WO2017211670A1 - Procédé d'encapsulation - Google Patents

Procédé d'encapsulation Download PDF

Info

Publication number
WO2017211670A1
WO2017211670A1 PCT/EP2017/063278 EP2017063278W WO2017211670A1 WO 2017211670 A1 WO2017211670 A1 WO 2017211670A1 EP 2017063278 W EP2017063278 W EP 2017063278W WO 2017211670 A1 WO2017211670 A1 WO 2017211670A1
Authority
WO
WIPO (PCT)
Prior art keywords
flavour
solution
added
weight
glycyrrhizic acid
Prior art date
Application number
PCT/EP2017/063278
Other languages
English (en)
Inventor
Subhajit MANNA
Venkatraj Venkatrao Narayanan
Ravi Kant SHUKLA
Original Assignee
Unilever N.V.
Unilever Plc
Conopco, Inc., D/B/A Unilever
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever N.V., Unilever Plc, Conopco, Inc., D/B/A Unilever filed Critical Unilever N.V.
Publication of WO2017211670A1 publication Critical patent/WO2017211670A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F3/00Tea; Tea substitutes; Preparations thereof
    • A23F3/40Tea flavour; Tea oil; Flavouring of tea or tea extract
    • A23F3/405Flavouring with flavours other than natural tea flavour or tea oil
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F3/00Tea; Tea substitutes; Preparations thereof
    • A23F3/16Tea extraction; Tea extracts; Treating tea extract; Making instant tea
    • A23F3/163Liquid or semi-liquid tea extract preparations, e.g. gels, liquid extracts in solid capsules
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F3/00Tea; Tea substitutes; Preparations thereof
    • A23F3/34Tea substitutes, e.g. matè; Extracts or infusions thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/56Flavouring or bittering agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • A23L27/33Artificial sweetening agents containing sugars or derivatives
    • A23L27/36Terpene glycosides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/70Fixation, conservation, or encapsulation of flavouring agents
    • A23L27/72Encapsulation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/231Pectin; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/256Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin from seaweeds, e.g. alginates, agar or carrageenan
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a process of encapsulation and more particularly to a 5 process for encapsulation of a flavour for liquid beverage products.
  • Liquid beverages e.g. fruit based drinks, liquid teas, are quite popular. This type of liquid beverages provides refreshment to consumers. It is believed that different kinds0 of flavours delivered through liquid beverage enhances the degree of refreshment.
  • flavours also increase the palatability of the liquid beverage.
  • Liquid beverages with encapsulated substance are known in the art.
  • 5 US 2010/196549 discloses methods for fortifying a sports drink with one or more citrus phytochemicals while concealing the bitter taste of these compounds in the beverage. These methods comprise microencapsulating the citrus phytochemicals and adding the microencapsulated citrus phytochemicals to the beverage. It also discloses sports drinks fortified with one or more microencapsulated citrus phytochemicals but o which do not have the bitter taste characteristics of these compounds.
  • WO 2014/1841 19 discloses a process for producing capsules comprising a composition comprising coffee oil. It also discloses capsules obtainable by such process, and compositions, food ingredients and food products comprising such5 capsules.
  • US 2013/004617 discloses complex coacervates incorporating one or more hydrophobic substances that are stable in certain aqueous systems and food products.
  • the coacervates may be used as an ingredient in food products, e.g., in0 beverages, dry foods, and semi-moist foods.
  • Methods for producing the complex coacervates and food products are also disclosed.
  • WO 2015/090855 discloses a liquid concentrate tea product and a process for producing the same.
  • US 2015/272864 (Symrise) relates to substance mixtures comprising terpenes and specific complementary substances, to foodstuffs comprising them, to a method of enhancing stability, and to the use of the complementary substances as stabilizers.
  • the present inventors while working extensively on this have surprisingly found that when a hydrophobic flavour component is encapsulated before adding into a liquid beverage using a process which comprises the addition of a polysaccharide, a polyphenol, glycyrrhizic acid and a protein, the resulting beverage is able to retain the flavour for long time and thereby satisfy one or more of the above mentioned objects.
  • the present invention provides a process for encapsulating a flavour comprising the steps of:
  • step (c) adding a hydrophobic flavour to the solution of step (b); and then
  • the present invention provides an encapsulated flavour composition comprising:
  • the invention provides a liquid product composition comprising 2 to 20% by weight of the encapsulated hydrophobic flavour of the second aspect of the invention.
  • step (c) adding a hydrophobic flavour to the solution of step (b); and then
  • the process of the present invention requires a polysaccharide.
  • Polysaccharides Long chains of monosaccharide units bound together by glycosidic linkages are known as polysaccharides. They are polymeric carbohydrates, which on hydrolysis produce the constituent monosaccharides or oligosaccharides. Polysaccharides are well known in foods and beverages industry.
  • the amount of polysaccharides used is preferably in the range of 0.1 to 5%, more preferably 0.5 to 4% and most preferably 0.5 to 3 % by weight of the encapsulated flavour composition.
  • the polysaccharides are preferably used in the form of an aqueous solution.
  • the polysaccharides are preferably added in water at room temperature. However, for some types of polysaccharides a slightly elevated temperature may be needed. Depending on the type of polysaccharides, the appropriate temperature may be selected.
  • the most preferred polysaccharides are selected from alginate, pectin and carrageenan.
  • the process for encapsulation of the present invention also employs a polyphenol.
  • Polyphenols are also known as polyhydroxyphenols and abundantly available in nature e.g. in plants. Tannins that are naturally available in plants and fruits are also generally referred to as polyphenols.
  • Black tea or green tea are known to have a high levels of polyphenols. Tea polyphenols includes catechins, theaflavins, etc.
  • the major catechins that are present in green tea are epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG).
  • any source of polyphenols may preferably be used in the process of the present invention.
  • tea polyphenols as disclosed above are preferred, with catechins being particularly preferred.
  • the amount of polyphenols used is preferably in the range of 0.1 to 5%, more preferably 0.5 to 4% and most preferably 0.5 to 3 % by weight of the encapsulated flavour composition.
  • the process of the present invention further comprises the addition of glycyrrhizic acid or its derivatives or a source of glycyrrhizic acid.
  • Glycyrrhizic acid is a triterpenoid saponin glycoside from the roots and rhizomes of licorice (Yashtimadhu/ Glycyrrhiza glabra), and is used in traditional and modern medicine for the treatment of numerous medical conditions including skin diseases. In the food and drug industry, it is also used as natural sweetener. It has the following structure:
  • Glycyrrhizic acid and derivatives thereof are commercially available from many suppliers.
  • the amount of glycyrrhizic acid or the derivative thereof is preferably in the range of 0.05 to 5%, more preferably 0.08 to 5%, still more preferably 0.1 to 5% and most preferably 0.2 to 5% by weight of the encapsulated flavour composition.
  • the glycyrrhizic acid can be provided by a source of glycyrrhizic acid, such as a licorice extract.
  • the glycyrrhizic acid or the derivative thereof are substantially free of any other substances (impurities and/or any other compounds).
  • the purity of the glycyrrhizic acid or the derivative thereof is preferably greater than 95%, more preferably greater than 99% and most preferably greater than 99.9%. Most preferably the purity of the glycyrrhizic acid or the derivative thereof is in the range of 95 to 100%.
  • the derivatives of glycyrrhizic acid may preferably be a salt of glycyrrhizic acid. The most preferred salt of glycyrrhizic acid is monoammonium glycyrrhizate.
  • the process of the present invention is about encapsulation of hydrophobicjlavours.
  • Flavours are known to enhance the organoleptic properties of foods and beverages.
  • flavours in a food and/or beverage composition are those tend to deteriorate rapidly. This problem is more pronounced in case of a hydrophobic flavour.
  • flavours are preferably selected on the basis of the taste and end use.
  • citral flavour The most preferable flavour in the case of a hydrophobic flavour is citral flavour, as this has wide applicability in food and beverages industry.
  • citral flavours are lemon flavour, lime flavour, orange flavour, grapefruit flavour, bergamot flavour, etc.
  • the amount of hydrophobic flavour is preferably in the range of 0.01 to 5 %, more preferably 0.1 to 5 % and most preferably in the range of 0.3 to 3% by weight of the encapsulated flavour composition.
  • the process of the present invention also employs a protein.
  • Proteins are polymeric chains of amino acids joined by peptide bonds. Proteins can be sourced from both animal and plants. The most preferable proteins are selected from Beta-lactoglobulin, gelatin and whey protein.
  • the amount of protein preferably is in the range of 0.1 to 10%, more preferably 0.5 to 5% and most preferably 0.5 to 2% by weight of the encapsulated flavour composition.
  • Step a In the first step, an aqueous solution of a polysaccharide is combined with a polyphenol .
  • the aqueous solution is preferably made by dissolving the polysaccharide in water, adding the polyphenol and mixing.
  • deionized water is preferred.
  • the mixing can be done by employing any mechanical device or simply by agitation.
  • the most preferred way is homogenization by employing a homogenizer.
  • the amount and the list of preferred polysaccharides have already been mentioned in this specification, as have the amount and the list of preferred polyphenols.
  • Step b
  • step (a) the glycyrrhizic acid or its derivatives or a source of glycyrrhizic acid is added to the solution of step (a) followed by mixing.
  • the mixing can be done by employing any mechanical device or just simply by agitation.
  • the most preferred way is homogenization by employing a homogenizer.
  • Hydrophobic flavour is added into the solution of step (b), followed by the addition of a protein. After that the solution is thoroughly mixed.
  • the mixing can be done by employing any mechanical device or just simply by agitation.
  • the most preferred way is homogenization by employing a homogenizer.
  • the temperature of the solution for the whole process is preferably in kept in the range of 10°C to 70°C, more preferably 20°C to 60°C and most preferably 30°C to 60°C.
  • the present inventors have found that when a hydrophobic flavour is encapsulated by using the process of the present invention, the resulting product can retain the hydrophobic flavour for an increased period of time. This is the main benefit/advantage of the process of the present invention.
  • the present invention also provides an encapsulated flavour composition comprising:
  • This encapsulated flavour composition can be made using the process described above, and is preferably obtained/obtainable by this process.
  • the present invention also provides a liquid product comprising 2 to 20%, preferably 2 to 10% by weight of the encapsulated hydrophobic flavour composition.
  • the liquid product is preferably packaged.
  • a suitable packaged format may preferably be selected depending on the targeted uses.
  • the liquid product is preferably a liquid tea product.
  • liquid tea product means any tea product which is in liquid form.
  • the liquid tea product may be in a concentrate format or may be in a ready-to-drink format.
  • the present invention also relates to use of polysaccharide, polyphenol, glycyrrhizic acid or a derivative thereof, and protein for encapsulation of hydrophobic flavour. Any feature of one aspect of the present invention may be utilized in any other aspect of the invention.
  • the word “comprising” is intended to mean “including” but not necessarily “consisting of or “composed of.” In other words, the listed steps or options need not be exhaustive. Except in the operating and comparative examples, or where otherwise explicitly indicated, all numbers in this description indicating amounts of material or conditions of reaction, physical properties of materials and/or use are to be understood as modified by the word “about”. Numerical ranges expressed in the format “from x to y” are understood to include x and y. When for a specific feature multiple preferred ranges are described in the format “from x to y”, it is understood that all ranges combining the different endpoints are also contemplated.
  • Sorbic acid 0.05 0.05 0.05 0.05 0.05 0.05
  • Glycyrrhizic acid (GA) 0 0.4 0 0.4
  • Whey Protein was procured from Sigma, Alginic Acid was procured from Fluka, Glycyrrhizic acid (GA) was procured from Natural Remedies, Citral Flavour was procured from Sigma and Polyphenol was procured from Taiyo International as Sunphenon ® XLB 100.
  • Example A all the ingredients as per Table 1 were added and homogenized for 5 minutes. After that the sample was stored in an air tight bottle under hot and humid conditions (Temperature: 35 ⁇ 2°C and Humidity: around 95%).
  • Example B all the ingredients as per Table 1 were added and the temperature of the solution raised to about 50°C followed by the addition of GA. After that this solution was homogenized for 5 minutes. After that, the sample was stored in an air tight bottle under hot and humid conditions (Temperature: 35 ⁇ 2°C and Humidity: around 95%)
  • Example C first, the required amount of polyphenol was taken and dissolved in water followed by addition of sodium alginate and stirred for about 10 minutes. After that the citral flavour was added into it and mixed thoroughly, followed by addition of whey protein and a further homogenization step. Finally, the remaining ingredients were added, and the resulting mixture was homogenized for about 5 minutes.
  • Example 1 a solution of sodium alginate was prepared by adding required amount of sodium alginate in water followed by addition of polyphenol, and stirring for about 10 minutes. The temperature of the solution was raised to about 50°C followed by the addition of GA. After that this solution was homogenized for 5 minutes. After that the citral flavour was added into it and mixed thoroughly, followed by addition of whey protein. Finally, the remaining ingredients were added, and the resulting mixture homogenized for about 5 minutes. After that the sample was stored in an air tight bottle under hot and humid conditions (Temperature: 35 ⁇ 2°C and Humidity: around 95%).
  • Carrier gas Helium (He)
  • Example 1 From the above Table 2 it is evident that the remaining citral favour for Example 1 is better than any of the examples A, B or C. The effect is more pronounced and significant after longer storage times (e.g. Day 10 and Day 20). It is notable that at Day 20 the flavour in the control examples (A to C) is almost gone, whereas in Example 1 >50% of the flavour is remaining.
  • Table 3 A further set of experiments were carried out by preparing the compositions according to Table 3 (where all amounts are given as wt% of the final composition).
  • Example D all the ingredients as per Table 3 were added in water and homogenized for 5 minutes. At the end, citric acid was added. After that, the sample was stored in an air tight bottle under hot and humid conditions (Temperature: 35 ⁇ 2°C and Humidity: around 95%).
  • Example E first GA was added in water followed by the addition of citral flavour. The solution was then homogenized for 5 minutes. After that, the rest of the ingredients were added and the solution was mixed thoroughly. Finally citric acid was added to the solution. The sample was then stored in an air tight bottle under hot and humid conditions (Temperature: 35 ⁇ 2°C and Humidity: around 95%).
  • Example F first GA was added in water followed by the addition of citral flavour. The solution was then homogenized for 5 minutes. After that, whey protein was added and the solution was stirred. After that, the rest of the ingredients were added and the solution was mixed thoroughly. Finally, citric acid was added to the solution. The sample was then stored in an air tight bottle under hot and humid conditions (Temperature: 35 ⁇ 2°C and Humidity: around 95%).
  • Example G first the required amount of polyphenols was added in water and mixed. Then GA was added followed by the addition of citral flavour. The solution was then homogenized for 5 minutes. After that, the rest of the ingredients were added and the solution was mixed thoroughly. Finally citric acid was added to the solution. The sample was then stored in an air tight bottle under hot and humid conditions (Temperature: 35 ⁇ 2°C and Humidity: around 95%).
  • Example H first the required amount of sodium alginate was added in water and the temperature of the solution was raised to about 50°C. The temperature of the solution was raised as the solubility of sodium alginate is better at elevated temperature. Then GA was added followed by the addition of citral flavour. The solution was then homogenized for 5 minutes. After that, the rest of the ingredients were added and the solution was mixed thoroughly. Finally, citric acid was added to the solution. The sample was then stored in an air tight bottle under hot and humid conditions (Temperature: 35 ⁇ 2°C and Humidity: around 95%).
  • Example I first the required amount of sodium alginate was added in water and the temperature of the solution was raised to about 50°C. Then GA was added followed by the addition of citral flavour. The solution was then homogenized for 5 minutes. After that, whey protein was added and the solution was stirred. After that, the rest of the ingredients were added and the solution was mixed thoroughly. Finally, citric acid was added to the solution. The sample was then stored in an air tight bottle under hot and humid conditions (Temperature: 35 ⁇ 2°C and Humidity: around 95%).
  • Example J first the required amount of polyphenols was added in water and mixed. Then GA was added followed by the addition of citral flavour. The solution was then homogenized for 5 minutes. After that, whey protein was added and the solution was stirred. After that, the rest of the ingredients were added and the solution was mixed thoroughly. Finally, citric acid was added to the solution. The sample was then stored in an air tight bottle under hot and humid conditions (Temperature: 35 ⁇ 2°C and Humidity: around 95%).
  • Example K first the required amount of sodium alginate was added in water and the temperature of the solution was raised to about 50°C. After that the required amount of polyphenols were added. Then GA was added followed by the addition of citral flavour. The solution was then homogenized for 5 minutes. After that, the rest of the ingredients were added and the solution was mixed thoroughly. Finally, citric acid was added to the solution. The sample was then stored in an air tight bottle under hot and humid conditions (Temperature: 35 ⁇ 2°C and Humidity: around 95%).
  • Example L first the required amount of sodium alginate was added in water and the temperature of the solution was raised to about 50°C. Then, polyphenols was added followed by the addition of citral flavour. The solution was then homogenized for 5 minutes.
  • Example 2 first the required amount of sodium alginate was added in water and the temperature of the solution was raised to about 50°C. After that the required amount of polyphenols were added. Then GA was added followed by the addition of citral flavour. The solution was then homogenized for 5 minutes. After that, whey protein was added and the solution was stirred. After that, the rest of the ingredients were added and the solution was mixed thoroughly. Finally, citric acid was added to the solution. The sample was then stored in an air tight bottle under hot and humid conditions (Temperature: 35 ⁇ 2°C and Humidity: around 95%). All the samples were stored and under the conditions as specified above and tested for remaining citral flavour by using standard head space GC (Gas Chromatography) after 1 week (7days), 2 weeks (15 days) and 3 weeks (21 days).
  • head space GC Gas Chromatography
  • Carrier gas Helium (He)
  • Example 2 3 week 6.4 33.3 37.2 47.2 46.1 40.6 46.0 36.2 44.2 78.7 From the Table 4, it is evident that the remaining citral favour for Example 2 is better than any of the control examples D to L. It can be seen from this Table that after the end of 1 week, for most of the control samples the flavour is almost lost by half whereas for Example 2 there is no loss of flavour. The effect of encapsulation by way of present invention can also be seen from the data for 2 weeks and 3 weeks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Dispersion Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tea And Coffee (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

La présente invention concerne un procédé d'encapsulation et plus particulièrement un procédé d'encapsulation d'un composant aromatique destiné à des produits de type boissons liquides. Selon la présente invention, le procédé d'encapsulation d'un arôme comprend les étapes consistant : (a) à combiner une solution aqueuse de polysaccharide avec un polyphénol ; (b) à ajouter de l'acide glycyrrhizique ou un dérivé de celui-ci, ou une source d'acide glycyrrhizique et à mélanger ; (c) à ajouter un arôme hydrophobe à la solution de l'étape (b) ; et enfin (d) à ajouter une protéine et à mélanger.
PCT/EP2017/063278 2016-06-10 2017-06-01 Procédé d'encapsulation WO2017211670A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16173960.2 2016-06-10
EP16173960 2016-06-10

Publications (1)

Publication Number Publication Date
WO2017211670A1 true WO2017211670A1 (fr) 2017-12-14

Family

ID=56117636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/063278 WO2017211670A1 (fr) 2016-06-10 2017-06-01 Procédé d'encapsulation

Country Status (1)

Country Link
WO (1) WO2017211670A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109329500A (zh) * 2018-09-26 2019-02-15 陕西师范大学 一种茯砖茶多酚和多糖的复合速溶茶及其制备方法和应用
GB2624232A (en) * 2022-11-11 2024-05-15 Douwe Egberts Bv Edible beads
GB2624234A (en) * 2022-11-11 2024-05-15 Douwe Egberts Bv Edible beads
GB2624233A (en) * 2022-11-11 2024-05-15 Douwe Egberts Bv Edible beads

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060093725A1 (en) * 2004-11-03 2006-05-04 Unilever Bestfoods, North America, Division Of Conopco, Inc. Consumable composition with antioxidants
US20100068344A1 (en) * 2006-11-13 2010-03-18 Kao Corporation Beverage packed in container
US20100196549A1 (en) 2009-02-03 2010-08-05 Tropicana Products, Inc. Microencapsulated citrus phytochemicals and application to sports drinks
US20100272852A1 (en) 2009-04-23 2010-10-28 H.J. Baker & Bro., Inc. Granular feed supplement
US20100272859A1 (en) * 2007-08-28 2010-10-28 Pepsico, Inc. Delivery and controlled release of encapsulated water-insoluble flavorants
US20130004617A1 (en) 2011-07-01 2013-01-03 Pepsico, Inc. Coacervate complexes, methods and food products
CN102524882B (zh) * 2010-12-22 2014-04-16 内蒙古伊利实业集团股份有限公司 一种添加egcg的复合蛋白酸性饮料及其制备方法
WO2014184119A1 (fr) 2013-05-13 2014-11-20 Nestec S.A. Capsules à libération d'arôme
WO2015090855A1 (fr) 2013-12-17 2015-06-25 Unilever N.V. Produit de thé concentré liquide
US20150272864A1 (en) 2014-04-01 2015-10-01 SymriseAG Substance mixtures

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060093725A1 (en) * 2004-11-03 2006-05-04 Unilever Bestfoods, North America, Division Of Conopco, Inc. Consumable composition with antioxidants
US20100068344A1 (en) * 2006-11-13 2010-03-18 Kao Corporation Beverage packed in container
US20100272859A1 (en) * 2007-08-28 2010-10-28 Pepsico, Inc. Delivery and controlled release of encapsulated water-insoluble flavorants
US20100196549A1 (en) 2009-02-03 2010-08-05 Tropicana Products, Inc. Microencapsulated citrus phytochemicals and application to sports drinks
US20100272852A1 (en) 2009-04-23 2010-10-28 H.J. Baker & Bro., Inc. Granular feed supplement
CN102524882B (zh) * 2010-12-22 2014-04-16 内蒙古伊利实业集团股份有限公司 一种添加egcg的复合蛋白酸性饮料及其制备方法
US20130004617A1 (en) 2011-07-01 2013-01-03 Pepsico, Inc. Coacervate complexes, methods and food products
WO2014184119A1 (fr) 2013-05-13 2014-11-20 Nestec S.A. Capsules à libération d'arôme
WO2015090855A1 (fr) 2013-12-17 2015-06-25 Unilever N.V. Produit de thé concentré liquide
US20150272864A1 (en) 2014-04-01 2015-10-01 SymriseAG Substance mixtures

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109329500A (zh) * 2018-09-26 2019-02-15 陕西师范大学 一种茯砖茶多酚和多糖的复合速溶茶及其制备方法和应用
GB2624232A (en) * 2022-11-11 2024-05-15 Douwe Egberts Bv Edible beads
GB2624234A (en) * 2022-11-11 2024-05-15 Douwe Egberts Bv Edible beads
GB2624233A (en) * 2022-11-11 2024-05-15 Douwe Egberts Bv Edible beads

Similar Documents

Publication Publication Date Title
WO2017211670A1 (fr) Procédé d'encapsulation
US20080044539A1 (en) Astringency-compensated polyphenolic antioxidant-containing comestible composition
CN105685316B (zh) 一种藤茶菊花复合饮料及其制备方法
CN105341570A (zh) 系列忧遁草功能性饮料及其制备方法
JP6516734B2 (ja) 表面被覆されたフレーバー粉末
CN1984567A (zh) 茶调味剂
JP6294589B2 (ja) 物質混合物
Banožić et al. Spray drying as a method of choice for obtaining high quality products from food wastes–A review
Suna et al. Trends and possibilities of the usage of medicinal herbal extracts in beverage production
Dahiya et al. Current status and future prospects of bioactive molecules delivered through sustainable encapsulation techniques for food fortification
JP2005168458A (ja) 水溶性飲食物およびその製造方法
JP2009011186A (ja) アーティチョーク含有機能性改善食品
Faisal et al. Phytochemical profile and food applications of edible flowers: A comprehensive treatise
JP2006067895A (ja) 苦渋味抑制剤
KR102358663B1 (ko) 인삼 추출물을 함유하는 건강식품 조성물
Chaudhary et al. Fruit and Vegetable Waste: A Taste of Future Foods
JP2006067896A (ja) ポリフェノール高濃度含有飲食品
Borah et al. Whey fortified ready-to-reconstitute elephant apple (Dillenia indica) juice powder: methodical optimization, micro-structural and in vitro digestion analyses
Afkhami et al. Loading lime by‐product into derivative cellulose carrier for food enrichment
JP6913685B2 (ja) 経口投与用の解毒組成物及びその調製方法
CN107455756A (zh) 一种黄酮微乳液及其应用
CN105495236A (zh) 一种基于黄秋葵发酵汁保护胃黏膜的液体组合物及制备方法
JP7152834B2 (ja) 藤茶抽出物を含有する青汁
JP6807064B2 (ja) 粉末または顆粒飲料及びその製造方法
KR101789996B1 (ko) 홍삼 캡슐 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17726647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17726647

Country of ref document: EP

Kind code of ref document: A1