WO2017212867A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2017212867A1
WO2017212867A1 PCT/JP2017/017996 JP2017017996W WO2017212867A1 WO 2017212867 A1 WO2017212867 A1 WO 2017212867A1 JP 2017017996 W JP2017017996 W JP 2017017996W WO 2017212867 A1 WO2017212867 A1 WO 2017212867A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
magnet
rotor core
fixed
Prior art date
Application number
PCT/JP2017/017996
Other languages
English (en)
French (fr)
Inventor
基男 北原
大 中村
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201780029537.2A priority Critical patent/CN109075634A/zh
Priority to JP2018522387A priority patent/JP6876692B2/ja
Publication of WO2017212867A1 publication Critical patent/WO2017212867A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a rotating electrical machine in which a permanent magnet is fixed to a rotor core with an interposed member.
  • the stator is composed of a stator core in which a plurality of slots are formed, and a coil wound around a tooth provided between the slots.
  • the rotor is composed of a rotor core in which a plurality of electromagnetic steel sheets are laminated, a permanent magnet with magnetic force, and a shaft that serves as a rotating shaft.
  • a magnet-embedded rotor in which a plurality of permanent magnets are embedded in an iron core having a permanent magnet housing hole is well known.
  • a magnetic field is generated by passing a current through the coil. Based on the generated magnetic field, a flow of magnetic flux is formed between the rotor and the stator, so that the rotor obtains a rotational force.
  • the dimensions of the plurality of permanent magnet housing holes formed in the rotor iron core are set larger than the outer dimensions of the permanent magnet, and the permanent magnet housing hole and the permanent magnet are fixed. This is done through an adhesive filled in the gap between the permanent magnet and the permanent magnet housing hole.
  • a permanent magnet fixing method in which a space between the permanent magnet and the permanent magnet storage hole is filled with mold resin.
  • the member that fixes the permanent magnet and the permanent magnet housing hole is referred to as an interposed member.
  • thermosetting resin or the like having excellent heat resistance is used for the interposing member because the permanent magnet becomes hot during operation of the rotating electric machine.
  • thermosetting resin The step of fixing the permanent magnet to the permanent magnet housing hole of the rotor core with the interposition member such as the thermosetting resin is inserted into the permanent magnet housing hole of the rotor core or the permanent magnet, the thermosetting resin, or the like. After filling, the thermosetting resin or the like is cured and fixed by heating.
  • thermosetting resin The property of the thermosetting resin is that when heated, the viscosity decreases at a predetermined temperature. For this reason, the thermosetting resin having a reduced viscosity flows through the gap between the laminated magnetic steel sheets in the radial direction and flows out of the rotor. As a result, the thermosetting resin that has flowed out of the rotor is cured while attached to the outer shape of the rotor.
  • the rotor whose outer shape has become larger due to the fixing of the thermosetting resin interferes with parts set in the vicinity of the rotor during operation of the rotating electric machine, and the operation is stopped due to breakage.
  • Patent Document 1 an adhesive, which is an interposed member, is directly coated on a permanent magnet in advance (hereinafter referred to as a coating magnet), and the coated magnet is inserted into a permanent magnet housing hole formed in a rotor core, and then a magnet is formed.
  • a coating magnet a permanent magnet in advance
  • a method of fixing a permanent magnet by curing an intervening member coated on is disclosed.
  • Patent Document 2 a coating layer of a resin molded body, which is an interposed member, is formed on the outer periphery of a permanent magnet so as to have a cross-sectional area larger than at least the cross-sectional area of the permanent magnet housing hole, and the magnet is used as a rotor.
  • a method has been proposed in which a permanent magnet and a permanent magnet storage hole are brought into full contact with each other and fixed by being inserted into the permanent magnet storage hole of an iron core while being cut at the opening edge of the permanent magnet storage hole.
  • the permanent magnet and the rotor core housing hole are used to cure the adhesive, which is an interposed member, after the coating magnet is inserted into the permanent magnet housing hole formed in the rotor core. And can be fixed.
  • the adhesive which is an interposed member, is hardened inside the permanent magnet housing hole formed in the rotor core, it passes through the gap between the laminated magnetic steel sheets in the radial direction and flows out of the rotor. there is a possibility. As a result, the outer shape of the rotor becomes larger due to the sticking of the coating, and the rotor interferes with parts set in the vicinity of the rotor during operation of the rotating electrical machine, and the operation is stopped due to breakage.
  • the present invention provides a permanent magnet embedded rotor in which a plurality of permanent magnet housing holes and permanent magnets formed in a rotor core can be fixed by an interposed member, and the interposed member is an outer shape of the rotor core. It is an object of the present invention to provide a rotor structure that can suppress the temperature rise of the permanent magnet by reducing the thermal resistance from the magnet to the rotor core.
  • a rotating electrical machine is a rotating electrical machine including a rotor and a stator, and the rotor includes a rotating shaft, a permanent magnet, and a storage unit that stores the permanent magnet.
  • the rotor core formed, and an interposition member that fixes the permanent magnet to the storage part, and has a fixing surface on the permanent magnet side and a shear surface on the inner surface side of the storage part, and The permanent magnet is in contact with the rotor core on one side where the interposition member is not fixed.
  • the rotating electric machine includes a rotor and a stator, and the rotor includes a rotating shaft, a permanent magnet, a rotor core that forms a storage unit that stores the permanent magnet, and the permanent magnet.
  • An interposition member that is fixed to the storage portion and has a fixing surface on the inner surface side of the storage portion and a shear surface on the permanent magnet side, and the rotor iron core is not fixed to the interposition member. And in contact with the permanent magnet.
  • the interposed member can prevent the rotor core permanent magnet from flowing out to the outside of the rotor core permanent magnet housing hole, and can reduce the thermal resistance from the magnet to the rotor core, thereby increasing the temperature of the permanent magnet. Can be suppressed.
  • FIG. 3 is a perspective view in which an interposition member is fixed to one surface of the permanent magnet according to the first embodiment.
  • FIG. 3 is a top view in which an interposition member is fixed to one surface of the permanent magnet according to the first embodiment.
  • FIG. 1 The top view which fixed the intervention member to the magnet storage hole outer peripheral side of the rotor core of Example 2.
  • FIG. The perspective view which fixed the intervention member to the magnet storage hole inner peripheral side of the rotor core of Example 2.
  • FIG. The figure which shows the procedure which inserts a permanent magnet in the rotor core with an interposed member of Example 2.
  • FIG. 1 is a cross-sectional view of a main part of a rotating electrical machine cut in a radial direction.
  • the rotating electrical machine includes a rotor 1 and a stator 2 provided on the outer periphery thereof.
  • the rotor 1 has a configuration in which a permanent magnet 20 penetrating through a magnet housing hole 11 of the laminated rotor core 10 is fixed by an interposition member 30, and a shaft hole 5 into which a rotating shaft 50 is inserted at the center of the rotor core 10. Is provided.
  • the presser plate which prevents the permanent magnet 20 from scattering to the axial direction edge part of the rotor core 10 for the further reliability improvement. May be provided.
  • the stator 2 is composed of a stator core in which a plurality of slots are formed and a coil wound around a tooth provided between the slots.
  • the stator 2 is disposed outside the rotor.
  • the rotor is an outer rotor, the rotor is disposed inside the rotor.
  • a rotating magnetic field is formed by the magnetic flux generated by passing an electric current through the coil and the magnetic flux generated by the permanent magnet 20 of the rotor 1, generating a rotational force in the rotor 1, and external to the rotating electrical machine via an output shaft attached to the shaft hole 5.
  • the permanent magnet 20 becomes a high temperature due to the eddy current loss generated when the magnetic flux caused by passing a current through the coil is linked to the permanent magnet 20.
  • FIG. 2A is a perspective view of the rotor core 10, and FIG. 2B is a top view thereof.
  • the rotor core 10 is composed of a laminated steel plate formed by stacking steel plates formed with magnet housing holes 11 for housing the permanent magnets 20 formed by stamping the press.
  • the steel plate is composed of an electromagnetic steel plate or an amorphous steel plate. Also good.
  • the dimension of the radial direction of the magnet accommodation hole 11 is set to B.
  • FIG. 3A is a perspective view in which the interposition member 30 is fixed to one surface of the permanent magnet 20, and FIG. 3B is a top view thereof.
  • the magnet 40 with an interposition member is called the magnet 40 with an interposition member.
  • 4 is a perspective view showing a procedure for inserting the interposed member-attached magnet 40 having the interposed member 30 fixed on the inner peripheral side surface thereof into the magnet housing hole 11
  • FIG. 5 is an illustration in which the interposed member 30 is fixed to the outer peripheral side surface.
  • FIG. 6 is a perspective view showing a procedure for inserting the magnet with attachment member 40 into the magnet housing hole 11.
  • the permanent magnet 20 housed in the magnet housing hole 11 is a rare earth permanent magnet, and any kind of magnet such as a neodymium-based or samarium-based sintered magnet or ferrite magnet may be used. Moreover, the presence or absence of the surface treatment of the permanent magnet 20 does not matter. Moreover, since the permanent magnet 20 becomes high temperature at the time of driving
  • the interposing member 30 is applied to the permanent magnet 20 and cured before being inserted into the magnet housing hole 11.
  • the surface on which the intervention member 30 is applied is the inner peripheral side surface of the permanent magnet 20 in FIG. 4, and the inner peripheral side surface of the permanent magnet 20 in FIG. 5.
  • the already formed intervention member 30 may be fixed to any surface of the permanent magnet 20. According to the configuration of FIG. 4, the permanent magnet 20 is in contact with the rotor core 10 on the outer peripheral side, and the heat of the permanent magnet 20 is well transmitted to the outer peripheral surface of the rotor core 10.
  • the permanent magnet 20 By cooling the permanent magnet 20, the permanent magnet 20 can also be efficiently cooled, and the efficiency of the rotating electrical machine can be improved. Further, according to the configuration of FIG. 5, since the interposition member 30 provided on the outer peripheral surface of the permanent magnet 20 that is easily affected by centrifugal force also functions as a protective member, damage to the permanent magnet 20 can be prevented. it can.
  • the hardness of the interposed member 30 must be set lower than the hardness of the rotor core 10.
  • the hardness of the intervention member 30 is preferably durometer hardness HDA 90 or less.
  • the dimension in the thickness direction of the permanent magnet 20 is A.
  • the relationship between these and the dimension B of the magnet housing hole 11 is A ⁇ B ⁇ C It is necessary to satisfy.
  • the interposed member 30 opens the magnet accommodating hole 11.
  • the part edge 12 is cut by a dimension corresponding to CB to form a sheared surface, and the dimension of the magnet 40 with the interposed member is substantially equal to the dimension B of the magnet housing hole 11. Since the rotor core 10 is formed by pressing, burrs are formed in the pressing direction. In addition, since the burr
  • the magnet surface on the side opposite to the interposed member 40 of the magnet 40 with the interposed member comes into contact with the inner surface of the magnet housing hole of the rotor core 10 when the magnet 40 with the interposed member is inserted.
  • the magnet surface is inserted into the magnet housing hole while being in contact with the inner surface of the magnet housing hole of the rotor core 10, an unnecessary amount of the interposition member 30 that is scraped by the opening edge 12 of the magnet housing hole is unnecessary. Only shaved. Therefore, the magnet 40 with the interposed member is fixed to the rotor core 10 as shown in FIG. 4 or FIG.
  • the permanent magnet 20 and the rotor core 10 are in contact with each other on the surface where the interposition member 30 is not fixed, the thermal resistance of the rotor core 10 from the permanent magnet 20 can be reduced, so that the temperature increase of the permanent magnet 20 is suppressed. it can.
  • the rotating electrical machine of the present embodiment it is possible to prevent the interposed member from flowing out of the permanent magnet housing hole and to reduce the thermal resistance from the magnet to the rotor core.
  • the temperature rise of the permanent magnet can be suppressed.
  • FIG. 6 is a perspective view (FIG. 6A) and a top view (FIG. 6B) in which the interposition member 130 is fixed to the outer peripheral side wall surface of the magnet storage hole 111
  • FIG. 7 is an interposition on the inner peripheral side wall surface of the magnet storage hole 111.
  • FIG. 7A which fixed the member 130
  • FIG. 7B a top view
  • the interposition member 130 Before inserting the permanent magnet 20 into the magnet housing hole 111, the interposition member 130 is applied to the side wall of the magnet housing hole 111 and cured.
  • the surface on which the interposition member 130 is applied to the side wall of the magnet storage hole 111 is the inner peripheral side wall surface of the magnet storage hole 111 in FIG. 13 and the outer peripheral side wall surface of the magnet storage hole 111 in FIG.
  • the already formed intervention member 130 may be fixed to any side wall of the magnet housing hole 111. Since the interposed member 130 is scraped off by inserting the permanent magnet 20, the hardness of the interposed member 130 must be set lower than the hardness of the permanent magnet 20. For example, durometer hardness HDA90 or less is preferable.
  • the dimension in the thickness direction of the magnet housing hole 111 is D, with an interposed member.
  • the dimension of the magnet housing hole 110 is E
  • the relationship between these and the dimension A in the thickness direction of the permanent magnet 20 is E ⁇ A ⁇ D It is necessary to satisfy.
  • FIG 8 and 9 are diagrams showing a procedure for inserting the permanent magnet 20 into the magnet housing hole 110 with the interposed member.
  • the interposed member 130 is cut by the permanent magnet edge 21 by a dimension corresponding to AE to form a shear surface.
  • the dimension of the magnet housing hole 110 with the interposed member is substantially equal to the dimension A of the permanent magnet 20.
  • the surface of the surface on which the interposing member of the interposing member-attached magnet storage hole 110 is fixed comes into contact with the permanent magnet 20 when the permanent magnet 20 is inserted.
  • the permanent magnet 20 is inserted into the magnet housing hole 111 while being in contact with the inner wall of the magnet housing hole without the interposition member 130 of the rotor core 10, the magnet housing hole cut by the permanent magnet edge 21. Only an unnecessary amount of the interposed member 130 is removed. Accordingly, the permanent magnet 20 is fixed to the rotor core 10. In addition, since the permanent magnet 20 and the rotor core 10 are in contact with each other on the surface where the interposition member 130 is not fixed, the thermal resistance of the rotor from the permanent magnet 20 can be reduced, so that the temperature rise of the permanent magnet 20 can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

回転子鉄心に形成された永久磁石収納孔と挿入される永久磁石は介装部材により固定され、介装部材は回転子鉄心永久磁石収納孔の外部への流出を防止し、かつ、磁石から回転子鉄心への熱抵抗を小さくすることで、永久磁石の温度上昇を抑制するものである。 回転子と固定子とからなる回転電機であって、前記回転子は、回転軸と、永久磁石と、該永久磁石を収納する収納部を形成した回転子鉄心と、前記永久磁石を前記収納部に固定するとともに、前記永久磁石側の固着面と前記収納部の内面側のせん断面を有する介装部材と、を具備しており、前記永久磁石は前記介装部材を固着しない一面で前記回転子鉄心と接触しているものである。

Description

回転電機
 本発明は、永久磁石を介装部材で回転子鉄心に固定した回転電機に関する。
 回転子と固定子とからなる回転電機において、固定子は、複数のスロットが形成される固定子鉄心と、スロット間に設けられるティースに巻着されたコイルとから構成される。
 回転子は、電磁鋼板が複数積層された回転子鉄心と、磁力を帯びた永久磁石と、回転軸となるシャフトとから構成される。また、前記回転子の種類には永久磁石収納孔を形成された鉄心に複数の永久磁石が埋め込まれる、磁石埋込型回転子はよく知られている。
 そして、前記コイルに電流を通すことにより、磁界が発生する。発生した磁界に基づいて、回転子と固定子との間に磁束の流れが形成されることにより、回転子は回転力を得る。
 前記磁石埋込型回転子においては、回転子鉄心に形成された複数の永久磁石収納孔の寸法は永久磁石の外形寸法よりも大きく設定されており、永久磁石収納孔と永久磁石の固定は、永久磁石と永久磁石収納孔の空隙に充填された接着剤などを介しておこなわれている。また、永久磁石と永久磁石収納穴との固定として接着剤を設けるほかに、永久磁石と永久磁石収納孔の空隙にモールド樹脂を前記空隙に充填した永久磁石固定方法も知られている。以下、永久磁石と永久磁石収納孔を固定する部材を介装部材と示す。
 前記介装部材は、回転電機運転時に永久磁石は高温になることから、耐熱性に優れた熱硬化性樹脂等が用いられることはよく知られている。
 前記熱硬化性樹脂等の介装部材により永久磁石を回転子鉄心の永久磁石収納孔へ固定する工程は、前記永久磁石、前記熱硬化性樹脂等を回転子鉄心の永久磁石収納孔へ挿入または充填した後、前記熱硬化性樹脂等を加熱することで硬化し、固定される。
 前記熱硬化性樹脂の性質は、加熱されると、ある決められた温度で粘度が低下する。そのため、粘度が低下した熱硬化性樹脂は、複数積層された電磁鋼板間のすきまを放射方向に通り、回転子の外部へ流出する。結果、回転子外部に流出した前記熱硬化性樹脂は、回転子外形に付着した状態で硬化される。
 前記熱硬化性樹脂の固着により外形が大きくなった回転子は、回転電機運転時、回転子近傍に設定されている部品と干渉し、破損により運転停止を発生させる。
 特許文献1には、介装部材である接着剤をあらかじめ永久磁石に直接コーティング(以下、コーティング磁石とする)させ、前記コーティング磁石を回転子鉄心に形成された永久磁石収納孔に挿入後、磁石にコーティングされた介装部材を硬化させることで、永久磁石を固定する方法が開示されている。
 一方、特許文献2には、介装部材である樹脂成形体の被膜層を少なくとも永久磁石収納孔の断面積よりも大きな断面積を有するように永久磁石の外周に形成させ、該磁石を回転子鉄心の永久磁石収納孔に挿入時に、永久磁石収納孔の開口エッジで削られながら挿入することで、永久磁石と永久磁石収納孔とを全面接触させ、固定する方法が発案されている。
特開2003-199303号公報 特開2006-174537号公報
 特許文献1の回転子によれば、前記コーティング磁石を、回転子鉄心に形成された永久磁石収納孔への挿入後に介装部材である接着剤を硬化するため、永久磁石と回転子鉄心収納孔とを固定することができる。しかし、介装部材である接着剤は、回転子鉄心に形成された永久磁石収納孔内部で硬化させるため、複数積層された電磁鋼板間のすきまを放射方向に通り、回転子の外部へ流出する可能性がある。結果、回転子外形は、コーティングの固着により大きくなり、前記回転子は、回転電機運転時、回転子近傍に設定されている部品と干渉し、破損により運転停止を発生させてしまう。
 一方、特許文献2の回転子によれば、介装部材付磁石は、回転子鉄心の永久磁石収納孔に挿入時に、永久磁石収納孔の開口エッジで削られながら挿入されるため、介装部材が回転子の外部へ流出する可能性は無い。しかし、永久磁石全面に介装部材である樹脂成形体の被膜層が形成されているため、永久磁石から回転子鉄心への熱抵抗が大きくなり、発熱体である永久磁石は、温度が上昇しやすい構造になってしまう。
 本発明は、永久磁石埋込型回転子において、回転子鉄心に形成された複数の永久磁石収納孔と永久磁石を介装部材により固定することができ、かつ、介装部材が回転子鉄心外形に流出しない、かつ、磁石から回転子鉄心への熱抵抗を小さくすることで、永久磁石の温度上昇を抑制できる回転子の構造を提供することを目的とする。
 上記課題を解決するため、本発明の回転電機は、回転子と固定子とからなる回転電機であって、前記回転子は、回転軸と、永久磁石と、該永久磁石を収納する収納部を形成した回転子鉄心と、前記永久磁石を前記収納部に固定するとともに、前記永久磁石側の固着面と前記収納部の内面側のせん断面を有する介装部材と、を具備しており、前記永久磁石は前記介装部材を固着しない一面で前記回転子鉄心と接触しているものとした。
 また、回転子と固定子とからなる回転電機であって、前記回転子は、回転軸と、永久磁石と、該永久磁石を収納する収納部を形成した回転子鉄心と、前記永久磁石を前記収納部に固定するとともに、前記収納部の内面側の固着面と前記永久磁石側のせん断面を有する介装部材と、を具備しており、前記回転子鉄心は前記介装部材を固着しない一面で前記永久磁石と接触しているものとした。
 本発明によれば、介装部材は回転子鉄心永久磁石収納孔の外部への流出防止を実現でき、かつ、磁石から回転子鉄心への熱抵抗を小さくすることで、永久磁石の温度上昇を抑制できる。
回転子の半径方向断面図。 回転子鉄心の斜視図。 回転子鉄心の上面図。 実施例1の永久磁石の一面に介装部材を固着した斜視図。 実施例1の永久磁石の一面に介装部材を固着した上面図。 実施例1の回転子鉄心へ介装部材付磁石を挿入する手順を示す図。 実施例1の回転子鉄心へ介装部材付磁石を挿入する手順を示す図。 実施例2の回転子鉄心の磁石収納孔外周側に介装部材を固着した斜視図。 実施例2の回転子鉄心の磁石収納孔外周側に介装部材を固着した平面図。 実施例2の回転子鉄心の磁石収納孔内周側に介装部材を固着した斜視図。 実施例2の回転子鉄心の磁石収納孔内周側に介装部材を固着した平面図。 実施例2の介装部材付回転子鉄心へ永久磁石を挿入する手順を示す図。 実施例2の介装部材付回転子鉄心へ永久磁石を挿入する手順を示す図。
 まず、図1と図2A、図2Bを用いて、本発明の回転電機の回転子の概略を説明する。
 図1は、回転電機の要部を半径方向に切断した断面図である。ここに示すように、回転電機は回転子1とその外周に設けられた固定子2とからなっている。回転子1は、積層した回転子鉄心10の磁石収納孔11を貫通する永久磁石20を介装部材30で固定した構成であり、回転子鉄心10の中心に回転軸50を挿入するシャフト孔5が設けてある。また、永久磁石20は介装部材30により回転子鉄心10に固定されているが、更なる信頼性向上のため、回転子鉄心10の軸方向端部に永久磁石20の飛散を防止する押え板を配設しても良い。
 一方、固定子2は、複数のスロットが形成される固定子鉄心と、スロット間に設けられるティースに巻着されたコイルから構成され、回転子がインナーロータの場合、回転子外部に配設され、回転子がアウターロータ場合、回転子内部に配設される。前記コイルに電流を通すことによる磁束と、回転子1の永久磁石20による磁束により回転磁界が形成され、回転子1に回転力を発生させ、シャフト孔5に取り付ける出力軸を介して回転電機外部に動力を伝達する。このとき、前記コイルに電流を通すことによる磁束が、永久磁石20に鎖交することにより発生する渦電流損で永久磁石20は高温となる。
 図2Aは回転子鉄心10の斜視図であり、図2Bはその上面図である。回転子鉄心10はプレスの打ち抜きにより成形した永久磁石20を収納する磁石収納孔11を形成された鋼板を積み重ねた積層鋼板で構成されており、例えば、鋼板は電磁鋼板もしくはアモルファス鋼板で構成してもよい。なお、ここに示すように、磁石収納孔11の半径方向の寸法をBとしている。
 実施例1の回転子について、図3A、図3B、図4、図5を用いて説明する。なお、図3Aは永久磁石20の一面に介装部材30を固着した斜視図であり、図3Bはその上面図である。以下では、永久磁石20に介装部材30が固着したものを、介装部材付磁石40と称する。また、図4は内周側面に介装部材30を固着した介装部材付磁石40を磁石収納孔11に挿入する手順を示す斜視図、図5は外周側面に介装部材30を固着した介装部材付磁石40を磁石収納孔11に挿入する手順を示す斜視図である。
 本実施例において、磁石収納孔11に収納される永久磁石20は、希土類永久磁石であり、ネオジウム系、サマリウム系の焼結磁石やフェライト磁石等の磁石種類は問わない。また、永久磁石20の表面処理の有無は問わない。また、回転電機運転時、永久磁石20が高温になることから、永久磁石20を固定する介装部材30は、耐熱性に優れた材料とする必要がある。したがって、耐熱性温度100度以上の熱硬化性樹脂などの採用が好ましい。
 本実施例では、図3A、図3Bに示すように、磁石収納孔11へ挿入する前に、永久磁石20に介装部材30を塗布し硬化させている。これにより、挿入後に介装部材を硬化させる特許文献1とは異なり、介装部材が回転子1の外部に流出することがない。介装部材30を塗布する面は、図4では永久磁石20の内周側面であり、図5では永久磁石20の内周側面である。また、既に成形された介装部材30を永久磁石20の何れかの面に固着してもよい。図4の構成によれば、永久磁石20が外周側で回転子鉄心10と接触しており、永久磁石20の熱が回転子鉄心10の外周面に良く伝わるため、回転子鉄心10の外周面を冷却することで永久磁石20も効率よく冷却でき、回転電機の効率を向上させることができる。また、図5の構成によれば、遠心力の影響を受けやすい永久磁石20の外周面に設けた介装部材30が保護部材としても機能するので、永久磁石20の破損などを防止することができる。
 なお、介装部材30は磁石収納孔11への挿入時に削り取られるものであるため、介装部材30の硬度は回転子鉄心10の硬度より低く設定されなければならない。例えば、介装部材30の硬度は、デュロメータ硬さHDA90以下が好ましい。
 また、介装部材30によって永久磁石20が磁石収納孔11に固定されるためには、図2A、図2B、図3A、図3Bに示すように、永久磁石20の厚さ方向の寸法をA、介装部材付磁石40の厚さ方向の寸法をCとしたとき、これらと磁石収納孔11の寸法Bとの関係が、
 A<B<C
を満たす必要がある。
 このような寸法に設定した介装部材付磁石40を磁石収納孔11へ挿入する手順を、図4、図5の斜視図を用いて説明する。
 図4または図5の(a)(b)に示すように、前記の寸法通り設定した介装部材付磁石40を磁石収納孔11へ挿入すると、介装部材30は、磁石収納孔11の開口部エッジ12によってC-Bに相当する寸法だけ削られ、せん断面が形成されるとともに、介装部材付磁石40の寸法が磁石収納孔11の寸法Bと略等しくなる。回転子鉄心10は、プレスにより成形されているため、プレス方向にバリが形成される。なお、磁石収納孔11のプレス方向を磁石の挿入方向に対し反対方向に設定することで、磁石収納孔11の開口部エッジ12にバリが形成されるため、介装部材30は削られやすくなる。
 一方、介装部材付磁石40の反介装部材側である磁石面は、介装部材付磁石40の挿入時、回転子鉄心10の磁石収納孔内面と接触する。
 前記の通り、磁石面は回転子鉄心10の磁石収納孔の内面と接触させながら磁石収納孔に挿入されるため、前記磁石収納孔の開口部エッジ12によって削られる介装部材30は不要な量のみ削られる。従って、介装部材付磁石40は、図4または図5の(c)に示すように、回転子鉄心10へ固定される。かつ、介装部材30を固着しない面においては永久磁石20と回転子鉄心10が接触することにより、永久磁石20から回転子鉄心10の熱抵抗を低減できるため、永久磁石20の温度上昇を抑制できる。
 以上で説明したように、本実施例の回転電機によれば、永久磁石収納孔の外部への介装部材の流出を防止でき、かつ、磁石から回転子鉄心への熱抵抗を小さくすることで、永久磁石の温度上昇を抑制することができる。
 実施例2の回転電機について、図6から図9を用いて説明する。実施例1と重複する事項は説明を省略する。なお、図6は磁石収納孔111の外周側壁面に介装部材130を固着した斜視図(図6A)と上面図(図6B)、図7は磁石収納孔111の内周側壁面に介装部材130を固着した斜視図(図7A)と上面図(図7B)である。以下では、磁石収納孔111の側壁に介装部材130が固着したものを、介装部材付磁石収納孔110と称する。
 永久磁石20を磁石収納孔111へ挿入する前に、磁石収納孔111の側壁に介装部材130を塗布し硬化させる。磁石収納孔111の側壁に介装部材130を塗布する面は、図13では磁石収納孔111の内周側壁面であり、図14では磁石収納孔111の外周側壁面である。また、既に成形された介装部材130を磁石収納孔111の何れかの側壁に固着してもよい。なお、介装部材130は永久磁石20の挿入により削り取られるものであるので、介装部材130の硬度は永久磁石20の硬度より低く設定されなければならない。例えば、デュロメータ硬さHDA90以下が好ましい。
 また、介装部材130によって永久磁石20が磁石収納孔111に固定されるためには、図11または図12に示すように、磁石収納孔111の厚さ方向の寸法をD、介装部材付磁石収納孔110の寸法をEとしたとき、これらと永久磁石20の厚さ方向の寸法Aとの関係が、
 E<A<D
 を満たす必要がある。
 図8、図9は、介装部材付磁石収納孔110へ永久磁石20を挿入する手順を示す図である。
 前記の寸法通り設定した介装部材付磁石収納孔110へ永久磁石20を挿入すると、介装部材130は永久磁石エッジ21によってA-Eに相当する寸法だけ削られ、せん断面が形成されるとともに、介装部材付磁石収納孔110の寸法が永久磁石20の寸法Aと略等しくなる。
 一方、介装部材付磁石収納孔110の介装部材が固着されている面の対面は、永久磁石20の挿入時、永久磁石20と接触する。
 前記の通り、永久磁石20は回転子鉄心10の介装部材130が付いていない磁石収納孔の内壁と接触させながら磁石収納孔111に挿入されるため、永久磁石エッジ21によって削られる磁石収納孔の介装部材130は不要な量のみ削られる。従って、永久磁石20は、回転子鉄心10へ固定される。かつ、介装部材130を固着しない面においては永久磁石20と回転子鉄心10が接触することにより、永久磁石20から回転子の熱抵抗を低減できるため、永久磁石20の温度上昇を抑制できる。
1…回転子
2…固定子
5…シャフト孔、
10…回転子鉄心、
11…磁石収納孔
12…開口部エッジ、
20…永久磁石、
21…永久磁石エッジ、
30…介装部材、
40…介装部材付磁石、
50…回転軸
110…介装部材付磁石収納孔、
111…磁石収納孔、
130…介装部材、

Claims (5)

  1.  回転子と固定子とからなる回転電機であって、
     前記回転子は、
     回転軸と、
     永久磁石と、
     該永久磁石を収納する収納部を形成した回転子鉄心と、
     前記永久磁石を前記収納部に固定するとともに、前記永久磁石側の固着面と前記収納部の内面側のせん断面を有する介装部材と、
     を具備しており、
     前記永久磁石は前記介装部材を固着しない一面で前記回転子鉄心と接触していることを特徴とする回転電機。
  2.  回転子と固定子とからなる回転電機であって、
     前記回転子は、
     回転軸と、
     永久磁石と、
     該永久磁石を収納する収納部を形成した回転子鉄心と、
     前記永久磁石を前記収納部に固定するとともに、前記収納部の内面側の固着面と前記永久磁石側のせん断面を有する介装部材と、
     を具備しており、
     前記回転子鉄心は前記介装部材を固着しない一面で前記永久磁石と接触していることを特徴とする回転電機。
  3.  請求項1または2に記載の回転電機において、
     前記介装部材は前記永久磁石の内周側面に配置されていることを特徴とする回転電機。
  4.  請求項1または2に記載の回転電機において、
     前記介装部材は前記永久磁石の外周側面に配置されていることを特徴とする回転電機。
  5.  請求項1または2に記載の回転電機において、
     前記永久磁石と前記回転子鉄心の間の熱抵抗は、
     前記介装部材を設けた面において高く、前記介装部材を設けない面において低いことを特徴とする回転電機。
PCT/JP2017/017996 2016-06-08 2017-05-12 回転電機 WO2017212867A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780029537.2A CN109075634A (zh) 2016-06-08 2017-05-12 旋转电机
JP2018522387A JP6876692B2 (ja) 2016-06-08 2017-05-12 回転電機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-114253 2016-06-08
JP2016114253 2016-06-08

Publications (1)

Publication Number Publication Date
WO2017212867A1 true WO2017212867A1 (ja) 2017-12-14

Family

ID=60578733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017996 WO2017212867A1 (ja) 2016-06-08 2017-05-12 回転電機

Country Status (3)

Country Link
JP (1) JP6876692B2 (ja)
CN (1) CN109075634A (ja)
WO (1) WO2017212867A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107632A1 (ja) * 2020-11-17 2022-05-27 日本発條株式会社 ロータの製造方法及びロータ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002058185A (ja) * 2001-06-22 2002-02-22 Matsushita Electric Ind Co Ltd 永久磁石埋め込み形モータにおける永久磁石の固定方法
JP2003299280A (ja) * 2002-03-29 2003-10-17 Honda Motor Co Ltd 永久磁石回転子
JP2010213516A (ja) * 2009-03-12 2010-09-24 Nissan Motor Co Ltd 永久磁石式回転機及びロータ用永久磁石の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002058185A (ja) * 2001-06-22 2002-02-22 Matsushita Electric Ind Co Ltd 永久磁石埋め込み形モータにおける永久磁石の固定方法
JP2003299280A (ja) * 2002-03-29 2003-10-17 Honda Motor Co Ltd 永久磁石回転子
JP2010213516A (ja) * 2009-03-12 2010-09-24 Nissan Motor Co Ltd 永久磁石式回転機及びロータ用永久磁石の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107632A1 (ja) * 2020-11-17 2022-05-27 日本発條株式会社 ロータの製造方法及びロータ

Also Published As

Publication number Publication date
JP6876692B2 (ja) 2021-05-26
CN109075634A (zh) 2018-12-21
JPWO2017212867A1 (ja) 2018-12-13

Similar Documents

Publication Publication Date Title
US9484790B2 (en) Rotor for electric rotating machine and method of manufacturing the same
CN109638995B (zh) 用于旋转电机的转子及其制造方法
US10199891B2 (en) Rotor having end plates and molding flash
US20170170696A1 (en) Motor
JP2009171785A (ja) 回転電機
JP2012244838A (ja) 回転電機用ロータ、回転電機、および、回転電機用ロータの製造方法
JP2013099222A (ja) ロータおよび回転電機
JP2015053831A (ja) 回転電機のロータ
JP2002359942A (ja) 永久磁石型回転電機のロータ構造
JP2011109774A (ja) 回転電機
JP2019213451A (ja) 結合されたロータ軸
JPWO2014184842A1 (ja) 回転電機の磁石埋込型ロータ
JP2013099221A (ja) ロータおよび回転電機
WO2015049967A1 (ja) 永久磁石埋め込み式回転電機およびその製造方法
WO2017212867A1 (ja) 回転電機
JP2018530303A (ja) 永久磁石型ローター及びその製造方法
JP5659803B2 (ja) 回転電機及び回転電機の製造方法
JP2016042771A (ja) 回転子及びその回転子を具備する電動機
JP2010141960A (ja) 絶縁部材
JP7205171B2 (ja) 回転機のロータ
JP6759893B2 (ja) 回転電機ロータ
JP6350964B2 (ja) ロータコア、そのロータコアを使用したロータおよびロータコアの製造方法
WO2016080191A1 (ja) 磁石埋込型回転電機
JP5648438B2 (ja) ロータコア、回転電機用ロータ、および回転電機用ロータコアの製造方法
JP7103057B2 (ja) ロータコア及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018522387

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810049

Country of ref document: EP

Kind code of ref document: A1