WO2017212876A1 - システム電源回路および電子機器、電子機器の保護方法 - Google Patents

システム電源回路および電子機器、電子機器の保護方法 Download PDF

Info

Publication number
WO2017212876A1
WO2017212876A1 PCT/JP2017/018205 JP2017018205W WO2017212876A1 WO 2017212876 A1 WO2017212876 A1 WO 2017212876A1 JP 2017018205 W JP2017018205 W JP 2017018205W WO 2017212876 A1 WO2017212876 A1 WO 2017212876A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply circuit
microcomputer
system power
voltage
Prior art date
Application number
PCT/JP2017/018205
Other languages
English (en)
French (fr)
Inventor
彬 藤原
木村 卓司
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2018522391A priority Critical patent/JP6638068B2/ja
Priority to CN201780028028.8A priority patent/CN109196747B/zh
Priority to DE112017002838.8T priority patent/DE112017002838T5/de
Publication of WO2017212876A1 publication Critical patent/WO2017212876A1/ja
Priority to US16/209,083 priority patent/US11139653B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/001Hot plugging or unplugging of load or power modules to or from power distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source

Definitions

  • the present invention relates to a system power supply circuit that generates a plurality of power supply voltages.
  • Electronic devices include various circuits (hereinafter referred to as load circuits) such as microcomputers, memories, interface circuits such as USB (Universal Serial Bus), liquid crystal displays, and audio circuits.
  • load circuits such as microcomputers, memories, interface circuits such as USB (Universal Serial Bus), liquid crystal displays, and audio circuits.
  • a system power supply circuit is used to supply an appropriate power supply voltage to these load circuits.
  • FIG. 1 is a block diagram of an electronic device 200r provided with a system power supply circuit 100r examined by the present inventors.
  • the system power supply circuit 100r is a multi-channel (here, four-channel) power supply circuit, receives a direct-current input voltage (battery voltage) VIN from the battery 202, steps down (or boosts) it, and loads a plurality of load circuits. to 204_1 ⁇ 204_4, respectively, for supplying a power supply voltage V DD1 ⁇ V DD4 appropriate level.
  • the power supply voltages V DD1 to V DD4 are in an overvoltage state or a low voltage state (hereinafter collectively referred to as an abnormal voltage state). If the electronic device 200r continues to operate in an abnormal voltage state, the operation becomes unstable, and the reliability of the load circuit 204 or the system power supply circuit 100 decreases.
  • the system power supply circuit 100r is equipped with a function for detecting an abnormal state of the input voltage VIN .
  • One of the plurality of load circuits 204_1 to 204_4 is a microcomputer (host processor) 206 that controls the electronic device 200r in an integrated manner, and the system power supply circuit 100r operates under the control of the microcomputer 206.
  • the system power supply circuit 100r and the microcomputer 206 are connected via a serial bus 208 and can communicate with each other. Further, the system power supply circuit 100r and the microcomputer 206 are connected via a signal line 210. When the system power supply circuit 100r detects a voltage abnormal state, the system power supply circuit 100r asserts an abnormality detection signal (flag) S1 of the signal line 210. (For example, high level) and notifies the microcomputer 206.
  • flag abnormality detection signal
  • the microcomputer 206 transmits a control signal S2 for instructing to stop / return the operation of the system power supply circuit 100r via the serial bus 208 in response to the assertion / negation of the abnormality detection signal S1.
  • FIG. 2 is a diagram illustrating an abnormality protection sequence of the electronic device 200r of FIG.
  • the input voltage VIN Prior to time t0, the input voltage VIN is maintained at a normal level (eg, 14.4V). At time t0, a load dump surge occurs and the input voltage VIN jumps up.
  • V TH1 for example, 20 V
  • the system power supply circuit 100r detects an overvoltage state and asserts the abnormality detection signal S1.
  • the microcomputer 206 is notified.
  • the microcomputer 206 transmits a control signal S2 via the serial bus 208, and all the channels CH1, except for the channel (channel CH2 in FIG.
  • the system power supply circuit 100r When the input voltage VIN falls below the threshold value V TH1 and returns to the normal state at time t2, the system power supply circuit 100r negates (low level) the abnormality detection signal S1 and notifies the microcomputer 206.
  • the microcomputer 206 transmits the control signal S2 in response to the negation of the abnormality detection signal S1.
  • System power supply circuit 100r is to return the power supply voltage V DD1, V DD3, V DD4 channels CH1, CH3, CH4 on the basis of the control signal S2.
  • the present invention has been made in view of the above problems, and one of the exemplary purposes of an aspect thereof is to provide a system power supply circuit with improved reliability.
  • An embodiment of the present invention relates to a system power supply circuit that receives an input voltage and supplies a power supply voltage to a plurality of load circuits including a microcomputer.
  • the system power supply circuit generates an abnormality detection signal that is negated when the input voltage is included in the first voltage range and asserted when the input voltage falls within the first voltage range, and outputs it to the microcomputer.
  • An interface circuit that can communicate with the detection circuit and the microcomputer, receives a control signal generated by the microcomputer in response to the assertion of the abnormality detection signal, and stops the power supply circuit of the channel indicated by the control signal; and the input voltage is And an internal protection circuit that stops the power supply circuit of at least one predetermined channel when deviating from the second voltage range that is defined wider than the first voltage range.
  • the internal protection circuit When the input voltage is included in the second voltage range after the power supply circuit of the predetermined channel is stopped after the input voltage exceeds the upper threshold value of the second voltage range, the internal protection circuit The circuit may be reactivated. Thereby, the whole system can be automatically returned to the original state.
  • the power supply circuit of the predetermined channel stopped as a result of the input voltage falling below the lower threshold value in the second voltage range may be restored in response to a control signal from the microcomputer.
  • a reduced voltage state in which the input voltage decreases a power supply voltage to the microcomputer is insufficient, and a situation may occur in which the microcomputer shuts down.
  • the system power supply circuit independently operates the power supply circuit of the predetermined channel, a mismatch occurs between the state of the microcomputer and the state of the system power supply circuit. Therefore, after the reduced voltage state, it is possible to prevent inconsistency by entrusting the microcomputer with re-operation control.
  • the system power supply circuit may further include a register.
  • the on / off of the power supply circuit of the plurality of channels may be linked with the corresponding control value stored in the register.
  • the control signal may correspond to a plurality of channels, and may include a plurality of control values for designating ON / OFF of the power supply circuit of each corresponding channel.
  • the interface circuit may write a plurality of control values to the register.
  • the register may store a set value that defines the lower threshold value of the second voltage range.
  • the degree to which the power supply voltage drop caused by the reduced voltage state of the input voltage is allowed depends on the load circuit including the microcomputer. Therefore, by enabling the system designer to specify the lower threshold value of the second voltage range, optimal protection can be realized for each system.
  • the register may be initialized when the power supply circuit of the predetermined channel is stopped as a result of the input voltage falling below the lower threshold value of the second voltage range.
  • the input voltage is the battery voltage of the in-vehicle battery, and the system power supply circuit may be used for an electronic device mounted on the vehicle.
  • the system power supply circuit may be integrated on a single semiconductor substrate or modularized. “Integrated integration” means that main components are integrated, and an inductor, a smoothing capacitor, or the like of a DC / DC converter may be provided outside the semiconductor substrate. By integrating the main part of the system power supply circuit on one chip or modularizing it, the circuit area can be reduced and the characteristics of the circuit elements can be kept uniform.
  • the electronic device may include a DC power supply, a plurality of load circuits including a microcomputer, and a system power supply circuit that receives an input voltage from the DC power supply and supplies a power supply voltage to the plurality of load circuits.
  • the DC power supply is a vehicle battery and may be a vehicle electrical component. Since the on-vehicle battery has a large voltage fluctuation, the protection by the internal protection circuit can be effectively utilized.
  • the reliability of the system power supply circuit can be improved.
  • FIG. 1 It is a block diagram of an electronic device provided with the system power supply circuit which this inventor examined. It is a figure which shows the abnormality protection sequence of the electronic device of FIG. 1 is a circuit diagram of an electronic device including a system power supply circuit according to an embodiment. It is a level diagram of input voltage VIN . 5A and 5B are operation waveform diagrams of the electronic device of FIG. 2 in an overvoltage state. 6A and 6B are operation waveform diagrams of the electronic device of FIG. 2 in a reduced voltage state. It is a block diagram of the vehicle-mounted audio apparatus provided with a system power supply circuit.
  • the state in which the member A is connected to the member B means that the member A and the member B are electrically connected in addition to the case where the member A and the member B are physically directly connected. This includes cases where the connection is indirectly made through other members that do not affect the connection state or inhibit the function.
  • the state in which the member C is provided between the member A and the member B means that the member A and the member C or the member B and the member C are directly connected, as well as an electrical connection. The case where it is indirectly connected through other members that do not affect the state or inhibit the function is also included.
  • FIG. 3 is a circuit diagram of an electronic device 200 including the system power supply circuit 100 according to the embodiment.
  • the electronic device 200 includes a battery 202 that is a DC power supply, a system power supply circuit 100, and a plurality of M (M is an integer of 2 or more) load circuits 204_1 to 204_M.
  • M is an integer of 2 or more
  • One of the plurality of load circuits 204_1 to 204_M 204_2 is a microcomputer 206 that controls the electronic device 200 in an integrated manner.
  • the other load circuits 204 are not particularly limited, and vary depending on the use and function of the electronic device 200.
  • the system power supply circuit 100 receives the input voltage VIN from the battery 202 and supplies the power supply voltages V DD1 to V DDM to the plurality of load circuits 204_1 to 204_M.
  • the system power supply circuit 100 is a functional IC (Integrated Circuit) whose main part is integrated on one semiconductor substrate. An input voltage VIN is supplied to an input (VIN) terminal of the system power supply circuit 100.
  • Corresponding load circuits 204_1 to 204_M are connected to the plurality of output terminals OUT1 to OUTM.
  • external chip components constituting the power supply circuit are omitted for the sake of simplicity of explanation and easy understanding.
  • _ # representing the channel number is omitted as appropriate when it is not necessary to distinguish between them.
  • the system power supply circuit 100 includes power supply circuits 102_1 to 102_M for a plurality of channels CH1 to CHM, an abnormality detection circuit 104, an interface circuit 106, an internal protection circuit 108, and a register 110.
  • the power supply circuits 102_1 to 102_M having a plurality of channels correspond to the plurality of load circuits 204_1 to 204_M.
  • the configuration of the power supply circuit 102 may be different for each channel.
  • the power supply circuit 102 for one channel may be a DC / DC converter, and the power supply circuit 102 for another channel may be a linear regulator.
  • the DC / DC converter may be a step-down type or a step-up type.
  • the power supply circuit 102 of all channels is written to receive the input voltage VIN via the input line 112, but this is not restrictive.
  • the power supply circuit 102 of one channel may receive the output voltage of the power supply circuit 102 of another channel at the input.
  • the abnormality detection circuit 104 receives the input voltage VIN via the input line 112. Abnormality detection circuit 104 is negated when the input voltage V IN is included in the first voltage range V RNG1, it generates an abnormality detection signal S1 is asserted as a departure from the first voltage range V RNG1.
  • the upper threshold value of the first voltage range V RNG1 is V H1 and the lower threshold value is V L1 .
  • the abnormality detection signal S1 is input to the microcomputer 206 via the flag terminal (FLG) and the signal line 210.
  • the interface circuit 106 is connected to the microcomputer 206 via the serial bus 208 and is capable of serial communication.
  • the format of the serial interface is not particularly limited, and for example, an I 2 C (Inter IC) bus, an SPI (Serial Peripheral Interface), or the like can be used.
  • the microcomputer 206 In response to the assertion of the abnormality detection signal S1, the microcomputer 206 generates a control signal S2a that specifies the channel CH in which the power supply circuit 102 should be stopped, and transmits the control signal S2a to the interface circuit 106 via the serial bus 208. In response to the negation of the abnormality detection signal S1, the microcomputer 206 generates a control signal S2b that designates a channel for operating the power supply circuit 102, and transmits the control signal S2b to the interface circuit 106 via the serial bus 208.
  • the interface circuit 106 receives the control signal S2a generated by the microcomputer 206 in response to the assertion of the abnormality detection signal S1, and stops the power supply circuit 102 of the channel CH indicated by the control signal S2a.
  • the interface circuit 106 receives the control signal S2b generated by the microcomputer 206 in response to the negation of the abnormality detection signal S1, and operates the power supply circuit 102 of the channel CH indicated by the control signal S2b.
  • the internal protection circuit 108 is provided as a backup for protection based on the control signal S2 from the microcomputer 206.
  • the internal protection circuit 108 asserts (for example, high level) the internal protection signal S3 and outputs at least one predetermined channel. Stop the power supply circuit.
  • the predetermined channel may be independent of an instruction from the microcomputer 206. When the power supply voltage necessary for the operation of the microcomputer 206 is stopped, the entire system becomes inoperable.
  • the channel CH2 corresponding to the microcomputer 206 and the channel (for example, memory) corresponding to the peripheral circuit (for example, memory) of the microcomputer 206 are used.
  • Channel CH3 is excluded from being stopped.
  • the remaining channels CH1, CH4 to CHM can be set as predetermined channels.
  • the upper threshold value of the second voltage range V RNG2 is V H2
  • the lower threshold value is V L2 .
  • FIG. 4 is a level diagram of the input voltage VIN .
  • the first voltage range V RNG1 is a normal voltage range that does not require protection. Regions outside the first voltage range V RNG1 , that is, V IN > V H1 and V IN ⁇ V L1, are to be protected under the control of the microcomputer. In addition, regions outside the second voltage range V RNG2 , that is, V IN > V H2 and V IN ⁇ V L2 are targeted for protection of the system power supply circuit 100 itself. Therefore, even when the protection process via the microcomputer fails, the protection by the internal protection circuit works, so that the reliability can be improved.
  • FIG. 5 (a) and 5 (b) are operation waveform diagrams of the electronic device 200 of FIG. 2 in an overvoltage state.
  • FIG. 5A is a diagram showing shutdown and return by microcomputer control, and since it is the same as the operation of FIG. 2, description thereof is omitted.
  • the predetermined channel is CH1.
  • FIG. 5B shows an operation when a failure occurs in serial communication. If the interface circuit 106 fails to receive the control signal S2 immediately after time t1, the power supply circuit 102_1 of the predetermined channel does not stop and the power supply voltage V DD1 maintains the original voltage.
  • the internal protection circuit 108 stops the power supply circuit 102_1 of a predetermined channel, thereby lowering the power supply voltage V DD1.
  • the internal protection signal S3 is negated.
  • the internal protection circuit 108 returns the power supply circuit 102_1 of the predetermined channel to the operating state and increases the power supply voltage V DD1 .
  • This operation can stop the power supply circuit of the predetermined channel and protect the circuit even when communication with the microcomputer fails in an overvoltage state.
  • FIG. 6A and 6B are operation waveform diagrams of the electronic device 200 of FIG. 2 in a reduced voltage state.
  • FIG. 6A is a diagram showing shutdown and return by microcomputer control.
  • the input voltage VIN Prior to time t0, the input voltage VIN is maintained at a normal level (eg, 14.4V). At time t0, an instantaneous battery interruption occurs, and the input voltage VIN decreases.
  • the abnormality detection signal S1 is asserted.
  • the microcomputer 206 transmits a control signal S2 to the interface circuit 106 in response to the assertion of the abnormality detection signal S1.
  • the interface circuit 106 stops the power supply circuit 102_1 of the designated channel (for example, CH1) based on the control signal S2.
  • the system power supply circuit 100 negates (low level) the abnormality detection signal S1 and notifies the microcomputer 206.
  • the microcomputer 206 transmits the control signal S2 in response to the negation of the abnormality detection signal S1.
  • the system power supply circuit 100r returns the power supply circuit 102 of the channel CH1 indicated by the control signal S2 to the operating state.
  • FIG. 6B shows an operation when a failure occurs in serial communication. If the interface circuit 106 fails to receive the control signal S2 immediately after time t1, the power supply circuit 102_1 of the predetermined channel does not stop and the power supply voltage V DD1 maintains the original voltage.
  • the internal protection signal S3 is asserted.
  • the internal protection circuit 108 stops the power supply circuit 102_1 of a predetermined channel, thereby lowering the power supply voltage V DD1.
  • the internal protection signal S3 is negated.
  • the power supply circuit 102_1 is restored together with the negation of the internal protection signal S3.
  • the power supply circuit 102_1 is kept stopped even when the internal protection signal S3 is negated.
  • the abnormality detection signal S1 is negated and notified to the microcomputer 206.
  • the microcomputer 206 generates the control signal S2, and the interface circuit 106 resumes the operation of the power supply circuit 102_1 based on the control signal S2.
  • the power supply voltage V DD2 to the microcomputer 206 may not be able to maintain the minimum operating voltage due to a decrease in the input voltage VIN , and the operation at this time is indicated by a one-dot chain line.
  • the control signal S2 immediately after time t2 is not transmitted.
  • the microcomputer 206 transmits a control signal S2 indicated by a one-dot chain line at time t5, and the system power supply circuit 100 restarts the power supply circuit 102_1 in response to the control signal S2.
  • This operation can stop the power supply circuit of the predetermined channel and protect the circuit even when a failure occurs in communication with the microcomputer in the reduced voltage state.
  • the power supply voltage V DD2 to the microcomputer 206 may be insufficient and the microcomputer 206 may shut down.
  • the system power supply circuit 100 independently operates the power supply circuit 102_1 of the predetermined channel at time t4
  • a mismatch occurs between the state of the microcomputer 206 and the state of the system power supply circuit 100.
  • a part of the power supply circuit 102_1 is operating although the microcomputer 206 does not instruct the operation. Therefore, after the reduced voltage state, it is possible to prevent inconsistency by leaving the microcomputer 206 to control the re-operation.
  • the system power supply circuit 100 is provided with a register 110 for storing a control value for each channel. On / off of the power supply circuit 102 of each channel is linked to a corresponding control value stored in the register 110.
  • the control value of a certain channel is represented by 1 bit which takes 1 and 0. When 1, the power supply circuit 102 of that channel is on, and when 0, it is off.
  • the system power supply circuit 100 stops the power supply circuit of the predetermined channel as a result of the input voltage VIN falling below the lower threshold value V L2 of the second voltage range V RNG2 .
  • a plurality of control values stored in the register 110 are initialized, and the writing of a new control signal S2 from the microcomputer 206 is awaited. Thereby, even if the microcomputer 206 is shut down, the entire system including the system power supply circuit 100 and the microcomputer 206 can be returned to a state desired by the microcomputer 206.
  • the register 110 stores a setting value that defines the lower threshold value V L2 of the second voltage range V RNG2 , and the microcomputer 206 can write this setting value.
  • the extent to which the power supply voltages V DD1 to V DDM are allowed to decrease due to the reduced voltage state of the input voltage VIN depends on the load circuits 204_1 to 204_M including the microcomputer 206.
  • V IN ⁇ 5V causes a serious error in the system
  • V IN ⁇ 3 V causes a serious error in the system.
  • the lower threshold value V L2 of the second voltage range V RNG2 is fixed to 5V
  • it is forcibly applied and is not preferable. Therefore, by allowing the designer of the entire system to specify the lower threshold value V L2 of the second voltage range V RNG2 , optimal protection can be realized for each system.
  • the system power supply circuit 100 is suitable for in-vehicle applications with large fluctuations in input voltage, and can be suitably used for in-vehicle electrical components such as in-vehicle audio equipment.
  • FIG. 7 is a block diagram of an in-vehicle audio apparatus 300 including the system power supply circuit 100a.
  • the system power supply circuit 100a includes seven channels and includes power supply circuits 102_1 to 102_7.
  • the first and second channels are step-down DC / DC converters, and the third to seventh channels are linear regulators. Some linear regulators are configured to step down the output voltage of another channel's DC / DC converter.
  • Load circuits 204_1 to 204_7 are a CD drive, a microcomputer (206), a RAM (Random Access Memory) for the microcomputer, an audio circuit, a tuner block, a USB interface circuit, and a liquid crystal display, respectively.
  • VIN0 terminal system power circuit 100a corresponds to the above-described VIN terminal
  • the battery voltage V BAT which corresponds to the input voltage V IN is inputted.
  • the battery voltage V BAT is input to the BCAP terminal via the diode D1.
  • the internal protection circuit 108 may determine whether the input voltage V IN (V BAT ) is included in or deviates from the second voltage range V RNG2 based on the voltage at the BCAP terminal.
  • the above-described abnormality detection signal S1 is output from the BSENS pin.
  • the interface circuit 106 is an I 2 C interface, and receives a control signal S2 from the microcomputer 206 via the SDA pin and the SCL pin.
  • the high side switch 120 supplies the input voltage VIN to the illumination 205 in the ON state.
  • the second channel CH2 is provided with a standby regulator 122 in parallel with the DC / DC converter.
  • the DC / DC converter is stopped and the power supply voltage is supplied from the standby regulator 122 to the microcomputer 206.
  • the operation of the standby regulator 122 is interlocked with a signal input to the ECO pin.
  • the standby regulator 122 can function as a backup power source.
  • the oscillator 124 generates a periodic signal necessary for the DC / DC converter.
  • the thermal shutdown circuit 126 executes appropriate protection processing.
  • the internal regulator generates a stabilized voltage used inside the system power supply circuit 100a.
  • the EN pin receives an enable signal for controlling on / off of the entire system power supply circuit 100a.
  • the power supply circuit 102_6 of the sixth channel operates when the REG4EN pin becomes a high level or when the interface circuit 106 receives a signal to turn on.
  • the protection region by the internal protection circuit 108 of the system power supply circuit 100 is provided on both the overvoltage side and the voltage reduction side, but may be provided only on one side.
  • the protection of the internal protection circuit 108 is effective only in the overvoltage state.
  • the protection of the internal protection circuit 108 is effective only in the reduced voltage state.
  • the return operation after the reduced voltage state shown in FIG. 6B is similar to the return operation after the overvoltage state shown in FIG. 5A, with the control signal from the microcomputer 206 triggered by the negation of the internal protection signal S3.
  • the internal protection circuit 108 may be performed independently without waiting for S2.
  • the in-vehicle audio apparatus 300 in FIG. 7 is merely an example of an electronic device or an in-vehicle electrical component, and the present invention can be suitably used as a power source for a car navigation system, an in-vehicle television, an in-vehicle computer, and the like.
  • the application of the present invention is not limited to in-vehicle use, and can be used in various applications and platforms having large input voltage fluctuations.
  • SYMBOLS 100 System power supply circuit, 102 ... Power supply circuit, 104 ... Abnormality detection circuit, 106 ... Interface circuit, 108 ... Internal protection circuit, 110 ... Register, 200 ... Electronic device, 202 ... Battery, 204 ... Load circuit, 206 ... Microcomputer, 208, serial bus, 210, signal line, S1, abnormality detection signal, S2, control signal, S3, internal protection signal.
  • the present invention can be widely used in electronic circuits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Power Sources (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

システム電源回路100は、入力電圧VINを受け、マイコン206を含む複数の負荷回路204に電源電圧を供給する。複数の電源回路102は、複数の負荷回路204に対応する。異常検出回路104は、入力電圧VINが第1電圧範囲に含まれるときネゲートされ、逸脱するとアサートされる異常検出信号S1を生成し、マイコン206に出力する。インタフェース回路106は、マイコン206と通信可能であり、異常検出信号S1のアサートに応答してマイコン206が生成する制御信号S2を受信し、当該制御信号S2が指示するチャンネルの電源回路102を停止させる。内部保護回路108は、入力電圧VINが第1電圧範囲より広く規定された第2電圧範囲から逸脱すると、少なくともひとつの所定チャンネルの電源回路102を停止させる。

Description

システム電源回路および電子機器、電子機器の保護方法
 本発明は、複数の電源電圧を生成するシステム電源回路に関する。
 電子機器は、マイコンやメモリ、USB(Universal Serial Bus)などのインタフェース回路、液晶ディスプレイ、オーディオ回路など、さまざまな回路(以下、負荷回路と総称する)を備えている。これらの負荷回路に、適切な電源電圧を供給するために、システム電源回路が用いられる。
 図1は、本発明者が検討したシステム電源回路100rを備える電子機器200rのブロック図である。システム電源回路100rは、多チャンネル(ここでは4チャンネル)の電源回路であり、バッテリ202からの直流の入力電圧(バッテリ電圧)VINを受け、それを降圧(もしくは昇圧)し、複数の負荷回路204_1~204_4それぞれに、適切なレベルの電源電圧VDD1~VDD4を供給する。
 カーオーディオなどの車載機器では、バッテリ202の電圧がシステム電源回路100rの入力電圧VINとなるため、非常に大きなバッテリ変動が直接、システム電源回路100rに入力される。システム電源回路100rへの入力電圧VINが適切な電圧範囲から逸脱すると、電源電圧VDD1~VDD4が過電圧状態あるいは低電圧状態(以下、電圧異常状態と総称する)となる。電圧異常状態で電子機器200rが動作し続けると、動作が不安定となったり、負荷回路204あるいはシステム電源回路100の信頼性が低下する要因となる。
 そこで、システム電源回路100rには、入力電圧VINの異常状態を検出する機能が実装される。複数の負荷回路204_1~204_4のひとつ204_2は、電子機器200rを統合的に制御するマイコン(ホストプロセッサ)206であり、システム電源回路100rは、マイコン206の制御下で動作する。
 システム電源回路100rとマイコン206は、シリアルバス208を介して接続されており、通信可能となっている。また、システム電源回路100rとマイコン206の間は、信号線210を介して接続されており、システム電源回路100rは、電圧異常状態を検出すると、信号線210の異常検出信号(フラグ)S1をアサート(たとえばハイレベル)し、マイコン206に通知する。
 マイコン206は、異常検出信号S1のアサート/ネゲートに応答して、シリアルバス208を介して、システム電源回路100rの動作停止/復帰を指示する制御信号S2を送信する。
 図2は、図1の電子機器200rの異常保護シーケンスを示す図である。時刻t0より前は、入力電圧VINは正常レベル(たとえば14.4V)を維持している。時刻t0にロードダンプサージが発生し、入力電圧VINが跳ね上がる。時刻t1に入力電圧VINが、システム電源回路100rの内部で規定されるしきい値VTH1(たとえば20V)を超えると、システム電源回路100rは過電圧状態を検出し、異常検出信号S1をアサートし、マイコン206に通知する。マイコン206は、シリアルバス208を介して制御信号S2を送信し、システム電源回路100rに対して、マイコン206自身が動作するために必要なチャンネル(図1ではチャンネルCH2)を除くすべてのチャンネルCH1,CH3,CH4の停止を指示する。システム電源回路100rは、制御信号S2に応答して、チャンネルCH1,CH3,CH4を停止し、その結果、電源電圧VDD1,VDD3,VDD4が低下する。
 時刻t2に、入力電圧VINがしきい値VTH1を下回り、正常状態に復帰すると、システム電源回路100rは異常検出信号S1をネゲート(ローレベル)し、マイコン206に通知する。マイコン206は異常検出信号S1のネゲートに応答して、制御信号S2を送信する。システム電源回路100rは、制御信号S2にもとづいてチャンネルCH1,CH3,CH4の電源電圧VDD1,VDD3,VDD4を復帰させる。
特開2013-089060号公報
 本発明者は、図1の電子機器200rについて検討した結果、以下の課題を認識するに至った。図2のタイムチャートにおいて、異常検出信号S1のアサートに続くシリアル通信に異常が発生すると、システム電源回路100rは、制御信号S2を受信できなくなる。そうすると、システム電源回路100rは、マイコン206が指示したチャンネルを停止できなくなり、一点鎖線で示すように電源電圧VDDが供給され続けてしまう。この状態で、入力電圧VINがさらに上昇すると、システム電源回路100rに異常や故障が発生し、あるいは負荷回路204に悪影響が及ぶおそれがある。
 入力電圧VINが低下し、減電圧状態となった場合にも、システム電源回路100rが停止を指示する制御信号S2の受信に失敗すると、同様の問題が生ずる。なおこのような問題は車載機器のみでなく、入力電圧VINが大きく変動しうるさまざまなプラットフォームにおいても発生しうる。
 本発明は係る課題に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、信頼性を高めたシステム電源回路の提供にある。
 本発明のある態様は、入力電圧を受け、マイコンを含む複数の負荷回路に電源電圧を供給するシステム電源回路に関する。システム電源回路は、複数の負荷回路に対応する複数チャンネルの電源回路と、入力電圧が第1電圧範囲に含まれるときネゲートされ、逸脱するとアサートされる異常検出信号を生成し、マイコンに出力する異常検出回路と、マイコンと通信可能であり、異常検出信号のアサートに応答してマイコンが生成する制御信号を受信し、当該制御信号が指示するチャンネルの電源回路を停止させるインタフェース回路と、入力電圧が第1電圧範囲より広く規定された第2電圧範囲から逸脱すると、少なくともひとつの所定チャンネルの電源回路を停止させる内部保護回路と、を備える。
 この態様によると、マイコン経由での保護処理に失敗した場合でも、内部保護回路による保護が働くため、信頼性を高めることができる。
 内部保護回路は、入力電圧が前記第2電圧範囲の上側しきい値を超えた結果、所定チャンネルの電源回路を停止した後に、入力電圧が前記第2電圧範囲に含まれると、所定チャンネルの電源回路を再動作させてもよい。
 これにより、システム全体を、自動的に元の状態に復帰させることができる。
 入力電圧が第2電圧範囲の下側しきい値を下回った結果停止した所定チャンネルの電源回路は、マイコンからの制御信号に応答して、復帰してもよい。
 入力電圧が低下する減電圧状態では、マイコンへの電源電圧が不足して、マイコンがシャットダウンする状況が発生しうる。かかる状況でシステム電源回路が独自に、所定チャンネルの電源回路を再動作させると、マイコンの状態とシステム電源回路の状態に不整合が生じる。そこで減電圧状態の後は、マイコンに再動作の制御を委ねることで、不整合を防止できる。
 システム電源回路は、レジスタをさらに備えてもよい。複数チャンネルの電源回路のオン、オフは、レジスタに格納される対応する制御値と連動してもよい。制御信号は、複数チャンネルに対応し、それぞれが対応するチャンネルの電源回路のオン、オフを指定する複数の制御値を含んでもよい。インタフェース回路は複数の制御値をレジスタに書き込んでもよい。
 これにより、システムの設計者は、レジスタに書き込む値に応じて、電圧異常状態における各チャンネルの状態を自由に規定できる。
 レジスタは、第2電圧範囲の下側しきい値を規定する設定値を格納してもよい。入力電圧の減電圧状態に起因する電源電圧の低下をどの程度許容するかは、マイコンをはじめとする負荷回路に依存する。そこでシステムの設計者が、第2電圧範囲の下側しきい値を指定できるようにすることで、システム毎に最適な保護を実現できる。
 入力電圧が第2電圧範囲の下側しきい値を下回った結果、所定チャンネルの電源回路を停止したとき、レジスタを初期化してもよい。
 入力電圧は車載バッテリのバッテリ電圧であり、システム電源回路は、車両に搭載される電子機器に使用されてもよい。
 システム電源回路は、ひとつの半導体基板に集積化され、またはモジュール化されてもよい。「一体集積化」とは、主要構成要素が一体集積化されることを意味し、DC/DCコンバータのインダクタや平滑キャパシタなどが半導体基板の外部に設けられていてもよい。システム電源回路の主要部を1つのチップ上に集積化し、あるいはモジュール化することにより、回路面積を削減することができるとともに、回路素子の特性を均一に保つことができる。
 本発明の別の態様は電子機器に関する。電子機器は、直流電源と、マイコンを含む複数の負荷回路と、直流電源からの入力電圧を受け、複数の負荷回路に電源電圧を供給するシステム電源回路と、を備えてもよい。
 直流電源は車載用バッテリであり、車載電装品であってもよい。車載用バッテリは、電圧変動が大きいため、内部保護回路による保護を有効活用できる。
 なお、以上の構成要素の任意の組み合わせや、本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
 本発明のある態様によれば、システム電源回路の信頼性を高めることができる。
本発明者が検討したシステム電源回路を備える電子機器のブロック図である。 図1の電子機器の異常保護シーケンスを示す図である。 実施の形態に係るシステム電源回路を備える電子機器の回路図である。 入力電圧VINのレベルダイアグラムである。 図5(a)、(b)は、過電圧状態における図2の電子機器の動作波形図である。 図6(a)、(b)は、減電圧状態における図2の電子機器の動作波形図である。 システム電源回路を備える車載用オーディオ装置のブロック図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、電気的な接続状態に影響を及ぼさず、あるいは機能を阻害しない他の部材を介して間接的に接続される場合も含む。また、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、電気的な接続状態に影響を及ぼさず、あるいは機能を阻害しない他の部材を介して間接的に接続される場合も含む。
 図3は、実施の形態に係るシステム電源回路100を備える電子機器200の回路図である。電子機器200は、直流電源であるバッテリ202、システム電源回路100、複数M個(Mは2以上の整数)の負荷回路204_1~204_Mを備える。複数の負荷回路204_1~204_Mのひとつ204_2は、電子機器200を統合的に制御するマイコン206である。そのほかの負荷回路204は特に限定されず、電子機器200の用途や機能に応じて様々である。
 システム電源回路100は、バッテリ202から入力電圧VINを受け、複数の負荷回路204_1~204_Mに電源電圧VDD1~VDDMを供給する。システム電源回路100は、その主要部が一つの半導体基板に集積化された機能IC(Integrated Circuit)である。システム電源回路100の入力(VIN)端子には、入力電圧VINが供給される。また複数の出力端子OUT1~OUTMには、対応する負荷回路204_1~204_Mが接続される。図3では、説明の簡潔化、理解の容易化のために、電源回路を構成する外付けのチップ部品を省略している。以下、チャンネル番号を表す_#は、それらを区別する必要がない場合、適宜省略する。
 システム電源回路100は、複数チャンネルCH1~CHMの電源回路102_1~102_M、異常検出回路104、インタフェース回路106、内部保護回路108、レジスタ110を備える。
 複数チャンネルの電源回路102_1~102_Mは、複数の負荷回路204_1~204_Mに対応する。各チャンネルCHi(i=1,2,…,M)の電源回路102_iは、対応する負荷回路204_iに電源電圧VDDiを供給する。電源回路102の構成はチャンネルごとに異なっていてよく、あるチャンネルの電源回路102は、DC/DCコンバータであり、別のチャンネルの電源回路102は、リニアレギュレータであってもよい。またDC/DCコンバータは、降圧型であってもよいし、昇圧型であってもよい。
 図3では、全チャンネルの電源回路102が入力ライン112を介して入力電圧VINを受けるように書かれているが、その限りではない。たとえばあるチャンネルの電源回路102は、別のチャンネルの電源回路102の出力電圧を、入力に受けてもよい。
 異常検出回路104は、入力ライン112を介して入力電圧VINを受ける。異常検出回路104は、入力電圧VINが第1電圧範囲VRNG1に含まれるときネゲートされ、第1電圧範囲VRNG1から逸脱するとアサートされる異常検出信号S1を生成する。第1電圧範囲VRNG1の上側しきい値をVH1、下側しきい値をVL1とする。異常検出信号S1は、フラグ端子(FLG)および信号線210を介して、マイコン206に入力される。
 インタフェース回路106は、シリアルバス208を介してマイコン206と接続され、シリアル通信可能となっている。シリアルインタフェースの形式は特に限定されず、たとえばIC(Inter IC)バスや、SPI(Serial Peripheral Interface)などを用いることができる。
 マイコン206は、異常検出信号S1のアサートに応答して、電源回路102を停止すべきチャンネルCHを指定する制御信号S2aを生成し、シリアルバス208を介してインタフェース回路106に送信する。また、マイコン206は、異常検出信号S1のネゲートに応答して、電源回路102を動作させるチャンネルを指定する制御信号S2bを生成し、シリアルバス208を介してインタフェース回路106に送信する。
 インタフェース回路106は、異常検出信号S1のアサートに応答してマイコン206が生成する制御信号S2aを受信し、当該制御信号S2aが指示するチャンネルCHの電源回路102を停止させる。
 またインタフェース回路106は、異常検出信号S1のネゲートに応答してマイコン206が生成する制御信号S2bを受信し、当該制御信号S2bが指示するチャンネルCHの電源回路102を動作させる。
 内部保護回路108は、マイコン206からの制御信号S2にもとづく保護のバックアップとして設けられている。内部保護回路108は、入力電圧VINが第1電圧範囲VRNG1より広く規定された第2電圧範囲VRNG2から逸脱すると、内部保護信号S3をアサート(たとえばハイレベル)し、少なくともひとつの所定チャンネルの電源回路を停止させる。所定チャンネルは、マイコン206の指示とは無関係であってよい。なおマイコン206の動作に必要な電源電圧を停止すると、システム全体が動作不能となるため、この例ではマイコン206に対応するチャンネルCH2と、マイコン206の周辺回路(たとえばメモリ)に対応するチャンネル(たとえばチャンネルCH3)は、停止の対象から除外される。この場合、一例として、残りのチャンネルCH1,CH4~CHMを所定チャンネルとすることができる。第2電圧範囲VRNG2の上側しきい値をVH2、下側しきい値をVL2とする。
 以上がシステム電源回路100の構成である。続いてその動作を説明する。図4は、入力電圧VINのレベルダイアグラムである。第1電圧範囲VRNG1は保護を要しない正常電圧範囲である。第1電圧範囲VRNG1の外側の領域すなわちVIN>VH1,VIN<VL1は、マイコンの制御による保護の対象となる。また第2電圧範囲VRNG2の外側の領域すなわちVIN>VH2,VIN<VL2は、システム電源回路100自身の保護の対象となる。したがって、マイコン経由での保護処理に失敗した場合でも、内部保護回路による保護が働くため、信頼性を高めることができる。
 図5(a)、(b)は、過電圧状態における図2の電子機器200の動作波形図である。図5(a)は、マイコン制御によるシャットダウン、復帰を示す図であり、図2の動作と同じであるため説明を省略する。ここでは所定チャンネルをCH1とする。
 図5(b)は、シリアル通信に障害が生じたときの動作を示す。時刻t1の直後にインタフェース回路106が制御信号S2の受信に失敗すると、所定チャンネルの電源回路102_1が停止せず、電源電圧VDD1がもとの電圧を維持する。
 入力電圧VINがさらに上昇し、時刻t3に第2電圧範囲VRNG2の上側しきい値VH2を超えると、内部保護信号S3がアサートされる。そして内部保護回路108は、所定チャンネルの電源回路102_1を停止させ、これにより電源電圧VDD1が低下する。そして時刻t4に入力電圧VINが第2電圧範囲VRNG2内に戻ると、内部保護信号S3がネゲートされる。内部保護回路108は、所定チャンネルの電源回路102_1を動作状態に戻し、電源電圧VDD1を上昇させる。
 この動作によって、過電圧状態においてマイコンとの通信に障害が生じた場合においても、所定チャンネルの電源回路を停止することができ、回路を保護することができる。
 図6(a)、(b)は、減電圧状態における図2の電子機器200の動作波形図である。図6(a)は、マイコン制御によるシャットダウン、復帰を示す図である。時刻t0より前は、入力電圧VINは正常レベル(たとえば14.4V)を維持している。時刻t0にバッテリの瞬断などが発生し、入力電圧VINが低下する。時刻t1に入力電圧VINが、第1電圧領域VRNG1の下側しきい値VL1を下回ると、異常検出信号S1がアサートされる。マイコン206は、異常検出信号S1のアサートに応答して、インタフェース回路106に制御信号S2を送信する。インタフェース回路106は、制御信号S2にもとづいて、指示されたチャンネル(たとえばCH1)の電源回路102_1を停止する。
 時刻t2に、入力電圧VINがしきい値VL1を上回り、正常状態に復帰すると、システム電源回路100は異常検出信号S1をネゲート(ローレベル)し、マイコン206に通知する。マイコン206は異常検出信号S1のネゲートに応答して、制御信号S2を送信する。システム電源回路100rは、制御信号S2が指示するチャンネルCH1の電源回路102を動作状態に復帰させる。
 図6(b)は、シリアル通信に障害が生じたときの動作を示す。時刻t1の直後にインタフェース回路106が制御信号S2の受信に失敗すると、所定チャンネルの電源回路102_1が停止せず、電源電圧VDD1がもとの電圧を維持する。
 入力電圧VINがさらに低下し、時刻t3に第2電圧範囲VRNG2の下側しきい値VL2を下回ると、内部保護信号S3がアサートされる。そして内部保護回路108は、所定チャンネルの電源回路102_1を停止させ、これにより電源電圧VDD1が低下する。
 そして時刻t4に入力電圧VINが第2電圧範囲VRNG2内に戻ると、内部保護信号S3がネゲートされる。図5(b)の過電圧保護では、内部保護信号S3のネゲートとともに、電源回路102_1を復帰させたが、減電圧保護では、内部保護信号S3がネゲートされても、電源回路102_1の停止を維持する。時刻t2に、入力電圧VINがしきい値VL1を超えると、異常検出信号S1がネゲートされ、マイコン206に通知される。マイコン206は制御信号S2を生成し、インタフェース回路106は、制御信号S2にもとづいて電源回路102_1の動作を再開する。
 なお入力電圧VINの低下により、マイコン206への電源電圧VDD2が、最低動作電圧を維持できなくなる場合もあり、このときの動作が一点鎖線で示される。マイコン206が動作不能となると、時刻t2の直後の制御信号S2は送信されない。そしてマイコン206は再起動の後に、時刻t5に一点鎖線で示す制御信号S2を送信し、この制御信号S2に応答して、システム電源回路100は電源回路102_1を再動作させる。
 この動作によって、減電圧状態においてマイコンとの通信に障害が生じた場合においても、所定チャンネルの電源回路を停止することができ、回路を保護することができる。
 続いて、過電圧状態と減電圧状態とで、停止したチャンネルの復帰のトリガーが異なっている理由を説明する。
 図6(b)に一点鎖線で示したように、入力電圧VINが低下する減電圧状態では、マイコン206への電源電圧VDD2が不足して、マイコン206がシャットダウンする状況が発生しうる。かかる状況でシステム電源回路100が時刻t4に独自に、所定チャンネルの電源回路102_1を再動作させると、マイコン206の状態とシステム電源回路100の状態に不整合が生じる。具体的には、マイコン206が動作を指示していないのにも関わらず、一部の電源回路102_1が動作していることとなる。そこで減電圧状態の後は、マイコン206に再動作の制御を委ねることで、不整合を防止できる。
 続いて図3に戻り、システム電源回路100のさらなる特徴を説明する。
 システム電源回路100には、チャンネルごとの制御値を格納するレジスタ110が設けられる。各チャンネルの電源回路102のオン、オフは、レジスタ110に格納される対応する制御値に連動する。たとえばあるチャンネルの制御値は1,0をとる1ビットで表され、1のときそのチャンネルの電源回路102はオンであり、0のときオフである。
 上述の制御信号S2は、複数チャンネルCH1~CHMに対応する複数の制御値を含む。つまり、制御信号S2は、Mビットのバイナリデータで表される。たとえばMSB(Most Significant Bit)が第1チャンネルCH1、LSB(Least Significant Bit)が第Mチャンネルに対応するとする。たとえばM=6とする。
 S2=[111111]は、全チャンネルCH1~CH6のオンを表し、
 S2=[000000]は、全チャンネルCH1~CH6のオフを表し、
 S2=[011000]は、第2チャンネルCH2,第3チャンネルCH3のみがオン、残りのチャンネルがオフを表す。
 システム電源回路100は、図6(b)に示すように、入力電圧VINが第2電圧範囲VRNG2の下側しきい値VL2を下回った結果、所定チャンネルの電源回路を停止したとき、レジスタ110に格納される複数の制御値を初期化し、マイコン206からの新たな制御信号S2の書き込みを待機する。これにより、仮にマイコン206がシャットダウンしていたとしても、システム電源回路100およびマイコン206を含むシステム全体を、マイコン206が所望する状態に戻すことができる。
 さらに、レジスタ110は、第2電圧範囲VRNG2の下側しきい値VL2を規定する設定値を格納し、マイコン206がこの設定値を書き込み可能となっている。入力電圧VINの減電圧状態に起因する電源電圧VDD1~VDDMの低下をどの程度許容するかは、マイコン206をはじめとする負荷回路204_1~204_Mに依存する。
 たとえばある第1システムでは、VIN<5Vとなると、システムに深刻なエラーを引き起こし、別の第2システムでは、VIN<3Vとなると、システムに深刻なエラーを引き起こす。この場合に、第2電圧範囲VRNG2の下側しきい値VL2を5Vに固定すると、第2システムでは、VIN=4Vで動作可能であるにも関わらず、内部保護回路108による保護が強制的にかかってしまい、好ましくない場合もある。そこでシステム全体の設計者が、第2電圧範囲VRNG2の下側しきい値VL2を指定できるようにすることで、システムごとに最適な保護を実現できる。
(用途)
 システム電源回路100は、入力電圧変動の大きな車載用途に適しており、車載用オーディオ機器などの車載用電装品に好適に用いることができる。図7は、システム電源回路100aを備える車載用オーディオ装置300のブロック図である。システム電源回路100aは、7チャンネルで構成され、電源回路102_1~102_7を備える。第1、第2チャンネルは、降圧DC/DCコンバータであり、第3~第7チャンネルは、リニアレギュレータである。いくつかのリニアレギュレータは、別のチャンネルのDC/DCコンバータの出力電圧を降圧するよう構成されている。
 負荷回路204_1~204_7はそれぞれ、CDドライブ、マイコン(206)、マイコン用のRAM(Random Access Memory)、オーディオ回路、チューナブロック、USBインタフェース回路、液晶ディスプレイである。
 システム電源回路100aのVIN0端子は、上述のVIN端子に相当し、入力電圧VINに相当するバッテリ電圧VBATが入力される。またBCAP端子には、ダイオードD1を介してバッテリ電圧VBATが入力される。内部保護回路108は、BCAP端子の電圧にもとづいて、入力電圧VIN(VBAT)が第2電圧範囲VRNG2に含まれるか逸脱したかを判定してもよい。BSENSピンからは、上述の異常検出信号S1が出力される。インタフェース回路106はICインタフェースであり、SDAピンとSCLピンを介して、マイコン206から制御信号S2を受信する。
 ハイサイドスイッチ120は、オン状態において、イルミネーション205に入力電圧VINを供給する。
 第2チャンネルCH2には、DC/DCコンバータと並列にスタンバイレギュレータ122が設けられる。システム全体がスタンバイ状態であるときには、DC/DCコンバータが停止し、スタンバイレギュレータ122からマイコン206に電源電圧が供給される。たとえばスタンバイレギュレータ122の動作は、ECOピンに入力される信号と連動している。
 また、過電圧あるいは減電圧状態において、第2チャンネルCH2のDC/DCコンバータが動作不能となった場合に、スタンバイレギュレータ122をバックアップ電源として機能させることができる。
 オシレータ124は、DC/DCコンバータに必要な周期信号を発生する。サーマルシャットダウン回路126は、システム電源回路100aの過熱状態を検出すると、適切な保護処理を実行する。内部レギュレータは、システム電源回路100aの内部で使用される安定化電圧を生成する。
 ENピンには、システム電源回路100a全体のオン、オフを制御するイネーブル信号が入力される。第6チャンネルの電源回路102_6は、REG4ENピンがハイレベルとなると、あるいはインタフェース回路106がオンを指示する信号を受信したときに、動作する。
 以上、本発明について、実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。以下、こうした変形例について説明する。
(第1変形例)
 実施の形態では、図4に示すように、システム電源回路100の内部保護回路108による保護領域が、過電圧側と減電圧側の両方に設けられたが、一方のみに設けてもよい。たとえば第2電圧範囲VRNG2の下限を無くせば、過電圧状態でのみ内部保護回路108の保護が有効となる。反対に第2電圧範囲VRNG2の上限を無くせば、減電圧状態でのみ内部保護回路108の保護が有効となる。
(第2変形例)
 図6(b)に示す減電圧状態の後の復帰動作は、図5(a)の過電圧状態の後の復帰動作と同様に、内部保護信号S3のネゲートをトリガーとして、マイコン206からの制御信号S2を待たずに、内部保護回路108が単独で行ってもよい。
(第3変形例)
 図7の車載用オーディオ装置300は、電子機器、あるいは車載電装品の一例に過ぎず、本発明は、カーナビゲーションシステム、車載用テレビや車載コンピュータなどの電源に好適に利用できる。また本発明の用途は車載に限定されず、入力電圧変動の大きいさまざまな用途、プラットフォームで使用することができる。
 実施の形態にもとづき、具体的な用語を用いて本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。
100…システム電源回路、102…電源回路、104…異常検出回路、106…インタフェース回路、108…内部保護回路、110…レジスタ、200…電子機器、202…バッテリ、204…負荷回路、206…マイコン、208…シリアルバス、210…信号線、S1…異常検出信号、S2…制御信号、S3…内部保護信号。
 本発明は電子回路に広く利用できる。

Claims (11)

  1.  入力電圧を受け、マイコンを含む複数の負荷回路に電源電圧を供給するシステム電源回路であって、
     前記複数の負荷回路に対応する複数チャンネルの電源回路と、
     前記入力電圧が第1電圧範囲に含まれるときネゲートされ、逸脱するとアサートされる異常検出信号を生成し、前記マイコンに出力する異常検出回路と、
     前記マイコンと通信可能であり、前記異常検出信号のアサートに応答して前記マイコンが生成する制御信号を受信し、当該制御信号が指示するチャンネルの電源回路を停止させるインタフェース回路と、
     前記入力電圧が前記第1電圧範囲より広く規定された第2電圧範囲から逸脱すると、少なくともひとつの所定チャンネルの電源回路を停止させる内部保護回路と、
     を備えることを特徴とするシステム電源回路。
  2.  前記内部保護回路は、前記入力電圧が前記第2電圧範囲の上側しきい値を超えた結果、前記所定チャンネルの電源回路を停止した後に、前記入力電圧が前記第2電圧範囲に含まれると、前記所定チャンネルの電源回路を再動作させることを特徴とする請求項1に記載のシステム電源回路。
  3.  前記入力電圧が前記第2電圧範囲の下側しきい値を下回った結果停止した前記所定チャンネルの電源回路は、前記マイコンからの制御信号に応答して、復帰することを特徴とする請求項1または2に記載のシステム電源回路。
  4.  レジスタをさらに備え、
     前記複数チャンネルの電源回路のオン、オフは、前記レジスタの対応するアドレスに格納される制御値に連動し、
     前記制御信号は、複数チャンネルに対応し、それぞれが対応するチャンネルの電源回路のオン、オフを指定する複数の制御値を含み、
     前記インタフェース回路は前記複数の制御値を前記レジスタの対応するアドレスに書き込むことを特徴とする請求項1から3のいずれかに記載のシステム電源回路。
  5.  前記入力電圧が前記第2電圧範囲の下側しきい値を下回った結果、前記所定チャンネルの電源回路を停止したとき、前記レジスタに格納される前記複数の制御値を初期化することを特徴とする請求項4に記載のシステム電源回路。
  6.  前記レジスタは、前記第2電圧範囲の下側しきい値を規定する設定値を格納するアドレスを有することを特徴とする請求項4または5に記載のシステム電源回路。
  7.  前記入力電圧は車載バッテリのバッテリ電圧であり、車両に搭載される電子機器に使用されることを特徴とする請求項1から6のいずれかに記載のシステム電源回路。
  8.  ひとつの半導体基板に集積化され、またはモジュール化されていることを特徴とする請求項1から7のいずれかに記載のシステム電源回路。
  9.  直流電源と、
     マイコンを含む複数の負荷回路と、
     前記直流電源からの入力電圧を受け、前記複数の負荷回路に電源電圧を供給する請求項1から8のいずれかに記載のシステム電源回路と、
     を備えることを特徴とする電子機器。
  10.  前記直流電源は車載用バッテリであり、
     車載電装品であることを特徴とする請求項9に記載の電子機器。
  11.  電子機器の保護方法であって、
     システム電源回路が、入力電圧を昇圧または降圧し、マイコンを含む複数の負荷回路に電源電圧を供給するステップと、
     前記システム電源回路が、前記入力電圧が第1電圧範囲に含まれるときネゲートされ、逸脱するとアサートされる異常検出信号を生成し、前記マイコンに出力するステップと、
     前記マイコンが、前記異常検出信号のアサートに応答して、停止すべきチャンネルを指定する制御信号を生成し、前記システム電源回路に送信するステップと、
     前記システム電源回路が、受信した前記制御信号に応答して、当該制御信号が指定するチャンネルの電源回路を停止するステップと、
     前記システム電源回路が、前記入力電圧が前記第1電圧範囲より広く規定された第2電圧範囲から逸脱すると、少なくともひとつの所定チャンネルの電源回路を停止させるステップと、
     を備えることを特徴とする保護方法。
PCT/JP2017/018205 2016-06-07 2017-05-15 システム電源回路および電子機器、電子機器の保護方法 WO2017212876A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018522391A JP6638068B2 (ja) 2016-06-07 2017-05-15 システム電源回路および電子機器、電子機器の保護方法
CN201780028028.8A CN109196747B (zh) 2016-06-07 2017-05-15 系统电源电路和电子设备、电子设备的保护方法
DE112017002838.8T DE112017002838T5 (de) 2016-06-07 2017-05-15 Systemstromversorgungsschaltung, elektronisches gerät und schutzverfahren für elektronisches gerät
US16/209,083 US11139653B2 (en) 2016-06-07 2018-12-04 System power supply circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016113485 2016-06-07
JP2016-113485 2016-06-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/209,083 Continuation US11139653B2 (en) 2016-06-07 2018-12-04 System power supply circuit

Publications (1)

Publication Number Publication Date
WO2017212876A1 true WO2017212876A1 (ja) 2017-12-14

Family

ID=60578194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018205 WO2017212876A1 (ja) 2016-06-07 2017-05-15 システム電源回路および電子機器、電子機器の保護方法

Country Status (5)

Country Link
US (1) US11139653B2 (ja)
JP (1) JP6638068B2 (ja)
CN (1) CN109196747B (ja)
DE (1) DE112017002838T5 (ja)
WO (1) WO2017212876A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114365064A (zh) * 2019-09-26 2022-04-15 日立安斯泰莫株式会社 电子控制装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112362955A (zh) * 2020-10-22 2021-02-12 深圳力维智联技术有限公司 基于自校准的adc采集方法、装置、设备及存储介质
CN116382449B (zh) * 2023-05-26 2023-08-25 深圳亿思腾达集成股份有限公司 一种电源分配方法、系统及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764652A (ja) * 1993-08-23 1995-03-10 Toshiba Corp バックアップ回路
JP2001177998A (ja) * 1999-12-22 2001-06-29 Hitachi Ltd モジュール電池の保護装置及び蓄電装置
JP2012131091A (ja) * 2010-12-21 2012-07-12 Brother Industries Ltd 画像形成装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3949406B2 (ja) * 2001-08-07 2007-07-25 矢崎総業株式会社 車両用電気接続装置
JP2005261047A (ja) * 2004-03-10 2005-09-22 Denso Corp 車両用電源装置
JP3985002B2 (ja) * 2005-07-15 2007-10-03 三菱電機株式会社 車載電子制御装置
JP2008158612A (ja) * 2006-12-21 2008-07-10 Rohm Co Ltd 電源装置および電源システム
JP4621231B2 (ja) * 2007-06-29 2011-01-26 富士通テン株式会社 電源保護装置及び電子制御装置
JP4573884B2 (ja) * 2008-06-18 2010-11-04 三菱電機株式会社 車載電子制御装置の電源異常検出回路
JP5110110B2 (ja) * 2010-03-18 2012-12-26 株式会社デンソー 車両用電源装置
JP2013089060A (ja) 2011-10-19 2013-05-13 Ricoh Co Ltd 起動シーケンス制御装置及び制御方法、並びに電源供給システム
JP6353746B2 (ja) * 2014-08-26 2018-07-04 矢崎総業株式会社 車両用電源制御システム、ワイヤハーネス及び車両用電源制御装置
CA2947465A1 (en) * 2015-11-18 2017-05-18 General Electric Company A system and method for fault ride through

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764652A (ja) * 1993-08-23 1995-03-10 Toshiba Corp バックアップ回路
JP2001177998A (ja) * 1999-12-22 2001-06-29 Hitachi Ltd モジュール電池の保護装置及び蓄電装置
JP2012131091A (ja) * 2010-12-21 2012-07-12 Brother Industries Ltd 画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114365064A (zh) * 2019-09-26 2022-04-15 日立安斯泰莫株式会社 电子控制装置

Also Published As

Publication number Publication date
CN109196747B (zh) 2020-04-07
US20190109456A1 (en) 2019-04-11
JP6638068B2 (ja) 2020-01-29
JPWO2017212876A1 (ja) 2019-02-28
US11139653B2 (en) 2021-10-05
DE112017002838T5 (de) 2019-02-28
CN109196747A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
US7486064B2 (en) Under voltage lock out circuit and method
US9430008B2 (en) Apparatus and method for optimizing use of NVDC chargers
US11139653B2 (en) System power supply circuit
US9519326B2 (en) Power management controller, power management circuit using the same, and electronic device
US20150362982A1 (en) Server system and cluster system using the same
JP2016052146A (ja) 保護回路およびそれを用いたスイッチング電源の制御回路、電源回路、ならびに電子機器および基地局
JP5198475B2 (ja) データ通信機能内蔵デバイス
EP1987990A1 (en) Electronic control unit for a vehicle with a device for controlling supply of the electronic control unit
JP2010119262A (ja) スイッチング電源保護システム、マザーボード及び計算機
CN115373501A (zh) 固态驱动器的电源故障保护系统
US7694163B1 (en) System for generating and monitoring voltages generated for a variety of different components on a common printed circuit board
US8804439B2 (en) Power circuit, flash memory system provided with the power circuit, and power supply method
US20180213618A1 (en) Power supply system and voltage output module
JP2019159987A (ja) 制御装置、および制御方法
US8599636B2 (en) Boosting memory module performance
US8503263B2 (en) Memory module and power supply system
US6903583B1 (en) Power supply shutdown control
US20120212059A1 (en) Power supply system with multiple power sources in parallel
US20230019075A1 (en) Electronic device including a plurality of power management integrated circuits and method of operating the same
US20200409442A1 (en) Power supply circuit and power supply voltage supply method
JP2008158612A (ja) 電源装置および電源システム
US20160085292A1 (en) Electronic device
JP7385154B2 (ja) システムコンポーネント、電子デバイス及び制御信号を提供する方法
JP3009236B2 (ja) デバイスの活性保守方式
WO2023022190A1 (ja) 電源管理回路および電子機器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018522391

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810057

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17810057

Country of ref document: EP

Kind code of ref document: A1