WO2017212677A1 - 共振装置製造方法 - Google Patents

共振装置製造方法 Download PDF

Info

Publication number
WO2017212677A1
WO2017212677A1 PCT/JP2017/002299 JP2017002299W WO2017212677A1 WO 2017212677 A1 WO2017212677 A1 WO 2017212677A1 JP 2017002299 W JP2017002299 W JP 2017002299W WO 2017212677 A1 WO2017212677 A1 WO 2017212677A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
vibrating arm
electrode layer
film
upper lid
Prior art date
Application number
PCT/JP2017/002299
Other languages
English (en)
French (fr)
Inventor
俊吾 盛永
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018522306A priority Critical patent/JP6641676B2/ja
Priority to CN201780029832.8A priority patent/CN109155614B/zh
Publication of WO2017212677A1 publication Critical patent/WO2017212677A1/ja
Priority to US16/192,842 priority patent/US11063568B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/0072Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks
    • H03H3/0076Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks for obtaining desired frequency or temperature coefficients
    • H03H3/0077Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks for obtaining desired frequency or temperature coefficients by tuning of resonance frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1057Mounting in enclosures for microelectro-mechanical devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H9/2468Tuning fork resonators
    • H03H9/2478Single-Ended Tuning Fork resonators
    • H03H9/2489Single-Ended Tuning Fork resonators with more than two fork tines
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/026Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the tuning fork type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/027Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the microelectro-mechanical [MEMS] type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/0492Resonance frequency during the manufacture of a tuning-fork
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H2009/155Constructional features of resonators consisting of piezoelectric or electrostrictive material using MEMS techniques

Definitions

  • the present invention relates to a method for manufacturing a resonance device.
  • a resonance apparatus using a MEMS (Micro Electro Mechanical Systems) technology is used as a timing device, for example.
  • This resonance device is mounted on a printed circuit board incorporated in an electronic device such as a smartphone.
  • the resonance device includes a lower substrate, an upper substrate that forms a cavity between the lower substrate, and a resonator that is disposed in the cavity between the lower substrate and the upper substrate.
  • Patent Document 1 discloses a laser irradiation method capable of transmitting a laser through a silicon material and irradiating a target object while minimizing damage to the silicon material and surrounding components, and A frequency adjustment method for a piezoelectric vibrator using the same is disclosed.
  • piezoelectric vibration is obtained by irradiating and transmitting a pulse laser with a pulse width of 50 to 1000 fs to a silicon material region of an electronic component package and irradiating the transmitted laser to a piezoelectric vibrator. Adjust the resonance frequency of the child.
  • the present invention has been made in view of such circumstances, and an object thereof is to adjust the resonance frequency without impairing the piezoelectricity of the resonator.
  • the method for manufacturing a resonance device includes a step of preparing a lower lid, a substrate is disposed so that a lower surface of the substrate faces the lower lid, and a first electrode layer is formed on the upper surface of the substrate, A step of sequentially forming a piezoelectric film and a second electrode layer; a step of forming a vibrating arm that bends and vibrates from the first electrode layer, the second electrode layer, and the piezoelectric film; and a resonator having the vibrating arm. Placing the upper lid so as to face the lower lid across the resonator, and before or after the step of arranging the upper lid, a voltage is applied between the first electrode layer and the second electrode layer. The method further includes the step of adjusting the frequency of the resonator by applying and exciting the vibrating arm and causing a portion of the vibrating arm to collide with at least one of the lower lid and the upper lid.
  • the resonance frequency can be adjusted without impairing the piezoelectricity of the resonator.
  • FIG. 1 is an exploded perspective view schematically showing a structure of a resonance device according to an embodiment of the present invention. It is a top view of the resonator which concerns on 1st Embodiment of this invention which removed the upper side board
  • FIG. 1 is a perspective view schematically showing the appearance of the resonance device 1 according to the first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view schematically showing the structure of the resonance device 1 according to the first embodiment of the present invention.
  • the resonance device 1 includes a resonator 10 and lids (an upper lid 30 and a lower lid 20) provided so as to face each other with the resonator 10 interposed therebetween. That is, the resonance device 1 is configured by stacking the lower lid 20, the resonator 10, and the upper lid 30 in this order.
  • the resonator 10, the lower lid 20, and the upper lid 30 are joined, whereby the resonator 10 is sealed and a vibration space of the resonator 10 is formed.
  • the resonator 10, the lower lid 20, and the upper lid 30 are each formed using a Si substrate.
  • the resonator 10, the lower lid 20, and the upper lid 30 are joined to each other by bonding the Si substrates together.
  • the resonator 10 and the lower lid 20 may be formed using an SOI substrate.
  • the resonator 10 is a MEMS resonator manufactured using MEMS technology.
  • the resonator 10 is described as an example formed using a silicon substrate.
  • each configuration of the resonance device 1 will be described in detail.
  • the upper lid 30 has a rectangular flat plate-like bottom plate 32 provided along the XY plane, and side walls 33 extending from the peripheral edge of the bottom plate 32 in the Z-axis direction (that is, the stacking direction of the upper lid 30 and the resonator 10).
  • the upper lid 30 is provided with a recess 31 formed by the surface of the bottom plate 32 and the inner surface of the side wall 33 on the surface facing the resonator 10.
  • the recess 31 forms part of a vibration space that is a space in which the resonator 10 vibrates.
  • the lower lid 20 includes a rectangular flat plate-shaped bottom plate 22 provided along the XY plane, and a side wall 23 extending in the Z-axis direction (that is, the stacking direction of the lower lid 20 and the resonator 10) from the peripheral edge of the bottom plate 22.
  • the lower lid 20 is provided with a recess 21 formed by the surface of the bottom plate 22 and the inner surface of the side wall 23 on the surface facing the resonator 10.
  • the recess 21 forms part of the vibration space of the resonator 10.
  • the vibration space is hermetically sealed by the upper lid 30 and the lower lid 20 described above, and a vacuum state is maintained.
  • the vibration space may be filled with a gas such as an inert gas.
  • FIG. 3 is a plan view schematically showing the structure of the resonator 10 according to the present embodiment. Each configuration of the resonator 10 according to the present embodiment will be described with reference to FIG.
  • the resonator 10 includes a vibrating unit 120, a holding unit 140, and a holding arm 110.
  • the vibration unit 120 has a rectangular outline extending along the XY plane in the orthogonal coordinate system of FIG.
  • the vibrating unit 120 is provided inside the holding unit 140, and a space is formed between the vibrating unit 120 and the holding unit 140 at a predetermined interval.
  • the vibrating unit 120 includes a base 130 and four vibrating arms 135A to 135D (collectively referred to as “vibrating arms 135”).
  • the number of vibrating arms is not limited to four, and is set to an arbitrary number of one or more, for example.
  • each vibrating arm 135 and the base 130 are integrally formed.
  • the base portion 130 has long sides 131a and 131b in the X-axis direction and short sides 131c and 131d in the Y-axis direction in plan view.
  • the long side 131a is one side of the front end surface 131A (hereinafter also referred to as “front end 131A”) of the base 130
  • the long side 131b is the rear end surface 131B (hereinafter referred to as “rear end 131B”) of the base 130. It is also called one side.
  • the front end 131A and the rear end 131B are provided to face each other.
  • the base portion 130 is connected to a vibrating arm 135 described later at the front end 131A, and connected to a holding arm 110 described later at the rear end 131B.
  • the base portion 130 has a substantially rectangular shape in plan view in the example of FIG. 3, but is not limited to this, and the base portion 130 is on a virtual plane P defined along the vertical bisector of the long side 131a.
  • the base 130 may be, for example, a trapezoid whose long side 131b is shorter than 131a, or a semicircular shape whose diameter is the long side 131a.
  • the long sides 131a and 131b and the short sides 131c and 131d are not limited to straight lines but may be curved lines.
  • the base length (the length of the short sides 131c and 131d in FIG. 3) which is the longest distance between the front end 131A and the rear end 131B in the direction from the front end 131A to the rear end 131B is about 40 ⁇ m.
  • the base width (the length of the long sides 131a and 131b in FIG. 3), which is the width direction orthogonal to the base length direction and is the longest distance between the side ends of the base 131, is about 300 ⁇ m.
  • the vibrating arms 135 extend in the Y-axis direction and have the same size.
  • Each of the resonating arms 135 is provided between the base portion 130 and the holding portion 140 in parallel with the Y-axis direction, and one end is connected to the front end 131A of the base portion 130 to be a fixed end, and the other end is an open end. It has become.
  • the vibrating arms 135 are provided in parallel at predetermined intervals in the X-axis direction.
  • the vibrating arm 135 has a width in the X-axis direction of about 50 ⁇ m and a length in the Y-axis direction of about 450 ⁇ m.
  • two vibrating arms 135A and 135D are arranged on the outside in the X-axis direction, and two vibrating arms 135B and 135C are arranged on the inside.
  • the interval W1 between the vibrating arms 135B and 135C in the X-axis direction is the outer vibrating arm 135A (135D) and the inner vibrating arm 135B (135C) adjacent to the outer vibrating arm 135A (135D) in the X-axis direction.
  • the interval W1 is, for example, about 25 ⁇ m
  • the interval W2 is, for example, about 10 ⁇ m.
  • the interval W1 may be set smaller than the interval W2 or may be equally spaced so that the resonant device 1 can be miniaturized.
  • a protective film 235 (an example of a first adjustment film) is formed on the surface of the vibration unit 120 (the surface facing the upper lid 30) so as to cover the entire surface. Furthermore, adjustment films 236A to 236D (an example of a second adjustment film, which are examples of the second adjustment film) are respectively formed on the surfaces of the protective film 235 at the distal ends of the vibrating arms 135A to 135D. Also referred to as an adjustment film 236 ".
  • the resonance frequency of the vibration unit 120 can be adjusted by the protective film 235 and the adjustment film 236.
  • the adjustment film 236 is formed such that the surface of the vibration film 120 is exposed in a relatively large region of the vibration portion 120 due to vibration. Specifically, the adjustment film 236 is formed at the tip of the vibrating arm 135 (an example of the second region). On the other hand, the surface of the protective film 235 is exposed in other regions (an example of the first region) in the vibrating arm 135.
  • FIG. 4 is a photograph showing a state of the back side (opposite the lower lid 20) of the tip of the vibrating arm 135 according to the present embodiment.
  • particles 9 having a diameter of about 1 ⁇ m are attached to the back surface of the vibrating arm 135.
  • the particles 9 are obtained by scraping a part of the vibrating arm 135, the upper lid 30, and the lower lid 20 by a frequency adjusting process described later.
  • the corner of the adjustment film 236 has an R shape with a corner cut by the frequency adjustment process.
  • the holding part 140 is formed in a rectangular frame shape along the XY plane.
  • the holding unit 140 is provided so as to surround the outside of the vibrating unit 120 along the XY plane in plan view.
  • maintenance part 140 should just be provided in at least one part of the circumference
  • the holding unit 140 may be provided around the vibrating unit 120 to such an extent that the holding unit 140 holds the vibrating unit 120 and can be joined to the upper lid 30 and the lower lid 20.
  • the holding portion 140 is formed of prismatic frame bodies 140a to 140d that are integrally formed.
  • the frame body 140 a faces the open end of the resonating arm 135 and is provided with a longitudinal direction parallel to the X axis.
  • the frame 140b faces the rear end 131B of the base 130, and the longitudinal direction is provided in parallel with the X axis.
  • the frame body 140c faces the side end (short side 131c) of the base portion 130 and the vibrating arm 135A, the longitudinal direction is provided in parallel to the Y axis, and is connected to one end of each of the frame bodies 140a and 140b at both ends thereof. .
  • the frame body 140d faces the side end (short side 131d) of the base portion 130 and the vibrating arm 135D, and the longitudinal direction is provided parallel to the Y axis, and is connected to the other ends of the frame bodies 140a and 140b at both ends thereof.
  • the holding unit 140 is described as being covered with the protective film 235, but the present invention is not limited to this, and the protective film 235 may not be formed on the surface of the holding unit 140.
  • the holding arm 110 is provided inside the holding part 140 and connects the long side 131b of the base part 130 and the frame body 140b.
  • the holding arm 110 is formed of a plurality of (for example, two) arms having a bent portion, and includes a rear end 131B of the base portion 130 and frame bodies 140c and 140d of the holding portion 140. May be configured to connect.
  • FIG. 5 is a cross-sectional view taken along the line AA ′ of FIG.
  • the holding portion 140 of the resonator 10 is joined on the side wall 23 of the lower lid 20, and the holding portion 140 of the resonator 10 and the side wall 33 of the upper lid 30. And are joined.
  • the resonator 10 is held between the lower lid 20 and the upper lid 30, and the lower lid 20, the upper lid 30, and the holding portion 140 of the resonator 10 form a vibration space in which the vibrating arm 135 vibrates.
  • the bottom plate 22 and the side wall 23 of the lower lid 20 are integrally formed of a Si (silicon) wafer S1.
  • the lower lid 20 is joined to the holding portion 140 of the resonator 10 by the upper surface of the side wall 23.
  • the Si wafer S1 is made of undegenerate silicon, and its resistivity is, for example, 1 k ⁇ ⁇ cm or more.
  • the lower lid 20 has a bottom plate 22 provided at a position where displacement due to vibration of the vibrating arm 135 is maximized.
  • the thickness of the lower lid 20 defined in the Z-axis direction is 150 ⁇ m, for example, and the depth of the recess 21 is 50 ⁇ m, for example.
  • the upper lid 30 is formed of a Si (silicon) wafer S2 having a predetermined thickness. As shown in FIG. 5, the upper lid 30 is joined to the holding portion 140 of the resonator 10 at the peripheral portion (side wall 33). It is preferable that the front surface and the back surface of the upper lid 30 facing the resonator 10 are covered with the silicon oxide layer S2 ′. Further, a getter layer (not shown) made of Ti (titanium) may be formed inside the recess 31 on the surface of the upper lid 30 facing the resonator 10. The getter layer is a layer for absorbing the gas in the vibration space formed by the upper lid 30 and the lower lid 20 by the getter action of titanium and bringing the vibration space into a vacuum state.
  • the top cover 30 is provided at a position where the bottom plate 32 has a maximum displacement due to vibration of the vibrating arm 135.
  • the thickness of the upper lid 30 defined in the Z-axis direction is 150 ⁇ m, for example, and the depth of the recess 31 is 50 ⁇ m, for example.
  • a joining portion H is formed in order to join the upper lid 30 and the holding portion 140.
  • the junction H is formed of a metal film such as an Al (aluminum) film or a Ge (germanium) film.
  • the joint H may be formed of an Au (gold) film and an Sn (tin) film.
  • the holding part 140, the base part 130, the vibrating arm 135, and the holding arm 110 are integrally formed by the same process.
  • a metal layer E1 an example of a first electrode layer
  • a Si (silicon) substrate F2 an example of a substrate.
  • a piezoelectric thin film F3 (which is an example of a piezoelectric film) is laminated on the metal layer E1 so as to cover the metal layer E1, and further, on the piezoelectric thin film F3, the metal layer E2 ( This is an example of the second electrode layer.).
  • a protective film 235 is laminated on the metal layer E2 so as to cover the metal layer E2.
  • an adjustment film 236 is further stacked on the protective film 235.
  • the Si substrate F2 is formed of, for example, a degenerate n-type Si semiconductor having a thickness of about 6 ⁇ m, and can include P (phosphorus), As (arsenic), Sb (antimony), and the like as n-type dopants.
  • the resistance value of degenerate Si used for the Si substrate F2 is, for example, less than 16 m ⁇ ⁇ cm, and more preferably 1.2 m ⁇ ⁇ cm or less.
  • a silicon oxide (for example, SiO 2 ) layer F21 (which is an example of a temperature characteristic correction layer) is formed on the lower surface of the Si substrate F2. This makes it possible to improve temperature characteristics.
  • At least one of the Si substrate F ⁇ b> 2 and the silicon oxide layer F ⁇ b> 21 is formed from a material having a lower hardness than the bottom plate 22 of the lower lid 20.
  • the hardness of the Si substrate F2, the silicon oxide layer F21, and the bottom plate 22 of the lower lid 20 is defined by the Vickers hardness, and the Vickers hardness of the Si substrate F2 and the silicon oxide layer F21 is preferably 10 GPa or less.
  • the Vickers hardness of the bottom plate 22 of the lower lid 20 is preferably 10 GPa or more.
  • the temperature characteristic correction layer refers to the temperature coefficient of the frequency at the vibration part when the temperature correction layer is formed on the Si substrate F2 (that is, the temperature characteristic correction layer is not formed on the Si substrate F2).
  • a rate of change per temperature is a layer having a function of reducing at least near room temperature.
  • the vibration unit 120 includes the temperature characteristic correction layer, for example, the resonance frequency of the laminated structure including the Si substrate F2, the metal layers E1, E2, the piezoelectric thin film F3, and the silicon oxide layer (temperature correction layer) F21 depends on the temperature. Changes can be reduced.
  • the silicon oxide layer F21 is desirably formed with a uniform thickness.
  • uniform thickness means that the dispersion
  • the silicon oxide layer F21 may be formed on the upper surface of the Si substrate F2, or may be formed on both the upper surface and the lower surface of the Si substrate F2. In the holding unit 140, the silicon oxide layer F21 may not be formed on the lower surface of the Si substrate F2.
  • the metal layers E2 and E1 are formed using, for example, Mo (molybdenum) or aluminum (Al) having a thickness of about 0.1 to 0.2 ⁇ m.
  • the metal layers E2 and E1 are formed in a desired shape by etching or the like.
  • the metal layer E1 is formed so as to function as a lower electrode (an example of a first electrode layer) on the vibration unit 120.
  • the metal layer E ⁇ b> 1 is formed on the holding arm 110 and the holding unit 140 so as to function as a wiring for connecting the lower electrode to an AC power source provided outside the resonator 10.
  • the metal layer E2 is formed on the vibrating part 120 so as to function as an upper electrode (an example of the second electrode layer).
  • the metal layer E2 is formed on the holding arm 110 and the holding unit 140 so as to function as a wiring for connecting the upper electrode to a circuit provided outside the resonator 10.
  • an electrode is formed on the outer surface of the upper lid 30 and the electrode connects the circuit and the lower wiring or the upper wiring, or a via is provided in the upper lid 30.
  • a structure may be used in which the via is filled with a conductive material and a wiring is provided, and the wiring connects the AC power supply and the lower wiring or the upper wiring.
  • the piezoelectric thin film F3 is a piezoelectric thin film that converts an applied voltage into vibration, and can be mainly composed of a nitride or oxide such as AlN (aluminum nitride). Specifically, the piezoelectric thin film F3 can be formed of ScAlN (scandium aluminum nitride). ScAlN is obtained by replacing a part of aluminum in aluminum nitride with scandium.
  • the piezoelectric thin film F3 has a thickness of 1 ⁇ m, for example, but it is also possible to use about 0.2 ⁇ m to 2 ⁇ m.
  • the piezoelectric thin film F3 expands and contracts in the in-plane direction of the XY plane, that is, the Y-axis direction, according to the electric field applied to the piezoelectric thin film F3 by the metal layers E2 and E1. Due to the expansion and contraction of the piezoelectric thin film F3, the vibrating arm 135 displaces its free ends toward the inner surfaces of the lower lid 20 and the upper lid 30 and vibrates in an out-of-plane bending vibration mode.
  • the phase of the electric field applied to the outer vibrating arms 135A and 135D and the phase of the electric field applied to the inner vibrating arms 135B and 135C are set to be opposite to each other.
  • the outer vibrating arms 135A and 135D and the inner vibrating arms 135B and 135C are displaced in directions opposite to each other.
  • the inner vibrating arms 135 ⁇ / b> B and 135 ⁇ / b> C displace the free ends toward the inner surface of the lower lid 20.
  • the protective film 235 is formed of a material whose mass reduction rate by etching is slower than that of the adjustment film 236.
  • the protective film 235 is formed of a nitride film such as AlN or SiN, or an oxide film such as Ta 2 O 5 (tantalum pentoxide) or SiO 2 .
  • the mass reduction rate is represented by the product of the etching rate (thickness removed per unit time) and the density.
  • the adjustment film 236 is formed of a material whose mass reduction rate by etching is faster than that of the protective film 235.
  • the adjustment film 236 is formed of a material that is at least equal to or less than the hardness of the bottom plate 32 of the upper lid 30.
  • the Vickers hardness of the adjustment film 236 is preferably 2 GPa or less.
  • the Vickers hardness of the bottom plate 32 is preferably 10 GPa or more.
  • the adjustment film 236 has a hardness equal to or lower than that of the getter layer, for example, 0.9 GPa or lower.
  • the adjustment film 236 is formed of a metal such as molybdenum (Mo), tungsten (W), gold (Au), platinum (Pt), nickel (Ni), or the like.
  • the protective film 235 and the adjustment film 236 may have any etching rate relationship as long as the mass reduction rate relationship is as described above.
  • the adjustment film 236 is formed on substantially the entire surface of the vibration unit 120, the adjustment film 236 is formed only in a predetermined region by processing such as etching.
  • Etching of the protective film 235 and the adjustment film 236 is performed, for example, by simultaneously irradiating the protective film 235 and the adjustment film 236 with an ion beam (for example, an argon (Ar) ion beam).
  • the ion beam can be irradiated over a wider range than the resonator 10.
  • an example is shown in which etching is performed using an ion beam, but the etching method is not limited to that using an ion beam.
  • twisting moments in opposite directions are generated between the central axes r 1 and r 2
  • bending vibration is generated at the base 130.
  • 6A to 6H are diagrams illustrating an example of a process flow of the resonance device 1 according to the present embodiment. 6A to 6H, for the sake of convenience, one of the plurality of resonance devices 1 formed on the wafer will be described and described. However, the resonance device 1 is the same as in a normal MEMS process. After a plurality of wafers are formed on one wafer, the wafer is obtained by dividing the wafer.
  • a silicon oxide layer F21 is formed on the prepared Si substrate F2 by thermal oxidation.
  • the lower lid 20 having the recess 21 is prepared, and the lower lid 20 and the Si substrate F2 on which the silicon oxide layer F21 is formed are arranged so that the lower surface of the Si substrate F2 faces the lower lid 20. Bonding at the side wall 23.
  • a lower electrode or the like is further formed on the surface of the Si substrate F2 by film formation, patterning, etching, or the like of the metal layer E1 used as a material for the lower electrode or wiring.
  • the piezoelectric thin film F3 is laminated on the surface of the metal layer E1, and the upper electrode and the like are formed on the piezoelectric thin film F3 by film formation, patterning, etching, and the like of the upper electrode and wiring material.
  • a protective film 235 is laminated on the surface of the metal layer E2.
  • a metal layer such as molybdenum is laminated on the surface of the protective film 235, and this metal layer is processed by etching or the like, so that the free end of the vibrating arm 135 (see FIG. 6F)
  • An adjustment film 236 is formed in the vicinity of the portion.
  • vias E1V and E2V for connecting the lower electrode and the upper electrode to the external power source are formed in the resonator 10 respectively.
  • the vias E1V and E2V are formed, the vias E1V and E2V are filled with a metal such as aluminum, and the lower electrode and the lead lines C1 and C2 for leading the upper electrode to the holding unit 140 are formed. Further, the joint portion H is formed in the holding portion 140.
  • the protective film 235, the metal layer E2, the piezoelectric thin film F3, the metal layer E1, the Si substrate F2, and the silicon oxide layer F21 are sequentially removed by processing such as etching, thereby vibrating.
  • the part 120 and the holding arm 110 are formed, and the resonator 10 is formed.
  • a trimming process for adjusting the film thickness of the adjustment film 236 is performed. By the trimming process, it is possible to suppress variation in frequency among the plurality of resonance devices 1 manufactured on the same wafer.
  • the resonance frequency of each resonator 10 is measured, and the frequency distribution is calculated.
  • the film thickness of the adjustment film 236 is adjusted based on the calculated frequency distribution.
  • the film thickness of the adjustment film 236 can be adjusted, for example, by irradiating the entire surface of the resonance device 1 with an argon (Ar) ion beam and etching the adjustment film 236. Furthermore, when the film thickness of the adjustment film 236 is adjusted, it is desirable to clean the resonator 10 and remove the scattered film.
  • a step of packaging the resonator 10 is performed. Specifically, in this step, the upper lid 30 and the lower lid 20 are opposed to each other with the resonator 10 interposed therebetween.
  • the aligned upper lid 30 is joined to the lower lid 20 via the joint portion H so that the concave portion 31 in the upper lid 30 and the concave portion 21 in the lower lid 20 coincide.
  • electrodes C1 ′ and C2 ′ connected to the lead lines C1 and C2 are formed on the upper lid 30.
  • the electrodes C1 ′ and C2 ′ are made of a metal layer such as aluminum or germanium.
  • the metal layers E1 and E2 are connected to a circuit provided outside through the electrodes C1 ′ and C2 ′.
  • a frequency adjustment step for further fine adjustment of the resonance frequency is performed.
  • the resonance frequency is measured in a state where a predetermined driving voltage is applied to the resonator 10, and when the resonance frequency is less than a desired value, the resonator 10 is driven by a predetermined driving voltage. A large voltage is applied, and the vibrating arm 135 is overexcited.
  • the power applied to the resonator 10 is, for example, 0.2 ⁇ W or more.
  • overexcitation means to vibrate with an amplitude of 10 times or more the normal amplitude of the resonator 10, and specifically, the amplitude at the time of overexcitation is 50 ⁇ m or more.
  • the desired value of the resonance frequency is, for example, about 32.767 to 32.769 kHz.
  • the adjustment film 236 in the vibrating arm 135 collides with at least one of the bottom plate 32 (or getter layer) of the upper lid 30 and the bottom plate 22 of the lower lid 20. Since the bottom plate 32 (or getter layer) of the upper lid 30 is formed of a material having a hardness equal to or higher than that of the adjustment film 236, the adjustment film 236 is scraped when the adjustment film 236 collides with the bottom plate 32 (or getter layer), The weight of the vibrating arm 135 is reduced.
  • At least one of the Si substrate F ⁇ b> 2 and the silicon oxide layer F ⁇ b> 21 formed on the surface (back surface) on the lower lid 20 side of the vibrating arm 135 has a hardness equal to or less than that of the bottom plate 22. Therefore, the mass of the vibrating arm 135 is reduced by scraping the Si substrate F2 or the silicon oxide layer F21 also on the back surface of the vibrating arm 135. As a result, the resonance frequency of the resonator 10 increases.
  • a predetermined driving voltage is applied to the resonator 10 again to measure the resonance frequency.
  • the resonance frequency is measured by applying a drive voltage having a predetermined value to the resonator 10 and applying a voltage higher than the drive voltage to the resonator 10 to cause the resonator 10 to be overexcited.
  • the value of the resonance frequency can be adjusted to an appropriate value.
  • a part of the vibrating arm 135 can be scraped by overexciting the vibrating arm 135 and causing the vibrating arm 135 to collide with the lower lid 20 and the upper lid 30.
  • the resonance frequency can be adjusted even after packaging.
  • there is no processing process which requires a thermal load or a stress load after the frequency adjustment process it is possible to prevent frequency fluctuations from occurring.
  • adjustment can be performed while measuring the resonance frequency, a desired frequency can be easily obtained.
  • the vibration arm 135 has been described with the configuration including the protective film 235 and the adjustment film 236, but is not limited thereto.
  • the vibrating arm 135 may be configured not to include the adjustment film 236 or both the protective film 235 and the adjustment film 236.
  • the layer (metal layer E2 or protective film 235) exposed on the surface of the vibrating arm 135 is formed of a material having a small hardness equal to or lower than the hardness of the bottom plate 32. Specifically, aluminum or the like can be used as the material of the metal layer E2 in this case. In this case, a resin can be used as a material for the protective film 235.
  • the layers (metal layer E2, protective film 235, etc.) exposed on the surface of the vibrating arm 135 can be scraped off.
  • the configuration in which the bottom plate 22 of the lower lid 20 is a flat plate has been described, but is not limited thereto.
  • the bottom plate 22 of the lower lid 20 may have a protrusion provided at a position where the displacement due to vibration of the vibrating arm 135 is maximized.
  • the frequency adjustment step has been described with respect to the configuration performed after the step of packaging the resonator 10 illustrated in FIG. 6G, but is not limited thereto.
  • the frequency adjustment process may be performed before the packaging process.
  • the frequency adjustment step is preferably performed after the trimming step and before the step of packaging the resonator 10.
  • the vibrating arm 135 may be configured to collide with only one of the lower lid 20 and the upper lid 30 during overexcitation.
  • at least a film formed on the collision side surface in the case of the front side, the adjustment film 236, the protective film 235, the metal layer E2, and in the case of the back side, both the Si substrate F2 and the silicon oxide layer F21
  • the hardness is preferably equal to or less than the collision location (getter layer 32, bottom plate 31, bottom plate 22) of the vibrating arm 135 in the lid on the collision side.
  • the film formed on either the front surface or the back surface of the vibrating arm 135 is on the collision side.
  • the configuration may be such that the hardness is greater than that of the lid, and only one of the surfaces is scraped off in the frequency adjustment step.
  • the step of preparing the lower lid 20 and the Si substrate F2 are arranged so that the lower surface of the Si substrate F2 faces the lower lid 20.
  • a step of forming a metal layer E1, a piezoelectric thin film F3, and a metal E2 in this order on the upper surface, and a vibrating arm 135 that bends and vibrates is formed from the metal layer E1, the metal layer E2, and the piezoelectric thin film F3.
  • a voltage between E1 and the metal layer E2 to excite the vibrating arm 135 and causing a part of the vibrating arm 135 to collide with at least one of the lower lid 20 and the upper lid 30 the frequency of the resonator 10 is increased.
  • Adjust Extent further comprising a.
  • a part of the vibrating arm 135 can be scraped off by causing the vibrating arm 135 to be overexcited and collide with the lower lid 20 and the upper lid 30.
  • the resonance frequency can be adjusted even after packaging. Thereby, since there is no processing process which requires a thermal load or a stress load after the frequency adjustment process, it is possible to prevent frequency fluctuations from occurring. Further, since adjustment can be performed while measuring the resonance frequency, a desired frequency can be easily obtained.
  • the adjusting step is preferably performed after the step of arranging the upper lid 30 and includes causing a part of the vibrating arm 135 to collide with at least one of the lower lid 20 and the upper lid 30.
  • the resonance frequency can be adjusted using the front surface or the back surface of the vibrating arm 135.
  • the region corresponding to the position where the displacement due to the vibration of the vibrating arm 135 is maximized on the surface of the upper lid 30 or the lower lid 20 facing the resonator 10 is made of a material having a hardness higher than that of the vibrating arm 135.
  • the step of forming the resonator 10 includes a step of sequentially forming a protective film 235 and an adjustment film 236 having a larger mass reduction rate by etching than the protective film 235 on the surface of the metal layer E2, and a vibrating arm 135.
  • the adjustment film 236 is removed to expose the protective film 235.
  • the adjusting step includes the step of causing the adjusting film 236 remaining in the second region to strike the upper cover 30 and scraping the vibrating arm 135. Thereby, it is possible to suppress variation in frequency among the plurality of resonance devices 1 manufactured on the same wafer.
  • the resonance frequency of the resonator 10 is measured, and when the resonance frequency reaches a predetermined value, a voltage of a predetermined value or more is applied between the metal layer E1 and the metal layer E2. It is also preferable to include the process of stopping. This facilitates obtaining a desired frequency.
  • each embodiment described above is for facilitating the understanding of the present invention, and is not intended to limit the present invention.
  • the present invention can be changed / improved without departing from the spirit thereof, and the present invention includes equivalents thereof.
  • those obtained by appropriately modifying the design of each embodiment by those skilled in the art are also included in the scope of the present invention as long as they include the features of the present invention.
  • each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate.
  • Each embodiment is an exemplification, and it is needless to say that a partial replacement or combination of configurations shown in different embodiments is possible, and these are also included in the scope of the present invention as long as they include the features of the present invention. .

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

共振子の圧電性を損なわずに共振周波数の調整を行う。 下蓋を用意する工程と、基板を、当該基板の下面が前記下蓋と対向するように配置し、基板の上面に、第1電極層、圧電膜、第2電極層を順に形成する工程と第1電極層、第2電極層、及び圧電膜から、屈曲振動する振動腕を形成し、当該振動腕を有する共振子を形成する工程と、共振子を挟んで、下蓋と対向するように、上蓋を配置する工程と、を含み、上蓋を配置する工程の前又は後において、第1電極層と第2電極層の間に電圧を印加して、振動腕を励振させ、当該振動腕の一部を下蓋及び前記上蓋の少なくとも一方に衝突させることによって、共振子の周波数を調整する工程をさらに含む。

Description

共振装置製造方法
 本発明は、共振装置の製造方法に関する。
 従来、MEMS(Micro Electro Mechanical Systems)技術を用いた共振装置が例えばタイミングデバイスとして用いられている。この共振装置は、スマートフォンなどの電子機器内に組み込まれるプリント基板上に実装される。共振装置は、下側基板と、下側基板との間でキャビティを形成する上側基板と、下側基板及び上側基板の間でキャビティ内に配置された共振子と、を備えている。
 例えば特許文献1には、シリコン材料やその周辺の構成要素に対するダメージを最小限に抑えつつ、シリコン材料にレーザーを透過させてその先の対象物に照射することが可能なレーザーの照射方法、及びそれを用いた圧電振動子の周波数調整方法について開示されている。特許文献1に記載の方法では、パルス幅が50~1000fsのパルスレーザーを電子部品のパッケージのシリコン材料領域に照射して透過させることと、透過したレーザーを圧電振動子に照射することにより圧電振動子の共振周波数を調整する。
国際公開第2011/043357号公報
 特許文献1に記載されているような従来の周波数調整方法では、レーザーを照射した際に共振子が高熱にさらされ圧電性が損なわれてしまう。
 本発明はこのような事情に鑑みてなされたものであり、共振子の圧電性を損なわずに共振周波数の調整を行うことを目的とする。
 本発明の一側面に係る共振装置製造方法は、下蓋を用意する工程と、基板を、当該基板の下面が前記下蓋と対向するように配置し、基板の上面に、第1電極層、圧電膜、第2電極層を順に形成する工程と、第1電極層、第2電極層、及び圧電膜から、屈曲振動する振動腕を形成し、当該振動腕を有する共振子を形成する工程と、共振子を挟んで、下蓋と対向するように、上蓋を配置する工程と、を含み、上蓋を配置する工程の前又は後において、第1電極層と第2電極層の間に電圧を印加して、振動腕を励振させ、当該振動腕の一部を下蓋及び前記上蓋の少なくとも一方に衝突させることによって、共振子の周波数を調整する工程をさらに含む。
 本発明によれば、共振子の圧電性を損なわずに共振周波数の調整を行うができる。
本発明の実施形態に係る共振装置の外観を概略的に示す斜視図である。 本発明の実施形態に係る共振装置の構造を概略的に示す分解斜視図である。 上側基板を取り外した本発明の第1実施形態に係る共振子の平面図である。 本発明の実施形態に係る振動腕の先端の様子を示す写真である。 図1のAA´線に沿った断面図である。 本発明の実施形態に係る共振装置のプロセスフローの一例を示す図である。 本発明の実施形態に係る共振装置のプロセスフローの一例を示す図である。 本発明の実施形態に係る共振装置のプロセスフローの一例を示す図である。 本発明の実施形態に係る共振装置のプロセスフローの一例を示す図である。 本発明の実施形態に係る共振装置のプロセスフローの一例を示す図である。 本発明の実施形態に係る共振装置のプロセスフローの一例を示す図である。 本発明の実施形態に係る共振装置のプロセスフローの一例を示す図である。 本発明の実施形態に係る共振装置のプロセスフローの一例を示す図である。
[実施形態]
 以下、添付の図面を参照して本発明の一つの実施形態について説明する。図1は、本発明の第1実施形態に係る共振装置1の外観を概略的に示す斜視図である。また、図2は、本発明の第1実施形態に係る共振装置1の構造を概略的に示す分解斜視図である。
 この共振装置1は、共振子10と、共振子10を挟んで互いに対向するように設けられた蓋体(上蓋30及び下蓋20)と、を備えている。すなわち、共振装置1は、下蓋20と、共振子10と、上蓋30とがこの順で積層されて構成されている。
 また、共振子10と下蓋20及び上蓋30とが接合され、これにより、共振子10が封止され、共振子10の振動空間が形成される。共振子10、下蓋20及び上蓋30は、それぞれSi基板を用いて形成されている。そして、共振子10、下蓋20及び上蓋30は、Si基板同士が互いに接合されて、互いに接合される。共振子10及び下蓋20は、SOI基板を用いて形成されてもよい。
 共振子10は、MEMS技術を用いて製造されるMEMS共振子である。なお、本実施形態においては、共振子10はシリコン基板を用いて形成されるものを例として説明する。以下、共振装置1の各構成について詳細に説明する。
(1.上蓋30)
 上蓋30はXY平面に沿って設けられる矩形平板状の底板32と、底板32の周縁部からZ軸方向(すなわち、上蓋30と共振子10との積層方向)に延びる側壁33とを有する。上蓋30には、共振子10と対向する面において、底板32の表面と側壁33の内面とによって形成される凹部31が設けられる。凹部31は、共振子10が振動する空間である振動空間の一部を形成する。
(2.下蓋20)
 下蓋20は、XY平面に沿って設けられる矩形平板状の底板22と、底板22の周縁部からZ軸方向(すなわち、下蓋20と共振子10との積層方向)に延びる側壁23とを有する。下蓋20には、共振子10と対向する面において、底板22の表面と側壁23の内面とによって形成される凹部21が設けられる。凹部21は、共振子10の振動空間の一部を形成する。上述した上蓋30と下蓋20とによって、この振動空間は気密に封止され、真空状態が維持される。この振動空間には、例えば不活性ガス等の気体が充填されてもよい。
(3.共振子10)
 図3は、本実施形態に係る、共振子10の構造を概略的に示す平面図である。図3を用いて本実施形態に係る共振子10の、各構成について説明する。共振子10は、振動部120と、保持部140と、保持腕110とを備えている。
(a)振動部120
 振動部120は、図3の直交座標系におけるXY平面に沿って広がる矩形の輪郭を有している。振動部120は、保持部140の内側に設けられており、振動部120と保持部140との間には、所定の間隔で空間が形成されている。図3の例では、振動部120は、基部130と4本の振動腕135A~135D(まとめて「振動腕135」とも呼ぶ。)とを有している。なお、振動腕の数は、4本に限定されず、例えば1本以上の任意の数に設定される。本実施形態において、各振動腕135と、基部130とは、一体に形成されている。
 基部130は、平面視において、X軸方向に長辺131a、131b、Y軸方向に短辺131c、131dを有している。長辺131aは、基部130の前端の面131A(以下、「前端131A」とも呼ぶ。)の一つの辺であり、長辺131bは基部130の後端の面131B(以下、「後端131B」とも呼ぶ。)の一つの辺である。基部130において、前端131Aと後端131Bとは、互いに対向するように設けられている。
 基部130は、前端131Aにおいて、後述する振動腕135に接続され、後端131Bにおいて、後述する保持腕110に接続されている。なお、基部130は、図3の例では平面視において、略長方形の形状を有しているがこれに限定されず、長辺131aの垂直二等分線に沿って規定される仮想平面Pに対して略面対称に形成されていればよい。基部130は、例えば、長辺131bが131aより短い台形や、長辺131aを直径とする半円の形状であってもよい。また、長辺131a、131b、短辺131c、131dは直線に限定されず、曲線であってもよい。
 基部130において、前端131Aから後端131Bに向かう方向における、前端131Aと後端131Bとの最長距離である基部長(図3においては短辺131c、131dの長さ)は40μm程度である。また、基部長方向に直交する幅方向であって、基部131の側端同士の最長距離である基部幅(図3においては長辺131a、131bの長さ)は300μm程度である。
 振動腕135は、Y軸方向に延び、それぞれ同一のサイズを有している。振動腕135は、それぞれが基部130と保持部140との間にY軸方向に平行に設けられ、一端は、基部130の前端131Aと接続されて固定端となっており、他端は開放端となっている。また、振動腕135は、それぞれ、X軸方向に所定の間隔で、並列して設けられている。なお、振動腕135は、例えばX軸方向の幅が50μm程度、Y軸方向の長さが450μm程度である。
 本実施形態の振動部120では、X軸方向において、外側に2本の振動腕135A、135Dが配置されており、内側に2本の振動腕135B、135Cが配置されている。X軸方向における、振動腕135Bと135Cとの間隔W1は、X軸方向における、外側の振動腕135A(135D)と当該外側の振動腕135A(135D)に隣接する内側の振動腕135B(135C)との間の間隔W2よりも大きく設定される。間隔W1は例えば25μ程度、間隔W2は例えば10μm程度である。間隔W2は間隔W1より小さく設定することにより、振動特性が改善される。また、共振装置1を小型化できるように、間隔W1を間隔W2よりも小さく設定してもよいし、等間隔にしても良い。
 振動部120の表面(上蓋30に対向する面)は、全面を覆うように保護膜235(第1調整膜の一例である。)が形成されている。さらに、振動腕135A~135Dの開放端側の先端における保護膜235の表面には、それぞれ、調整膜236A~236D(第2調整膜の一例である。以下、調整膜236A~236Dをまとめて「調整膜236」とも呼ぶ。)が形成されている。保護膜235及び調整膜236によって、振動部120の共振周波数を調整することができる。
 調整膜236は、振動部120における、振動による変位の比較的大きい領域において、その表面が露出するように形成されている。具体的には、調整膜236は、振動腕135の先端(第2領域の一例である。)に形成される。他方、保護膜235は、振動腕135におけるその他の領域(第1領域の一例である。)において、その表面が露出している。
 図4は、本実施形態に係る振動腕135の先端の裏側(下蓋20と対向する)の様子を示す写真である。図3に示すように、振動腕135の裏面には、直径が1μm程度の粒子9が付着している。粒子9は、後述する周波数調整工程によって、振動腕135や上蓋30、下蓋20の一部が削り取られたものである。また、調整膜236の角部は、周波数調整工程によって角が削られR形状となっている。
(b)保持部140
 図3に戻り、共振子10の構成の続きを説明する。
 保持部140は、XY平面に沿って矩形の枠状に形成される。保持部140は、平面視において、XY平面に沿って振動部120の外側を囲むように設けられる。なお、保持部140は、振動部120の周囲の少なくとも一部に設けられていればよく、枠状の形状に限定されない。例えば、保持部140は、振動部120を保持し、また、上蓋30及び下蓋20と接合できる程度に、振動部120の周囲に設けられていればよい。
 本実施形態においては、保持部140は一体形成される角柱形状の枠体140a~140dからなる。枠体140aは、図3に示すように、振動腕135の開放端に対向して、長手方向がX軸に平行に設けられる。枠体140bは、基部130の後端131Bに対向して、長手方向がX軸に平行に設けられる。枠体140cは、基部130の側端(短辺131c)及び振動腕135Aに対向して、長手方向がY軸に平行に設けられ、その両端で枠体140a、140bの一端にそれぞれ接続される。枠体140dは、基部130の側端(短辺131d)及び振動腕135Dに対向して、長手方向がY軸に平行に設けられ、その両端で枠体140a、140bの他端にそれぞれ接続される。
 本実施形態においては、保持部140は、保護膜235で覆われているとして説明するが、これに限定されず、保護膜235は、保持部140の表面には形成されていなくてもよい。
(c)保持腕110
 保持腕110は、保持部140の内側に設けられ、基部130の長辺131bと枠体140bとを接続する。なお、この構成に限定されず、例えば、保持腕110は、屈曲部を有する複数(例えば2本)の腕から形成され、基部130の後端131Bと、保持部140の枠体140c、140dとを接続する構成でもよい。
(4.積層構造)
 図5を用いて共振装置1の積層構造について説明する。図5は、図1のAA´断面図である。図5に示すように、本実施形態に係る共振装置1では、下蓋20の側壁23上に共振子10の保持部140が接合され、さらに共振子10の保持部140と上蓋30の側壁33とが接合される。このように下蓋20と上蓋30との間に共振子10が保持され、下蓋20と上蓋30と共振子10の保持部140とによって、振動腕135が振動する振動空間が形成される。
 下蓋20の底板22及び側壁23は、Si(シリコン)ウエハS1により、一体的に形成されている。また、下蓋20は、側壁23の上面によって、共振子10の保持部140と接合されている。SiウエハS1は、縮退されていないシリコンから形成されており、その抵抗率は例えば1kΩ・cm以上である。
 下蓋20は、その底板22が、振動腕135の振動による変位が最大となる位置に設けられる。本実施形態では、Z軸方向に規定される下蓋20の厚さは例えば150μm、凹部21の深さは例えば50μmである。
 上蓋30は、所定の厚みのSi(シリコン)ウエハS2により形成されている。図5に示すように、上蓋30はその周辺部(側壁33)で共振子10の保持部140と接合されている。上蓋30における、共振子10に対向する表面、及び裏面は、酸化ケイ素層S2´に覆われていることが好ましい。また、凹部31の内部であって、上蓋30における共振子10に対向する表面には、Ti(チタン)から成るゲッター層(不図示)が形成される構成でもよい。ゲッター層は、チタンのゲッター作用により、上蓋30と下蓋20とによって形成される振動空間内のガスを吸収し、当該振動空間を真空状態にするための層である。
 上蓋30は、その底板32が、振動腕135の振動による変位が最大となる位置に設けられる。本実施形態では、Z軸方向に規定される上蓋30の厚さは例えば150μm、凹部31の深さは例えば50μmである。
 上蓋30の側壁33と保持部140との間には、上蓋30と保持部140とを接合するために、接合部Hが形成されている。接合部Hは、例えばAl(アルミニウム)膜やGe(ゲルマニウム)膜などの金属膜によって形成されている。なお、接合部Hは、Au(金)膜及びSn(錫)膜によって形成されてもよい。
 共振子10では、保持部140、基部130、振動腕135、保持腕110は、同一プロセスで一体的に形成される。共振子10では、まず、Si(シリコン)基板F2(基板の一例である。)の上に、金属層E1(第1電極層の一例である。)が積層されている。そして、金属層E1の上には、金属層E1を覆うように、圧電薄膜F3(圧電膜の一例である。)が積層されており、さらに、圧電薄膜F3の上には、金属層E2(第2電極層の一例である。)が積層されている。金属層E2の上には、金属層E2を覆うように、保護膜235が積層されている。振動部120上においては、さらに、保護膜235上に、調整膜236が積層されている。
 Si基板F2は、例えば、厚さ6μm程度の縮退したn型Si半導体から形成されており、n型ドーパントとしてP(リン)やAs(ヒ素)、Sb(アンチモン)などを含むことができる。Si基板F2に用いられる縮退Siの抵抗値は、例えば16mΩ・cm未満であり、より好ましくは1.2mΩ・cm以下である。さらにSi基板F2の下面には酸化ケイ素(例えばSiO2)層F21(温度特性補正層の一例である。)が形成されている。これにより、温度特性を向上させることが可能になる。また、Si基板F2、又は酸化ケイ素層F21の少なくともいずれか一方は、下蓋20の底板22より硬度の低い材料から形成されている。本明細書において、Si基板F2、酸化ケイ素層F21、下蓋20の底板22の硬度は、ビッカース硬度により規定され、Si基板F2、酸化ケイ素層F21のビッカース硬度は、10GPa以下であることが好ましい。他方で、下蓋20の底板22のビッカース硬度は、10GPa以上であることが好ましい。
 本実施形態において、温度特性補正層とは、当該温度特性補正層をSi基板F2に形成しない場合と比べて、Si基板F2に温度補正層を形成した時の振動部における周波数の温度係数(すなわち、温度当たりの変化率)を、少なくとも常温近傍において低減する機能を持つ層をいう。振動部120が温度特性補正層を有することにより、例えば、Si基板F2と金属層E1、E2と圧電薄膜F3及び酸化ケイ素層(温度補正層)F21による積層構造体の共振周波数の、温度に伴う変化を低減することができる。
 共振子10においては、酸化ケイ素層F21は、均一の厚みで形成されることが望ましい。なお、均一の厚みとは、酸化ケイ素層F21の厚みのばらつきが、厚みの平均値から±20%以内であることをいう。
 なお、酸化ケイ素層F21は、Si基板F2の上面に形成されてもよいし、Si基板F2の上面と下面の双方に形成されてもよい。また、保持部140においては、Si基板F2の下面に酸化ケイ素層F21が形成されなくてもよい。
 金属層E2、E1は、例えば厚さ0.1~0.2μm程度のMo(モリブデン)やアルミニウム(Al)等を用いて形成される。金属層E2、E1は、エッチング等により、所望の形状に形成される。金属層E1は、例えば振動部120上においては、下部電極(第1電極層の一例である。)として機能するように形成される。また、金属層E1は、保持腕110や保持部140上においては、共振子10の外部に設けられた交流電源に下部電極を接続するための配線として機能するように形成される。
 他方で、金属層E2は、振動部120上においては、上部電極(第2電極層の一例である。)として機能するように形成される。また、金属層E2は、保持腕110や保持部140上においては、共振子10の外部に設けられた回路に上部電極を接続するための配線として機能するように形成される。
 なお、交流電源から下部配線または上部配線への接続にあたっては、上蓋30の外面に電極を形成して、当該電極が回路と下部配線または上部配線とを接続する構成や、上蓋30内にビアを形成し、当該ビアの内部に導電性材料を充填して配線を設け、当該配線が交流電源と下部配線または上部配線とを接続する構成が用いられてもよい。
 圧電薄膜F3は、印加された電圧を振動に変換する圧電体の薄膜であり、例えば、AlN(窒化アルミニウム)等の窒化物や酸化物を主成分とすることができる。具体的には、圧電薄膜F3は、ScAlN(窒化スカンジウムアルミニウム)により形成することができる。ScAlNは、窒化アルミニウムにおけるアルミニウムの一部をスカンジウムに置換したものである。また、圧電薄膜F3は、例えば、1μmの厚さを有するが、0.2μmから2μm程度を用いることも可能である。
 圧電薄膜F3は、金属層E2、E1によって圧電薄膜F3に印加される電界に応じて、XY平面の面内方向すなわちY軸方向に伸縮する。この圧電薄膜F3の伸縮によって、振動腕135は、下蓋20及び上蓋30の内面に向かってその自由端を変位させ、面外の屈曲振動モードで振動する。
 本実施形態では、外側の振動腕135A、135Dに印加される電界の位相と、内側の振動腕135B、135Cに印加される電界の位相とが互いに逆位相になるように設定される。これにより、外側の振動腕135A、135Dと内側の振動腕135B、135Cとが互いに逆方向に変位する。例えば、外側の振動腕135A、135Dが上蓋30の内面に向かって自由端を変位すると、内側の振動腕135B、135Cは下蓋20の内面に向かって自由端を変位する。
 保護膜235は、エッチングによる質量低減の速度が調整膜236より遅い材料により形成される。例えば、保護膜235は、AlNやSiN等の窒化膜やTa25(5酸化タンタル)やSiO2等の酸化膜により形成される。なお、質量低減速度は、エッチング速度(単位時間あたりに除去される厚み)と密度との積により表される。
 調整膜236は、エッチングによる質量低減の速度が保護膜235より速い材料により形成される。また、調整膜236は、少なくとも上蓋30の底板32の硬度以下の材料から形成されている。調整膜236のビッカース硬度は、2GPa以下であることが好ましい。他方で、底板32のビッカース硬度は、10GPa以上であることが好ましい。なお、上蓋30がゲッター層を備える場合には、調整膜236は、ゲッター層以下の硬度であ
り、例えば0.9GPa以下である。
 例えば、調整膜236は、モリブデン(Mo)やタングステン(W)や金(Au)、白金(Pt)、ニッケル(Ni)等の金属により形成される。
 なお、保護膜235と調整膜236とは、質量低減速度の関係が上述のとおりであれば、エッチング速度の大小関係は任意である。
 調整膜236は、振動部120の略全面に形成された後、エッチング等の加工により所定の領域のみに形成される。
 保護膜235及び調整膜236に対するエッチングは、例えば、保護膜235及び調整膜236に同時にイオンビーム(例えば、アルゴン(Ar)イオンビーム)を照射することによって行われる。イオンビームは共振子10よりも広い範囲に照射することが可能である。なお、本実施形態では、イオンビームによりエッチングを行う例を示すが、エッチング方法は、イオンビームによるものに限られない。
 以上のような共振装置1では、逆位相の振動時、すなわち、図5に示す振動腕135Aと振動腕135Bとの間でY軸に平行に延びる中心軸r1回りに振動腕135Aと振動腕135Bとが上下逆方向に振動する。また、振動腕135Cと振動腕135Dとの間でY軸に平行に延びる中心軸r2回りに振動腕135Cと振動腕135Dとが上下逆方向に振動する。これによって、中心軸r1とr2とで互いに逆方向の捩れモーメントが生じ、基部130で屈曲振動が発生する。
(5.プロセスフロー)
 図6A~図6Hを用いて本実施形態に係る共振装置1の製造方法について説明する。
 本実施形態に係る共振子10の製造方法においては、後述する周波数調整工程において、振動腕135を過励振させて、上蓋30または下蓋20に衝突させることにより、振動腕135の一部(例えば圧電薄膜F3、調整膜236、又はSi基板F2等)が削られ、振動腕135の重量が変化する。これによって、共振子10の共振周波数を上昇させることで、共振周波数を所望の値に調整して、共振装置1を製造する。
 図6A~図6Hは、本実施形態に係る共振装置1のプロセスフローの一例を示す図である。なお、図6A~図6Hでは、便宜上、ウエハに形成される複数の共振装置1のうち、1つの共振装置1を示して説明するが、共振装置1は、通常のMEMSプロセスと同様に、1つのウエハに複数形成された後に、当該ウエハが分割されることによって得られる。
 図6Aに示す最初の工程では、用意したSi基板F2に、熱酸化によって、酸化ケイ素層F21を形成する。次に、凹部21を有する下蓋20を用意し、当該下蓋20と、酸化ケイ素層F21が形成されたSi基板F2とを、Si基板F2の下面が下蓋20と対向するように配置し、側壁23で接合する。なお、図6Aにおいては図示を省略するが、接合後に化学的機械研磨や、エッチバック等の処理によって、Si基板F2の表面を平坦化することが望ましい。
 次に図6Bに示す工程において、さらにSi基板F2の表面には、下部電極や配線の材料となる金属層E1の成膜、パターニング及びエッチング等によって下部電極等が形成される。次に、金属層E1の表面に、圧電薄膜F3が積層され、さらに圧電薄膜F3上に上部電極や配線の材料となる金属層E2の成膜、パターニング及びエッチング等によって上部電極等が形成される。
 次に図6Cに示す工程において、金属層E2の表面に、保護膜235が積層される。
 次に図6Dに示す工程において、保護膜235の表面に、モリブデン等の金属層が積層され、この金属層がエッチング等によって加工されることにより、振動腕135(図6F参照)の自由端となる部分の近傍に調整膜236が形成される。
 次に、図6Eに示す工程において、共振子10に、下部電極及び上部電極をそれぞれ外部電源と接続させるためのビアE1V、E2Vが形成される。ビアE1V、E2Vが形成されると、ビアE1V、E2Vにアルミニウム等の金属が充填され、下部電極、及び上部電極を保持部140に引き出す引出線C1、C2が形成される。さらに、保持部140に接合部Hが形成される。
 次に、図6Fに示す工程において、エッチング等の加工によって、保護膜235、金属層E2、圧電薄膜F3、金属層E1、Si基板F2、及び酸化ケイ素層F21が順に除去されることによって、振動部120、保持腕110、が形成され、共振子10が形成される。
 図6Fに示す工程において共振子10が形成された後、調整膜236の膜厚を調整するトリミング工程が行われる。トリミング工程によって、同一ウエハにおいて製造される複数の共振装置1の間で、周波数のばらつきを抑えることができる。
 トリミング工程では、まず各共振子10の共振周波数を測定し、周波数分布を算出する。次に、算出した周波数分布に基づき、調整膜236の膜厚を調整する。調整膜236の膜厚の調整は、例えばアルゴン(Ar)イオンビームを共振装置1の全面に対して照射して、調整膜236をエッチングすることによって行うことができる。さらに、調整膜236の膜厚が調整されると、共振子10の洗浄を行い、飛び散った膜を除去することが望ましい。
 次に、図6Gに示す工程において、共振子10をパッケージする工程が行われる。具体的には、この工程では、共振子10を挟んで上蓋30と下蓋20とを対向させる。上蓋30における凹部31と、下蓋20における凹部21とが一致するように、位置合わせされた上蓋30が、接合部Hを介して下蓋20に接合される。また、上蓋30には引出線C1、C2と接続する電極C1´、C2´が形成されている。電極C1´、C2´は例えばアルミニウムやゲルマニウム等の金属層から成る。電極C1´、C2´を介して、金属層E1、E2は外部に設けられた回路へ接続される。下蓋20と上蓋30とが接合されると、ダイシングによって、複数の共振装置1が形成される。
 次に、図6Hに示す工程において、共振周波数をさらに微調整する周波数調整工程が行われる。周波数調整工程においては、まず共振子10に所定値の駆動電圧を印加した状態で共振周波数を測定し、共振周波数が所望の値に満たない場合には、共振子10に所定値の駆動電圧よりも大きい電圧を印加させ、振動腕135を過励振させる。周波数調整工程において、共振子10に与える電力は、例えば0.2μW以上である。なお、過励振とは、共振子10の通常の振幅の10倍以上の振幅で振動させることをいい、具体的には過励振時の振幅は50μm以上である。また、共振周波数の所望の値は、例えば32.767~32.769kHz程度である。
 振動腕135を過励振させることで、振動腕135における調整膜236が上蓋30の底板32(またはゲッター層)、及び下蓋20の底板22の少なくとも一方に衝突させる。上蓋30の底板32(またはゲッター層)は調整膜236以上の硬度を有する材料で形成されているため、調整膜236が底板32(またはゲッター層)に衝突することで調整膜236が削られ、振動腕135の重量が減少する。同様に、振動腕135の下蓋20側の面(裏面)に形成されるSi基板F2及び酸化ケイ素層F21の少なくともいずれか一方は、底板22と同程度以下の硬度を有している。従って、振動腕135の裏面においても、Si基板F2又は酸化ケイ素層F21が削り取られることによって、振動腕135の質量が減少する。これによって、共振子10の共振周波数が上昇する。
 共振子10を過励振させて上蓋30及び下蓋20の少なくとも一方に衝突させた後に、再度、所定の値の駆動電圧を共振子10に印加して、共振周波数の測定を行う。所定の値の駆動電圧を共振子10に印加して行う共振周波数の測定と、当該駆動電圧よりも大きい電圧を共振子10に印加して共振子10を過励振させることとを、共振周波数が所望の値に到達するまで繰り返し行うことで、共振周波数の値を適切な値に調整をすることができる。
 このように本実施形態に係る共振装置製造方法では、振動腕135を過励振させて下蓋20、及び上蓋30に衝突させることで、振動腕135の一部を削り取ることができる。これによって、パッケージした後であっても共振周波数を調整することができる。これにより、周波数調整工程以降に熱負荷や応力負荷がかかる加工工程がないため、周波数変動が起こることを防ぐことができる。また、共振周波数を測定しながら調整を行えるため、所望の周波数を得やすくなる。
[その他の実施形態]
 以上、本発明の実施形態について述べたが、本発明は既述の実施形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。
 例えば、既述の実施形態において、振動腕135は保護膜235及び調整膜236を備える構成について説明したが、これに限定されない。例えば、振動腕135は、調整膜236、又は保護膜235と調整膜236との両方を備えない構成でもよい。この場合、振動腕135の表面に露出する層(金属層E2、又は保護膜235)は、底板32の硬度以下の硬度の小さい材料で形成される。具体的には、この場合の金属層E2の材料として、アルミニウム等を用いることができる。また、この場合の保護膜235の材料として、樹脂を用いることができる。これによって、上述の周波数調整工程において、振動腕135の表面に露出する層(金属層E2、保護膜235等)が削り取ることができる。
 さらに、既述の実施形態において、下蓋20の底板22は、平板である構成について説明したがこれに限定されない。例えば、下蓋20の底板22において、振動腕135の振動による変位が最大となる位置に、突起を備える構成でもよい。
 また、既述の実施形態において、周波数調整工程は、図6Gに示した共振子10をパッケージする工程の後に行う構成について説明したが、これに限定されない。例えば、周波数調整工程は、パッケージする工程の前に実施されてもよい。この場合、周波数調整工程は、トリミング工程あと、かつ、共振子10をパッケージする工程の前に行われることが好ましい。
 さらに既述の実施形態において、振動腕135の表面及び裏面の両方が、周波数調整工程で削り取られる構成について説明したが、これに限定されない。例えば、振動腕135は、過励振時において、下蓋20又は上蓋30のいずれか一方としか衝突しない構成でもよい。この場合、少なくとも衝突する側の面に形成された膜(表面側の場合は、調整膜236、保護膜235、金属層E2、裏面側の場合は、Si基板F2、酸化ケイ素層F21の両方)は、衝突する側の蓋における振動腕135の衝突箇所(ゲッター層32、底板31、底板22)以下の硬度であることが好ましい。また、振動腕135が過励振時において、下蓋20及び上蓋30の両方と衝突する場合であっても、振動腕135の表面又は裏面のいずれか一方に形成された膜が、衝突する側の蓋よりも硬度が大きい構成であり、いずれか一方の面しか周波数調整工程において削り取られない構成でもよい。
 以上、本発明の例示的な実施形態について説明した。本発明の一実施形態に係る共振装置製造方法は、下蓋20を用意する工程と、Si基板F2を、当該Si基板F2の下面が下蓋20と対向するように配置し、Si基板F2の上面に、金属層E1、圧電薄膜F3、金属E2を順に形成する工程と、金属層E1、金属層E2、及び圧電薄膜F3から、屈曲振動する振動腕135を形成し、当該振動腕135を有する共振子10を形成する工程と、共振子10を挟んで、下蓋20と対向するように、上蓋30を配置する工程と、を含み、上蓋30を配置する工程の前又は後において、金属層E1と金属層E2の間に電圧を印加して、振動腕135を励振させ、当該振動腕135の一部を少なくとも下蓋20及び上蓋30の少なくとも一方に衝突させることによって、共振子10の周波数を調整する工程をさらに含む。本実施形態に係る共振装置製造方法では、振動腕135を過励振させて下蓋20、及び上蓋30に衝突させることで、振動腕135の一部を削り取ることができる。これによって、パッケージした後であっても共振周波数を調整することができる。これにより、周波数調整工程以降に熱負荷や応力負荷がかかる加工工程がないため、周波数変動が起こることを防ぐことができる。また、共振周波数を測定しながら調整を行えるため、所望の周波数を得やすくなる。
 また、調整する工程は、上蓋30を配置する工程の後に行い、振動腕135の一部を下蓋20及び上蓋30の少なくとも一方に衝突させることを含むことも好ましい。この場合、振動腕135の表面又は裏面を用いて、共振周波数の調整を行うことができる。
 また上蓋30又は下蓋20の共振子10に対向する面のうち、振動腕135の振動による変位が最大となる位置に対応する領域は、振動腕135の硬度以上の材料からなることが好ましい。
 また、共振子10を形成する工程は、金属層E2の表面に、さらに、保護膜235、及び当該保護膜235よりエッチングによる質量低減速度の大きい調整膜236を順に形成する工程と、振動腕135における第1領域において、調整膜236を除去して保護膜235を露出させ、振動腕135における第1領域以外の領域であって、当該第1領域よりも振動による変位が大きい第2領域において、調整膜236を残存させる工程と、を含み、調整する工程は、振動腕135において、第2領域に残された調整膜236を、上蓋30に衝突させて削る工程を含むことも好ましい。これによって、同一ウエハにおいて製造される複数の共振装置1の間で、周波数のばらつきを抑えることができる。
 また、調整する工程は、共振子10の共振周波数を測定し、共振周波数が所定の値に到達した場合に、金属層E1と金属層E2の間に所定の値以上の電圧を印加することを停止する工程を含むことも好ましい。これによって、所望の周波数を得やすくなる。
 以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもなく、これらも本発明の特徴を含む限り本発明の範囲に包含される。
 1            共振装置
 10           共振子
 30           上蓋
 20           下蓋
 140          保持部
 140a~d       枠体
 110          保持腕
 120          振動部
 130          基部
 135A~D       振動腕
 F2           Si基板
 F21          酸化ケイ素層(温度特性補正層)
 235          保護膜
 236          調整膜

Claims (5)

  1.  下蓋を用意する工程と、
     基板を、当該基板の下面が前記下蓋と対向するように配置し、前記基板の上面に、第1電極層、圧電膜、第2電極層を順に形成する工程と、
     前記第1電極層、前記第2電極層、及び前記圧電膜から、屈曲振動する振動腕を形成し、当該振動腕を有する共振子を形成する工程と、
     前記共振子を挟んで、前記下蓋と対向するように、上蓋を配置する工程と、
    を含み、
     前記上蓋を配置する工程の前又は後において、前記第1電極層と前記第2電極層の間に電圧を印加して、前記振動腕を励振させ、当該振動腕の一部を前記下蓋及び前記上蓋の少なくとも一方に衝突させることによって、前記共振子の周波数を調整する工程をさらに含む、
    共振装置製造方法。
  2.  前記調整する工程は、前記上蓋を配置する工程の後に行い、前記振動腕の一部を前記下蓋及び前記上蓋の少なくとも一方に衝突させることを含む、
    請求項1に記載の共振装置製造方法。
  3.  前記上蓋又は前記下蓋の前記共振子に対向する面のうち、前記振動腕の振動による変位が最大となる位置に対応する領域は、前記振動腕の硬度以上の材料からなる、
    請求項2に記載の共振装置製造方法。
  4.  前記共振子を形成する工程は、
     前記第2電極層の表面に、さらに、第1調整膜、及び当該第1調整膜よりエッチングによる質量低減速度の大きい第2調整膜を順に形成する工程と、
     前記振動腕における第1領域において、前記第2調整膜を除去して第1調整膜を露出させ、前記振動腕における第1領域以外の領域であって、当該第1領域よりも振動による変位が大きい第2領域において、前記第2調整膜を残存させる工程と、
    を含み、
     前記調整する工程は、
     前記振動腕において、前記第2領域に残された前記第2調整膜を、前記上蓋に衝突させて削る工程を含む、
    請求項2又は3に記載の共振装置製造方法。
  5.  前記調整する工程は、
     前記共振子の周波数を測定し、当該周波数が所定の値に到達した場合に、前記第1電極層と前記第2電極層の間に所定の値以上の電圧を印加することを停止する工程を含む、
    請求項1乃至4の何れか一項に記載の共振装置製造方法。
PCT/JP2017/002299 2016-06-08 2017-01-24 共振装置製造方法 WO2017212677A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018522306A JP6641676B2 (ja) 2016-06-08 2017-01-24 共振装置製造方法
CN201780029832.8A CN109155614B (zh) 2016-06-08 2017-01-24 谐振装置制造方法
US16/192,842 US11063568B2 (en) 2016-06-08 2018-11-16 Resonance device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-114662 2016-06-08
JP2016114662 2016-06-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/192,842 Continuation US11063568B2 (en) 2016-06-08 2018-11-16 Resonance device manufacturing method

Publications (1)

Publication Number Publication Date
WO2017212677A1 true WO2017212677A1 (ja) 2017-12-14

Family

ID=60578444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002299 WO2017212677A1 (ja) 2016-06-08 2017-01-24 共振装置製造方法

Country Status (4)

Country Link
US (1) US11063568B2 (ja)
JP (1) JP6641676B2 (ja)
CN (1) CN109155614B (ja)
WO (1) WO2017212677A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124127A1 (ja) * 2017-12-22 2019-06-27 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
CN110719082A (zh) * 2018-07-13 2020-01-21 三星电机株式会社 声波谐振器封装件
WO2020039627A1 (ja) * 2018-08-22 2020-02-27 株式会社村田製作所 共振装置
WO2020044634A1 (ja) * 2018-08-29 2020-03-05 株式会社村田製作所 共振装置
WO2020085188A1 (ja) * 2018-10-24 2020-04-30 株式会社村田製作所 共振装置
WO2020194810A1 (ja) * 2019-03-26 2020-10-01 株式会社村田製作所 共振装置及び共振装置製造方法
WO2021117272A1 (ja) * 2019-12-09 2021-06-17 株式会社村田製作所 共振装置及びその製造方法
CN113491069B (zh) * 2019-03-26 2024-05-28 株式会社村田制作所 谐振装置和谐振装置制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6870779B2 (ja) * 2018-02-14 2021-05-12 株式会社村田製作所 共振装置及び共振装置製造方法
WO2020213210A1 (ja) * 2019-04-19 2020-10-22 株式会社村田製作所 共振子及び共振装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012070419A (ja) * 2000-03-15 2012-04-05 Seiko Epson Corp 振動子
JP2013126104A (ja) * 2011-12-14 2013-06-24 Seiko Epson Corp 振動片の製造方法、振動片、振動子、発振器及び電子機器
JP2014175809A (ja) * 2013-03-07 2014-09-22 Seiko Epson Corp 振動子、発振器、電子機器および移動体
JP2015167305A (ja) * 2014-03-04 2015-09-24 日本電波工業株式会社 圧電デバイス

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204774A (ja) * 1992-12-28 1994-07-22 Nippon Dempa Kogyo Co Ltd 圧電共振子の除塵装置
JP4547788B2 (ja) 2000-03-15 2010-09-22 セイコーエプソン株式会社 圧電振動子のパッケージ構造
JP2002319838A (ja) * 2001-02-19 2002-10-31 Seiko Epson Corp 圧電デバイス及びそのパッケージ
JP4852850B2 (ja) * 2005-02-03 2012-01-11 セイコーエプソン株式会社 圧電振動素子、圧電振動子、圧電発振器、周波数安定化方法、及び圧電振動子の製造方法
JP4414987B2 (ja) * 2006-07-27 2010-02-17 日本電波工業株式会社 圧電振動子の製造方法、圧電振動子及び電子部品
JP5100408B2 (ja) * 2007-01-30 2012-12-19 日本電波工業株式会社 音叉型圧電振動子
WO2011043357A1 (ja) 2009-10-07 2011-04-14 シチズンファインテックミヨタ株式会社 レーザーの照射方法、及びそれを用いた圧電振動子の周波数調整方法、並びにそれを用いて周波数調整された圧電デバイス
JP2011259120A (ja) * 2010-06-08 2011-12-22 Seiko Epson Corp 振動片、周波数調整方法、振動子、振動デバイス、および電子機器
JP2012065304A (ja) * 2010-08-16 2012-03-29 Seiko Epson Corp 圧電振動デバイス及びその製造方法、共振周波数の調整方法
JP2012217148A (ja) * 2011-03-30 2012-11-08 Nippon Dempa Kogyo Co Ltd 圧電デバイス
JP6240531B2 (ja) * 2014-02-24 2017-11-29 シチズンファインデバイス株式会社 圧電振動子の製造方法
WO2017090380A1 (ja) * 2015-11-24 2017-06-01 株式会社村田製作所 共振装置及びその製造方法
JP6742601B2 (ja) * 2016-06-01 2020-08-19 株式会社村田製作所 共振子及び共振装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012070419A (ja) * 2000-03-15 2012-04-05 Seiko Epson Corp 振動子
JP2013126104A (ja) * 2011-12-14 2013-06-24 Seiko Epson Corp 振動片の製造方法、振動片、振動子、発振器及び電子機器
JP2014175809A (ja) * 2013-03-07 2014-09-22 Seiko Epson Corp 振動子、発振器、電子機器および移動体
JP2015167305A (ja) * 2014-03-04 2015-09-24 日本電波工業株式会社 圧電デバイス

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019124127A1 (ja) * 2017-12-22 2020-08-27 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
WO2019124127A1 (ja) * 2017-12-22 2019-06-27 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
US11245380B2 (en) 2017-12-22 2022-02-08 Murata Manufacturing Co., Ltd. Acoustic wave device, high-frequency front-end circuit, and communication device
CN110719082B (zh) * 2018-07-13 2023-04-14 三星电机株式会社 声波谐振器封装件
CN110719082A (zh) * 2018-07-13 2020-01-21 三星电机株式会社 声波谐振器封装件
US11876503B2 (en) 2018-08-22 2024-01-16 Murata Manufacturing Co., Ltd. Resonance device
CN112534719A (zh) * 2018-08-22 2021-03-19 株式会社村田制作所 谐振装置
CN112534719B (zh) * 2018-08-22 2024-03-19 株式会社村田制作所 谐振装置
WO2020039627A1 (ja) * 2018-08-22 2020-02-27 株式会社村田製作所 共振装置
WO2020044634A1 (ja) * 2018-08-29 2020-03-05 株式会社村田製作所 共振装置
JPWO2020085188A1 (ja) * 2018-10-24 2021-09-02 株式会社村田製作所 共振装置
JP7133134B2 (ja) 2018-10-24 2022-09-08 株式会社村田製作所 共振装置
WO2020085188A1 (ja) * 2018-10-24 2020-04-30 株式会社村田製作所 共振装置
US11909375B2 (en) 2018-10-24 2024-02-20 Murata Manufacturing Co., Ltd. Resonance device
WO2020194810A1 (ja) * 2019-03-26 2020-10-01 株式会社村田製作所 共振装置及び共振装置製造方法
JPWO2020194810A1 (ja) * 2019-03-26 2021-12-23 株式会社村田製作所 共振装置及び共振装置製造方法
JP7169560B2 (ja) 2019-03-26 2022-11-11 株式会社村田製作所 共振装置及び共振装置製造方法
CN113491069A (zh) * 2019-03-26 2021-10-08 株式会社村田制作所 谐振装置和谐振装置制造方法
CN113491069B (zh) * 2019-03-26 2024-05-28 株式会社村田制作所 谐振装置和谐振装置制造方法
WO2021117272A1 (ja) * 2019-12-09 2021-06-17 株式会社村田製作所 共振装置及びその製造方法

Also Published As

Publication number Publication date
JPWO2017212677A1 (ja) 2019-03-07
CN109155614A (zh) 2019-01-04
US11063568B2 (en) 2021-07-13
US20190089321A1 (en) 2019-03-21
CN109155614B (zh) 2022-03-08
JP6641676B2 (ja) 2020-02-05

Similar Documents

Publication Publication Date Title
WO2017212677A1 (ja) 共振装置製造方法
CN108141196B (zh) 谐振装置及其制造方法
JP6768206B2 (ja) 共振子及び共振装置
WO2017208568A1 (ja) 共振子及び共振装置
JP7099469B2 (ja) 共振子及び共振装置
US20200112295A1 (en) Resonator and resonant device
US20220029598A1 (en) Resonance device
US11909375B2 (en) Resonance device
WO2020039627A1 (ja) 共振装置
JP6994164B2 (ja) 共振子及び共振装置
US10673402B2 (en) Resonator and resonance device
US20230008378A1 (en) Resonance device
US20220182036A1 (en) Resonance device, collective board, and method of manufacturing resonance device
US11196407B2 (en) Resonator and resonant device
JP6856127B2 (ja) 共振子及び共振装置
WO2020049814A1 (ja) Memsデバイスの製造方法及びmemsデバイス
US20230119602A1 (en) Resonance device, collective substrate, and resonance device manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018522306

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17809861

Country of ref document: EP

Kind code of ref document: A1