WO2017209180A1 - 肌焼鋼およびその製造方法ならびに歯車部品の製造方法 - Google Patents

肌焼鋼およびその製造方法ならびに歯車部品の製造方法 Download PDF

Info

Publication number
WO2017209180A1
WO2017209180A1 PCT/JP2017/020258 JP2017020258W WO2017209180A1 WO 2017209180 A1 WO2017209180 A1 WO 2017209180A1 JP 2017020258 W JP2017020258 W JP 2017020258W WO 2017209180 A1 WO2017209180 A1 WO 2017209180A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
case
hardened steel
mass
component composition
Prior art date
Application number
PCT/JP2017/020258
Other languages
English (en)
French (fr)
Inventor
佳祐 安藤
岩本 隆
冨田 邦和
長谷 和邦
西村 公宏
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016176921A external-priority patent/JP6460069B2/ja
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US16/305,519 priority Critical patent/US11174543B2/en
Priority to MX2018014641A priority patent/MX2018014641A/es
Priority to CN201780032967.XA priority patent/CN109196134A/zh
Priority to KR1020187036498A priority patent/KR102165228B1/ko
Priority to CN202410111883.7A priority patent/CN117888030A/zh
Priority to EP17806731.0A priority patent/EP3467133B1/en
Publication of WO2017209180A1 publication Critical patent/WO2017209180A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening

Definitions

  • the present invention relates to a case hardening steel used as a material for machine structural parts such as automobiles and various industrial machines, a manufacturing method thereof, and a manufacturing method of gear parts.
  • the present invention relates to a case hardening steel suitable as a material for machine structural parts having high rotational bending fatigue strength and surface pressure fatigue strength, and a method for producing the same.
  • gears used for mechanical structure parts for example, drive transmission parts such as automobiles
  • gears used for mechanical structure parts are required to be reduced in size as the vehicle weight is reduced due to energy saving. Therefore, improvement in durability is an issue.
  • the durability of gears is determined by the rotational bending fatigue failure of the tooth root and the contact pressure fatigue failure of the tooth surface, so far, with the aim of improving the rotational bending fatigue strength and the contact pressure fatigue strength, Various types of carburized case-hardened steels have been proposed that control the form of inclusions by adding elements and suppress the occurrence of abnormal carburization layers, or have imparted temper softening resistance, that is, suppress the decrease in hardness due to tempering. ing.
  • Patent Document 1 discloses that the grain boundary oxide layer on the surface layer after carburizing heat treatment is reduced by controlling the amount of Mn, Cr, Mo and Ni while reducing Si in steel to less than 0.15%.
  • MnS that reduces the occurrence of cracks and suppresses the formation of incompletely hardened layers, suppresses surface hardness reduction and increases fatigue strength, and further adds Ca to promote the generation and propagation of cracks.
  • a method for controlling the stretching of the film is disclosed.
  • Patent Document 2 discloses a method for improving temper softening resistance using a steel material to which Si is added as a raw material in a range of 0.25% to 1.50%.
  • the amount of Si, Mn and Cr contributing to the improvement of temper softening resistance is set to a predetermined value or more, and the amount of Si is increased by forming an alloy-deficient layer made of the element on the surface layer of the steel material. Even so, a method is disclosed in which the reduction in gas carburization is suppressed and the surface fatigue strength is increased.
  • low cycle fatigue is achieved by setting the projected core hardness determined from the core hardness after carburizing and quenching, the effective hardened layer depth, and the radius or half of the thickness of the damaged portion to a predetermined value or more.
  • a method of delaying the occurrence of microcracks at times is disclosed.
  • Patent Document 5 the amount of carbon and nitrogen on the surface at the time of carburizing or carbonitriding is controlled within a specific range to promote the formation of fine carbides in the surface layer portion, and the amount of retained austenite in the surface layer portion.
  • Patent Documents 1 to 5 described above have the following problems.
  • Patent Document 1 if Si is reduced to less than 0.15%, the grain boundary oxide layer and the incompletely hardened layer are reduced, so that the occurrence of cracks due to rotational bending fatigue at the gear teeth can be suppressed.
  • the temper softening resistance decreases and the occurrence of fracture shifts from the tooth base to the tooth surface.
  • temper softening due to frictional heat on the tooth surface cannot be suppressed, and the surface softens. Peeling damage, i.e., pitting, is likely to occur, and the surface pressure fatigue strength decreases.
  • Patent Document 2 Si is added in order to increase the temper softening resistance.
  • Si is added in order to increase the temper softening resistance.
  • more grain boundary oxide layers are formed by normal gas carburization, and this grain boundary oxide layer becomes a fatigue starting point.
  • the rotational bending fatigue strength decreases. Therefore, the carburizing process must be limited to plasma carburizing or vacuum carburizing in which no grain boundary oxide layer is formed.
  • these special carburizing treatments have the disadvantage of increasing manufacturing costs and are not suitable for mass production on an industrial scale.
  • Patent Document 3 the temper softening resistance is improved by adding Si, Mn and Cr.
  • Si, Mn and Cr the amount of retained austenite after carburizing and quenching increases, and the surface layer hardness decreases, thereby reducing the surface pressure fatigue strength and the rotational bending fatigue strength. It becomes a problem.
  • Patent Document 4 an excellent low cycle fatigue characteristic can be obtained by setting the projection core hardness to a predetermined value or more. However, there are cases where sufficient tempering softening resistance may not be obtained depending on the balance of the amounts of Si, Mn, Cr and Mo added, resulting in a problem that the surface pressure fatigue strength decreases.
  • Patent Document 5 expensive V is an essential element contained, and expensive Mo is allowed to be added in a large amount, resulting in a significant increase in manufacturing cost. Furthermore, these elements increase the precipitation of carbonitrides, and there are concerns about the occurrence of cracks during continuous casting.
  • the present invention provides a case-hardened steel suitable as a material for producing a mechanical structural component having high rotational bending fatigue strength and surface pressure fatigue strength at a relatively low cost, and a method for producing the same.
  • the purpose is to provide.
  • the gist configuration of the present invention is as follows. [1] By mass%, C: 0.15% to 0.30%, Si: 0.80% to 2.00%, Mn: 0.20% to 0.80%, P: 0.003% to 0.030%, S: 0.005% to 0.050% Below, Cr: 1.00% to less than 1.80%, Mo: 0.03% to 0.30%, Al: 0.020% to 0.060%, N: 0.0060% to 0.0300% and O: 0.0003% to 0.0025%
  • a case-hardened steel comprising: 1) the formula and (2) under the range satisfying the formula, the remainder having a component composition composed of Fe and inevitable impurities, and further satisfying the following formula (3).
  • [% M] indicates the content (mass%) of the M element
  • I indicates the fish eye on the fractured surface after carburizing and tempering the case-hardened steel and then performing a rotating bending fatigue test. The area ( ⁇ m 2 ) of oxide inclusions located in the center is shown.
  • a steel slab having a component composition consisting of Fe and inevitable impurities is included under the range that satisfies the formulas (1) and (2).
  • a method for producing a case-hardened steel characterized by obtaining a case-hardened steel which is a steel bar or wire by performing hot working by forging and / or hot rolling.
  • S1 is a cross-sectional area (mm 2 ) of the slab in a cross section orthogonal to the extending direction during hot working
  • S2 is a cross-sectional area of the bar or wire in a cross section orthogonal to the extending direction during hot working. (Mm 2 ) is shown.
  • the case-hardened steel according to any one of [1] to [4] is subjected to machining or forging and subsequent machining to form a gear shape, and then carburizing the case-hardened steel.
  • a method for manufacturing a gear part comprising: quenching and tempering to obtain a gear part.
  • a gear part manufacturing method comprising: carburizing and tempering the case-hardened steel to obtain a gear part.
  • a case hardening steel suitable as a material for producing a mechanical structural component having high rotational bending fatigue strength and surface pressure fatigue strength at a relatively low cost and a method for producing the same. it can. That is, for example, when a gear is manufactured as a machine structural component using the steel of the present invention, not only the rotational bending fatigue characteristics of the tooth root but also the gears excellent in the tooth surface fatigue characteristics are mass-produced. Is possible.
  • C 0.15% or more and 0.30% or less
  • 0.15% or more of C is required.
  • the C content is limited to a range of 0.15% or more and 0.30% or less.
  • it is 0.15% or more and 0.25% or less of range.
  • Si 0.80% or more and 2.00% or less Si increases the resistance to temper softening in the temperature range of 200 to 300 ° C, which is expected to reach during rolling of gears, etc. It is an element that improves hardenability while suppressing formation. Si also has the effect of suppressing the reduction in dislocation density that contributes to the suppression of fatigue crack growth by suppressing the growth of carbides in the same temperature region. In order to obtain a steel having such an effect, the addition of at least 0.80% is indispensable. However, on the other hand, Si is a ferrite stabilizing element, and excessive addition raises the Ac 3 transformation point, and ferrite tends to appear in the core portion having a low carbon content in the normal quenching temperature range, resulting in a decrease in strength. Invite.
  • the Si amount is 2.00% or less, the above-described adverse effects do not occur.
  • the Si content was limited to the range of 0.80% to 2.00%. Preferably it is 0.90% or more and 1.60% or less of range.
  • Mn 0.20% or more and 0.80% or less
  • Mn is an element effective for improving the hardenability, and requires addition of at least 0.20% or more.
  • Mn tends to form an abnormal carburization layer, and excessive addition leads to a decrease in hardness due to an excessive amount of retained austenite, so the upper limit was made 0.80%.
  • it is 0.40% or more and 0.60% or less of range.
  • P 0.003% or more and 0.030% or less P is segregated at the grain boundary and causes the carburized layer and the internal toughness to be lowered. Therefore, the lower the amount of P, the better. Specifically, if it exceeds 0.030%, the above-described adverse effects appear, so the P content is set to 0.030% or less. On the other hand, from the viewpoint of manufacturing cost, 0.003% was made the lower limit.
  • S 0.005% or more and 0.050% or less S forms a sulfide with Mn and has an effect of improving machinability, so is contained at least 0.005% or more.
  • the upper limit was made 0.050%.
  • it is 0.010% or more and 0.030% or less of range.
  • Cr 1.00% or more and less than 1.80% Cr is an element effective not only for hardenability but also for improving the temper softening resistance. However, if the content is less than 1.00%, its addition effect is poor, while 1.80% If it becomes above, the effect which raises temper softening resistance will be saturated, and it will become easy to form a carburizing abnormal layer rather, and will cause the fall of rotation bending fatigue strength. Therefore, the Cr content is limited to a range of 1.00% to less than 1.80%. Preferably it is 1.20% or more and 1.60% or less of range.
  • Mo 0.03% or more and 0.30% or less Mo is an element that has the effect of improving the hardenability, temper softening resistance and toughness, and refining the crystal grain size after carburizing treatment. Since the effect is poor, 0.03% was made the lower limit. On the other hand, if added in a large amount, the amount of retained austenite becomes excessive, which not only causes a decrease in hardness, but also increases the manufacturing cost, so 0.30% was made the upper limit. From the viewpoint of lowering the amount of retained austenite and production cost, the upper limit value is preferably 0.20%.
  • Al 0.020% or more and 0.060% or less
  • Al is an element that forms AlN by combining with N and contributes to the refinement of austenite crystal grains. To obtain this effect, addition of 0.020% or more is required. However, when the content exceeds 0.060%, the formation of Al 2 0 3 inclusions harmful to fatigue strength is promoted, so the Al content is limited to the range of 0.020% to 0.060%. Preferably it is 0.020% or more and 0.040% or less of range.
  • N 0.0060% or more and 0.0300% or less N is an element that combines with Al to form AlN and contributes to refinement of austenite crystal grains. Accordingly, the appropriate addition amount is determined by a quantitative balance with Al, but 0.0060% or more of addition is necessary to exert the effect. However, if added in excess, bubbles are generated in the steel ingot during solidification and deterioration of forgeability is caused, so the upper limit is made 0.0300%. Preferably it is 0.0090% or more and 0.0150% or less of range.
  • O 0.0003% or more and 0.0025% or less
  • O is an element that exists as an oxide inclusion in steel and impairs fatigue strength. Accordingly, the lower the amount of O, the better, but 0.0025% is acceptable. Preferably it is 0.0015% or less. On the other hand, from the viewpoint of manufacturing cost, 0.0003% was made the lower limit.
  • the components in steel in the present invention include the above components, and the balance is Fe and inevitable impurities, but the following selected components are added for the purpose of imparting other characteristics and the like within a range not impairing the working range of the present invention. I can do it.
  • Nb 0.050% or less
  • Nb is a carbonitride-forming element and contributes to improvement of surface fatigue strength and rotational bending fatigue strength by refining the austenite grain size during carburizing.
  • the content is preferably 0.010% or more.
  • the effect is saturated when it exceeds 0.050%, and when it is added in a large amount, the cost increases. Therefore, the upper limit is preferably made 0.050%. More preferably, it is 0.010% or more and less than 0.025%.
  • Ti is a carbonitride-forming element and contributes to the improvement of surface fatigue strength and rotational bending fatigue strength by refining the austenite grain size during carburizing.
  • the content is preferably 0.005% or more.
  • the effect is saturated at 0.025% or more, and if added excessively, coarse carbonitrides are formed, and conversely, the above fatigue strength is lowered, so the upper limit is preferably made 0.025%.
  • Sb 0.035% or less
  • Sb has a strong tendency to segregate at grain boundaries, and suppresses grain boundary oxidation of Si, Mn, Cr, etc., which contributes to improving hardenability during carburizing treatment, thereby preventing abnormal carburization in the extreme surface layer of steel. This has the effect of reducing generation and, as a result, improving rotational bending fatigue strength.
  • the content is preferably 0.003% or more.
  • adding excessively not only leads to an increase in cost, but also reduces toughness, so 0.035% or less is preferable. More preferably, it is 0.005% or more and 0.020% or less of range.
  • Cu 1.0% or less
  • Cu is an element that contributes to the improvement of hardenability.
  • the Cu content is preferably 0.01% or more.
  • the upper limit is preferably 1.0%. More preferably, it is 0.10% or more and 0.50% or less of range.
  • Ni 1.0% or less Ni contributes to improving hardenability and is an element useful for improving toughness.
  • the Ni content is preferably 0.01% or more.
  • the upper limit is preferably 1.0%. More preferably, it is 0.10% or more and 0.50% or less of range.
  • V 0.050% or less
  • V is a carbonitride-forming element like Nb, and contributes to improving fatigue strength by refining the austenite grain size during carburizing. It also has the effect of reducing the grain boundary oxide layer depth. In order to effectively exhibit such an action, when added, the content is preferably 0.005% or more. On the other hand, the effect is saturated when it exceeds 0.050%, and if added excessively, coarse carbonitrides are formed, and conversely, the fatigue strength is lowered, so the upper limit is preferably made 0.050%. More preferably, it is 0.005% or more and 0.030% or less of range.
  • Ca 0.0050% or less Ca is a useful element for controlling the form of sulfide and improving machinability.
  • the Ca content is preferably 0.0005% or more.
  • the upper limit may be made 0.0050%. preferable. More preferably, it is 0.0005% or more and 0.0020% or less of range.
  • Sn 0.50% or less
  • Sn is an effective element for improving the corrosion resistance of the steel surface.
  • the Sn content is preferably 0.003% or more.
  • the upper limit is preferably 0.50%. More preferably, it is 0.010% or more and 0.050% or less of range.
  • Se 0.30% or less Se combines with Mn and Cu and is dispersed as precipitates in the steel. Se precipitates exist stably in the carburizing heat treatment temperature range with little precipitate growth, and have a high pinning effect on the austenite grain size. For this reason, the addition of Se is effective in preventing coarsening of crystal grains. In order to obtain this effect, it is preferable to add at least 0.001% of Se. On the other hand, even if added over 0.30%, the effect of preventing coarsening of crystal grains is saturated. For this reason, the upper limit is preferably set to 0.30%. More preferably, it is 0.005% or more and 0.100% or less.
  • Ta 0.10% or less Ta forms carbides in the steel and suppresses the coarsening of the austenite grain size during the carburizing heat treatment by the pinning effect. In order to obtain this effect, it is preferable to add at least 0.003% Ta. On the other hand, if added over 0.10%, cracking is likely to occur during casting solidification, and there is a concern that wrinkles may remain after rolling and forging, so the upper limit is preferably made 0.10%. More preferably, it is 0.005% or more and 0.050% or less of range.
  • Hf 0.10% or less Hf forms carbides in the steel and suppresses the coarsening of the austenite grain size during the carburizing heat treatment by the pinning effect. In order to obtain this effect, it is preferable to add at least 0.003% of Hf. On the other hand, if added over 0.10%, coarse precipitates are produced during casting solidification, which may lead to a decrease in coarsening suppression ability and fatigue strength, so the upper limit is preferably made 0.10%. More preferably, it is 0.005% or more and 0.050% or less of range.
  • the component composition of steel should just have an above-mentioned element, the remainder Fe, and an unavoidable impurity, However, It is preferable to consist of an above-described element, the remainder Fe, and an unavoidable impurity.
  • the inventors of the present invention have a mechanical structure manufactured by carburizing and tempering the case-hardened steel when the following formulas (1) and (2) are satisfied. It has been found that the parts exhibit excellent bending fatigue strength and surface pressure fatigue strength that are not present in the past. [% Si] + ([% Mn] + [% Cr] + [% Mo]) / 3 ⁇ 1.5 (1) 180-45 [% Mn] -14 [% Cr] -51 [% Mo] +5 [% Si] ⁇ 125 (2) However, [% M] indicates the content (mass%) of the M element.
  • the above formula (1) indicates a factor that affects the temper softening resistance. If the value on the left side is less than 1.5, the effect of improving the temper softening resistance is poor. Also, the above equation (2) shows a factor that affects the amount of retained austenite. If the value on the left side is less than 125, the hardness of the carburized surface layer will decrease, so the reduction in surface fatigue strength and rotational bending fatigue strength will decrease. Will be invited. In the present invention, by satisfying the above equation (1), the temper softening resistance in the temperature range of 200 ° C. or more and 300 ° C.
  • the case-hardened steel of the present invention satisfies the following formula (3) after carburizing and tempering.
  • the value of the left side ⁇ I of the above formula (3) is more preferably 60 or less, and still more preferably 40 or less. ⁇ I ⁇ 80 (3)
  • I on the left side of the above equation (3) is an index indicating the size of the largest oxide inclusions that are the starting points of fatigue fracture, and is obtained as follows. Seven test pieces are collected from the case-hardened steel (bar or wire). The test piece was taken from a position with a diameter of 1/2 in parallel with the drawing direction by hot working (that is, the rolling direction in the case of hot rolling and the drawing direction in forging in the case of hot forging), and is shown in FIG. The parallel part diameter is 8 mm x the parallel part length is 16 mm.
  • the test piece was carburized and tempered under the conditions shown in Fig. 2 (carburizing temperature of 930 ° C for 180 minutes, quenching temperature of 850 ° C for 40 minutes, tempering temperature of 170 ° C for 60 minutes).
  • Rotating bending fatigue test is performed to cause fish eye fracture.
  • the test conditions are that after carburizing, the surface is polished 0.1 mm, the load stress is 1000 MPa, and the rotational speed is 3500 rpm.
  • the fracture surface was observed with a scanning electron microscope, and the area of the oxide inclusions located at the center of the fish eye, that is, the largest oxide inclusions was determined. Measured by image analysis and designated as I.
  • the conventional method for measuring the size, quantity, or density of oxide inclusions in the test area cannot measure the state of oxide inclusions in a large volume, which affects fatigue life. It is not possible to evaluate inclusions that affect In the above-described inclusion evaluation method in the present invention, the size of oxide inclusions that have actually become the starting point of fatigue fracture of steel in a large volume of 5349 mm 3 can be evaluated. More improved.
  • the left side of the above equation (4) is an index indicating the cross-sectional reduction rate when hot working is performed on the slab.
  • the hot working may be hot forging or hot rolling. Furthermore, both hot forging and hot rolling may be performed. If the index shown on the left side of the above equation (4) is less than 0.960, the surface pressure fatigue strength and the rotational bending fatigue strength are reduced due to the large oxide inclusions, resulting in early fatigue failure. More preferably, the left side of the above formula (4) is 0.970 or more, and more preferably 0.985 or more.
  • the case-hardened steel (steel bar or wire) of the present invention manufactured as described above is subjected to machining such as cutting without being subjected to hot forging or cold forging, and is then subjected to a part shape (for example, To a gear shape). Then, a desired part (for example, a gear) is obtained by subjecting this part shape to carburizing quenching and tempering. Further, this part may be subjected to processing such as shot peening.
  • hot forging or cold forging is performed during processing, the size of oxide inclusions changes, but it does not change in the direction of worsening fatigue life. Even if it is a case where it becomes a component, it is effective to use the case hardening steel of this invention.
  • the carburizing quenching / tempering conditions for case-hardened steel are not particularly limited, and may be known or arbitrary conditions.
  • the carburizing temperature is 900 ° C. or higher and 1050 ° C. or lower
  • the quenching temperature is 800 ° C. or higher.
  • the temperature can be set to 900 ° C. or lower for 10 minutes to 120 minutes, and the tempering temperature 120 ° C. to 250 ° C. for 30 minutes to 180 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本願は、高い回転曲げ疲労強度および面圧疲労強度を有する機械構造用部品を、比較的安価なコストで作製するための素材として適した肌焼鋼およびその製造方法を提供する。本発明は、質量%で、C、Si、Mn、P、S、Cr、Mo、Al、N、およびOを所定の関係の下で含み、残部はFeおよび不可避不純物からなる成分組成を有し、さらに√I≦80(ただし、Iは、肌焼鋼に浸炭焼入れおよび焼戻しを施し、その後回転曲げ疲労試験を行った後の破面における、フィッシュアイ中心部に位置する酸化物系介在物の面積(μm2)を示す。)を満足することを特徴とする肌焼鋼である。

Description

肌焼鋼およびその製造方法ならびに歯車部品の製造方法
 本発明は、自動車や各種産業機械等の機械構造用部品の素材として用いられる肌焼鋼およびその製造方法、ならびに歯車部品の製造方法に関するものである。特に、高い回転曲げ疲労強度および面圧疲労強度を有する機械構造用部品の素材として適した肌焼鋼およびその製造方法に関するものである。
 機械構造用部品、例えば自動車等の駆動伝達部品に用いられている歯車は、近年、省エネルギー化による車体重量の軽量化に伴って、その小型化が要求される一方、エンジンの高出力化により負荷が増大しているため、耐久性の向上が課題とされている。
 一般的に、歯車の耐久性は、歯元の回転曲げ疲労破壊および歯面の面圧疲労破壊によって決定されるため、これまで、回転曲げ疲労強度および面圧疲労強度の向上を目的とし、微量元素の添加による介在物の形態制御や浸炭異常層の発生抑制を図ったり、あるいは、焼戻し軟化抵抗性を付与した、すなわち、焼戻しに起因する硬度の低下を抑制する浸炭肌焼鋼が種々提案されている。
 例えば、特許文献1には、鋼中のSiを0.15%未満に低減すると共に、Mn、Cr、MoおよびNiの量を制御することにより、浸炭熱処理後の表層の粒界酸化層を低減して亀裂の発生を少なくし、また不完全焼入層の生成を抑制することにより、表面硬さの低減を抑えて疲労強度を高め、さらにCaを添加して、亀裂の発生や伝播を助長するMnSの延伸を制御する方法が開示されている。
 特許文献2には、素材としてSiを0.25%以上1.50%以下添加した鋼材を用いて焼戻し軟化抵抗性を高める方法が開示されている。
 特許文献3には、焼戻し軟化抵抗の向上に寄与する、Si、MnおよびCrの量を所定値以上とし、かつ、鋼材の表層に当該元素からなる合金欠乏層を形成させることで、Siを増量しても、ガス浸炭性の低下を抑制し、面圧疲労強度を高める方法が開示されている。
 特許文献4には、浸炭焼入れ後の芯部硬さと、有効硬化層深さと、破損部位の半径または肉厚の半分とから求まる投影芯部硬さを所定値以上とすることにより、低サイクル疲労時の微小亀裂の発生を遅延させる方法が開示されている。
 特許文献5には、浸炭処理時または浸炭窒化処理時の表面の炭素量および窒素量を特定範囲内に制御して、表層部に微細な炭化物の生成を促し、かつ、表層部の残留オーステナイト量を適正量とすることにより、高い疲労強度を確保すると共に接触面の剥離を減少させる、すなわち耐ピッチング性を向上させる方法が開示されている。
特公平7-122118号公報 特許第2945714号公報 特許第5099276号公報 特許第5505263号公報 特開平7-188895号公報
 しかしながら、上述した特許文献1~5に記載の発明はいずれも、以下に述べる問題があった。
 まず、特許文献1では、Siを0.15%未満に低減すると粒界酸化層および不完全焼入れ層が低減するため、歯車の歯元での回転曲げ疲労による亀裂発生を抑えることはできる。しかしながら、逆に焼戻し軟化抵抗が低下して、破壊の発生が歯元から歯面側に移行する結果、歯面での摩擦熱による焼戻し軟化を抑えることができなくなり表面が軟化するため、歯面の剥離損傷、すなわちピッチングが発生し易くなり、面圧疲労強度が低下することが問題になる。
 特許文献2では、焼戻し軟化抵抗を上げるためにSiを添加しているが、Siの添加により通常のガス浸炭では粒界酸化層がより多く形成されて、この粒界酸化層が疲労起点となることにより回転曲げ疲労強度が低下する。そこで、浸炭処理を粒界酸化層が形成されないプラズマ浸炭または真空浸炭に限定せざるを得ない。しかしながら、これらの特殊な浸炭処理では製造コストが嵩むという不利があり、工業的規模での量産化には不適であった。
 特許文献3では、Si、MnおよびCrの添加により焼戻し軟化抵抗は向上する。しかしながら、Ms点を大幅に低下するMnやCr量が多い場合、浸炭焼入れ後の残留オーステナイト量が増加し、表層硬度が低下してしまうことにより、面圧疲労強度および回転曲げ疲労強度が低下することが問題になる。
 特許文献4では、投影芯部硬さを所定値以上とすることで、優れた低サイクル疲労特性を得ることができる。しかしながら、Si、Mn、CrおよびMo添加量のバランスによっては十分な焼戻し軟化抵抗が得られない場合があり、結果的に面圧疲労強度が低下してしまうという問題がある。
 また、特許文献5では、高価なVが必須の含有元素であり、また、高価なMoについても多量に添加することを許容しており、製造コストの大幅な増加を招いてしまう。さらに、これらの元素は、炭窒化物の析出を増加させ、連続鋳造時の割れの発生が懸念されるものであった。
 そこで本発明は、上記課題に鑑み、高い回転曲げ疲労強度および面圧疲労強度を有する機械構造用部品を、比較的安価なコストで作製するための素材として適した肌焼鋼およびその製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するため、浸炭焼入れ・焼戻し後の疲労特性に及ぼす、成分、浸炭後諸特性および介在物の影響について鋭意検討を行った。その結果、以下の(A)~(C)の事項を見出すに到った。
 (A)鋼材中のSi、Mn、CrおよびMoを増量して焼戻し軟化抵抗を高めることによって、例えば歯車としたときの接触面での発熱による軟化を抑えれば、歯車駆動時に生じる歯面の亀裂発生を抑制することができる。
 (B)曲げ疲労および疲労亀裂の起点となり得る粒界酸化層については、Si、Mn、CrおよびMoを所定量以上添加することにより、粒界酸化層の成長方向が深さ方向から表面の密度増加方向に変わる。従って、起点となるような深さ方向に成長した酸化層がなくなるため、曲げ疲労および疲労亀裂の起点となり難くなる。
(C)上記(A)および(B)で述べたとおり、Si、Mn、CrおよびMoは、焼戻し軟化抵抗の向上と粒界酸化層の制御に有効であるが、一方で、過剰に添加すると、残留オーステナイト量が多くなり、疲労亀裂の生成を助長する。そのため、Si、Mn、CrおよびMoについて、その含有量を厳密に制御する必要がある。
 本発明の要旨構成は、以下のとおりである。
 [1]質量%で、C:0.15%以上0.30%以下、Si:0.80%以上2.00%以下、Mn:0.20%以上0.80%以下、P:0.003%以上0.030%以下、S:0.005%以上0.050%以下、Cr:1.00%以上1.80%未満、Mo:0.03%以上0.30%以下、Al:0.020%以上0.060%以下、N:0.0060%以上0.0300%以下およびO:0.0003%以上0.0025%以下を、下記(1)式および(2)式を満足する範囲の下で含み、残部はFeおよび不可避不純物からなる成分組成を有し、さらに、下記(3)式を満足することを特徴とする肌焼鋼。
                  記
〔%Si〕+(〔%Mn〕+〔%Cr〕+〔%Mo〕)/3≧1.5    ・・・(1)
180-45〔%Mn〕-14〔%Cr〕-51〔%Mo〕+5〔%Si〕≧125    ・・・(2)
√I≦80  ・・・(3)
 ただし、〔%M〕はM元素の含有量(質量%)を示し、Iは、前記肌焼鋼に浸炭焼入れおよび焼戻しを施し、その後回転曲げ疲労試験を行った後の破面における、フィッシュアイ中心部に位置する酸化物系介在物の面積(μm2)を示す。
 [2]前記成分組成が、質量%でさらに、Nb:0.050%以下、Ti:0.025%未満、およびSb:0.035%以下のうちから選んだ1種以上を含む上記[1]に記載の肌焼鋼。
 [3]前記成分組成が、質量%でさらに、Cu:1.0%以下、Ni:1.0%以下、およびV:0.050%以下のうちから選んだ1種以上を含む上記[1]または[2]に記載の肌焼鋼。
 [4]前記成分組成が、質量%でさらに、Ca:0.0050%以下、Sn:0.50%以下、Se:0.30%以下、Ta:0.10%以下、Hf:0.10%以下のうちから選んだ1種以上を含む上記[1]~[3]のいずれか一項に記載の肌焼鋼。
 [5]質量%で、C:0.15%以上0.30%以下、Si:0.80%以上2.00%以下、Mn:0.20%以上0.80%以下、P:0.003%以上0.030%以下、S:0.005%以上0.050%以下、Cr:1.00%以上1.80%未満、Mo:0.03%以上0.30%以下、Al:0.020%以上0.060%以下、N:0.0060%以上0.0300%以下およびO:0.0003%以上0.0025%以下を、下記(1)式および(2)式を満足する範囲の下で含み、残部はFeおよび不可避不純物からなる成分組成を有する鋼の鋳片を、下記(4)式を満足する断面減少率にて熱間鍛造および/または熱間圧延による熱間加工を施して、棒鋼または線材である肌焼鋼を得ることを特徴とする肌焼鋼の製造方法。
                  記
〔%Si〕+(〔%Mn〕+〔%Cr〕+〔%Mo〕)/3≧1.5    ・・・(1)
180-45〔%Mn〕-14〔%Cr〕-51〔%Mo〕+5〔%Si〕≧125    ・・・(2)
(S1-S2)/S1≧0.960    ・・・(4)
 ただし、S1は、熱間加工時の延伸方向と直交する断面における前記鋳片の断面積(mm2)、S2は、熱間加工時の延伸方向と直交する断面における前記棒鋼または線材の断面積(mm2)を示す。
 [6]前記成分組成が、質量%でさらに、Nb:0.050%以下、Ti:0.050%未満およびSb:0.035%以下のうちから選んだ1種以上を含む上記[5]に記載の肌焼鋼の製造方法。
 [7]前記成分組成が、質量%でさらに、Cu:1.0%以下、Ni:1.0%以下、およびV:0.050%以下のうちから選んだ1種以上を含む上記[5]または[6]に記載の肌焼鋼の製造方法。
 [8]前記成分組成が、質量%でさらに、Ca:0.0050%以下、Sn:0.50%以下、Se:0.30%以下、Ta:0.10%以下、Hf:0.10%以下のうちから選んだ1種以上を含む上記[5]~[7]のいずれか一項に記載の肌焼鋼の製造方法。
 [9]上記[1]~[4]のいずれか一項に記載の肌焼鋼に、機械加工、または、鍛造とその後の機械加工を施して歯車形状とし、その後、前記肌焼鋼に浸炭焼入れおよび焼戻しを施して、歯車部品を得ることを特徴とする歯車部品の製造方法。
 [10]上記[5]~[8]のいずれか一項に記載の肌焼鋼の製造方法の工程に加えて、前記肌焼鋼に、機械加工、または、鍛造とその後の機械加工を施して歯車形状とし、その後、前記肌焼鋼に浸炭焼入れおよび焼戻しを施して、歯車部品を得ることを特徴とする歯車部品の製造方法。
 本発明によれば、高い回転曲げ疲労強度および面圧疲労強度を有する機械構造用部品を、比較的安価なコストで作製するための素材として適した肌焼鋼およびその製造方法を提供することができる。すなわち、機械構造用部品として例えば歯車を、本発明鋼を用いて作製した場合に、その歯元の回転曲げ疲労特性のみならず、歯面の面圧疲労特性にも優れた歯車を量産することが可能になる。
回転曲げ疲労試験片を示す図である。 浸炭焼入れ・焼戻し処理における熱処理条件を示す図である。 ローラーピッチング疲労試験の概要を示す図である。
 まず、本発明において、鋼の成分組成を上記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は、特に断らない限り質量%を意味するものとする。
C:0.15%以上0.30%以下
 浸炭処理後の焼入れにより中心部の硬度を高めるためには、0.15%以上のCを必要とするが、含有量が0.30%を超えると芯部の靭性が低下するため、C量は0.15%以上0.30%以下の範囲に限定した。好ましくは0.15%以上0.25%以下の範囲である。
Si:0.80%以上2.00%以下
 Siは、歯車等が転動中に到達すると予想される200~300℃の温度域における焼戻し軟化抵抗を高めると共に、浸炭表層部の硬さ低下を引き起こす残留オーステナイトの生成を抑制しつつ、焼入れ性を向上させる元素である。また、Siは、同温領域における炭化物の成長を抑制することにより、疲労亀裂の進展の抑制に寄与する転位密度の減少を抑える効果も有している。このような効果を有する鋼を得るには、少なくとも0.80%以上の添加が不可欠である。しかしながら、一方でSiはフェライト安定化元素であり、過剰な添加はAc3変態点を上昇させ、通常の焼入れ温度範囲で炭素の含有量の低い芯部でフェライトが出現し易くなり強度の低下を招く。また、過剰な添加は浸炭を阻害し、浸炭表層部の硬さ低下を引き起こす。この点、Si量が2.00%以下であれば、上記のような弊害は生じない。以上より、Si量は0.80%以上2.00%以下の範囲に限定した。好ましくは0.90%以上1.60%以下の範囲である。
Mn:0.20%以上0.80%以下
 Mnは、焼入れ性の向上に有効な元素であり、少なくとも0.20%以上の添加を必要とする。しかしながら、Mnは、浸炭異常層を形成し易く、また過剰な添加は残留オーステナイト量が過多となることにより硬さの低下を招くため、上限を0.80%とした。好ましくは0.40%以上0.60%以下の範囲である。
P:0.003%以上0.030%以下
 Pは、粒界に偏析し、浸炭層および内部の靭性を低下させる原因となるため、P量は、低いほど望ましい。具体的には、0.030%を超えると、上記弊害が現れるため、P量は0.030%以下とした。一方、製造コストの観点から、0.003%を下限とした。
S:0.005%以上0.050%以下
 Sは、Mnと硫化物を形成し、被削性を向上させる作用を有するので、少なくとも0.005%以上含有させる。一方、過剰な添加は、部品の疲労強度および靭性を低下させるため、上限を0.050%とした。好ましくは0.010%以上0.030%以下の範囲である。
Cr:1.00%以上1.80%未満
 Crは、焼入れ性のみならず、焼戻し軟化抵抗の向上にも有効な元素であるが、含有量が1.00%に満たないとその添加効果に乏しく、一方、1.80%以上になると焼戻し軟化抵抗を高める効果は飽和し、むしろ浸炭異常層を形成し易くなり、回転曲げ疲労強度の低下を招く。従って、Cr量は1.00%以上1.80%未満の範囲に限定した。好ましくは1.20%以上1.60%以下の範囲である。
Mo:0.03%以上0.30%以下
 Moは、焼入れ性、焼戻し軟化抵抗および靭性を向上させると共に、浸炭処理後の結晶粒径を微細化する効果を有する元素であり、0.03%に満たないとその添加効果に乏しいため、0.03%を下限とした。一方、多量に添加すると、残留オーステナイト量が過多となることにより硬さの低下を招くだけではなく、製造コストを上昇させるため、0.30%を上限とした。なお、残留オーステナイト量および製造コストをより低くする観点から、上限値は0.20%とすることが好ましい。
Al:0.020%以上0.060%以下
 Alは、Nと結合してAlNを形成し、オーステナイト結晶粒の微細化に寄与する元素であり、この効果を得るためには0.020%以上の添加を必要とするが、含有量が0.060%を超えると疲労強度に対して有害なAl203介在物の生成を助長するため、Al量は0.020%以上0.060%以下の範囲に限定した。好ましくは0.020%以上0.040%以下の範囲である。
N:0.0060%以上0.0300%以下
 Nは、Alと結合してAlNを形成し、オーステナイト結晶粒の微細化に寄与する元素である。従って、適正添加量はAlとの量的バランスで決まるが、その効果を発揮するためには0.0060%以上の添加が必要である。しかし、過剰に添加すると凝固時の鋼塊に気泡が発生したり、鍛造性の劣化を招くため、上限を0.0300%とする。好ましくは0.0090%以上0.0150%以下の範囲である。
O:0.0003%以上0.0025%以下
 Oは、鋼中において酸化物系介在物として存在し、疲労強度を損なう元素である。従って、O量は低いほど望ましいが、0.0025%までは許容される。好ましくは0.0015%以下である。一方、製造コストの観点から、0.0003%を下限とした。
 本発明における鋼中成分は、上記成分を含み、残部はFeおよび不可避不純物であるが、本発明の作用範囲を損なわない範囲で、他の特性付与等を目的として、以下の選択成分を添加することが出来る。
Nb:0.050%以下
 Nbは、炭窒化物形成元素であり、浸炭時のオーステナイト粒径を微細化して面圧疲労強度および回転曲げ疲労強度の向上に寄与する。このような作用を有効に発揮させるため、添加する場合は、0.010%以上とすることが好ましい。一方、その効果は0.050%を超えると飽和し、かつ多量に添加するとコストが増加するため、上限は0.050%とすることが好ましい。より好ましくは0.010%以上0.025%未満の範囲である。
Ti:0.025%未満
 Tiは、Nbと同じく炭窒化物形成元素であり、浸炭時のオーステナイト粒径を微細化して面圧疲労強度および回転曲げ疲労強度の向上に寄与する。このような作用を有効に発揮させるため、添加する場合は、0.005%以上とすることが好ましい。一方、その効果は0.025%以上で飽和し、かつ過剰に添加すると、粗大な炭窒化物が生成し、逆に上記の疲労強度の低下を招くため、上限は0.025%とすることが好ましい。
Sb:0.035%以下
 Sbは粒界への偏析傾向が強く、浸炭処理時に焼入れ性向上に寄与するSi、Mn、Cr等の粒界酸化を抑制することで、鋼の極表層における浸炭異常層の発生を低減させ、結果として回転曲げ疲労強度を向上させる効果がある。このような作用を有効に発揮させるため、添加する場合は、0.003%以上とすることが好ましい。しかしながら、過剰に添加するとコストの増加につながるだけでなく、靭性を低下させるため、0.035%以下とすることが好ましい。より好ましくは0.005%以上0.020%以下の範囲である。
Cu:1.0%以下
 Cuは、焼入性の向上に寄与する元素であり、また、Seととともに添加することにより、鋼中でSeと結合し、結晶粒の粗大化防止効果を示す有用な元素である。これらの効果を得るためには、Cu含有量は0.01%以上とすることが好ましい。一方、Cu含有量が1.0%を超えると、圧延材の表面肌が荒れてしまい、疵として残存する懸念がある。そこで、上限は1.0%とすることが好ましい。より好ましくは0.10%以上0.50%以下の範囲である。
Ni:1.0%以下
 Niは、焼入性の向上に寄与するとともに、靱性の向上に有用な元素である。これらの効果を得るためには、Ni含有量は0.01%以上とすることが好ましい。一方、1.0%を超えて含有されても、上記の効果が飽和する。よって、上限は1.0%とすることが好ましい。より好ましくは0.10%以上0.50%以下の範囲である。
V:0.050%以下
 Vは、Nbと同じく炭窒化物形成元素であり、浸炭時のオーステナイト粒径を微細化して、疲労強度の向上に寄与する。また、粒界酸化層深さを低減させる効果も有している。このような作用を有効に発揮させるため、添加する場合は、0.005%以上とすることが好ましい。一方、その効果は0.050%を超えると飽和し、かつ過剰に添加すると、粗大な炭窒化物が生成し、逆に上記疲労強度の低下を招くため、上限は0.050%とすることが好ましい。より好ましくは0.005%以上0.030%以下の範囲である。
Ca:0.0050%以下
 Caは、硫化物の形態を制御し、被削性の向上に有用な元素である。これらの効果を得るためには、Ca含有量は0.0005%以上とすることが好ましい。一方、Ca含有量が0.0050%を超えると、上記の効果が飽和するだけでなく、疲労破壊の起点となる粗大な酸化物系介在物の生成を助長するため、上限は0.0050%とすることが好ましい。より好ましくは0.0005%以上0.0020%以下の範囲である。
Sn:0.50%以下
 Snは、鋼材表面の耐食性を向上させるために有効な元素である。耐食性向上の観点から、Sn含有量は0.003%以上とすることが好ましい。一方、過剰な添加は鍛造性を劣化させることから、上限は0.50%とすることが好ましい。より好ましくは0.010%以上0.050%以下の範囲である。
Se:0.30%以下
 Seは、MnやCuと結合し、鋼中に析出物として分散する。Se析出物は浸炭熱処理温度域で析出物成長がほとんど起こらず安定に存在しており、オーステナイト粒径のピン止め効果が高い。このため、Se添加は結晶粒の粗大化防止に有効である。この効果を得るためには、少なくとも0.001%のSeを添加することが好ましい。一方、0.30%を超えて添加しても、結晶粒の粗大化防止効果は飽和する。このため、上限は0.30%とすることが好ましい。より好ましくは0.005%以上0.100%以下の範囲である。
Ta:0.10%以下
 Taは、鋼中で炭化物を形成し、浸炭熱処理時のオーステナイト粒径の粗粒化をピン止め効果により抑制する。この効果を得るためには、少なくとも0.003%のTaを添加することが好ましい。一方、0.10%を超えて添加すると、鋳造凝固時に割れを生じやすくなり、圧延および鍛造後でも疵が残存してしまう懸念があるため、上限は0.10%とすることが好ましい。より好ましくは0.005%以上0.050%以下の範囲である。
Hf:0.10%以下
 Hfは、鋼中で炭化物を形成し、浸炭熱処理時のオーステナイト粒径の粗粒化をピン止め効果により抑制する。この効果を得るためには、少なくとも0.003%のHfを添加することが好ましい。一方、0.10%を超えて添加すると、鋳造凝固時に粗大な析出物を生成し、粗粒化抑制能の低下や疲労強度の劣化を招くおそれがあるため、上限は0.10%とすることが好ましい。より好ましくは0.005%以上0.050%以下の範囲である。
 鋼の成分組成は、上記した元素並びに残部のFe及び不可避的不純物を有すればよいが、上記した元素並びに残部のFe及び不可避的不純物からなることが好ましい。
 本発明者らは、上記成分組成を有する肌焼鋼において、以下の(1)式および(2)式を満足する場合に、当該肌焼鋼に浸炭焼入れおよび焼戻しを施して製造した機械構造用部品が、従来に無い優れた曲げ疲労強度および面圧疲労強度を発揮することを見出した。
〔%Si〕+(〔%Mn〕+〔%Cr〕+〔%Mo〕)/3≧1.5    ・・・(1)
180-45〔%Mn〕-14〔%Cr〕-51〔%Mo〕+5〔%Si〕≧125    ・・・(2)
 ただし、〔%M〕はM元素の含有量(質量%)を示す。
 上記(1)式は、焼戻し軟化抵抗性に影響を与える因子を示し、左辺の値が1.5未満では焼戻し軟化抵抗性の改善効果に乏しい。また、上記(2)式は、残留オーステナイト量に影響を与える因子を示し、左辺の値が125未満では、浸炭表層部の硬度が低下するため、面圧疲労強度および回転曲げ疲労強度の低下を招くことになる。本発明では、上記(1)式を満たすことによって、歯車等が転動中に到達すると予想される200℃以上300℃以下の温度域での焼戻し軟化抵抗を高め、かつ、上記(2)式を満たすことによって、浸炭表層部の硬度の低下を引き起こす残留オーステナイト量を低減させることができるため、面圧疲労強度および回転曲げ疲労強度の低下を抑制することができる。
 しかしながら、各々の元素が、上記(1)式および(2)式を満足している場合であっても、回転曲げ疲労試験後の試験片の破面に位置する酸化物系介在物のサイズがある値よりも大きいと、この酸化物系介在物に起因して面圧疲労強度および回転曲げ疲労強度が低下するため、早期疲労破壊を示すといった問題があることがわかった。そこで、本発明の肌焼鋼は、浸炭焼入れ及び焼戻し後に以下の(3)式を満足することが重要である。上記(3)式の左辺√Iの値は、より好ましくは60以下であり、さらに好ましくは40以下である。
√I≦80  ・・・(3)
 上掲(3)式の左辺のIは、疲労破壊の起点となる最大の酸化物系介在物のサイズを示す指標であり、以下のようにして求める。肌焼鋼(棒鋼または線材)から、7本の試験片を採取する。試験片は、熱間加工による延伸方向(すなわち熱間圧延による場合には圧延方向、熱間鍛造による場合には鍛造による延伸方向)と平行に、直径1/2位置より採取し、図1に示す平行部直径8mm×平行部長さ16mmの寸法とする。
 試験片に対して、図2に示す条件(浸炭温度930℃で180分、焼入れ温度850℃で40分、焼戻し温度170℃で60分)で浸炭焼入れ及び焼戻しを施し、その後、両振り小野式回転曲げ疲労試験を行って、フィッシュアイ破壊を生じさせる。試験条件は、浸炭後に表面を0.1mm研摩し、負荷応力1000MPa、回転数3500rpmとする。7本の試験片のうち最低疲労寿命のものについて、破面を走査型電子顕微鏡で観察し、フィッシュアイ中心部に位置する酸化物系介在物、すなわち、最大の酸化物系介在物の面積を画像解析にて測定し、Iとする。
 本発明における、このような介在物の大きさの求め方によれば、3.14×(7.8mm÷2)2×16mm×7=5349mm3の体積中の最大酸化物系介在物の大きさを評価できる。従来の被検面積中に存在する酸化物系介在物の大きさ、数量または密度の測定法では、このような大体積中の酸化物系介在物の状態の測定はできず、疲労寿命に影響を及ぼす介在物の評価は行えない。本発明における上記の介在物の評価手法では、5349mm3という大体積中で、実際に鋼の疲労破壊の起点となった酸化物系介在物の大きさを評価できるので、疲労寿命の予測精度がより向上する。
 次に、本発明に係る肌焼鋼の製造方法について説明する。
 上記(3)式を満足する肌焼鋼を得るためには、その製造工程において、鋳片の成分組成を上記(1)式および(2)式を含めて上記の範囲に調整することに加えて、当該鋳片に対して、次の(4)式を満足する断面減少率にて熱間鍛造および/または熱間圧延による熱間加工を施して、棒鋼または線材とする必要がある。
(S1-S2)/S1≧0.960    ・・・(4)
 但し、S1は、熱間加工時の延伸方向と直交する断面における鋳片の断面積(mm2)であり、S2は、熱間加工時の延伸方向と直交する断面における棒鋼または線材の断面積(mm2)である。
 上記(4)式の左辺は、鋳片に熱間加工を施す際の断面減少率を示す指標である。ここで、熱間加工は、熱間鍛造であってもよく、また熱間圧延であってもよい。さらに、熱間鍛造と熱間圧延との両方を行ってもよい。上記(4)式の左辺で示される指標が0.960未満では、サイズの大きな酸化物系介在物に起因して面圧疲労強度および回転曲げ疲労強度が低下し、結果として早期疲労破壊を示す。より好ましくは、上記(4)式の左辺が0.970以上であり、さらに好ましくは、0.985以上である。このように、本発明の成分組成を満足する鋼の鋳片に対して、上記(4)式を満足する断面減少率にて熱間加工を施すと、後述する浸炭焼入れ及び焼戻し後に上記(3)式を満足する肌焼鋼を得ることができる。
 以上のようにして製造された本発明の肌焼鋼(棒鋼または線材)は、熱間鍛造または冷間鍛造を施すか施さずに、その後切削等の機械加工が施されて、部品形状(例えば歯車形状)に成型される。その後、この部品形状に対して、浸炭焼入れ・焼戻し処理を施すことにより所望の部品(例えば歯車)を得る。さらに、この部品に対して、ショットピーニング等の加工を施してもよい。なお、加工にあたり、熱間鍛造や冷間鍛造を施した場合には、酸化物系介在物のサイズが変化するが、疲労寿命を悪化させる方向に変化することはないので、これらの鍛造が施されて部品となる場合であっても、本発明の肌焼鋼を用いることは有効である。肌焼鋼に対する浸炭焼入れ・焼戻しの条件は特に限定されず、公知または任意の条件とすればよく、例えば、浸炭温度900℃以上1050℃以下で60分以上600分以下とし、焼入れ温度800℃以上900℃以下で10分以上120分以下とし、焼戻し温度120℃以上250℃以下で30分以上180分以下とすることができる。
 以下、実施例に従って、本発明の構成および作用効果をより具体的に説明する。しかし、本発明は下記の実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲内にて適宜変更することも可能であり、これらは何れも本発明の技術的範囲に含まれる。
 表1に示す成分組成(各元素の含有量の単位は質量%、残部はFeおよび不可避不純物)の鋼の鋳片を、表2に示す断面減少率にて熱間圧延し、種々の寸法の丸棒鋼を得た。表1中に示すNo.1~27は成分組成が本発明を満足する適合鋼であり、No.28~52は成分組成が本発明を満足しない比較鋼であり、表2中のNo.53は、断面減少率が本発明の規制値から外れた比較例である。
 (評価方法)
 各適合鋼および比較鋼において、以下の評価を行った。
(1)回転曲げ疲労強度およびIの評価
 適合鋼および比較鋼から得た丸棒鋼の各々の直径1/2の位置より、既述の方法で試験片を7本採取し、既述の方法でIを求めた。画像解析には、Media-Cybernetics社製Image-Pro_PLUSを用いた。この手順における両振り小野式回転曲げ疲労試験において、破断までの繰り返し数(7本のうちの最短疲労寿命)を表2に示す。なお、最短疲労寿命が100,000回以上の場合に、優れた回転曲げ疲労強度を有するとみなすことができる。
(2)面圧疲労強度の評価
 適合鋼および比較鋼から得た36mmφの丸棒鋼の各々において、丸棒鋼の直径1/2の位置より、図3に示す26mmφの試験片を採取し、ローラーピッチング疲労試験片(小ローラー)とした。得られた試験片に対して、図2に示す浸炭焼入れ・焼戻し処理を行った。その後、ローラーピッチング疲労試験機を使用して、80℃のミッションオイルを潤滑に用い、すべり率:40%、回転数:1500rpmの条件下で、ローラーピッチング疲労試験を行った。なお、大ローラー(クラウニングR150mm)にはSUJ2の焼入れ焼戻し品を使用した。その際、107回を疲労限度として面圧疲労強度を測定して評価した。本試験において、2800MPa以上の疲労強度を有する場合、優れた面圧疲労強度を有するとみなすことができる。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明によれば、高い回転曲げ疲労強度および面圧疲労強度を有する機械構造用部品を、比較的安価なコストで作製するための素材として適した肌焼鋼およびその製造方法を提供することができる。

Claims (10)

  1.  質量%で、C:0.15%以上0.30%以下、Si:0.80%以上2.00%以下、Mn:0.20%以上0.80%以下、P:0.003%以上0.030%以下、S:0.005%以上0.050%以下、Cr:1.00%以上1.80%未満、Mo:0.03%以上0.30%以下、Al:0.020%以上0.060%以下、N:0.0060%以上0.0300%以下およびO:0.0003%以上0.0025%以下を、下記(1)式および(2)式を満足する範囲の下で含み、残部はFeおよび不可避不純物からなる成分組成を有し、さらに、下記(3)式を満足することを特徴とする肌焼鋼。
                      記
    〔%Si〕+(〔%Mn〕+〔%Cr〕+〔%Mo〕)/3≧1.5  ・・・(1)
    180-45〔%Mn〕-14〔%Cr〕-51〔%Mo〕+5〔%Si〕≧125  ・・・(2)
    √I≦80  ・・・(3)
     ただし、〔%M〕はM元素の含有量(質量%)を示し、Iは、前記肌焼鋼に浸炭焼入れおよび焼戻しを施し、その後回転曲げ疲労試験を行った後の破面における、フィッシュアイ中心部に位置する酸化物系介在物の面積(μm2)を示す。
  2.  前記成分組成が、質量%でさらに、Nb:0.050%以下、Ti:0.025%未満、およびSb:0.035%以下のうちから選んだ1種以上を含む請求項1に記載の肌焼鋼。
  3.  前記成分組成が、質量%でさらに、Cu:1.0%以下、Ni:1.0%以下、およびV:0.050%以下のうちから選んだ1種以上を含む請求項1または2に記載の肌焼鋼。
  4.  前記成分組成が、質量%でさらに、Ca:0.0050%以下、Sn:0.50%以下、Se:0.30%以下、Ta:0.10%以下、Hf:0.10%以下のうちから選んだ1種以上を含む請求項1~3のいずれか一項に記載の肌焼鋼。
  5.  質量%で、C:0.15%以上0.30%以下、Si:0.80%以上2.00%以下、Mn:0.20%以上0.80%以下、P:0.003%以上0.030%以下、S:0.005%以上0.050%以下、Cr:1.00%以上1.80%未満、Mo:0.03%以上0.30%以下、Al:0.020%以上0.060%以下、N:0.0060%以上0.0300%以下およびO:0.0003%以上0.0025%以下を、下記(1)式および(2)式を満足する範囲の下で含み、残部はFeおよび不可避不純物からなる成分組成を有する鋼の鋳片を、下記(4)式を満足する断面減少率にて熱間鍛造および/または熱間圧延による熱間加工を施して、棒鋼または線材である肌焼鋼を得ることを特徴とする肌焼鋼の製造方法。
                      記
    〔%Si〕+(〔%Mn〕+〔%Cr〕+〔%Mo〕)/3≧1.5  ・・・(1)
    180-45〔%Mn〕-14〔%Cr〕-51〔%Mo〕+5〔%Si〕≧125  ・・・(2)
    (S1-S2)/S1≧0.960  ・・・(4)
     ただし、S1は、熱間加工時の延伸方向と直交する断面における前記鋳片の断面積(mm2)、S2は、熱間加工時の延伸方向と直交する断面における前記棒鋼または線材の断面積(mm2)を示す。
  6.  前記成分組成が、質量%でさらに、Nb:0.050%以下、Ti:0.025%未満、およびSb:0.035%以下のうちから選んだ1種以上を含む請求項5に記載の肌焼鋼の製造方法。
  7.  前記成分組成が、質量%でさらに、Cu:1.0%以下、Ni:1.0%以下、およびV:0.050%以下のうちから選んだ1種以上を含む請求項5または6に記載の肌焼鋼の製造方法。
  8.  前記成分組成が、質量%でさらに、Ca:0.0050%以下、Sn:0.50%以下、Se:0.30%以下、Ta:0.10%以下、Hf:0.10%以下のうちから選んだ1種以上を含む請求項5~7のいずれか一項に記載の肌焼鋼の製造方法。
  9.  請求項1~4のいずれか一項に記載の肌焼鋼に、機械加工、または、鍛造とその後の機械加工を施して歯車形状とし、その後、前記肌焼鋼に浸炭焼入れおよび焼戻しを施して、歯車部品を得ることを特徴とする歯車部品の製造方法。
  10.  請求項5~8のいずれか一項に記載の肌焼鋼の製造方法の工程に加えて、前記肌焼鋼に、機械加工、または、鍛造とその後の機械加工を施して歯車形状とし、その後、前記肌焼鋼に浸炭焼入れおよび焼戻しを施して、歯車部品を得ることを特徴とする歯車部品の製造方法。
PCT/JP2017/020258 2016-05-31 2017-05-31 肌焼鋼およびその製造方法ならびに歯車部品の製造方法 WO2017209180A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/305,519 US11174543B2 (en) 2016-05-31 2017-05-31 Case hardening steel, method of producing case hardening steel, and method of producing gear part
MX2018014641A MX2018014641A (es) 2016-05-31 2017-05-31 Acero de cimentación, método para producir acero de cimentación, y método para producir partes de engranaje.
CN201780032967.XA CN109196134A (zh) 2016-05-31 2017-05-31 表面硬化钢及其制造方法以及齿轮部件的制造方法
KR1020187036498A KR102165228B1 (ko) 2016-05-31 2017-05-31 기소강 및 그 제조 방법과 기어 부품의 제조 방법
CN202410111883.7A CN117888030A (zh) 2016-05-31 2017-05-31 表面硬化钢及其制造方法以及齿轮部件的制造方法
EP17806731.0A EP3467133B1 (en) 2016-05-31 2017-05-31 Case-hardened steel and manufacturing method therefor as well as gear component manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-109532 2016-05-31
JP2016109532 2016-05-31
JP2016176921A JP6460069B2 (ja) 2016-05-31 2016-09-09 肌焼鋼およびその製造方法ならびに歯車部品の製造方法
JP2016-176921 2016-09-09

Publications (1)

Publication Number Publication Date
WO2017209180A1 true WO2017209180A1 (ja) 2017-12-07

Family

ID=60478669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020258 WO2017209180A1 (ja) 2016-05-31 2017-05-31 肌焼鋼およびその製造方法ならびに歯車部品の製造方法

Country Status (2)

Country Link
CN (1) CN117888030A (ja)
WO (1) WO2017209180A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021028415A (ja) * 2019-08-09 2021-02-25 日本製鉄株式会社 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法
CN115074631A (zh) * 2022-06-30 2022-09-20 马鞍山钢铁股份有限公司 Nb-B微合金化高表面硬度高扭矩输出齿轮钢及其制造方法、生产齿轮的渗碳方法和应用
JP7479566B2 (ja) 2020-10-19 2024-05-08 中天鋼鉄集団有限公司 建設機械歯車用鋼の製造方法及びその鍛造品の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171472A1 (ja) * 2013-04-18 2014-10-23 新日鐵住金株式会社 肌焼用鋼材と肌焼鋼部品
JP2015134949A (ja) * 2014-01-17 2015-07-27 Jfe条鋼株式会社 肌焼鋼および機械構造用部品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171472A1 (ja) * 2013-04-18 2014-10-23 新日鐵住金株式会社 肌焼用鋼材と肌焼鋼部品
JP2015134949A (ja) * 2014-01-17 2015-07-27 Jfe条鋼株式会社 肌焼鋼および機械構造用部品

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021028415A (ja) * 2019-08-09 2021-02-25 日本製鉄株式会社 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法
JP7368697B2 (ja) 2019-08-09 2023-10-25 日本製鉄株式会社 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法
JP7479566B2 (ja) 2020-10-19 2024-05-08 中天鋼鉄集団有限公司 建設機械歯車用鋼の製造方法及びその鍛造品の製造方法
CN115074631A (zh) * 2022-06-30 2022-09-20 马鞍山钢铁股份有限公司 Nb-B微合金化高表面硬度高扭矩输出齿轮钢及其制造方法、生产齿轮的渗碳方法和应用
CN115074631B (zh) * 2022-06-30 2023-07-25 马鞍山钢铁股份有限公司 Nb-B微合金化高表面硬度高扭矩输出齿轮钢及其制造方法、生产齿轮的渗碳方法和应用

Also Published As

Publication number Publication date
CN117888030A (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
JP6098732B2 (ja) 浸炭鋼部品の製造方法及び浸炭鋼部品
JP6468402B2 (ja) 肌焼鋼およびその製造方法ならびに歯車部品の製造方法
JP5333682B2 (ja) 熱間鍛造用圧延棒鋼または線材
JP3562192B2 (ja) 高周波焼入用部品およびその製造方法
WO2017209180A1 (ja) 肌焼鋼およびその製造方法ならびに歯車部品の製造方法
JP6460069B2 (ja) 肌焼鋼およびその製造方法ならびに歯車部品の製造方法
JP2016204752A (ja) 肌焼鋼および肌焼鋼の製造方法
JP6078008B2 (ja) 肌焼鋼および機械構造用部品の製造方法
JP5381171B2 (ja) 高強度肌焼鋼部品の製造方法
JP5332410B2 (ja) 浸炭用鋼材の製造方法
JP6078007B2 (ja) 肌焼鋼および機械構造用部品の製造方法
JP6390685B2 (ja) 非調質鋼およびその製造方法
JP6263390B2 (ja) 耐疲労性に優れた歯車用鋼および歯車
WO2011155605A1 (ja) 被削性に優れた高強度鋼、およびその製造方法
JP2021028414A (ja) 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法
JP3996386B2 (ja) ねじり疲労特性に優れた浸炭用鋼
CN107532252B (zh) 表面硬化钢
JP7408331B2 (ja) 浸炭肌での歯面疲労強度に優れる機械構造用の肌焼鋼及び該肌焼鋼を用いた機械構造用部品
JP6569650B2 (ja) 肌焼鋼
JP4515329B2 (ja) 耐ケースクラッシング性に優れた熱処理歪の少ない鋼製歯車とその製法
JP5310095B2 (ja) 黒皮外周旋削性とねじり疲労強度に優れた鋼材の製造方法
JP2021161462A (ja) 鋼材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187036498

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017806731

Country of ref document: EP

Effective date: 20190102