈锥形且与所述沉淀室222、集气罩221均同轴设置,多个所述固定柱226均一端与所述沉淀室222连接、另一端连接于所述反射板225的锥面上,相邻两个固定柱226之间形成有与沉淀空间连通的固液混合物入口,相对应的,固液混合物在沉淀室经过沉淀、浓缩后,其比重较大,故能够沿沉淀室222的锥形沉淀面向下流动,并从固液混合物入口流出,然后沉淀至筒体21底部。反射板225设置呈锥形则有利于避免反射板225上积累污泥,便于污泥顺利有固液混合物入口流出。本实施例的固定柱226沿所述沉淀室222周向均匀布置,且多个固定柱226均一端连接于沉淀室22的内壁上,由于固定柱226易对固液混合物的进出产生一定的阻碍作用,故本实施例的固定柱226优选设置为三个。
本实施例内循环装置23包括靠近筒体21顶端设置的内循环进水管231、靠近所述筒体21底端设置的内循环出水管232、驱动水流由所述内循环进水管231向所述内循环出水管232运动的内循环管道泵233、及一控制所述内循环管道泵233作间歇性驱动的控制器234。其具体工作流程为:内循环管道泵233驱动筒体21上端的污水由内循环进水管231运动至内循环出水管232,内循环出水管232内的污水在内循环管道泵233作用下具有一定流速进入筒体1底部,进而对筒体21底部静置沉淀的污泥产生搅拌作用,使污泥膨胀,提高厌氧反应效率,也可通过控制内循环管道泵233控制内循环出水管232的出水流速,即控制筒体21底部的进水流速,实现对污泥膨胀度的控制。筒体21底部进水搅拌一定时间后,内循环管道泵233停止驱动,厌氧反应充分发生,产生的气泡上升并通过三相分离器22进行三相分离;静置一定时间后,再次启动内循环管道泵233,污泥再次膨胀,再次促进厌氧反应。在上述间歇性的进水、搅拌下,筒体21内间歇性的加快厌氧反应,有利于保证整体设备运行的稳定性,也有利于三相分离器22的出水、出气稳定性。
本实施例污泥处理装置3包括第二沉淀池31、设于所述第二沉淀池31内的第二溢水堰32、连接所述第二沉淀池31和所述筒体21的进水管33、及一用于检测所述第二沉淀池31内液面溶氧量的溶氧仪34,所述第二溢水堰32通过一回流管35与所述水解酸化池11连通;其中,所述进水管33上设置有射流孔332a和控制所述射流孔332a内混合液喷射速度和喷射高度的调节阀36。
具体的,厌氧反应器2可采用间歇性反应器,当间歇性厌氧反应器2处于进水状态时,厌氧反应后的含有厌氧污泥的污水则处于出水状态,厌氧污泥、污水和少量甲烷气 体的混合物进入进水管33,含有污泥比重较大的固液混合物从进水管33的出水端流至第二沉淀池31底部,进而通过第二排泥管37排出;而含有甲烷气体的部分污泥和污水则从射流孔332a喷射而出,从而使得喷射出来的固液落至第二沉淀池31内,并在第二沉淀池31内形成固液气三相反应界面,该三相反应界面即为第二沉淀池31内液面,同时在射流孔332a内设置调节阀36以控制喷射的流速及与反应界面的高度,具体的可通过溶氧仪34检测第二沉淀池31内液面的溶氧量,控制调节阀36至溶氧仪34检测的液面的溶氧量为0~0.5mg/L,优选为0.4~0.5mg/L,从而使得反应界面富集亚硝酸盐红菌,进而使喷射后的固液混合物中氨氮形成亚硝酸盐,固液混合物中的甲烷则被氧化,反应后含有亚硝酸盐的上层液可进行重复性利用,具体为将其中的部分通过回流管35回流至水解酸化池11进行反硝化反应。另一部分上清液则通过溢流出水管30排至下一工序进行处理。
为了有利于反应的进行,所述进水管33包括竖直设置于所述第二沉淀池31内的射流管332及连接所述射流管332与所述筒体21的连接管331,所述射流孔332a设置于所述射流管332上。其中,连接管33具体与穿过筒体21侧壁的排水管223连接。反应产生的亚硝酸盐可通过回流管35进入水解酸化池11内,从而避免了酸化处理的污水酸性过高,提高了污水处理的整体处理效率。
由于喷射的固液混合物需要与空气充分接触并发生反应,射流孔332a设置时应高于第二沉淀池31内的液面,故本实施例所述射流孔332a靠近所述第二沉淀池31池口端面所在平面设置。而为了避免固液混合物喷射至第二沉淀池31外部,可将射流孔332a设于所述第二沉淀池31池口端面所在平面下方20~50cm,一般可设置于略高于第二溢水堰32上端。
射流孔332a喷射时,易发生振动导致喷射均衡性降低,故本实施例所述厌氧污泥处理装置3还包括呈十字型的固定支架38,所述固定支架38的四个自由端均固定于所述溢水堰32,所述固定支架38中部连接于所述射流管332。
其中,第二沉淀池31内设置有第二斜板39,第二斜板39为多个,多个第二斜板39合围形成有第二沉淀区,所述第二沉淀区呈方形且横截面由下至上逐渐增加,其有利于增加污泥的沉淀效果。
本实施例的能源自给的高浓度污水处理系统的具体工作流程如下:污水首先由进水渠进入并通过格栅初步过滤后进入第一沉淀池,第一沉淀池内污水的上清液进入第一溢流堰内,并通过第一溢流管进入水解酸化池内进行水解酸化处理,水解酸化处理后的污 水进入厌氧反应器内进行厌氧反应,厌氧反应结束后,由厌氧反应器底部进水、厌氧反应器靠近顶部出水,由于出水中含有厌氧反应后的厌氧污泥,使得厌氧反应后的污水通过射流孔喷射后发生反应,反应后的污泥可通过现有的方式进行后续处理,反应形成的液体可一部分进入水解酸化处理环节,以降低酸化反应后的酸性,另一部分可通过其他工序进行处理;其中,厌氧反应形成的沼气通过脱硫塔脱硫后,进行干燥处理,然后进入沼气发电装置发电,为本实施例污水处理过程中的设备供电。
以上所述本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所做出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。

Claims (10)

  1. 一种能源自给的高浓度污水处理系统,其特征在于,包括,
    一水解酸化装置,其包括水解酸化池、盖设于所述水解酸化池上端开口的第一沉淀池、设置于所述第一沉淀池内的第一溢水堰、及连通所述第一溢水堰和所述水解酸化池的溢水管;
    一厌氧反应器,其包括一与所述水解酸化池连接的筒体、设于所述筒体顶部的三相分离器、及驱动所述筒体内混合液循环流动的内循环装置;
    一污泥处理装置,其包括第二沉淀池、设于所述第二沉淀池内的第二溢水堰、连接所述第二沉淀池和所述筒体的进水管、及一用于检测所述第二沉淀池内液面溶氧量的溶氧仪;
    一与所述三相分离器连接的脱硫塔;及
    一与所述脱硫塔连接的沼气发电装置,所述沼气发电装置配置用于为所述高浓度污水处理系统供电;
    其中,所述第二溢水堰通过一回流管与所述水解酸化池连通,所述进水管上设置有射流孔和控制所述射流孔内混合液喷射速度和喷射高度的调节阀。
  2. 根据权利要求1所述的高浓度污水处理系统,其特征在于,所述进水管包括竖直设置于所述沉淀池内的射流管及连接所述射流管与所述筒体的连接管,所述射流孔设置于所述射流管上。
  3. 根据权利要求2所述的高浓度污水处理系统,其特征在于,所述三相分离器包括集气罩、沉淀室、排水管、排气室和反射板,所述集气罩外缘与所述筒体顶部开口端配合连接,所述沉淀室上端同轴连接于所述集气罩下表面、下端通过多个固定柱与所述反射板连接,且所述沉淀室内壁与集气罩之间形成沉淀空间、所述沉淀室外壁与所述集气罩之间形成集气空间,所述排水管一端与所述沉淀空间连通、另一端延伸至所述筒体外并与所述进水管连接,所述排气室一端与所述集气空间连通另一端与脱硫塔连接。
  4. 根据权利要求1或2所述的高浓度污水处理系统,其特征在于,所述内循环装置包括靠近筒体顶端设置的内循环进水管、靠近所述筒体底端设置的内循环出水管、驱动水流由所述内循环进水管向所述内循环出水管运动的内循环管道泵、及一控制所述内循环管道泵作间歇性驱动的控制器。
  5. 根据权利要求1或2所述的高浓度污水处理系统,其特征在于,所述筒体内设 置有一进水布水器,所述进水布水器一端靠近所述筒体底部设置、另一端穿过所述筒体侧壁并通过一提升管与所述水解酸化池连接。
  6. 根据权利要求2所述的高浓度污水处理系统,其特征在于,所述射流孔位于所述第二沉淀池池口端面所在平面下方20~50cm。
  7. 根据权利要求1或2所述的高浓度污水处理系统,其特征在于,所述第一沉淀池和所述第二沉淀池内分别设置有第一斜板和第二斜板,所述第一斜板和所述第二斜板分别合围形成有第一沉淀区和第二沉淀区,所述第二沉淀区呈方形且横截面由下至上逐渐增加。
  8. 根据权利要求3所述的高浓度污水处理系统,其特征在于,所述集气罩呈伞状、沉淀室呈筒状、反射板呈锥形且所述集气罩、沉淀室、反射板同轴设置。
  9. 一种能源自给的高浓度污水处理方法,其特征在于,包括如下步骤,
    (1)将污水过滤沉淀后进行水解酸化处理;
    (2)将水解酸化处理后的污水进行厌氧发酵处理;
    (3)将厌氧发酵处理后的含有甲烷的厌氧污泥与污水的混合物通过射流孔喷射出来,调节喷射的速度及高度使反应液面的含氧量为0~0.5mg/L,收集喷射后的固液混合物、沉淀,并将沉淀后的上清液部分加入步骤(1)的水解酸化处理工艺中;
    (4)将厌氧发酵处理形成的沼气进行脱硫、干燥处理,然后进行沼气发电供所述高浓度污水处理方法中电能消耗。
  10. 根据权利要求9所述的高浓度污水处理方法,其特征在于,所述步骤(3)中液面的含氧量为0.4~0.5mg/L。
PCT/CN2017/092596 2016-06-12 2017-07-12 能源自给的高浓度污水处理系统及方法 WO2017215675A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/215,794 US11254596B2 (en) 2016-06-12 2018-12-11 High-concentration sewage treatment system and method for self-sufficiency of energy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610409526.4 2016-06-12
CN201610409526.4A CN105906043B (zh) 2016-06-12 2016-06-12 能源自给的高浓度污水处理系统及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/215,794 Continuation US11254596B2 (en) 2016-06-12 2018-12-11 High-concentration sewage treatment system and method for self-sufficiency of energy

Publications (1)

Publication Number Publication Date
WO2017215675A1 true WO2017215675A1 (zh) 2017-12-21

Family

ID=56749866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092596 WO2017215675A1 (zh) 2016-06-12 2017-07-12 能源自给的高浓度污水处理系统及方法

Country Status (3)

Country Link
US (1) US11254596B2 (zh)
CN (1) CN105906043B (zh)
WO (1) WO2017215675A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108795720A (zh) * 2018-08-08 2018-11-13 甘肃驰奈生物能源系统有限公司 一种厌氧反应器调节pH用加药装置及厌氧反应系统
CN109455814A (zh) * 2018-11-28 2019-03-12 浩蓝环保股份有限公司 一种适用于高浓度高悬浮物厌氧处理设备
CN112520905A (zh) * 2020-12-22 2021-03-19 贾绍增 一种畜牧养殖用水净化循环系统
CN113697916A (zh) * 2021-09-01 2021-11-26 深圳市正达环境工程实业有限公司 一种沉淀池水控制系统及方法
CN114772716A (zh) * 2022-05-19 2022-07-22 美人鱼企业发展有限公司 一种sbr法污泥沉淀分离处理设备

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105906043B (zh) * 2016-06-12 2019-01-22 武汉东川自来水科技开发有限公司 能源自给的高浓度污水处理系统及方法
CN108726826A (zh) * 2018-06-01 2018-11-02 四川雪宝乳业集团有限公司 一种畜禽粪便的处理工艺
CN111762870A (zh) * 2020-07-09 2020-10-13 上海市城市建设设计研究总院(集团)有限公司 具有超越功能的水解酸化和生物反应合建处理池
CN111807512A (zh) * 2020-08-04 2020-10-23 宁波上福源环保科技有限公司 一种直排式废水处理厌氧塔
CN111961575B (zh) * 2020-08-18 2023-06-27 李杞峰 城市密集人口区域的垃圾和沼气综合处理方法
CN112919618B (zh) * 2021-04-26 2022-12-27 秦皇岛海绵环保设备有限公司 一种用于污水处理水解酸化反应池
CN113880361B (zh) * 2021-10-26 2024-02-20 广东行远设计有限公司 一种污水池固体杂质降解系统
CN114031180B (zh) * 2021-11-30 2023-08-29 广州瑞豪环保科技有限公司 一种ic厌氧反应器
CN114259795B (zh) * 2022-01-11 2022-11-29 无锡市中旭环保设备有限公司 一种防堵塞的一体化雨水收集系统
CN115417499A (zh) * 2022-09-20 2022-12-02 上海泓济环保科技股份有限公司 水解酸化反应器及其工作方法
CN115611423B (zh) * 2022-11-04 2024-05-28 南大环境规划设计研究院(江苏)有限公司 一种用于生物制药的污水净化装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202883023U (zh) * 2012-10-08 2013-04-17 广东华锐动力科技有限公司 一种沼气发电装置
CN103145308A (zh) * 2013-03-05 2013-06-12 安徽禹王养殖有限公司 大型沼气工程生产沼气的方法
KR20150035290A (ko) * 2013-09-27 2015-04-06 하재현 유기물을 이용한 바이오메탄 제조방법
CN105296332A (zh) * 2015-10-11 2016-02-03 汤瑞祥 一种沼气发电系统
CN105906043A (zh) * 2016-06-12 2016-08-31 武汉东川自来水科技开发有限公司 能源自给的高浓度污水处理系统及方法
CN205838666U (zh) * 2016-06-12 2016-12-28 武汉东川自来水科技开发有限公司 能源自给的高浓度污水处理系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3610181A1 (de) * 1986-03-26 1987-10-01 Universal Umwelttechnik Teichanlage zur biologischen reinigung von verschmutztem abwasser
CN103408127B (zh) * 2008-05-20 2016-06-01 北京汉青天朗水处理科技有限公司 一种污水处理装置
US10005995B2 (en) * 2012-08-29 2018-06-26 Renewable Energy Alternatives, Llc System and method for thermophilic anaerobic digester process
US9314714B2 (en) * 2013-02-28 2016-04-19 Felix Juan Rodriguez-Jovet Grease trap with turbulence buffer
CN104030441B (zh) * 2014-06-18 2016-05-18 武汉东川自来水科技开发有限公司 一种水平式三相生物流化床及其污水处理方法
CN105439374B (zh) * 2014-12-12 2018-01-23 武汉森泰环保股份有限公司 一种酸性高硫酸盐有机废水的处理工艺及其装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202883023U (zh) * 2012-10-08 2013-04-17 广东华锐动力科技有限公司 一种沼气发电装置
CN103145308A (zh) * 2013-03-05 2013-06-12 安徽禹王养殖有限公司 大型沼气工程生产沼气的方法
KR20150035290A (ko) * 2013-09-27 2015-04-06 하재현 유기물을 이용한 바이오메탄 제조방법
CN105296332A (zh) * 2015-10-11 2016-02-03 汤瑞祥 一种沼气发电系统
CN105906043A (zh) * 2016-06-12 2016-08-31 武汉东川自来水科技开发有限公司 能源自给的高浓度污水处理系统及方法
CN205838666U (zh) * 2016-06-12 2016-12-28 武汉东川自来水科技开发有限公司 能源自给的高浓度污水处理系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108795720A (zh) * 2018-08-08 2018-11-13 甘肃驰奈生物能源系统有限公司 一种厌氧反应器调节pH用加药装置及厌氧反应系统
CN109455814A (zh) * 2018-11-28 2019-03-12 浩蓝环保股份有限公司 一种适用于高浓度高悬浮物厌氧处理设备
CN112520905A (zh) * 2020-12-22 2021-03-19 贾绍增 一种畜牧养殖用水净化循环系统
CN113697916A (zh) * 2021-09-01 2021-11-26 深圳市正达环境工程实业有限公司 一种沉淀池水控制系统及方法
CN113697916B (zh) * 2021-09-01 2023-04-28 深圳市正达环境工程实业有限公司 一种沉淀池水控制系统及方法
CN114772716A (zh) * 2022-05-19 2022-07-22 美人鱼企业发展有限公司 一种sbr法污泥沉淀分离处理设备
CN114772716B (zh) * 2022-05-19 2024-03-26 美人鱼企业发展有限公司 一种sbr法污泥沉淀分离处理设备

Also Published As

Publication number Publication date
US20190135673A1 (en) 2019-05-09
CN105906043A (zh) 2016-08-31
US11254596B2 (en) 2022-02-22
CN105906043B (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
WO2017215675A1 (zh) 能源自给的高浓度污水处理系统及方法
CN108483807B (zh) 一种市政污水脱氮除磷耦合污泥减量的装置和方法
CN105884140A (zh) 高浓度带色污水处理系统及方法
CN204607690U (zh) 活性污泥反应与固液分离装置
CN205241342U (zh) 一种环流式厌氧反应器
CN105565489A (zh) 污泥循环型高效水解反应装置
CN105884141B (zh) 多单元污水处理系统及方法
CN208166666U (zh) 一种涡流自循环厌氧反应器
CN106966490A (zh) 一种高效好氧反应器及污水处理工艺
CN103922471A (zh) 一种用于燃料乙醇废水二级厌氧处理的高效厌氧反应器
CN103979670B (zh) 塔式污水生物处理装置
CN205838792U (zh) 三单元污水处理系统
CN201713366U (zh) 导流式锥形沉降池
CN208485667U (zh) 一种多级涡流自循环厌氧反应器
CN205838793U (zh) 高浓度带色污水处理系统
CN1806885A (zh) 叠锥体同心环形斜面沉淀装置
CN205838666U (zh) 能源自给的高浓度污水处理系统
CN205838794U (zh) 多单元污水处理系统
CN108483640A (zh) 一种涡流自循环厌氧反应器及其工作方法
CN106045028B (zh) 厌氧污泥处理装置及方法
CN209113580U (zh) 一种污水处理用厌氧消化装置
CN203319762U (zh) 自循环厌氧反应器
CN209602199U (zh) 一种适用于高浓度高悬浮物厌氧处理设备
CN205838665U (zh) 间歇进水上升流厌氧序批式污泥膨胀床
CN105948392A (zh) 三单元污水处理系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812786

Country of ref document: EP

Kind code of ref document: A1