WO2017209222A1 - 医療機器の製造方法 - Google Patents

医療機器の製造方法 Download PDF

Info

Publication number
WO2017209222A1
WO2017209222A1 PCT/JP2017/020370 JP2017020370W WO2017209222A1 WO 2017209222 A1 WO2017209222 A1 WO 2017209222A1 JP 2017020370 W JP2017020370 W JP 2017020370W WO 2017209222 A1 WO2017209222 A1 WO 2017209222A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
medical device
mpc
bma
manufacturing
Prior art date
Application number
PCT/JP2017/020370
Other languages
English (en)
French (fr)
Inventor
石原 一彦
今日子 深澤
京本 政之
史帆里 山根
Original Assignee
京セラ株式会社
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社, 国立大学法人 東京大学 filed Critical 京セラ株式会社
Publication of WO2017209222A1 publication Critical patent/WO2017209222A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus

Definitions

  • the present invention relates to a method for manufacturing a medical device.
  • Synthetic polymers containing phosphorylcholine groups have a structure similar to that of cell membranes in the living body, so they have various advantages such as biocompatibility, high lubrication properties, low friction properties, protein adsorption inhibition, cell adhesion inhibition, and bacterial adhesion inhibition. Therefore, it is applied to the surface of many medical devices such as medical devices such as contact lenses, catheters and artificial joints, medical devices for inspection such as well plates, and medical devices for diagnosis.
  • Patent Document 1 describes a copolymer of 2-methacryloyloxyethyl phosphorylcholine, which is an example of a polymer containing a phosphorylcholine group, and a methacrylic acid ester.
  • a medical device such as a contact lens or a medical device for inspection such as a well plate uses a polymer containing a phosphorylcholine group for the purpose of preventing adsorption of proteins and the like in a relatively mild water environment.
  • the substrate is immersed in an organic solvent in which a synthetic polymer containing a hydrophobic phosphorylcholine group is dissolved, or an organic solvent in which a synthetic polymer containing a hydrophobic phosphorylcholine group is dissolved is sprayed on the substrate. Then, it is dried and coated with a polymer containing a phosphorylcholine group.
  • Patent Document 2 as an implantable medical device such as a drug-releasing stent, the surface of a metal substrate is coated with a synthetic phospholipid component such as a polymer composed of 2-methacryloyloxyethyl phosphorylcholine by spray spraying or the like. It is described.
  • Synthetic polymers containing phosphorylcholine groups are used for artificial joints in order to obtain high lubrication and wear resistance in harsh usage environments that constantly slide in daily life.
  • the polymer containing phosphorylcholine groups is only physically adsorbed to the substrate, so that the polymer containing phosphorylcholine groups can be easily removed from the substrate in vivo. Will peel off. Therefore, in order to prevent peeling, in an artificial joint, a synthetic polymer containing a phosphorylcholine group and a substrate are firmly fixed by a covalent bond by graft polymerization by light irradiation. Thereby, the synthetic polymer containing a phosphorylcholine group protects the substrate surface for a long period of time.
  • the terminal of the synthetic polymer containing a phosphorylcholine group is fixed by covalent bonding to the base material, even if the synthetic polymer containing the phosphorylcholine group is highly hydrophilic, it does not elute into the living body.
  • the method of forming a film of a synthetic polymer containing a phosphorylcholine group on a substrate surface by physical adsorption coating allows the film to be easily formed, and there are almost no restrictions on the material and shape of the substrate. .
  • a film made of a synthetic polymer containing a phosphorylcholine group having high hydrophilicity is easily dissolved in water and has poor water resistance, and therefore, its use in an aqueous environment such as in vivo is limited.
  • a film made of a synthetic polymer containing a hydrophobic phosphorylcholine group is inferior in wettability until the film is hydrated, and it takes time to fully develop the performance of the synthetic polymer containing a phosphorylcholine group. Cost.
  • Films made of synthetic polymers containing highly hydrophilic phosphorylcholine groups formed by light-induced graft polymerization instantly exhibit high hydrophilicity and wear resistance in vivo, and exhibit their performance stably.
  • the conditions for the graft polymerization reaction by light irradiation are complicated, and are limited by the material and shape of the substrate to be coated.
  • An object of the present invention is to provide a medical device capable of easily forming a synthetic polymer film containing a phosphorylcholine group, exhibiting high wettability at an early stage in a living body, and having high stability in its use environment. It is to provide a manufacturing method.
  • the present invention relates to a method for manufacturing a medical device, which includes a preparation step for preparing a base material, a first polymer having a phosphorylcholine group, and a second polymer having a phosphorylcholine group that is different in hydrophilicity from the first polymer. And preparing the polymer mixed solution by dissolving in an organic solvent; and immersing the base material in the polymer mixed solution, and then drying the base material on at least a part of the surface of the base material. And a film forming step of forming a hydrophilic film containing the polymer and the second polymer.
  • the present invention is characterized in that the first polymer and the second polymer are copolymers of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate having different copolymerization ratios.
  • the copolymerization ratio (MPC: BMA) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and butyl methacrylate (BMA) of the first polymer is 9: 1 to 6: 4
  • the copolymer ratio (MPC: BMA) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and butyl methacrylate (BMA) of the second polymer is from 3: 7 to 1: 9 in molar ratio.
  • the average molecular weight of the first polymer is 5,000 to 300,000, and the average molecular weight of the second polymer is 300,000 or more.
  • the ratio (P1 / P2) of the content (P1) of the first polymer and the content (P2) of the second polymer in the polymer mixed solution is 1 / weight ratio. 9 to 4/6.
  • the present invention is characterized in that the concentration of the first polymer and the second polymer in the polymer mixed solution is 0.1 to 0.5% by weight.
  • the present invention is characterized in that the substrate is made of a biocompatible material.
  • the present invention is further characterized by further comprising a sterilization step of sterilizing the base material on which the hydrophilic film is formed.
  • the sterilization treatment is performed by irradiating the base material on which the hydrophilic film is formed with a high energy ray, or on the base material on which the hydrophilic film is formed. It is a process.
  • a first polymer having a phosphorylcholine group and a second polymer having a phosphorylcholine group having a different hydrophilicity from the first polymer are dissolved in an organic solvent to prepare a polymer mixed solution.
  • the substrate is immersed in the polymer mixed solution and then dried to form a hydrophilic film containing the first polymer and the second polymer on at least a part of the surface of the substrate.
  • a hydrophilic film can be easily formed by simply immersing the substrate in a polymer mixed solution obtained by mixing and dissolving the first polymer and the second polymer as described above, and drying.
  • the obtained hydrophilic film has excellent initial wettability and high stability in the use environment.
  • a copolymer of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate having different copolymerization ratios is used as the first polymer having a phosphorylcholine group and the second polymer having a phosphorylcholine group. Is preferred.
  • the copolymer ratio (MPC: BMA) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and butyl methacrylate (BMA) of the first polymer is 9: 1 to 6: 4 (average)
  • the molecular weight is 5,000 to 300,000
  • the copolymerization ratio (MPC: BMA) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and n-butyl methacrylate (BMA) of the second polymer is from 3: 7 to
  • the ratio is preferably 1: 9 (average molecular weight of 300,000 or more).
  • the average molecular weight of the first polymer is 5,000 to 300,000 and the average molecular weight of the second polymer is 300,000 or more.
  • the ratio (P1 / P2) of the content (P1) of the first polymer and the content (P2) of the second polymer in the polymer mixed solution is 1/9 by weight ratio. It is preferably set to 4/6.
  • the concentration of the first polymer and the second polymer in the polymer mixed solution is preferably 0.1 to 0.5% by weight.
  • the base material is preferably made of a biocompatible material.
  • the base material on which the hydrophilic film is formed it is preferable to sterilize the base material on which the hydrophilic film is formed by a sterilization process.
  • the sterilization treatment use is made of an irradiation treatment for irradiating a substrate on which a hydrophilic film is formed with a high energy beam, or a gas plasma treatment for bringing a gas plasma into contact with a substrate on which a hydrophilic film is formed. Can do.
  • the medical device manufactured by the manufacturing method of the present invention is a medical device used in direct contact with a biological component, such as an artificial blood vessel, an artificial valve, a blood bag, a hemodialysis membrane, a catheter, a stent, an encapsulating material, an enzyme.
  • a biological component such as an artificial blood vessel, an artificial valve, a blood bag, a hemodialysis membrane, a catheter, a stent, an encapsulating material, an enzyme.
  • a biological component such as an artificial blood vessel, an artificial valve, a blood bag, a hemodialysis membrane, a catheter, a stent, an encapsulating material, an enzyme.
  • a biological component such as an artificial blood vessel, an artificial valve, a blood bag, a hemodialysis membrane, a catheter, a stent, an encapsulating material, an enzyme.
  • Examples include, but are not limited to, electrodes, intraocular lenses, contact lenses, artificial bones, cell culture plates, and diagnostic microchip
  • FIG. 1 is a process diagram showing a method for manufacturing a medical device according to an embodiment of the present invention.
  • the manufacturing method of this embodiment is (Process A1) Preparatory process (Process A2) Preparation process (Process A3) It consists of three processes of a film formation process.
  • Process A1 Preparatory process In the preparatory process of process A1, it is a process of preparing the base material of a medical device.
  • the base material may be appropriately selected in material, shape, etc. according to the medical device to be manufactured.
  • the substrate may be made of a biocompatible material.
  • the medical device is a device that does not require biocompatibility, for example, a medical device for testing or a medical device for diagnosis
  • the base material there is no particular limitation on the base material, and a material corresponding to the characteristics required for the medical device is used. That's fine.
  • a base material for example, a metal material such as titanium, stainless steel, and cobalt chromium alloy, a ceramic material such as alumina, zirconia, and hydroxyapatite, silicone resin, polyethylene, polypropylene, polyvinyl chloride, polyacrylonitrile, polystyrene, Polymer materials such as polymethyl methacrylate, polyoxymethylene, polyisoprene, poly L lactic acid, polycarbonate, polyamide, polysulfone, polyurethane, polyetheretherketone, polyparylene, and cyclic polyolefin can be used.
  • a metal material such as titanium, stainless steel, and cobalt chromium alloy
  • a ceramic material such as alumina, zirconia, and hydroxyapatite
  • silicone resin polyethylene, polypropylene, polyvinyl chloride, polyacrylonitrile, polystyrene
  • Polymer materials such as polymethyl methacrylate, polyoxymethylene, polyisopre
  • the shape of the substrate may be processed such as molding and cutting according to the material constituting the substrate.
  • the substrate may be irradiated with atmospheric plasma, oxygen plasma or the like in advance on at least the surface on which the film is to be formed in order to improve compatibility with an organic solvent containing a polymer having a phosphorylcholine group.
  • Step A2 Preparation Step Next, in the preparation step of Step A2, a first polymer having a phosphorylcholine group and a second polymer having a phosphorylcholine group are dissolved in an organic solvent to prepare a polymer mixed solution.
  • the first polymer and the second polymer are polymers having different hydrophilic properties. That is, the polymer mixed solution prepared in this step is a solution in which two types of polymers are mixed and dissolved.
  • the hydrophilicity of the first polymer is different from that of the second polymer.
  • the hydrophilicity of the skeleton structure itself is the first polymer.
  • the second polymer are different.
  • the hydrophilicity of the side chain of each polymer is different.
  • any skeleton structure may contain a phosphorylcholine group, and the skeleton structures of the first polymer and the second polymer are the same.
  • the skeleton structure may contain a phosphorylcholine group.
  • the first polymer and the second polymer may be a copolymer composed of two or more types of monomers.
  • the first polymer and the second polymer are copolymers, it is sufficient that at least one of the monomers includes a phosphorylcholine group.
  • the hydrophilicity of the first polymer and the second polymer is different if the hydrophilicity of the monomers is different.
  • the hydrophilicity of the first polymer and the second polymer is different if the copolymerization ratio is different.
  • examples of the monomer containing a phosphorylcholine group include 2-methacryloyloxyethyl phosphorylcholine, 2-acryloyloxyethyl phosphorylcholine, 4-methacryloyloxybutylphosphorylcholine, 6 -Methacryloyloxyhexyl phosphorylcholine, 10-methacryloyloxydecyl phosphorylcholine, ⁇ -methacryloyloxypoly (ethylene oxide) ethyl phosphorylcholine, 4-styryloxybutyl phosphorylcholine, and the like.
  • 2-methacryloyloxyethyl phosphorylcholine (hereinafter referred to as “MPC”) is particularly preferable from the viewpoint of polymerization characteristics and availability of raw material compounds.
  • Examples of other monomers constituting the copolymer together with a monomer containing a phosphorylcholine group include methacrylic acid esters and methacrylamides. Among these, methacrylic acid esters are preferable.
  • methacrylic acid ester examples include ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, pentyl methacrylate, hexyl methacrylate, heptyl methacrylate, octyl methacrylate, tridecyl methacrylate, 2-ethoxyethyl methacrylate. , 2-ethoxypropyl methacrylate, 2-phenoxyethyl methacrylate, 2-butoxyethyl methacrylate, and the like.
  • n-butyl methacrylate n-butyl methacrylate, BMA
  • BMA is particularly preferable.
  • the first polymer and the second polymer are both copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) and butyl methacrylate (BMA) represented by the following general formula ( Hereinafter, it is abbreviated as “PMB”.
  • MPC has a chemical structure as shown in the following structural formula, and is a polymerizable monomer having a phosphorylcholine group and a polymerizable methacrylic acid unit.
  • MPC is, for example, made by reacting 2-hydroxyethyl methacrylate, triethylamine, 2-chloro-2-oxo-1,3,2-dioxaphosphorane to give 2- (2-oxo-1,3,2-dioxa
  • OPEMA phosphoroyloxy ethyl methacrylate
  • this OPEMA can be obtained by reaction in an acetonitrile solution of anhydrous trimethylamine.
  • BMA is a polymerizable monomer having a chemical structure as shown in the following structural formula.
  • the first polymer and the second polymer of the present embodiment are composed of the same PMB monomer, and the first polymer and the second polymer have different copolymerization ratios. And the second polymer have different hydrophilicity.
  • the copolymerization ratio (MPC: BMA) of PMB (first PMB) as the first polymer is 9: 1 to 6: 4 in molar ratio.
  • the copolymerization ratio (MPC: BMA) of PMB (second PMB) as the second polymer is from 3: 7 to 1: 9 in molar ratio.
  • the average molecular weight of the first PMB is 5,000 to 300,000, preferably 10,000 to 300,000.
  • the average molecular weight of the second PMB is 300,000 or more, preferably 300,000 to 5,000,000.
  • the first PMB has a high MPC ratio relative to BMA
  • the second PMB has a low MPC ratio relative to BMA. Since the hydrophilicity of MPC and BMA as monomers is higher in MPC than in BMA, the first PMB is a copolymer having higher hydrophilicity than the second PMB in the first PMB and the second PMB.
  • the copolymerization ratio (MPC: BMA) of the first PMB the larger the ratio of MPC, the more hydrophilic the copolymer.
  • the copolymerization ratio (MPC: BMA) of the second PMB the larger the BMA ratio, the higher the hydrophobicity (the lower the hydrophilicity).
  • a copolymer having a copolymerization ratio (MPC: BMA) of 8: 2 in molar ratio (hereinafter referred to as PMB80) is preferable.
  • the production of the copolymer of the first PMB and the second PMB is obtained by reacting MPC and BMA in a solvent in the presence of a polymerization initiator.
  • MPC and BMA may be dissolved, and specifically, water, methanol, ethanol, propanol, t-butanol, dimethylformamide, tetrahydrofuran, chloroform, and a mixture thereof.
  • the polymerization initiator any radical initiator that is generally used may be used.
  • Aliphatic azo compounds such as 2,2′-azobisisobutyronitrile (AIBN) and azobismaleonitrile, and peroxides may be used.
  • organic peroxides such as benzoyl, lauroyl peroxide, ammonium persulfate, and potassium persulfate.
  • the input amounts (ratio) of MPC and BMA dissolved in the solvent may be appropriately adjusted according to the copolymerization ratio of the first PMB and the second PMB.
  • the organic solvent used in the polymer mixed solution may be any solvent that dissolves both the first polymer and the second polymer having different hydrophilicities. Specifically, ethanol, methanol, isopropyl alcohol , Acetone and mixtures thereof. Of these, ethanol is preferred.
  • the first PMB that is the first polymer includes a plurality of types of copolymers within the range of the copolymerization ratio (MPC: BMA) of 9: 1 to 6: 4 (molar ratio)
  • the second PMB which is a polymer, contains a plurality of types of copolymers within a copolymerization ratio (MPC: BMA) in the range of 3: 7 to 1: 9 (molar ratio).
  • the combination of the two types of polymers dissolved in the polymer mixed solution is a combination of one first PMB selected from the range where the polymerization ratio (MPC: BMA) is 9: 1 to 6: 4 (molar ratio).
  • the polymerization ratio (MPC: BMA) is a combination with one second PMB selected from the range of 3: 7 to 1: 9 (molar ratio), and there are a plurality of combinations.
  • the polymer mixed solution prepared in the present embodiment is a solution in which at least one combination of the first PMB and the second PMB is dissolved in an organic solvent.
  • the ratio (P1 / P2) of the first polymer content (P1) to the second polymer content (P2) is 1/9 to 4/6.
  • the ratio of the PMB80 content to the PMB30 content is 1/9 to 3 in weight ratio.
  • / 7 is preferable, and more preferably 1/9 to 2/8.
  • the concentration of the mixture of the first polymer and the second polymer in the polymer mixed solution is not particularly limited because it does not affect the wettability.
  • the weight% may be used.
  • the polymer mixed solution thus prepared is used in the next film formation step.
  • Step A3 Film Forming Step Next, in the film forming step of Step A3, a method of drying after immersing the substrate in the prepared polymer mixed solution, a method of spraying the prepared polymer mixed solution, or a spin Using a coating method, a hydrophilic film containing the first polymer and the second polymer is formed on at least a part of the surface of the substrate.
  • a hydrophilic film can be formed on at least a part of the surface of the substrate by a simple processing operation of dipping and drying, so-called dipping.
  • the hydrophilic film formed in this step contains the first polymer and the second polymer dissolved in the polymer mixed solution.
  • the hydrophilic film contains PMB which is the first polymer and the second polymer
  • the phospholipid polar group derived from MPC is present on the surface of the medical device, so that it becomes similar to the cell membrane.
  • biological components such as proteins and blood cells
  • the hydrophilic film can produce a medical device having excellent initial wettability and high stability in the use environment. it can.
  • the stability in the present invention refers to the difficulty of elution of the polymer constituting the film into water or an aqueous solvent when the medical device is immersed in water or an aqueous medium. Is expensive.
  • the hydrophilic film is composed of only one kind of polymer having relatively high hydrophilicity, for example, PMB80, the initial water wettability is sufficiently high, but the stability is low, so that the polymer is eluted in water. Part or all of the film is lost.
  • the medical device is a testing instrument such as a well plate or a diagnostic instrument such as a microchip, a polymer is mixed in the sample liquid, which affects the test result or the diagnostic result.
  • the hydrophilic film is composed of only one kind of polymer having relatively low hydrophilicity, for example, PMB30, the stability is high, but the initial water wettability is inferior, so that the applied medical device is limited.
  • the so-called two-layer type hydrophilic film is formed by forming the second film on the surface, the surface layer is made of PMB30, so the initial water wettability is not improved.
  • the surface layer consists of PMB80 when the order of immersion is changed and a 2 layer type hydrophilic membrane
  • a hydrophilic film is formed by dipping using a mixed solution containing the first polymer and the second polymer, the formed film is a one-layer type, and the initial wettability is improved.
  • a medical device having excellent and high stability can be obtained.
  • a highly hydrophilic one kind of polymer for example, PMB80
  • a mixed solution containing the first polymer and the second polymer is used without using a mixed solution containing the first polymer and the second polymer.
  • the immersion conditions may be appropriately determined according to the specifications of the medical device to be manufactured, such as the size of the substrate, the shape of the substrate, the size of the surface portion on which the hydrophilic coating is formed, and the thickness of the hydrophilic coating.
  • Examples of the immersion conditions include a time for immersing the base material in the polymer mixed solution, a liquid temperature of the polymer mixed solution, and the like.
  • the mixed solution containing the organic solvent is attached to the surface of the base material. Therefore, the first polymer and the second polymer are attached to the surface of the base material.
  • the polymer further contains an organic solvent. Drying is performed to remove the organic solvent.
  • Drying may be an operation that can remove the organic solvent without affecting the first polymer and the second polymer. Air drying in which the substrate after immersion is allowed to stand under normal temperature and normal pressure, and high temperature is applied to the substrate after immersion. It may be hot air drying by blowing hot air, vacuum drying by leaving the substrate in a vacuum atmosphere at room temperature, or the like.
  • the drying conditions may be appropriately determined according to the specifications of the medical device to be manufactured in the same manner as the immersion conditions.
  • the manufacturing method of this embodiment may have further the sterilization process which sterilizes the base material in which the hydrophilic membrane
  • the sterilization process of step A4 for example, an irradiation process of irradiating a base material on which a hydrophilic film is formed with high energy rays, a gas plasma process in which gas plasma is brought into contact with the base material on which a hydrophilic film is formed, There is.
  • the medical device obtained can be sterilized by irradiation treatment or gas plasma treatment, and the initial wettability can be further improved.
  • the high energy beam to be irradiated is not limited as long as it is used for the sterilization process.
  • gamma rays, electron beams, ultraviolet rays, and the like can be used.
  • the absorbed dose is preferably 20 to 100 kGy, for example.
  • the irradiation amount is preferably set to 8,000 to 100,000 mJ / cm 2 , for example.
  • the gas plasma to be contacted is not limited as long as it is used for the sterilization treatment.
  • hydrogen peroxide gas plasma can be used.
  • Example 1 Preparation process In the preparation process, it is a flat plate shape of 10 mm long ⁇ 10 mm wide ⁇ 3 mm thick, a substrate made of polycarbonate (PC), a substrate made of cyclic polyolefin (COP), a substrate made of silicon (Si), A base material made of cross-linked polyethylene (CLPE), a base material made of cobalt chromium alloy (CCM), a base material made of titanium (Ti), and a base material made of stainless steel (SUS) were prepared.
  • PC polycarbonate
  • COP cyclic polyolefin
  • Si silicon
  • a base material made of cross-linked polyethylene (CLPE) a base material made of cobalt chromium alloy (CCM), a base material made of titanium (Ti), and a base material made of stainless steel (SUS) were prepared.
  • CLPE cross-linked polyethylene
  • CCM cobalt chromium alloy
  • Ti titanium
  • SUS stainless steel
  • a 1st polymer is set to PMB80 (weight average molecular weight 350,000) whose copolymerization ratio (MPC: BMA) is 8: 2 by molar ratio, and a 2nd polymer is used.
  • the copolymerization ratio (MPC: BMA) was PMB30 (weight average molecular weight 200,000) having a molar ratio of 3: 7, and the organic solvent was ethanol.
  • a polymer mixed solution was prepared by dissolving in ethanol so that the mixture concentration of PMB80 and PMB30 was 0.2% by weight. The mixture was mixed so that the content ratio (PMB80 / PMB30) was 1/9 by weight.
  • a polymer solution was prepared by dissolving only PMB30 in ethanol so that the concentration of PMB30 was 0.2% by weight without using PMB80.
  • each base material is immersed in the polymer mixed solution of an Example for 10 seconds, and after repeating this twice, it is dried by vacuum drying, and a hydrophilic film is formed on the surface of each base material. And a test piece of an example was obtained.
  • each substrate was immersed in the polymer solution of the comparative example for 10 seconds, and this was repeated twice, followed by drying by vacuum drying to form a hydrophilic film on the surface of each substrate.
  • the water wettability of the test piece surface was evaluated by measuring the contact angle when pure water was dropped on the surface of the hydrophilic film of each test piece of the example and the comparative example.
  • the static contact angle of water was evaluated by a droplet method using a surface contact angle measuring device (DM300 manufactured by Kyowa Interface Science Co., Ltd.).
  • the measurement of the static surface contact angle by the droplet method was based on ISO 15989 standard, and pure water having a droplet amount of 1 ⁇ L was dropped on the sample surface, and measurement was performed 60 seconds later. The results are shown in the graph of FIG.
  • the test pieces of the examples all showed a smaller contact angle than the test pieces of the comparative examples. That is, it was found that the test piece surface of the example had higher hydrophilicity than the test piece surface of the comparative example, and was excellent in initial wettability.
  • Example 2 Preparatory process In the preparatory process, it is a flat plate shape of 10 mm long ⁇ 10 mm wide ⁇ 3 mm thick, and is composed of a substrate made of polycarbonate (PC), a substrate made of cyclic polyolefin (COP), and a substrate made of stainless steel (SUS). Prepared each.
  • PC polycarbonate
  • COP cyclic polyolefin
  • SUS stainless steel
  • a 1st polymer is set to PMB80 (weight average molecular weight 350,000) whose copolymerization ratio (MPC: BMA) is 8: 2 by molar ratio, and a 2nd polymer is used.
  • the copolymerization ratio (MPC: BMA) was PMB30 (weight average molecular weight 200,000) having a molar ratio of 3: 7, and the organic solvent was ethanol.
  • each base material is immersed in each of the three polymer mixed solutions for 10 seconds, and this is repeated twice, followed by drying by vacuum drying, and the surface of each base material is hydrophilic. A film was formed to obtain a test piece of the example.
  • the wettability of the surface of the test piece was evaluated by measuring the contact angle when pure water was dropped onto the surface of the hydrophilic film of each test piece of the example.
  • the static contact angle of water was evaluated by a droplet method using a surface contact angle measuring device (DM300 manufactured by Kyowa Interface Science Co., Ltd.).
  • the measurement of the static surface contact angle by the droplet method was performed 60 seconds after dropping pure water with a droplet amount of 1 ⁇ L on the sample surface in accordance with the ISO 15989 standard. The results are shown in the graph of FIG.
  • the water static contact angle of the test piece of the example is not affected by the concentrations of the first polymer and the second polymer in the polymer mixed solution, and is 0.1 to 0.00. It was found to be constant in the range of 5% by weight.
  • Example 3 Preparatory process In the preparatory process, it is a flat plate shape of 10 mm long ⁇ 10 mm wide ⁇ 3 mm thick, and is composed of a substrate made of polycarbonate (PC), a substrate made of cyclic polyolefin (COP), and a substrate made of stainless steel (SUS). Prepared each.
  • PC polycarbonate
  • COP cyclic polyolefin
  • SUS stainless steel
  • a 1st polymer is set to PMB80 (weight average molecular weight 350,000) whose copolymerization ratio (MPC: BMA) is 8: 2 by molar ratio, and a 2nd polymer is used.
  • the copolymerization ratio (MPC: BMA) was PMB30 (weight average molecular weight 200,000) having a molar ratio of 3: 7, and the organic solvent was ethanol.
  • a polymer mixed solution was prepared by dissolving in ethanol so that the mixture concentration of PMB80 and PMB30 was 0.2% by weight. The mixture was mixed so that the content ratio (PMB80 / PMB30) was 1/9 by weight.
  • each base material is immersed in the polymer mixed solution of an Example for 10 seconds, and after repeating this twice, it is dried by vacuum drying, and a hydrophilic film is formed on the surface of each base material. And a non-sterile test piece of the example was obtained.
  • a test specimen and a hydrophilic film are formed in a sterilized example in which a dried test specimen on which a hydrophilic film is formed is irradiated with gamma rays under conditions of an absorbed dose of 25 to 40 kGy.
  • the test piece of the sterilized example which gave the gas plasma process to the test piece after drying was obtained.
  • the wettability of the surface of the test piece was evaluated by measuring the contact angle when pure water was dropped onto the surface of the hydrophilic film of each test piece of the example.
  • the static contact angle of water was evaluated by a droplet method using a surface contact angle measuring device (DM300 manufactured by Kyowa Interface Science Co., Ltd.).
  • the measurement of the static surface contact angle by the droplet method was performed 60 seconds after dropping pure water having a droplet amount of 1 ⁇ L on the sample surface in accordance with the ISO 15989 standard.
  • the results are shown in the graph of FIG. In the graph of FIG. 4, each substrate is shown in the order of non-sterile, gamma sterilization, and gas plasma sterilization from the left.
  • Example 4 Preparatory process
  • the base material which is a plate shape of length 10mm x width 10mm x thickness 3mm and which consists of silicon (Si) was each prepared.
  • a 1st polymer is set to PMB80 (weight average molecular weight 350,000) whose copolymerization ratio (MPC: BMA) is 8: 2 by molar ratio, and a 2nd polymer is used.
  • the copolymerization ratio (MPC: BMA) was PMB30 (weight average molecular weight 200,000) having a molar ratio of 3: 7, and the organic solvent was ethanol.
  • a polymer mixed solution was prepared by dissolving in ethanol so that the mixture concentration of PMB80 and PMB30 was 0.2% by weight. The mixture was mixed so that the content ratio (PMB80 / PMB30) was 1/9 by weight.
  • a polymer solution was prepared by dissolving only PMB30 in ethanol so that the concentration of PMB30 was 0.2% by weight without using PMB80.
  • each base material is immersed in the polymer mixed solution of an Example for 10 seconds, and after repeating this twice, it is dried by vacuum drying, and a hydrophilic film is formed on the surface of each base material. And a test piece of an example was obtained.
  • each substrate was immersed in the polymer solution of the comparative example for 10 seconds, and this was repeated twice, followed by drying by vacuum drying to form a hydrophilic film on the surface of each substrate.
  • the water resistance was evaluated by immersing the test pieces of Examples and Comparative Examples in pure water having a water temperature of 37 ° C., measuring the phosphorus atom concentration as the immersion time passed, and evaluating the change.
  • the phosphorus atom concentration was measured using an XPS analyzer (AXIS-HSi165, manufactured by Shimadzu / KRATOS) with an X-ray source of Mg-K ⁇ ray, an applied voltage of 15 kV, and a photoelectron emission angle of 90 °. The results are shown in the graph of FIG.
  • the concentration of phosphorus atoms did not substantially decrease even when the immersion time elapsed, and a constant concentration was maintained.
  • the concentration of phosphorus atoms was lower than that of the example in the same immersion time, and the concentration of phosphorus atoms also decreased with the passage of immersion time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、容易に高分子皮膜を形成することができ、濡れ性に優れ、高い耐水性を有する医療機器の製造方法に関する。工程A1の準備工程で、基材を準備し、工程A2の調製工程で、ホスホリルコリン基を有する第1重合体および第1重合体と親水性が異なる、ホスホリルコリン基を有する第2重合体を有機溶媒に溶解させて重合体混合溶液を調製する。工程A3の皮膜形成工程で、重合体混合溶液に基材を浸漬させたのち乾燥させて、基材の少なくとも一部の表面に第1重合体および第2重合体を含む親水性皮膜を形成することで、医療機器を製造する。

Description

医療機器の製造方法
 本発明は、医療機器の製造方法に関する。
 ホスホリルコリン基を含有する合成高分子は、生体内の細胞膜と同様の構造を持つため、生体親和性、高潤滑特性、低摩擦特性、タンパク吸着抑制、細胞接着抑制、細菌付着抑制などの様々な優れた特性を持ち、コンタクトレンズ、カテーテル、人工関節等の医療機器や、ウェルプレートなどの検査用医療機器や診断用医療機器等、多くの医療機器の表面へ応用されている。
 ホスホリルコリン基を含有する合成高分子を医療機器の表面へ応用するとき、医療機器が必要とする特性に合わせて、様々なホスホリルコリン基を含有する高分子が用いられる。例えば、特許文献1には、ホスホリルコリン基を含有する高分子の一例である2-メタクリロイルオキシエチルホスホリルコリンと、メタクリル酸エステルの共重合体が記載されている。
 例えば、コンタクトレンズなどの医療機器やウェルプレートなどの検査用医療機器には、比較的穏やかな水環境下においてタンパク質等の吸着を防ぐことを目的として、ホスホリルコリン基を含有する高分子が用いられている。したがって、疎水性のホスホリルコリン基を含有する合成高分子を溶解させた有機溶媒に基材を浸漬したり、疎水性のホスホリルコリン基を含有する合成高分子を溶解させた有機溶媒を基材に噴霧したりしたのち、乾燥して、ホスホリルコリン基を含有する高分子によるコーティングを行っている。
 特許文献2には、薬剤放出ステントのような体内埋め込み型医療機器として、金属基材の表面に、2-メタクリロイルオキシエチルホスホリルコリンからなる高分子などの合成リン脂質成分をスプレー噴霧などでコーティングを行うことが記載されている。
 人工関節には、日常生活において絶えず摺動するような過酷な使用環境において、高い潤滑特性、耐摩耗特性を獲得するために、ホスホリルコリン基を含有する合成高分子が用いられている。前出の浸漬や噴霧などによるコーティングでの表面改質では、ホスホリルコリン基を含有する高分子は基材に物理吸着しているだけなので、生体内においてホスホリルコリン基を含有する高分子が基材から容易に剥離してしまう。したがって、剥離を防止するために、人工関節では、光照射によるグラフト重合によりホスホリルコリン基を含有する合成高分子と基材を共有結合により強固に固着させている。これによりホスホリルコリン基を含有する合成高分子が基材表面を長期間にわたって保護している。また、ホスホリルコリン基を含有する合成高分子の末端が基材と共有結合することで固定されているため、ホスホリルコリン基を含有する合成高分子が高い親水性であっても、生体内に溶出しない。
特開平9-3132号公報 特開2012-46761号公報
 物理吸着によるコーティングで、ホスホリルコリン基を含有する合成高分子の皮膜を基材表面に形成させる方法は、皮膜を容易に形成させることが可能で、かつ、基材の材質や形状に制限がほとんどない。しかし、高い親水性を示すホスホリルコリン基を含有する合成高分子による皮膜は、水に溶解しやすく、耐水性に劣るため、生体内などの水環境下での使用が制限される。一方、疎水性のホスホリルコリン基を含有する合成高分子による皮膜は、皮膜が水和するまでの間、ぬれ性に劣り、ホスホリルコリン基を含有する合成高分子の性能が十分に発現するまでに時間を要する。
 光照射によるグラフト重合で形成した親水性の高いホスホリルコリン基を含有する合成高分子による皮膜は、生体内において瞬時に高い親水性や耐摩耗特性を発現し、また安定してそれらの性能を発揮するが、光照射によるグラフト重合反応の条件などが複雑であり、コーティングをする基材の材質や形状により制限される。
 本発明の目的は、容易にホスホリルコリン基を含有する合成高分子皮膜を形成することができ、生体内において早期に高いぬれ性を発現し、その使用環境下での高い安定性を有する医療機器の製造方法を提供することである。
 本発明は、医療機器の製造方法であって、基材を準備する準備工程と、ホスホリルコリン基を有する第1重合体および該第1重合体と親水性が異なる、ホスホリルコリン基を有する第2重合体を有機溶媒に溶解させて重合体混合溶液を調製する調製工程と、前記重合体混合溶液に前記基材を浸漬させたのち、乾燥させて、該基材の少なくとも一部の表面に該第1重合体および該第2重合体を含む親水性皮膜を形成する皮膜形成工程と、を有することを特徴とする医療機器の製造方法である。
 また本発明は、前記第1重合体および第2重合体は、互いに共重合比が異なる2-メタクリロイルオキシエチルホスホリルコリンとnブチルメタクリレートとの共重合体であることを特徴とする。
 また本発明は、前記第1重合体の2-メタクリロイルオキシエチルホスホリルコリン(MPC)とブチルメタクリレート(BMA)との共重合比(MPC:BMA)がモル比で9:1~6:4であり、前記第2重合体の2-メタクリロイルオキシエチルホスホリルコリン(MPC)とブチルメタクリレート(BMA)との共重合比(MPC:BMA)がモル比で3:7~1:9であることを特徴とする。
 また本発明は、前記第1重合体の平均分子量が5,000~300,000であり、前記第2重合体の平均分子量が300,000以上であることを特徴とする。
 また本発明は、前記重合体混合溶液中の前記第1重合体の含有量(P1)と前記第2重合体の含有量(P2)との比(P1/P2)が、重量比で1/9~4/6であることを特徴とする。
 また本発明は、前記重合体混合溶液中の前記第1重合体と前記第2重合体の含有濃度が0.1~0.5重量%であることを特徴とする。
 また本発明は、前記基材は、生体適合性材料からなることを特徴とする。
 また本発明は、前記親水性皮膜が形成された前記基材に滅菌処理を施す滅菌工程をさらに有することを特徴とする。
 また本発明は、前記滅菌処理が、前記親水性皮膜が形成された前記基材に高エネルギー線を照射する照射処理または前記親水性皮膜が形成された前記基材にガスプラズマを接触させるガスプラズマ処理であることを特徴とする。
 本発明によれば、調製工程で、ホスホリルコリン基を有する第1重合体および第1重合体と親水性が異なる、ホスホリルコリン基を有する第2重合体を有機溶媒に溶解させて重合体混合溶液を調製し、皮膜形成工程で、重合体混合溶液に基材を浸漬させたのち乾燥させて、基材の少なくとも一部の表面に第1重合体および第2重合体を含む親水性皮膜を形成することで、医療機器を製造する。
 上記のような第1重合体と第2重合体とを混合して溶解させた重合体混合溶液に基材を浸漬させて乾燥するだけで、容易に親水性皮膜を形成することができ、形成された親水性皮膜が、初期の濡れ性に優れ、使用環境下における高い安定性を有する。
 また本発明によれば、ホスホリルコリン基を有する第1重合体およびホスホリルコリン基を有する第2重合体として、互いに共重合比が異なる2-メタクリロイルオキシエチルホスホリルコリンとnブチルメタクリレートとの共重合体を用いることが好ましい。
 また本発明によれば、第1重合体の2-メタクリロイルオキシエチルホスホリルコリン(MPC)とブチルメタクリレート(BMA)との共重合比(MPC:BMA)をモル比で9:1~6:4(平均分子量5,000~300,000)とし、第2重合体の2-メ
タクリロイルオキシエチルホスホリルコリン(MPC)とnブチルメタクリレート(BMA)との共重合比(MPC:BMA)をモル比で3:7~1:9(平均分子量300,000以上)とすることが好ましい。
 また本発明によれば、第1重合体の平均分子量を5,000~300,000とし、第2重合体の平均分子量を300,000以上とすることが好ましい。
 また本発明によれば、重合体混合溶液中の第1重合体の含有量(P1)と第2重合体の含有量(P2)との比(P1/P2)を、重量比で1/9~4/6とすることが好ましい。
 また本発明によれば、重合体混合溶液中の第1重合体と第2重合体の含有濃度は0.1~0.5重量%とすることが好ましい。
 また本発明によれば、基材は、生体適合性材料からなるものであることが好ましい。
 また本発明によれば、滅菌工程によって、親水性皮膜が形成された基材に滅菌処理を施すことが好ましい。
 また本発明によれば、滅菌処理として、親水性皮膜が形成された基材に高エネルギー線照射する照射処理、親水性皮膜が形成された基材にガスプラズマを接触させるガスプラズマ処理を用いることができる。
 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本発明の実施形態である医療機器の製造方法を示す工程図である。 実施例および比較例の水の接触角の測定結果を示すグラフである。 実施例において重合体濃度による水の接触角変化を示すグラフである。 実施例において各種滅菌処理後の水の接触角の測定結果を示すグラフである。 実施例および比較例のリン原子濃度の変化を示すグラフである。
 本発明の製造方法によって製造される医療機器としては、直接生体成分と接触して用いる医療機器であり、例えば人工血管、人工弁、血液バッグ、血液透析膜、カテーテル、ステント、カプセル化材料、酵素電極、眼内レンズ、コンタクトレンズ、人工骨、細胞培養プレート、診断用マイクロチップなどが挙げられるが、これらに限定されない。
 以下、図面を参考にして本発明の好適な実施形態を詳細に説明する。
 図1は、本発明の実施形態である医療機器の製造方法を示す工程図である。
 本実施形態の製造方法は、
(工程A1)準備工程
(工程A2)調製工程
(工程A3)皮膜形成工程
の3つの工程からなる。
(工程A1)準備工程
 工程A1の準備工程では、医療機器の基材を準備する工程である。基材は、製造しようとする医療機器に応じて適宜材料、形状などを選択すればよい。特に、医療機器が、体内に挿入される、もしくは、埋め込まれる機器などである場合には、基材は、生体適合性材料からなるものとすればよい。
 医療機器が、生体適合性を要求されない機器の場合、たとえば検査用医療機器や診断用医療機器などの場合は、基材について特に制限はなく、医療機器に要求される特性に応じた材料を用いればよい。
 本実施形態では、基材材料として、たとえばチタン、ステンレス、コバルトクロム合金等の金属材料、アルミナ、ジルコニア、ハイドロキシアパタイト等のセラミック材料、シリコーン樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリアクリロニトリル、ポリスチレン、ポリメタクリル酸メチル、ポリオキシメチレン、ポリイソプレン、ポリL乳酸、ポリカーボネート、ポリアミド、ポリスルホン、ポリウレタン、ポリエーテルエーテルケトン、ポリパリレン、環状ポリオレフィン等の高分子材料などを用いることができる。
 基材の形状は、基材を構成する材料に応じて、成形および切削などの加工を施せばよい。
 基材は、ホスホリルコリン基を有する重合体が含まれる有機溶剤とのなじみを向上させるために、少なくとも皮膜を形成すべき表面に大気プラズマ、酸素プラズマなどをあらかじめ照射してもよい。
(工程A2)調製工程
 次に、工程A2の調製工程では、ホスホリルコリン基を有する第1重合体およびホスホリルコリン基を有する第2重合体を有機溶剤に溶解させて重合体混合溶液を調製する。第1重合体と第2重合体とは、互いに親水性が異なる重合体である。すなわち、本工程で調整する重合体混合溶液は、2種類の重合体を混合して溶解させた溶液である。
 第1重合体と第2重合体の親水性が異なるとは、第1重合体と第2重合体の骨格(主鎖)構造が異なる場合には、骨格構造自体の親水性が第1重合体と第2重合体とで異なっているということである。第1重合体と第2重合体の骨格構造が同じ場合には、それぞれの重合体の側鎖の親水性が異なっているということである。
 第1重合体と第2重合体の骨格(主鎖)構造が異なる場合、いずれの骨格構造にもホスホリルコリン基が含まれていればよく、第1重合体と第2重合体の骨格構造が同じ場合、当該骨格構造にホスホリルコリン基が含まれていればよい。
 第1重合体および第2重合体は、2種以上のモノマーからなる共重合体であってもよい。第1重合体および第2重合体が、共重合体である場合、少なくともいずれか1種のモノマーがホスホリルコリン基を含んでいればよい。
 第1重合体と第2重合体とで、共重合体を構成するモノマーが異なる場合、モノマーの親水性が異なれば、第1重合体と第2重合体の親水性は異なる。第1重合体と第2重合体とで、共重合体を構成するモノマーが同じ場合、共重合比が異なれば、第1重合体と第2重合体の親水性は異なる。
 第1重合体および第2重合体が、共重合体である場合、ホスホリルコリン基を含むモノマーとしては、たとえば、2-メタクリロイルオキシエチルホスホリルコリン、2-アクリロイルオキシエチルホスホリルコリン、4-メタクリロイルオキシブチルホスホリルコリン、6-メタクリロイルオキシヘキシルホスホリルコリン、10-メタクリロイルオキシデシルホスホリルコリン、ω-メタクリロイルオキシポリ(エチレンオキシド)エチルホスホリルコリン、4-スチリルオキシブチルホスホリルコリンなどがある。これらの中でも、重合特性と原料化合物の入手の点から2-メタクリロイルオキシエチルホスホリルコリン(以下では、「MPC」という)が特に好ましい。
 ホスホリルコリン基を含むモノマーとともに共重合体を構成する他のモノマーとしては、たとえば、メタクリル酸エステル、メタクリルアミドなどがある。これらの中でもメタクリル酸エステルが好ましい。
 また、メタクリル酸エステルとしては、たとえば、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸ペンチル、メタクリル酸ヘキシル、メタクリル酸ヘプチル、メタクリル酸オクチル、メタクリル酸トリデシル、メタクリル酸2-エトキシエチル、メタクリル酸2-エトキシプロピル、メタクリル酸2-フェノキシエチル、メタクリル酸2-ブトキシエチルなどがある。これらの中でもメタクリル酸n-ブチル(nブチルメタクリレート、BMA)が特に好ましい。
 以下の本実施形態では、第1重合体および第2重合体は、いずれも下記の一般式で表される2-メタクリロイルオキシエチルホスホリルコリン(MPC)とブチルメタクリレート(BMA)との共重合体で(以下では、「PMB」と略称する。)ある。
Figure JPOXMLDOC01-appb-C000001
(ただし、mは0.1~0.9であり、nは0.1~0.9であり、m+n=1.0である。)
MPCは、下記構造式に示すような化学構造を有しており、ホスホリルコリン基と、重合性のメタクリル酸ユニットとを有する重合性モノマーである。
Figure JPOXMLDOC01-appb-C000002
 MPCは、例えば、2-ヒドロキシエチルメタクリレート、トリエチルアミン、2-クロロ-2-オキソ-1,3,2-ジオキサホスホランを反応させ、2-(2-オキソ-1,3,2-ジオキサホスホロイルオキシ)エチルメタクリレート(OPEMA)を得たのち、このOPEMAを無水トリメチルアミンのアセトニトリル溶液中で反応させて得ることができる。
 また、BMAは、下記構造式に示すような化学構造を有する重合性モノマーである。
Figure JPOXMLDOC01-appb-C000003
 本実施形態の第1重合体と第2重合体とは、構成するモノマーが同じPMBであり、第1重合体と第2重合体とで、共重合比を異ならせることによって、第1重合体と第2重合体との親水性が異なるようにしている。
 第1重合体であるPMB(第1PMB)の共重合比(MPC:BMA)は、モル比で9:1~6:4である。一方、第2重合体であるPMB(第2PMB)の共重合比(MPC:BMA)は、モル比で3:7~1:9である。
 このような第1PMBの平均分子量は、5,000~300,000であり、好ましくは、10,000~300,000である。また、第2PMBの平均分子量は、300,000以上であり、好ましくは、300,000~5,000,000である。
 第1PMBは、BMAに対してMPCの比率が高く、第2PMBは、BMAに対してMPCの比率が低い。MPCとBMAのモノマーとしての親水性は、MPCのほうがBMAよりも高いので、第1PMBと第2PMBとでは、第1PMBのほうが第2PMBよりも親水性が高い共重合体である。また、第1PMBの共重合比(MPC:BMA)において、MPCの比率が大きいほど、より親水性が高い共重合体である。第2PMBの共重合比(MPC:BMA)において、BMAの比率が大きいほど、より疎水性が高い(親水性が低い)共重合体である。
 本実施形態で用いられる共重合体である第1PMBとしては、共重合比(MPC:BMA)がモル比で8:2である共重合体(以下では、PMB80という)が好ましく、第2PMBとしては、共重合比(MPC:BMA)がモル比で3:7である共重合体(以下では、PMB30という)が好ましい。
 第1PMBおよび第2PMBの共重合体の製造は、重合開始剤の存在下、MPCとBMAを溶媒中で反応させて得られる。反応場となる溶媒としては、MPCおよびBMAが溶解すればよく、具体的には水、メタノール、エタノール、プロパノール、t-ブタノール、ジメチルホルムアミド、テトラヒドロフラン、クロロホルムおよびこれらの混合物等である。重合開始剤としては、一般に用いられるラジカル開始剤ならばいずれを用いてもよく、2,2’-アゾビスイソブチロニトリル(AIBN)、アゾビスマレノニトリル等の脂肪族アゾ化合物や、過酸化ベンゾイル、過酸化ラウロイル、過硫酸アンモニウム、過硫酸カリウム等の有機過酸化物などがある。
 第1PMBと第2PMBの共重合比を異ならせるためには、溶媒に溶解させるMPCとBMAのそれぞれの投入量(比率)を、第1PMBと第2PMBの共重合比に応じて適宜調整すればよい。
 本工程では、上記のようにして得られた親水性が異なる2種の重合体、本実施形態では、共重合比が互いに異なる第1PMBと第2PMBとを、有機溶媒に溶解させることで重合体混合溶液を調製する。
 重合体混合溶液に用いられる有機溶媒としては、親水性が異なる第1重合体と第2重合体とがいずれも溶解するような溶媒であればよく、具体的には、エタノール、メタノール、イソプロピルアルコール、アセトンおよびこれらの混合物等である。これらの中でもエタノールが好ましい。
 上記のように、第1重合体である第1PMBは、共重合比(MPC:BMA)が9:1~6:4(モル比)の範囲内で複数種類の共重合体を含み、第2重合体である第2PMBは、共重合比(MPC:BMA)が3:7~1:9(モル比)の範囲内で複数種類の共重合体を含んでいる。重合体混合溶液に溶解される2種の重合体の組み合わせは、重合比(MPC:BMA)が9:1~6:4(モル比)の範囲から選ばれた1種の第1PMBと、共重合比(MPC:BMA)が3:7~1:9(モル比)の範囲から選ばれた1種の第2PMBとの組み合わせであり、複数の組み合わせがある。
 本実施形態で調製される重合体混合溶液は、これら複数の組み合わせのうち、少なくとも1つの組み合わせである第1PMBと第2PMBとが、有機溶媒に溶解されたものである。
 本工程で調製される重合体混合溶液は、第1重合体の含有量(P1)と第2重合体の含有量(P2)との比(P1/P2)が、重量比で1/9~4/6である。
 特に、第1重合体がPMB80であり、第2重合体がPMB30である組み合わせの場合、PMB80の含有量とPMB30の含有量との比(PMB80/PMB30)は、重量比で1/9~3/7が好ましく、より好ましくは、1/9~2/8である。
 本実施形態において、重合体混合溶液中の、第1重合体および第2重合体の混合物の濃度は、濡れ性に影響を与えないので、特に限定されないが、たとえば、0.1~0.5重量%とすればよい。
 このようにして調製された重合体混合溶液は、次の皮膜形成工程で使用される。
(工程A3)皮膜形成工程
 次に、工程A3の皮膜形成工程では、調製された重合体混合溶液に基材を浸漬させたのち乾燥させる方法、調製された重合体混合溶液を噴霧する方法またはスピンコーティング法を用いて、基材の少なくとも一部の表面に第1重合体および第2重合体を含む親水性皮膜を形成する。
 本工程では、浸漬および乾燥という簡単な処理操作、いわゆるディッピングによって基材の少なくとも一部の表面に親水性皮膜を形成することができる。本工程で形成された親水性皮膜には、重合体混合溶液に溶解されていた第1重合体と第2重合体とが含まれている。
 親水性皮膜が第1重合体および第2重合体であるPMBを含むことにより、医療機器の表面に、MPC由来のリン脂質極性基が存在するため、細胞膜類似となる。このような医療機器の表面には、タンパク質や血球などの生体成分の吸着が極めて少なく、また血栓形成を誘引する血小板の活性化を抑制することができるという効果もある。
 さらに、親水性皮膜が、親水性が異なる2種の、ホスホリルコリン基を有する重合体を含むことにより、初期の水濡れ性に優れ、使用環境下における高い安定性を有する医療機器を製造することができる。
 本発明における安定性とは、水または水性媒体中に医療機器を浸漬させたときに、皮膜を構成する重合体の水または水性溶媒への溶出のし難さであり、溶出し難いほど安定性が高い。
 親水性皮膜が、比較的親水性の高い1種の重合体、たとえばPMB80のみで構成される場合、初期の水濡れ性は十分に高いが、安定性が低いので、水中に重合体が溶出して皮膜の一部または全部が失われる。また、医療機器が、ウェルプレートなどの検査用器具やマイクロチップなどの診断用器具である場合、検体液中に重合体が混入し、検査結果または診断結果に影響を及ぼしてしまう。
 親水性被膜が、比較的親水性の低い1種の重合体、たとえばPMB30のみで構成される場合安定性は高いが、初期の水濡れ性に劣るので、応用される医療機器が限定される。
 さらに、本発明のように第1重合体と第2重合体とを含む混合溶液を用いず、親水性の高い1種の重合体(たとえばPMB80)のみを溶解させた第1溶液と、親水性の低い1種の重合体(たとえばPMB30)のみを溶解させた第2溶液とをそれぞれ調製し、第1溶液に浸漬させて第1皮膜を形成したのち第2溶液に浸漬させて第1皮膜上に第2皮膜を形成していわゆる2層型の親水性皮膜を形成した場合、表面層がPMB30からなるので、初期の水濡れ性は改善されない。また、浸漬の順序を入れ替えて、2層型の親水性皮膜を形成した場合、表面層がPMB80からなるので、表面層が水中に溶出する問題が残る。
 これに対して、第1重合体と第2重合体とを含む混合溶液を用いて、ディッピングによって親水性皮膜を形成した場合、形成される皮膜は1層型であり、初期の水濡れ性に優れ、高い安定性を有する医療機器が得られる。ただし、この1層型の第1皮膜上を形成させたのちであれば、第1重合体と第2重合体とを含む混合溶液を用いず、親水性の高い1種の重合体(たとえばPMB80)のみを溶解させた溶液による第2皮膜を形成していわゆる2層型の親水性を高めた皮膜を作製してもよい。
 浸漬条件は、基材の大きさ、基材の形状、親水性皮膜を形成する表面部分の大きさ、親水性皮膜の厚みなど製造すべき医療機器の仕様に従い、適宜決定すればよい。浸漬条件としては、たとえば、基材を重合体混合溶液に浸漬させる時間、重合体混合溶液の液温などである。
 基材を重合体混合溶液に浸漬させた直後の状態では、基材の表面には、有機溶媒を含む混合溶液が付着した状態であるので、基材の表面には第1重合体と第2重合体にさらに有機溶媒を含んだ状態である。有機溶媒を除去するために、乾燥を行う。
 乾燥は、第1重合体と第2重合体に影響を与えずに有機溶媒を除去できる操作であればよく、常温常圧下に浸漬後の基材を放置する風乾、浸漬後の基材に高温の熱風を吹き付ける熱風乾燥、常温下、真空雰囲気内に基材を放置する真空乾燥などであってもよい。
 乾燥条件も浸漬条件と同様に製造すべき医療機器の仕様に従い、適宜決定すればよい。
 このような乾燥を経て、基材表面に第1重合体と第2重合体とを含む親水性皮膜が形成された医療機器が製造される。
(工程A4)滅菌工程
 本実施形態の製造方法は、さらに、工程A4として、親水性皮膜が形成された基材に滅菌処理を施す滅菌工程を有していてもよい。工程A4の滅菌工程では、滅菌処理として、たとえば親水性皮膜が形成された基材に高エネルギー線を照射する照射処理、親水性皮膜が形成された基材にガスプラズマを接触させるガスプラズマ処理などがある。
 照射処理またはガスプラズマ処理によって、得られる医療機器に滅菌処理を施すことができるとともに、さらに初期の濡れ性を向上させることができる。
 照射処理において、照射する高エネルギー線は、滅菌処理に用いられるものであれば、限定されないが、たとえば、ガンマ線、電子線、紫外線などを用いることができる。ガンマ線または電子線を照射する場合、その吸収線量は、たとえば20~100kGyとすることが好ましい。紫外線を照射する場合、その照射量は、たとえば8,000~100,000mJ/cmとすることが好ましい。
 ガスプラズマ処理において、接触させるガスプラズマは、滅菌処理に用いられるものであれば、限定されないが、たとえば、過酸化水素ガスプラズマなどを用いることができる。
(実施例1)
・準備工程
 準備工程では、たて10mm×よこ10mm×厚み3mmの平板形状であり、ポリカーボネート(PC)からなる基材、環状ポリオレフィン(COP)からなる基材、シリコン(Si)からなる基材、クロスリンクポリエチレン(CLPE)からなる基材、コバルトクロム合金(CCM)からなる基材、チタン(Ti)から成る基材およびステンレス鋼(SUS)から成る基材をそれぞれ準備した。
・調製工程
 調整工程では、実施例として、第1重合体を、共重合比(MPC:BMA)がモル比で8:2であるPMB80(重量平均分子量350,000)とし、第2重合体を、共重合比(MPC:BMA)がモル比で3:7であるPMB30(重量平均分子量200,000)とし、有機溶媒をエタノールとした。
 エタノールに、PMB80とPMB30の混合物濃度が0.2重量%となるよう溶解させて重合体混合溶液を調製した。混合物の含有量比(PMB80/PMB30)は、重量比で1/9となるように混合した。
 また、比較例として、PMB80を用いず、PMB30のみを、エタノールに、PMB30の濃度が0.2重量%となるように溶解させて重合体溶液を調製した。
・皮膜形成工程
 皮膜形成工程では、実施例の重合体混合溶液に、各基材を10秒間浸漬し、これを2回繰り返したのち、真空乾燥によって乾燥させ、各基材の表面に親水性皮膜を形成し、実施例の試験片を得た。また、比較例の重合体溶液に各基材を10秒間浸漬し、これを2回繰り返したのち、真空乾燥によって乾燥させ、各基材の表面に親水性皮膜を形成し、比較例の試験片を得た。
 試験片表面の水濡れ性は、実施例および比較例の各試験片の親水性皮膜の表面に純水を滴下したときの接触角を測定することで評価した。水の静的接触角は、表面接触角測定装置(協和界面科学社製 DM300)を用い、液滴法により評価した。液滴法による静的表面接触角の測定は、ISO15989規格に準拠し、液滴量1μLの純水を試料表面に滴下し、60秒後に測定した。結果を図2のグラフに示す。
 図2からわかるように、実施例の試験片は、比較例の試験片に比べていずれも小さな接触角を示した。すなわち、実施例の試験片表面は、比較例の試験片表面よりも親水性が高く、初期の濡れ性に優れていることがわかった。
(実施例2)
・準備工程
 準備工程では、たて10mm×よこ10mm×厚み3mmの平板形状であり、ポリカーボネート(PC)からなる基材、環状ポリオレフィン(COP)からなる基材およびステンレス鋼(SUS)から成る基材をそれぞれ準備した。
・調製工程
 調整工程では、実施例として、第1重合体を、共重合比(MPC:BMA)がモル比で8:2であるPMB80(重量平均分子量350,000)とし、第2重合体を、共重合比(MPC:BMA)がモル比で3:7であるPMB30(重量平均分子量200,000)とし、有機溶媒をエタノールとした。
 エタノールに、PMB80とPMB30の混合物濃度が0.1重量%、0.2重量%、0.5重量%となるよう溶解させて3種の重合体混合溶液を調製した。混合物の含有量比(PMB80/PMB30)は、重量比で1/9となるように混合した。
・皮膜形成工程
 皮膜形成工程では、3種の重合体混合溶液それぞれに、各基材を10秒間浸漬し、これを2回繰り返したのち、真空乾燥によって乾燥させ、各基材の表面に親水性皮膜を形成し、実施例の試験片を得た。
 試験片表面の濡れ性は、実施例の各試験片の親水性皮膜の表面に純水を滴下したときの接触角を測定することで評価した。水の静的接触角は、表面接触角測定装置(協和界面科学社製 DM300)を用い、液滴法により評価した。液滴法による静的表面接触角の測定は、ISO15989規格に準拠し、液滴量1μLの純水を試料表面に滴下して、60秒後に測定した。結果を図3のグラフに示す。
 図3からわかるように、実施例の試験片の水の静的接触角は、重合体混合溶液の第1重合体および第2重合体の濃度には影響を受けず、0.1~0.5重量%の範囲で一定であることがわかった。
(実施例3)
・準備工程
 準備工程では、たて10mm×よこ10mm×厚み3mmの平板形状であり、ポリカーボネート(PC)からなる基材、環状ポリオレフィン(COP)からなる基材およびステンレス鋼(SUS)から成る基材をそれぞれ準備した。
・調製工程
 調整工程では、実施例として、第1重合体を、共重合比(MPC:BMA)がモル比で8:2であるPMB80(重量平均分子量350,000)とし、第2重合体を、共重合比(MPC:BMA)がモル比で3:7であるPMB30(重量平均分子量200,000)とし、有機溶媒をエタノールとした。
 エタノールに、PMB80とPMB30の混合物濃度が0.2重量%となるよう溶解させて重合体混合溶液を調製した。混合物の含有量比(PMB80/PMB30)は、重量比で1/9となるように混合した。
・皮膜形成工程
 皮膜形成工程では、実施例の重合体混合溶液に、各基材を10秒間浸漬し、これを2回繰り返したのち、真空乾燥によって乾燥させ、各基材の表面に親水性皮膜を形成し、未滅菌の実施例の試験片を得た。
・滅菌工程
 滅菌工程では、親水性皮膜が形成された乾燥後の試験片に吸収線量25~40kGyの条件でガンマ線を照射する照射処理を施した滅菌済み実施例の試験片および親水性皮膜が形成された乾燥後の試験片にガスプラズマ処理を施した滅菌済み実施例の試験片を得た。
 試験片表面の濡れ性は、実施例の各試験片の親水性皮膜の表面に純水を滴下したときの接触角を測定することで評価した。水の静的接触角は、表面接触角測定装置(協和界面科学社製 DM300)を用い、液滴法により評価した。液滴法による静的表面接触角の測定は、ISO15989規格に準拠し、液滴量1μLの純水を試料表面に滴下して60秒後に測定した。結果を図4のグラフに示す。図4のグラフにおいて、基材ごとに左から未滅菌、ガンマ線滅菌、ガスプラズマ滅菌の順に示している。
 図4からわかるように、実施例の試験片の水の静的接触角は、いずれの基材においてもガンマ線滅菌およびガスプラズマ滅菌を施すことで未滅菌のものよりも低くなることがわかった。すなわち、ガンマ線滅菌のように高エネルギー線を照射したり、ガスプラズマ滅菌のようにガスプラズマを接触させることで、照射前よりも初期の水濡れ性が優れることがわかった。
(実施例4)
・準備工程
 準備工程では、たて10mm×よこ10mm×厚み3mmの平板形状であり、シリコン(Si)から成る基材をそれぞれ準備した。
・調製工程
 調整工程では、実施例として、第1重合体を、共重合比(MPC:BMA)がモル比で8:2であるPMB80(重量平均分子量350,000)とし、第2重合体を、共重合比(MPC:BMA)がモル比で3:7であるPMB30(重量平均分子量200,000)とし、有機溶媒をエタノールとした。
 エタノールに、PMB80とPMB30の混合物濃度が0.2重量%となるよう溶解させて重合体混合溶液を調製した。混合物の含有量比(PMB80/PMB30)は、重量比で1/9となるように混合した。
 また、比較例として、PMB80を用いず、PMB30のみを、エタノールに、PMB30の濃度が0.2重量%となるように溶解させて重合体溶液を調製した。
・皮膜形成工程
 皮膜形成工程では、実施例の重合体混合溶液に、各基材を10秒間浸漬し、これを2回繰り返したのち、真空乾燥によって乾燥させ、各基材の表面に親水性皮膜を形成し、実施例の試験片を得た。また、比較例の重合体溶液に各基材を10秒間浸漬し、これを2回繰り返したのち、真空乾燥によって乾燥させ、各基材の表面に親水性皮膜を形成し、比較例の試験片を得た。
 耐水性は、水温37℃の純水に実施例および比較例の試験片を浸漬させ、浸漬時間の経過に従って、リン原子濃度を測定し、その変化によって評価した。
 リン原子濃度は、XPS分析装置(島津/KRATOS製 AXIS-HSi165)を用い、X線源をMg-Kα線、印加電圧を15kV、光電子の放出角度を90°として測定した。結果を図5のグラフに示す。
 図5からわかるように、実施例の試験片は、浸漬時間が経過してもリン原子の濃度が殆んど低下せず、一定濃度を維持した。これに対して、比較例の試験片は、同じ浸漬時間において、実施例よりもリン原子の濃度が低く、浸漬時間の経過に伴い、リン原子の濃度も低下した。
 すなわち、実施例では、親水性皮膜からの重合体の溶出は殆んど無かったのに対して、比較例は、親水性皮膜から重合体が溶出し、実施例のほうが水中での安定性に優れていると判断できる。
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のものである。

Claims (9)

  1.  医療機器の製造方法であって、
     基材を準備する準備工程と、
     ホスホリルコリン基を有する第1重合体および該第1重合体と親水性が異なる、ホスホリルコリン基を有する第2重合体を有機溶媒に溶解させて重合体混合溶液を調製する調製工程と、
     前記重合体混合溶液に前記基材を浸漬させたのち乾燥させて、該基材の少なくとも一部の表面に該第1重合体および該第2重合体を含む親水性皮膜を形成する皮膜形成工程と、を有ることを特徴とする医療機器の製造方法。
  2.  前記第1重合体および前記第2重合体は、互いに共重合比が異なる2-メタクリロイルオキシエチルホスホリルコリンとn-ブチルメタクリレートとの共重合体であることを特徴とする請求項1記載の医療機器の製造方法。
  3.  前記第1重合体の2-メタクリロイルオキシエチルホスホリルコリン(MPC)とブチルメタクリレート(BMA)との共重合比(MPC:BMA)がモル比で9:1~6:4であり、前記第2重合体の2-メタクリロイルオキシエチルホスホリルコリン(MPC)とブチルメタクリレート(BMA)との共重合比(MPC:BMA)がモル比で3:7~1:9であることを特徴とする請求項2記載の医療機器の製造方法。
  4.  前記第1重合体の重量平均分子量が5,000~300,000であり、前記第2重合体の重量平均分子量が300,000以上であることを特徴とする請求項2または3記載の医療機器の製造方法。
  5.  前記重合体混合溶液中の前記第1重合体の含有量(P1)と前記第2重合体の含有量(P2)との比(P1/P2)が、重量比で1/9~4/6であることを特徴とする請求項2~4のいずれか1つに記載の医療機器の製造方法。
  6.  前記重合体混合溶液中の前記第1重合体および前記第2重合体の混合物の含有濃度が、0.1~0.5重量%であることを特徴とする請求項2~5のいずれか1つに記載の医療機器の製造方法。
  7.  前記基材は、生体適合性材料からなることを特徴とする請求項1~6のいずれか1つに記載の医療機器の製造方法。
  8.  前記親水性皮膜が形成された前記基材に滅菌処理を施す滅菌工程をさらに有することを特徴とする請求項1~7のいずれか1つに記載の医療機器の製造方法。
  9.  前記滅菌処理が、前記親水性皮膜が形成された前記基材に高エネルギー線を照射する照射処理または前記親水性皮膜が形成された前記基材にガスプラズマを接触させるガスプラズマ処理であることを特徴とする請求項8に記載の医療機器の製造方法。
PCT/JP2017/020370 2016-05-31 2017-05-31 医療機器の製造方法 WO2017209222A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016109556A JP2017213218A (ja) 2016-05-31 2016-05-31 医療機器の製造方法
JP2016-109556 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017209222A1 true WO2017209222A1 (ja) 2017-12-07

Family

ID=60478694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020370 WO2017209222A1 (ja) 2016-05-31 2017-05-31 医療機器の製造方法

Country Status (2)

Country Link
JP (1) JP2017213218A (ja)
WO (1) WO2017209222A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107372A1 (ja) * 2017-11-28 2019-06-06 国立大学法人東京大学 芳香族ポリエーテルケトン基材の表面改質方法
WO2020059592A1 (ja) * 2018-09-18 2020-03-26 日油株式会社 コンタクトレンズ用処理溶液
CN116284548A (zh) * 2023-05-24 2023-06-23 广东工业大学 一种具有多重自翻转的磷酸胆碱四元共聚物及其制备方法和应用
JP7419891B2 (ja) 2020-03-10 2024-01-23 日油株式会社 タンパク質安定化剤を含有するタンパク質含有製剤および臨床検査試薬

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056344A1 (ja) * 2016-09-22 2018-03-29 日油株式会社 2剤式医療機器用コーティング剤
JP7285532B2 (ja) * 2017-11-28 2023-06-02 国立大学法人 東京大学 芳香族ポリエーテルケトン基材の表面改質方法
WO2022054743A1 (ja) * 2020-09-10 2022-03-17 京セラ株式会社 グラフト層の形成方法、複合体の製造方法およびグラフト層を形成するための処理液

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034700A1 (fr) * 1999-11-09 2001-05-17 Nof Corporation Composition pour hydrogel, hydrogel et son utilisation
JP2010059367A (ja) * 2008-09-05 2010-03-18 Univ Of Tokyo 疎水性基材の表面処理方法
JP2010059346A (ja) * 2008-09-05 2010-03-18 Univ Of Tokyo 疎水性ポリマー材料の光表面改質法
WO2010122817A1 (ja) * 2009-04-24 2010-10-28 株式会社ネクスト21 医療用樹脂製製品及び呼吸補助チューブ
JP2014124502A (ja) * 2012-12-27 2014-07-07 Kyocera Medical Corp 人工関節用摺動部材の製造方法および人工関節用摺動部材
JP2015073786A (ja) * 2013-10-10 2015-04-20 京セラメディカル株式会社 抗酸化性人工補綴部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034700A1 (fr) * 1999-11-09 2001-05-17 Nof Corporation Composition pour hydrogel, hydrogel et son utilisation
JP2010059367A (ja) * 2008-09-05 2010-03-18 Univ Of Tokyo 疎水性基材の表面処理方法
JP2010059346A (ja) * 2008-09-05 2010-03-18 Univ Of Tokyo 疎水性ポリマー材料の光表面改質法
WO2010122817A1 (ja) * 2009-04-24 2010-10-28 株式会社ネクスト21 医療用樹脂製製品及び呼吸補助チューブ
JP2014124502A (ja) * 2012-12-27 2014-07-07 Kyocera Medical Corp 人工関節用摺動部材の製造方法および人工関節用摺動部材
JP2015073786A (ja) * 2013-10-10 2015-04-20 京セラメディカル株式会社 抗酸化性人工補綴部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUKAZAWA K ET AL.: "Synthesis of photoreactive phospholipid polymers for use in versatile surface modification of various materials to obtain extreme wettability", ACS APPLIED MATERIALS AND INTERFACES, vol. 5, no. 15, 2013, pages 6832 - 6836, XP055445485, ISSN: 1944-8244 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107372A1 (ja) * 2017-11-28 2019-06-06 国立大学法人東京大学 芳香族ポリエーテルケトン基材の表面改質方法
WO2020059592A1 (ja) * 2018-09-18 2020-03-26 日油株式会社 コンタクトレンズ用処理溶液
CN112689788A (zh) * 2018-09-18 2021-04-20 日油株式会社 隐形眼镜用处理溶液
JPWO2020059592A1 (ja) * 2018-09-18 2021-09-16 日油株式会社 コンタクトレンズ用処理溶液
EP3855240A4 (en) * 2018-09-18 2022-07-06 NOF Corporation CONTACT LENS TREATMENT SOLUTION
US11542459B2 (en) 2018-09-18 2023-01-03 Nof Corporation Contact lens treatment solution
JP7363793B2 (ja) 2018-09-18 2023-10-18 日油株式会社 コンタクトレンズ用処理溶液
JP7419891B2 (ja) 2020-03-10 2024-01-23 日油株式会社 タンパク質安定化剤を含有するタンパク質含有製剤および臨床検査試薬
CN116284548A (zh) * 2023-05-24 2023-06-23 广东工业大学 一种具有多重自翻转的磷酸胆碱四元共聚物及其制备方法和应用
CN116284548B (zh) * 2023-05-24 2023-08-11 广东工业大学 一种具有多重自翻转的磷酸胆碱四元共聚物及其制备方法和应用

Also Published As

Publication number Publication date
JP2017213218A (ja) 2017-12-07

Similar Documents

Publication Publication Date Title
WO2017209222A1 (ja) 医療機器の製造方法
JP2566548B2 (ja) 表面改質した外科用機器、器具、インプラント、コンタクトレンズおよびその類似物
EP1957129B1 (en) Hydrophilic coating comprising a polyelectrolyte
EP1945380B1 (en) Ultra-thin photo-polymeric coatings and uses thereof
JP5907957B2 (ja) 親水性コーティングを製造するためのコーティング配合物
KR101644686B1 (ko) 가교된 폴리포스포릴콜린으로 코팅된 체내 삽입용 보형물
WO2013118736A1 (ja) 疎水性材料の表面処理剤、及び表面処理方法
WO2018061916A1 (ja) 共重合体及びこれを用いた医療材料
JP7158993B2 (ja) ホスホリルコリン基含有共重合体、および生体用医療基材
JP2022177309A (ja) 医療機器の製造方法
JP7457308B2 (ja) 抗血栓性材料、抗血栓性材料の製造方法、人工臓器及び抗血栓性付与剤
Peng et al. A robust mixed-charge zwitterionic polyurethane coating integrated with antibacterial and anticoagulant functions for interventional blood-contacting devices
Ahmed et al. Synthesis, characterization, and biocompatibility of poly (acrylic acid/methyl methacrylate)-grafted-poly (ethylene-co-tetrafluoroethylene) film for prosthetic cardiac valves
JP6678959B2 (ja) 樹脂成形物の表面へのコーティング層形成方法。
Trzaskowski et al. Hydrogel coatings for artificial heart implants
Crago et al. Durable plasma-mediated zwitterionic grafting on polymeric surfaces for implantable medical devices
Legeay et al. Surface engineering by coating of hydrophilic layers: bioadhesion and biocontamination
YILDIRIM COATING OF POLYURETHANE URETERAL STENTS WITH POLY (VINYL PYRROLIDONE) BY PLASMA AND CHEMICAL METHODS
Chim et al. This work was supported by Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Soft-Interface Science" from the Ministry of Education, Culture, Sports, Science and Technology of Japan. Appendix
MX2008007380A (es) Recubrimiento hidrofilico que comprende un polielectrolito

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806772

Country of ref document: EP

Kind code of ref document: A1